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Abstract. A geometrical formulation of Heisenberg ferromagnetism as an

evolution of a curve on the unit sphere in terms of intrinsic variables is pro-
vided and investigated. Given a vortex filament moving in an incompressible

Euler fluid with constant density (under the local induction approximation

hypotheses), the solutions of the classical Heisenberg ferromagnet equation
are represented by the corresponding spherical (or tangent) indicatrix. The

equations for the time evolution of the indicatrix on the unit sphere are given
explicitly in terms of two intrinsic variables, the geodesic curvature and the

arc-length of the curve. Notably, by considering the evolution with respect to

slow variables and neglecting the dispersive terms, a novel elliptic dispersion-
less reduction of the Heisenberg ferromagnet model is obtained. The length of

the spherical indicatrix is proved not to be conserved. Finally, a totally explicit

algorithm is provided, allowing to construct a solution of the Heisenberg ferro-
magnet equation from a solution of Nonlinear Schrödinger equation, and, re-

markably, viceversa, allowing to construct a solution of Nonlinear Schrödinger

equation from a solution of the Heisenberg ferromagnet equation. As expected
from the Zakharov-Takhtajan gauge equivalence, in the reflectionless case such

a two-way map between solutions is shown to preserve the Inverse Scattering

Transform spectra, and thus the localization.

1. Introduction

In this work we provide a geometrical formulation of Heisenberg ferromagnetism
as an evolution of a curve on the unit sphere. In the present context, we re-
fer to Heisenberg ferromagnetism as the magnetization dynamics of a continuous,
isotropic ferromagnet in (1+1) dimensions (space and time). In particular, we will
derive an elliptic dispersionless reduction for the evolution of the curve on the unit
sphere, expressed in terms of intrinsic variables (a geodesic curvature and a quan-
tity related to a metric on the curve), and we will carry out a systematic study
of the spherical curves corresponding to localized configurations of the magnetic
field. Our starting point will be the established connection [21, 37, 53] between
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the focusing nonlinear Schrödinger equation (NLS) and the continuous, classical
Heisenberg ferromagnet equation (HF) through the Da Rios model (DR).

Before explaining the geometrical link between NLS and HF, it is fundamental to
introduce these two equations, along with briefly commenting on their theoretical
and applied relevance within the study of nonlinear wave phenomena.

The wider physical importance of the NLS equation became evident after the
works of Chiao et al [17] and Talanov [79, 80], especially in connection with the
phenomena of self-focusing/self-defocusing and the conditions under which an elec-
tromagnetic beam can propagate in nonlinear media without spreading. Since then,
equations of NLS-type have been derived in such diverse fields as deep water waves
[4, 86], plasma physics [87], nonlinear fiber optics [35, 36], Bose-Einstein conden-
sates [75], etc. As a matter of fact, most dispersive energy preserving systems give
rise, in appropriate limits, to the scalar NLS equation, which explains the keen
interest in NLS as a prototypical integrable system (see [15]).

The discovery in [86] that the initial value problem associated to the focus-
ing/defocusing NLS equation

iut + uss + 2ε|u|2u = 0,

u(s, 0) = u(0)(s)
(1.1)

can be solved via the Inverse Scattering Transform (IST) technique led to an exten-
sive amounts of studies, devoted to both the focusing (ε = 1) and the defocusing
(ε = −1) dispersion regimes. For a detailed account of IST we refer the reader to
the classical textbooks [2, 3, 4, 16, 67]. In equation (1.1), u is a function depending
on the variables s and t. Subscripts s and t denote differentiation throughout. In
the context of IST, the unknown function u is usually referred to as the potential.
The IST method has been applied in the case of potentials u(s, t) which rapidly
decay as |s| → ∞ [2, 3, 4, 16, 67], as well as in the case of potentials which do not
decay at infinity [8, 9, 11, 12, 22, 23, 29, 32, 33, 46, 47, 50, 58]. In the present paper
we focus our attention on the focusing NLS equation with vanishing potentials,
for which an explicit soliton solution formula has been found in [6] by using the
so-called matrix triplet method. We will briefly describe the matrix triplet method
at the end of this section because it will play a fundamental role in this paper.

On the other hand, the continuous Heisenberg ferromagnet chain equation (ı.e.,
the one-dimensional, isotropic Landau-Lifshitz equation) is the simplest and most
fundamental of the continuous, integrable models of ferromagnetism, capable of ac-
counting for the existence of localized, propagating, solitary waves of the magnetic
field in a nano-wire. Recently, an increasing number of theoretical and experimental
advancements have renewed the interest towards the study of localized, propagating
configurations of the magnetic field in (two- and three-dimensional) ferromagnetic
materials at the nanometer length-scale [57, 10]. This has always been a challenging
ground, particularly because of the dimensions of the length-scale at which such
nonlinear wave phenomena – denominated (non-topological) magnetic-droplet soli-
tons – are predicted to occur (e.g., [14, 38, 39, 40, 43, 44, 45, 49, 76]). The first
enucleation of a magnetic-droplet soliton in a nano-contact spin-torque oscillator
device has been announced in 2013 [62], followed by further theoretical and exper-
imental investigation (e.g., see [13, 18, 19, 20, 60, 61, 63]). Interesting dynamical
features have been reported, including oscillatory motions, as well as “spinning”
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and “breather” states. In particular, in [41], it has been shown how, as an ex-
tended magnetic thin film is reduced to a nano-wire with a nano-contact of fixed
size at its center, the observed excited modes undergo transitions from a localized
two-dimensional droplet into a pulsating one-dimensional droplet, linking the study
of low-dimensional magnetic solitons to the recent experimental discoveries.

The HF equation reads
mt = m×mss , (1.2a)

where m : R × R → S2, m(s, t) =
∑3
j=1mj(s, t)ej , is the magnetization vector at

position s and time t, and the vectors ej , j = 1, 2, 3, are the standard cartesian basis
vectors for R3, and S2 is the sphere in R3 (note that ‖m(x, t)‖ = 1). We assume
that the position s is taken on the real line orientated as e1. Equation (1.2) is
the well-known continuous limit of the (quantum) ferromagnetic Heisenberg chain
in a constant field when the wavelength of the excited modes is larger than the
lattice distance (see, for instance, [1, 30, 51]). Furthermore, we observe that in the
right-hand side of (1.2) one can add a term of the form hm× e3 with h ∈ R, which
can be scaled out by a convenient change of variables (see [30, 39]).

Usually, equation (1.2) is associated to some asymptotic or initial condition. We
will discuss this aspect from a geometrical point of view in Section 2; at the moment
it suffices to say that a typical asymptotic condition consists in assuming that the
constant spin field of the ground state of the Heisenberg chain points as e3, namely

m(s, t)→ e3 as s→ ±∞. (1.2b)

It is well known that also (1.2) is integrable [30, 53, 81, 88] and hence it has all the
properties which characterize integrable equations. The existence of localized, prop-
agating, solitary waves was first derived in [52, 64, 82]. In [81], Takhtajan showed
that (1.2) admits a Lax pair representation which assures that the IST technique
(see [4, 16, 29]) can be applied to solve the HF equation (1.2) with initial-value
m(s, 0) = m(0)(s), see [81, 88]. In particular, the Marchenko equations and the
time dependence of the scattering data are presented in [81], as well as the one-
soliton solution and the phase and centre-of-mass shifts for a two-soliton collision.
In [30], extending the results in [81], a diagonal action-angle representation of (1.2)
is exhibited. Furthermore, using the so-called Hasimoto map [37, 54], Lakshmanan
was able to prove in [53] the existence of an infinite number of constants of motion
for the HF equation. In particular, in [53], employing the same geometrical con-
nection between NLS and HF that we exploit in the present work (see also [54]), it
is shown that the energy and the momentum density of the magnetization vector
admit soliton solutions and their explicit expressions are given for the one soliton
solution. Recently, in [24], using the matrix-triplet method, a closed-form soliton
solution formula has been found for (1.2), containing all the soliton solutions of 1.2,
and leading to their classification.

In [88], the existence of a gauge equivalence between (1.2) and (1.1) is established.
In that work, Zakharov and Takhtajan observe that the results in [53] are (verbatim)
“simple consequences of this equivalence”. However, in general it is not easy to
use such an equivalence to write explicitly a solution of the NLS equation from
an explicit solution of the HF equation, and viceversa. On the contrary, using the
matrix-triplet formulae derived in [6] and [24], we are able to exploit the geometrical
connection between NLS and HF to carry out a totally explicit construction of HF
reflectionless solutions from NLS reflectionless solutions and viceversa: by doing
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this, we extend to the actual, explicit solutions (in both directions, from NLS to
HF and from HF to NLS) the results of [53] and [56] for the conserved quantities
of HF from NLS; moreover, this bi-directional construction suggests that, in the
reflectionless case, the geometrical link between NLS and HF can be indeed regarded
as a “geometrical implementation” of the Zakharov-Takhtajan gauge equivalence,
for it preserves the IST spectrum – possibly except for a (non-trivial) rescaling of
the IST norming constants – and hence the localization of the solutions.

In [65] the authors generalized this connection, by showing that a gauge equiva-
lence exists between the NLS equation and the Landau-Lifshitz equation (LL), i.e.
the model where the anisotropy is taken into account. The Hasimoto map and the
geometric connection between NLS and HF has been used in [34] in the context of
the study of self-similar solutions of the isotropic Landau-Lifshitz-Gilbert equation.
Furthermore, it has been employed in [83] to derive a hydrodynamic counterpart
for the continuous Heisenberg chain, which is alternative, but different, to the dis-
persionless model obtained here for the first time (to the best of our knowledge).

The key to analyze the connection between the NLS equation and Heisenberg
equation is the so-called binormal equation (see equation (1.3) below). This equa-
tion allows to develop a physical insight into the link between the motion of a
vortex filament in an incompressible, Eulerian fluid with constant density [21] and
the evolution of the magnetic field in a one-dimensional ferromagnet as described
by the continuous Heisenberg model (1.2). This connection has been established
separately and independently in several works (see [37, 53, 55, 83, 88], already
mentioned above), using the focusing NLS equation as Ur-system. The two sys-
tems involved in this connection belong to the two rather different physical domains
of hydrodynamics and ferromagnetism.

The motion of a vortex filament in an incompressible, Eulerian fluid with con-
stant density is a classical problem which is still unsolved for generic initial con-
ditions. One of the most important models allowing to achieve an approximate
solution of this initial value problem exploits the so-called Local Induction Approx-
imation (LIA) [77]. The main hypotheses on this approximation are as follows:
(1) the section of the vortex core is negligible, and, (2) the self-interaction of the
filament is local. Under the LIA approximation the vortex filament is described by
a curve X = X(s, t) ∈ R3 parameterized by the arc-length s and evolving in time
t. Let (t,n,b) be the standard Frenet-Serret frame along the vortex filament curve
X, with t being the unit tangent vector, n the unit normal vector, and b the unit
normal vector. Then, it is well known [77] that, in this context, the vortex motion
is described by the following binormal equation

Xt = Xs ×Xss ≡ κ̃b . (1.3)

Hasimoto in [37] has shown that the curvature and the (derivative of the) torsion
corresponding to this curve are connected respectively to the amplitude and the
phase of a solution of the focusing NLS equation via the so-called Hasimoto map.
In this sense equation (1.3) is integrable. The binormal motion of a vortex filament,
under the LIA and other approximations, has been extensively studied in [70, 71,
72, 73, 74], along with the integrable connection that it provides between NLS and
HF, as well as generalizations of these two equations.

The diagram 1 shows the strategy that we follow to achieve our result. We will
briefly discuss the diagram later in this Section and, in a more detailed way, in
Section 2. Let us remark that the horizontal arrow between the binormal curve



EJDE-2018/106 CURVE EVOLUTION FOR THE HEISENBERG EQUATION 5

and curve on the sphere represents the counterpart in the case of curve motions of
the gauge transformation introduced in [88].

HF NLS

curve

sphere 

motion

curve

binormal 

motion

Hasimoto

map

Zakharov-Takhtajan

Gauge equivalemce

Spherical 

indicatrix map 

Da Rios System

"Tangent'' 

Hasimoto 

map

hydrodinamic

ferromagnetism

Figure 1: Diagram of the connections between Heisenberg ferromagnetism, focusing
NLS equation and their curve motions-hydrodynamics counterparts.

Indeed, if we focus our attention on equation (1.3), we can introduce a map,
denoted from now on by B, connecting the binormal motion on the curve X(s, t) and
the “geometric” curve γ on the sphere (the curve γ is the geometric interpretation
of the vector of the magnetization m(s, t)). In particular, if we denote by κ̃, τ̃
the curvature and the torsion, respectively, of the curve X(s, t), and by κ, τ the
curvature and the torsion, respectively, of the curve γ, then it turns out that the
map B is “almost” invertible (in the sense explained below) and we will prove that:

(1) If a soliton solution of the NLS equation is given, first we can construct
κ̃, τ̃ via the Hasimoto map, and then we get κ, τ via the map B, thereby
obtaining the curvature and the torsion corresponding to a specific solution
of the HF equation. For the sake of clarity, we remind here that it is well-
known that a curve is uniquely determined up to Euclidean movements
once its (non-zero) curvature and torsion are (globally) assigned (see any
standard textbook in geometry: for instance, [85]).

(2) Starting from a soliton solution of the HF equation such that the curvature,
κ, and the torsion, τ , of the curve γ on the sphere are the same ones obtained
in the preceding step (1), then, by inverting the map B, one finds exactly
the curvature, κ̃, and the torsion, τ̃ , for the vortex filament as obtained in
the previous step (1) via the Hasimoto map.

The map B allows to link the purely geometric binormal motion with a curve motion
on the sphere, and this fact can be seen as an interesting characterization for the
binormal motion.

Moreover it turns out (see Section 2) that, instead of κ and τ , some features
of the curve motion on the sphere are better described in terms of two intrinsic
variables, the geodesic curvature K, and v = σs which represents the derivative of
the arc-length of the curve on the sphere σ with respect to the arc-length s of the
binormal curve X(s, t). In particular, such variables allows to introduce an elliptic
dispersionless reduced model for the evolution of the curve on the unit sphere (see
formula (2.26) in Section 2), resemblant of the elliptic dispersionless reduction of
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the focussing NLS equation (see [28]), and alternative to the dispersionless models
for the Heisenberg equation already known in the literature, which focus mainly
on the hyperbolic case (e.g., see [78, 69, 42], as well as [83], where the geometric
connection with NLS is also – but differently – employed). The analysis of this new
elliptic dispersionless model will be the subject of future investigation.

It is rather remarkable that the new variables K and σs can be used to estab-
lish an explicit formula connecting the curvature and the torsion on the sphere to
the magnetization vector m(s, t). Moreover, as we have already pointed out, the
connection can be used to show how to produce an explicit soliton solution formula
for the NLS equation if an explicit soliton solution of the HF equation is given (in
fact it is “enough” to follow the solid arrows from HF to NLS in the diagram).
Unfortunately, the solid lines from NLS to HF in the diagram cannot be followed
easily because of the difficulties in producing explicitly the magnetization vector if
κ and τ are given. To overcome these difficulties we have implemented a numerical
approach to get a solution of the HF equation when a soliton solution of the NLS
is given. To reach this result, starting from a solution of NLS, we construct κ̃ and
τ̃ by means of the Hasimoto map; then we integrate numerically the Frenet-Serret
system

d

ds

t
n
b

 =

 0 κ̃ 0
−κ̃ 0 τ̃
0 −τ̃ 0

t
n
b

 , (1.4)

with an initial condition satisfying the boundary condition t(±∞, 0)→ e3 and the
orthogonality of the (unknown) Frenet-Serret frame. It turns out (see Section 2)
that the tangent vector t(s, t) coincides with the magnetization vector m(s, t). By
integrating the Frenet-Serret system (1.4) at t = 0, we get numerically the initial
condition m(s, 0). We can use this latter initial condition to solve numerically the
initial value problem for the Heisenberg equation (1.2) with m(s, 0) = m(0)(s) by
means of the method of lines with a pseudospectral, Fourier discretization in space
and an adaptive Runge-Kutta scheme in time.

Finally, the solution of the HF equation obtained numerically by means of the
above procedure, starting from an explicit, reflectionless solution of the NLS equa-
tion for a certain choice of the NLS spectral data, has been compared to the explicit
solution of the HF equation obtained from the same spectral data: as expected, in
all cases we found a perfect correspondence.

We use both the reflectionless solution formula for the NLS equation [6] and the
reflectionless solutions of the HF equation [24], as they emerge from the applica-
tion of the matrix triplet method. Thus, it is important to briefly describe this
method, applied in [6] to solve the scalar NLS equation, and then proved successful
in solving several other integrable partial differential equations (see, for instance,
[5, 7, 24, 25, 26]). It is well known [86, 4] that to get the solution of a given inte-
grable evolutionary equation for which the IST can be applied, it is necessary to
develop the inverse scattering theory for a suitable, associated scattering problem.
The so-called matrix triplet method can be successfully used whenever the inverse
scattering theory can be formulated in terms of integral Marchenko equations. The
main idea of the method is to represent the kernel of the Marchenko equation as
Ce(y+z)AB, where (A,B,C) is a “suitable” matrix triplet containing the scattering
data, i.e., the spectrum of the scattering problem. The particular representation
of the kernel of the Marchenko equation allows to solve the Marchenko equations
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explicitly, and then to get closed-form solutions of the integrable equation to which
it is applied. The solutions obtained in this way will not contain anything more
complicated than matrix exponentials and solutions of matrix Lyapunov equations,
and, if necessary, can hence be “unzipped” into (lengthy) expressions containing
elementary functions, or used as input for numerical calculations.

This paper is organized as follows. In Section 2 a geometrical formulation of
Heisenberg ferromagnetism as an evolution of a curve on the unit sphere γ in terms
of intrinsic variables is provided. In particular, by using as intrinsic variables the
geodesic curvature K of the curve γ on the unit sphere and the derivative of the arc-
length of γ with respect to the arc-length along the Da Rios curve, we obtain that
the evolution of the Heisenberg curve γ is described by a PDE system possessing
an elliptic dispersionless reduction. In Section 3 we show how to explicitly connect
a solution of the HF equation to a solution of the NLS equation and viceversa. The
procedure is explained in the case of arbitrary reflectionless potentials, proving
the presevation of the localization under action of the spherical indicatrix map
B. Finally, in Appendix 5, starting from the matrix-triplet formulae from (3.18)
and (3.19), we derive alternative expressions of the reflectionless solutions of NLS
and HF (and of their time- and space-derivatives), respectively, which are more
convenient for their numerical evaluation.

2. Vortex binormal motion vs Heisenberg equation

In this Section we focus on the possible geometric motions associated to the
focusing NLS equation, that is

iut + uss + 2|u|2u = 0 , (2.1)

by analyzing the connections between it, the Da Rios (see equation (2.4) below)
and the Heisenberg equations (1.2).

As mentioned in the Introduction, the first connection between the focusing NLS
equation and the motion of a Euler vortex filament in the so called local induction
approximation [77] has been made by Hasimoto in [37]. The vortex filament –
which is described by a curve X = X(s, t) ∈ R3 parameterized by the arc-length s
– evolves in time t by following the binormal equation

Xt = Xs ×Xss ≡ κ̃b ,

where b is the binormal unit vector [77]. Hasimoto introduced a map connecting
the curvature κ̃ and torsion τ̃ of the vortex filament with the amplitude and phase
of the NLS solution u of (2.1) as follows:

u =
κ̃

2
e

R
τ̃ds (2.2)

In particular, equation (2.2) implies

κ̃ = 2|u| , τ̃ = θs =
1
2i

(us
u
− u∗s
u∗

)
. (2.3)

Explicitly, we obtain the well known Da Rios system [21],

κ̃t + 2τ̃ κ̃s + τ̃sκ̃ = 0 , τ̃t +
(
τ̃2 − 1

2
κ̃2 − κ̃ss

κ̃

)
s

= 0 . (2.4)

The binormal equation (1.3), and, consequently the focusing NLS equation, is re-
lated in a geometric way [53] to the Heisenberg equation (1.2) (reported below for
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the sake of clearness)
mt = m×mss , m ∈ S2 .

In fact, it is simple to observe that the Heisenberg solution m is the unitary tangent
vector of a solution of the binormal velocity motion (1.3),

Xs = m = t , (2.5)

where t is the unit tangent vector to the vortex filament curve. Equation (2.5)
allows us to interpret the solutions of the Heisenberg equations as curves on S2

generated by the tangent vectors of a curve in R3 associated to a solution of the
Da Rios model [53] (see figure 2).

Da Rios curve Heisenberg curve

Figure 2: Example of the construction of the tangent indicatrix (right) from a curve
(left). If the curve related to a Da Rios solution has the same asymptotic behavior
at s→ ±∞ then the curve related to the Heisenberg solution is closed.

This is a classical geometrical construction which is called “tangent indicatrix”
(e.g., see [85]). We observe that for the solutions of the Da Rios equation having
the same asymptotic straight line when s → +∞ and when s → −∞ (which is
always the case if the potential u(x, t) of the NLS equation vanishes as x → ±∞
for fixed t), then the associated Heisenberg solution is a closed curve on S2. We
want to exploit such geometric relation in order to show explicitly some interesting
analytical property of the Heisenberg equation. It is well known [85] that the
curvature κ̃ and the torsion τ̃ of the vortex filament are related to the curvature
κ and the torsion τ of the tangent indicatrix associated to a Heisenberg solution
curve on the sphere as follows:

κ =

√
1 +

τ̃2

κ̃2
, τ =

κ̃τ̃s − κ̃sτ̃
κ̃(κ̃2 + τ̃2)

. (2.6)

Obviously, since the tangent indicatrix is a spherical curve by construction, κ and
τ have to satisfy the relation (e.g., see [85]),

R2 = κ−2 + τ−2
[
(κ−1)σ

]2
, (2.7)
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where R = 1 is the radius of the sphere, and σ is the arc-length of the curve on the
sphere. We underline that, in the Da Rios equation, s denotes the arc-length of
the vortex filament, and it does not coincide with the arc-length σ of the tangent
indicatrix, namely of the Heisenberg solution curve on the sphere S2. Indeed, we
have

σ(s) =
∫ s

−∞
|mz(z)|d z =

∫ s

−∞
|Xzz(z)|d z =

∫ s

−∞
κ̃(z) d z . (2.8)

From equation (2.7) we obtain the torsion of the spherical indicatrix:

τ =
κσ√

κ4 − κ2
. (2.9)

For the sake of clarity let us recall here that we are denoting by m the unit
vector tangent t to the vortex filament, i.e., the curve in R3. Let (T, N ,B) be
the Frenet frame of the Heisenberg curve γ on S2, i.e., the curve representing the
Heisenberg solution, consisting of the unit tangent vector T, the normal vector N,
and the binormal vector B where

mσ = T , κN = Tσ , B = T×N . (2.10)

It is natural to use the intrinsic notion of geodesic curvature K of a curve on the
unit sphere defined as (see [85] for more details)

κN = KN̂−m , (2.11a)

where the vector N̂ is the so-called tangent normal vector ,

N̂ = m×T , (2.11b)

satisfying the relation
N̂σ = −KT. (2.11c)

Then, from (2.11a), we have

K ≡
√
κ2 − 1 =

|τ̃ |
κ̃
, (2.12)

and, from (2.9) and (2.12), we get

τ =
Kσ

1 +K2
= [arctan(K)]σ . (2.13)

The relations (2.12) and (2.13) show that a spherical curve m can be reconstructed
starting only from its geodesic curvature in the same manner as a curve in a plane
can be constructed only from its curvature. This fact can be also seen by using the
Taylor development in σ̄ = σ − σ0,

m = m(σ0) + mσ(σ0) σ̄ +
1
2
mσσ(σ0) σ̄2 +

1
6
mσσσ(σ0) σ̄3 + . . . (2.14)

By using the Frenet frame of the curve on S2, we can reconstruct the curve from
K as

m =m(σ0) +
(
σ̄ − (1 +K2)

6
σ̄3 + . . .

)
T +

(√1 +K2

2
σ̄2 +

KKσ

6
√

1 +K2
σ̄3 + . . .

)
N

+
( Kσ

6
√

1 +K2
σ̄3 + . . .

)
B ,

(2.15)
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for any derivative of m depends only on K. Taking into account equations (2.10)
and (2.11c), we see that the curve can be reconstructed by solving the following
second order ODE

mσσ = −m +Km×mσ ,

m(0) = m(0) , mσ(0) = m(0)
σ .

(2.16)

The initial value problem (2.16) suggests to characterize the curve on the sphere by
means of the geodesic curvature K and the arc-length σ instead of κ and τ . Before
studying the curve representing the Heisenberg solution on S2 by choosing K and
σ, let us remark two relevant features of the evolution equations for the curvature
κ and the torsion τ .

(1) The variables κ and τ are particularly useful when one wants to map NLS
solutions into Heisenberg ones. Indeed, by composing (2.6) and (2.3) one obtain
the map

κ =

√
1− (us u∗ − uu∗s)2

16u3 u∗3
, τ = i

(us
u
− u∗s
u∗

)−1[
log
(

1− (us u∗ − uu∗s)2

16u3 u∗3

)]
s
.

(2.17)
(2) The structure of the evolution equations for the curvature κ and the torsion τ

of the spherical curve associated to the Heisenberg solution is qualitatively different
from the Da Rios system (2.4) satisfied by the curvature κ̃ and the torsion τ̃ .
Indeed, the Da Rios system allows to easily identify a dispersionless counterpart
of the model (e.g., see [48]). If the curvature κ and the torsion τ of the spherical
curve associated to the Heisenberg flow are used, then a different type of structure
is obtained. This is due to the differential nature of the relations (2.6) linking κ̃
and τ̃ to κ and τ . In particular, after a straightforward and long computation, we
find that the structure of the Heisenberg flow can be written, for the curvature κ,
as follows:

κt = A1(κ, τ)κss +A2(κ, τ)κsτs +A3(κ, τ)τss + higher derivatives (2.18)

where A1, A2, and A3 are suitable functions whose explicit structure is not relevant.
We note that an analogous formula holds for the evolution of the torsion τ . There-
fore, contrarily to the Da Rios system, the curvature and torsion of the Heisenberg
curves do not show a natural dispersionless quasilinear counterpart. This strange
behavior is related to the lack of geometric meaning of s in the Heisenberg case.

Before describing the curve on the sphere by using the geodesic curvature K and
the arc-length σ, we observe that the arc-length σ depends on the time t [21],

σt =
∫ s

−∞
κ̃t ds =

∫ s

−∞
(−2τ̃ κ̃s − τ̃sκ̃) ds , (2.19)

whereas the arc-length s used to describe the vortex filament in R3 is time inde-
pendent. This property is very important because, from equation (2.19), it follows
that the total length of the Heisenberg curve is not conserved. Indeed, we have

L(t) = σ(+∞, t) =
∫ +∞

−∞
κ̃(s, t) ds = 2

∫ +∞

−∞
|u(s, t)|ds , (2.20)

and, taking into account that κ̃ is a non-conserved density for the Da Rios evolution,
it follows that also the total length of the Heisenberg curve is not conserved. In fact,
integrating by parts (2.19) and taking into account that κ̃ vanishes at s = ±∞, we
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get
dL(t)

dt
= −

∫ +∞

−∞
κ̃sτ̃ ds . (2.21)

Now we are ready to write the motion of a curve on the sphere following the
Heisenberg model as an intrinsic motion on the sphere by choosing the geodesic
curvature K and the arc-length σ. After straightforward and long computations,
we obtain

mt = −Kσs2 T + σss N̂ , (2.22)

where T = mσ is the tangent to the curve and N̂ is the tangent normal (2.11b). The
tangent component of this motion does not affect the curve motion being simply
a translation along the curve itself. From(2.22) it appears that the Heisenberg
equation can be interpreted as an intrinsic motion of a point moving on a spherical
curve even if, as expected, the arc-length parameter is not a good parameter to
express the time evolution. Actually the evolution depends explicitly also on the
arc-length parameter σ as a function of a parameter s independent from t; this also
implies that the evolution of the curve is not local, as it depends also on the curve
length. As a consequence, this type of motion does not belong to the local motions
studied, for instance, in [66], where the definition of locality requires a curve motion
to be local if the coefficient of the evolution equation (in our case (2.22)) depends
only on the curvature (and the torsion, if we are in R3). We remark that the motion
of the point moving on the sphere S2 depends also on how the arc-length σ evolves
in time.

A different way to write the motion of the Heisenberg curve is obtained by using
the geodesic curvature K and the arc-length σ (in particular, by introducing (2.8)
and (2.12) in (2.4)) as follows:

Kt = −KKsσs +
(

1 +K2 − σsss
σs3

)
σss +

σssss
σs2

,

σst = −σs2Ks − 3Kσsσss .
(2.23)

where
σs ≡ ‖ms‖ = ‖m×ms‖ , (2.24a)

and, by inverting (2.16),
K = ‖m + mσσ‖ . (2.24b)

System (2.23) can be written in evolutionary form by using the geodesic curvature
K (2.24b) and σs ≡ v (2.24a), considered as independent variables. If we do that,
we get

Kt = −KKsv +
(

1 +K2 − vss
v3

)
vs +

vsss
v2

,

vt = −v2Ks − 3Kvvs .
(2.25)

The use of a variable v in the context of curve motions whose arc-length is time-
dependent has been suggested separately in [31] in the context of planar curve
shortening flows (see Lemma 3.1.1 in [31]), as well as in [66], where its square,
called g, is identified with “a metric on the curve”.

Putting t = εy, s = εx and neglecting higher-order terms in ε we can now define
the dispersionless Heisenberg model as the elliptic quasilinear system

Ky = −vK Kx +
(
1 +K2

)
vx ,

vy = −v2Kx − 3Kv vx ,
(2.26)
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which is obtained from (2.25) without the dispersive part involving only v. This
implies that the dispersionless model imposes restrictions on the local variation of
the curve metric v2: equivalently, this entails that the module |ms| cannot change
rapidly as a function of x.

We remark that the system (2.26) is exactly the system (2.4) by using the more
convenient variables

v = κ̃ , K2 =
τ̃2

κ̃2
. (2.27)

This mapping is not one-to-one because it requires an initial choice on the torsion
sign.

An elliptic dispersionless reduction analogous to (2.26) has been studied for
the focussing NLS equation (also known as Airy model) in [28] where a complete
characterization of the “gradient catastrophe” for this non-hyperbolic case has been
obtained. The focussing dispersionless NLS model, as shown in [83, equations
(3.1) and (3.2)], can be interpreted as a particular dispersionless reduction for the
Heisenberg ferromagnet equation. However, the intrinsic variables used in (2.26)
have the peculiarity of providing a geometrical description of the spherical indicatrix
curve whose motion is naturally associated to the Heisenberg model (1.2), and
in general the choice of the more convenient variables to be used in a reduction
is dictated by and depends on the physical interpretation of the solutions that
one has in mind. Finally, it is worth recalling here that other hydrodynamical-
like models for ferromagnetism have been proposed and studied in more-than-one
dimensions (see, for instance, the early works [69] and [78]). More recently, in [42]
an interesting formulation of the magnetization dynamics in a ferromagnetic thin
film has also stressed the possible existence of elliptic and hyperbolic regimes, by
introducing a suitable definition of a ferromagnetic analogue of the hydrodynamic
“sonic line” (i.e., a parabolic line in a ferromagnetic context).

A complete study of the near-catastrophe behavior of the elliptic dispersionless
Heisenberg model, as well as of the relation between (2.26) and the above-mentioned
dispersionless reductions is currently under investigation and will be the subject of
a future work.

3. From NLS to HF and back

In the present section we show how to explicitly connect a solution of the HF
equation to a solution of the NLS equation, and viceversa. We illustrate the gen-
eral procedure, providing one explicit example, the one-soliton solution; then we
specialize the theory to the arbitrary reflectionless case, proving the presevation of
the localization under action of the spherical indicatrix map B.

As explained in the previous Section 2, given the magnetization m(s, t) with
‖m‖ = 1, we can interpret it as a curve on the unit sphere S2 with curvature κ and
torsion τ given by

κ =
‖ms ×mss‖
‖ms‖3

, τ =
(ms ×mss , msss)
‖ms ×mss‖2

, (3.1a)

so that

κ2 = 1 +
(ms,mt)2

‖ms‖6
, τ =

1
‖ms‖2

κs

κ
√
κ2 − 1

=
‖ms‖

(ms,mt)
κs
κ
. (3.1b)
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In turn, as we have already observed in the previous sections, the Heisenberg curve
on the sphere can be interpreted as the spherical indicatrix of the tangent of the Da
Rios curve with curvature κ̃ and torsion τ̃ . Using the relations given by equations
(2.6) and their inverses, namely

κ̃ =
κs

κτ
√
κ2 − 1

, τ̃ =
κs
κτ

, (3.2)

we obtain an explicit expression for κ̃ and τ̃ in terms of the magnetization m, which,
combined with (2.3), provides an explicit connection between the solutions of HF
and the solutions of NLS:

κ̃ = ‖ms‖ = 2|u| and τ̃ = − (ms,mt)
‖ms‖2

= Im
(us
u

)
. (3.3)

Then, using the Hasimoto map (2.2), we can reconstruct a solution u(s, t) of NLS
from κ̃ and τ̃ :

u(s, t) =
κ̃(s, t)

2
e
i

R s
s0
τ̃(z,t)dz+iφ(t) =

κ̃(s, t)
2

eiΦ(s,t) , (3.4a)

where, using the Da Rios equations (2.4), we have∫ s

s0

τ̃t(z, t)dz +
dφ
dt

=
κ̃2(s, t)

2
− τ̃2(s, t) +

κ̃ss(s, t)
κ̃(s, t)

, (3.4b)

φ(t) = −
∫ s

s0

(
τ̃(z, t)− τ̃(z, t0)

)
dz

+
∫ t

t0

( κ̃2(s, η)
2

− τ̃2(s, η) +
κ̃ss(s, η)
κ̃(s, η)

)
dη ,

(3.4c)

Φ(s, t) =
∫ s

s0

τ̃(z, t)dξ + φ(t)

=
∫ s

s0

τ̃(z, t0)dz +
∫ t

t0

( κ̃2(s, η)
2

− τ̃2(s, η) +
κ̃ss(s, η)
κ̃(s, η)

)
dη .

(3.4d)

To do the opposite, given a vanishing solution u(s, t) of NLS, we specialize it at
t = 0, u(s, 0), and we extract the curvature κ̃(s, 0) and the torsion τ̃(s, 0) via the
Hasimoto map (3.3). Then we integrate numerically the Frenet-Serret system (1.4)
by means of an adaptive Runge-Kutte method, over a finite interval of the arc-length
s, with a choice of the initial condition such that t(±∞, 0) = e3. As explained in
Section 3.2, this is always possible, provided that the curvature κ̃ is almost zero
at the endpoints of the integration interval. The tangent vector t(s, 0) obtained
from the numerical integration can be seen as the initial condition m(s, 0) to be
used for integrating numerically the Heisenberg equation. This latter operation is
then performed by means of a pseudo-spectral method in space and an adaptive
Runge-Kutta scheme in time.

As we will show in the next Section 3.1, the case of the one-soliton solution can
be carried out analytically without resorting to numerical integration, extending
the construction of the conserved quantities of HF starting from a multi-soliton
solution of NLS as in [53]. A complete study of conserved quantities for the Da
Rios model using the map with focusing NLS equation has been performed in [56].
In the general reflectionless case, in Section 3.2 we will prove that the spherical
indicatrix map B indeed preserves the spectrum and the localization between NLS
and HF, as expected based on [88].
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3.1. An explicit example: the one-soliton solution. We are now ready to
illustrate the general setup presented above in the case of a one-soliton solution,
that is, we show here how to connect explicitly a one-soliton solution of to HF
equation to a one-soliton of the NLS equation and viceversa, using the spherical
indicatrix map B.

Let a = p+ i q ∈ B be an arbitrary complex number with p > 0: in the context
of the IST setup, the quantity ia is the spectral parameter used to construct the
solution, usually referred to as the discrete eigenvalue. The three components, m1,
m2, and m3, of the magnetization m for the one-soliton solution of HF read [24]:(

m1(s, t)
m2(s, t)

)
=

1−m3(s, t)
p

(
cosβ(s, t) − sinβ(s, t)
sinβ(s, t) cosβ(s, t)

)(
q coshα(s, t)
p sinhα(s, t)

)
, (3.5a)

m3(s, t) = 1− 2 p2

p2 + q2
sech2 α(s, t) , (3.5b)

where

V = 4q , ω = 4(p2 + q2) , (3.5c)

α(s, t) = 2 p(s− V t− s0) , β(s, t) = ωt+
V

2
(s− V t− s0) + ϕ0 , (3.5d)

and s0 and ϕ0 are some arbitrary real numbers. Using (3.3), we can explicitly
compute

κ̃ = 4p sech
(
2p(4qt− s+ s0)

)
, and τ̃ = 2q . (3.6)

Consequently, using (3.4d), we have

Φ(s, t) =
(
4p2 − 4q2

)
t− 4p2t0 + 4q2t0 + 2qx− 2qx0 . (3.7)

As t0 is arbitrary at this stage, we can choose it so that −4(p2 − q2)t0 − 2qx0 = φ̃0

(provided q 6= ±p) for some real number φ̃0:

Φ(s, t) =
(
4p2 − 4q2

)
t+ 2qx+ φ̃0 . (3.8)

Using (3.4a), we are now capable of constructing the solution of NLS, which cor-
responds – modulo a shift of the phase – to the same one-soliton solution that we
would have obtained had we started from the same discrete eigenvalue ia:

u(s, t) = 2pei(4p
2t+2q(−2qt+s)+φ̃0) sech

(
2p(4qt− s+ s0)

)
. (3.9)

Consequently, from (2.20), we have that the total length of the Heisenberg curve is
L(t) = 2π.

Conversely, we can prove that a one-soliton solution of HF corresponding to the
eigenvalue ia can be obtained from a one-soliton solution of NLS corresponding to
the same eigenvalue ia. In other words, we want to show that the construction illus-
trated above, for obtaining a solution of NLS from a solution of HF equation, can be
inverted, preserving the spectrum. We will do this in two alternative (equivalent)
ways:

(1) Given the eigenvalue ia = i(p + i q), we will construct the corresponding
one-soliton solution of NLS (3.9); using the Hasimoto map (3.3), we will find the
curvature κ̃ and the torsion τ̃ of the corresponding Da Rios curve; we will write the
Frenet-Serret system of equations (1.4) for the tangent, normal and binormal to the
curve, where the tangent corresponds to the magnetization vector that solves HF;
finally, using (3.5), we will construct the one-soliton solution of HF for the same
eigenvalue ia = i(p+ i q) and we will prove that, if we interpret the magnetization
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vector as the tangent vector to the Da Rios curve for NLS, then it solves the Frenet-
Serret system for κ̃ and τ̃ .

(2) Given the eigenvalue ia = i(p + i q), we will construct the corresponding
one-soliton solution of NLS (3.9); using the Hasimoto map (3.3), we will find the
curvature κ̃ and the torsion τ̃ of the corresponding Da Rios curve; using the relation
between a curve and the spherical indicatrix of its tangent, we will compute the
curvature κ and the torsion τ of the corresponding spherical indicatrix, via (2.6);
using (3.5), we will construct the one-soliton solution of HF for the same eigenvalue
ia, representing a curve on the unit sphere; finally, we will compute the curvature
κ and the torsion τ for the magnetization curve on the sphere and show that such
κ and τ are the same curvature and torsion that we obtained for the spherical
indicatrix.

Method 1: via Frenet-Serret. We start by constructing the one-soliton solution
of NLS for the discrete eigenvalue ia, see equation (3.9):

u(s, t) = 2 pei(4p
2t+2q(−2qt+s)+φ̃0) sech

(
2p(4qt− s+ s0)

)
.

The curvature κ̃ and the torsion τ̃ of the corresponding Da Rios curve can be simply
obtained from the formulae (3.6). We set the Frenet-Serret equations in the form:
Us = FU where

F =

 0 κ̃ 0
−κ̃ 0 τ̃
0 −τ̃ 0

 , U =

t
n
b

 =

 t1 t2 t3
n1 n2 n3

b1 b2 b3

 . (3.10)

As U has to be an orthogonal matrix, it must satisfy the relation Us U
† = F . A

solution U of the Frenet-Serret system is defined modulo a fixed rotation. Indeed,
one immediately sees that, if U satisfies the Frenet-Serret system and R is a generic
rotation, then the matrix Û = U R also satisfies the same system of equations.

The one-soliton solution for HF corresponding to the same discrete eigenvalue
ia = i(p+ i q) is given by equation (3.5). If we interpret the magnetization vector
m as the tangent t to the Da Rios curve, we can easily check that

U =

m1 m2 m3

n1 n2 n3

b1 b2 b3

 , (3.11a)

where

n =
ts
‖ts‖

=
1
κ

ts , b = t× n , (3.11b)

satisfies the Frenet-Serret system in the form UsU
† = F .

Method 2: via the spherical indicatrix. We start again by constructing the
one-soliton solution of NLS for the discrete eigenvalue ia, see equation (3.9):

u(s, t) = 2 pei(4p
2t+2q(−2qt+s)+φ̃0) sech

(
2p(4qt− s+ s0)

)
.

The curvature κ̃ and the torsion τ̃ of the corresponding Da Rios curve can be simply
obtained from formulae (3.6) yielding

κ̃ = 4p sech
(
2p(4qt− s+ s0

)
, τ̃ = 2q .
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The curvature κ̂ and the τ̂ of the corresponding spherical indicatrix of the tangent
to the above Da Rios curve can be immediately obtained from formulae (2.6), giving

κ̂ =
1
2p

cosh
(
2p(4qt− s+ s0)

)√
q2 + 4p2 sech2

(
2p(4qt− s+ s0)

)
, (3.12)

τ̂ = −
pq tanh

(
2p(4qt− s+ s0)

)
q2 + 4p2 sech2

(
2p(4qt− s+ s0)

) . (3.13)

The one-soliton solution for HF corresponding to the same discrete eigenvalue ia
is given by equation (3.5). The curvature κ and the torsion τ of the magnetization
m are given by (3.1b). It is just the matter of a direct computation to see that
the curvature κ and the torsion τ of the magnetization curve coincide with κ̂ and
τ̂ if q > 0 or with κ̂ and −τ̂ if q < 0. As the velocity of the NLS soliton is 4q, the
change of sign of q entails a change of direction on the Da Rios curve, and thus a
change of sign of the torsion.

3.2. Connecting Da Rios to Heisenberg curves in the reflectionless case.
All reflectionless solutions of NLS (2.1) and HF (1.2) can be conveniently given
in explicit form and classified by means of the so-called matrix-triplet method, as
illustrated in [6] and [24]. Before exploiting the geometric connection realized by the
spherical indicatrix map B with the aim of constructing a localized (soliton) solution
of the HF equation starting from a reflectionless solution of the NLS equation and
viceversa, we briefly summarize here the matrix-triplet formulae for NLS and HF
as obtained in [6] and [24], respectively.

In order to construct a reflectionless solution of both equations, one requires a
matrix triplet (A,B,C) satisfying the following hypotheses:

(1) A is an n̄× n̄ complex matrix featuring n ≤ n̄ distinct eigenvalues {aj}nj=1:
the geometric multiplicity of the eigenvalues is 1; the algebraic multiplicity
of each eigenvalue aj is nj ≥ 1, so that n̄ =

∑n
j=1 nj ; finally, all eigenvalues

have positive real parts, Re(aj) > 0 for all j. The square matrix A is
completely arbitrary, save for the minimality condition (see below) and for
the above conditions on its eigenvalues.

(2) B is an n̄ × 1 complex matrix, which can be chosen – without any loss of
generality – to be an all-ones matrix.

(3) C is a 1× n̄ complex matrix. Again, C is completely arbitrary, save for the
minimality condition (see below).

(4) The triplet (A,B,C) is a minimal triplet in the sense that the matrix order
of A is minimal among all triplets representing the same Marchenko kernel
as it appears in the IST set up for the integrable equation to which the
matrix-triplet method is applied (see [84, 6, 24]).

The matrices A and C encode the discrete spectrum of the problem to which the
method is applied (see [6] and [24]): in particular, for both NLS and HF, if {aj}nj=1

are the eigenvalues of the square matrix A, then {iaj}nj=1 are the poles of the
transmission coefficient in the upper half-plane C+ (these are usually referred to
as the discrete eigenvalues in the IST literature); moreover, the n̄ elements of the
rectangular matrix C correspond to the so-called norming constants.
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It is not restrictive (in fact, it is the typical choice) to set the triplet (A,B,C)
as follows [84]:

An̄×n̄ =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

 , Bn̄×1 =


B1

B2

...
Bn

 , C1×n̄ =
(
C1 C2 · · · Cn

)
,

(3.14a)
where A is in Jordan canonical form, with Aj being the Jordan block of dimension
nj × nj corresponding to the eigenvalue aj ,

Aj =


aj if nj = 1( aj 1 0 0

0 · · 0
0 0 · 1
0 0 0 aj

)
if nj > 1 ;

(3.14b)

Bj is a column vector of dimension nj , typically chosen to be a vector of ones; and
Cj is a row vector of dimension nj ,

Cj =
(
cj,0 cj,1 · · · cj,nj−1

)
. (3.14c)

Note that, due to the minimality, if the triplet (A,B,C) is set as in (3.14), then A
features no repeated blocks on the main diagonal.

Given the matrix triplet (A,B,C), then two n̄× n̄ auxiliary matrices, N and Q,
are constructed as the solutions of the following matrix Lyapunov equations:

A†Q+QA = C†C , AN +NA† = BB† , (3.15a)

so that

N =
∫ ∞

0

dze−zABB†e−zA
†
, Q =

∫ ∞
0

dze−zA
†
C†Ce−zA. (3.15b)

By the minimality of the triplet (A,B,C), one can prove [84] that N and Q are
positive Hermitian matrices, N = N† and Q = Q†, where the dagger symbol †
indicates the usual Hermitian adjoint.

Let (ANLS, BNLS, CNLS) be a choice of the matrix triplet as in (3.14), intended
for the construction of a reflectionless solution of NLS. Let NNLS and QNLS be the
corresponding matrices N and Q, constructed as in (3.15) from (ANLS, BNLS, CNLS).
Let B̃NLS, C̃NLS, ÑNLS, and Q̃NLS be the following matrix-valued functions

B̃NLS ≡ B̃NLS(s) = e−sANLSBNLS , C̃NLS ≡ C̃NLS(s, t) = CNLSe
−sANLSe−4 i tA2

NLS ,

ÑNLS ≡ ÑNLS(s) = e−sANLSNNLSe
−sA†NLS = Ñ†NLS ,

Q̃NLS ≡ Q̃NLS(s, t) = e4 i tA†
2

NLSe−sA
†
NLSQNLSe

−sANLSe−4itA2
NLS = Q̃†NLS . (3.16)

Finally, let Γ̃NLS be the following matrix-valued function

Γ̃NLS ≡ Γ̃NLS(s, t) = In̄ + Q̃NLSÑNLS , so that Γ̃†NLS = In̄ + ÑNLSQ̃NLS , (3.17)

where In̄ is the n̄× n̄ identity matrix.
Then, a reflectionless (soliton) solution u(s, t) of (2.1) reads [6]:

u(s, t) = −2B̃†NLSΓ̃−1
NLSC̃

†
NLS =

det
(
Γ̃NLS − 2C̃†NLSB̃

†
NLS

)
det(Γ̃NLS)

− 1 . (3.18)
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On the other hand, to construct a solution of the HF equation (1.2), we start
by casting a choice (AHF, BHF, CHF) of the matrix triplet as in (3.14). Then we
build the matrix-valued functions B̃HF, C̃HF, ÑHF, and Q̃HF analogously to what
we have done for the case of NLS, using the same expressions (3.2). Finally, we
define the matrix-valued function Γ̃HF ≡ Γ̃HF(s, t) = In̄ + Q̃HFÑHF exactly as in
the NLS case.

Then, a reflectionless (soliton) solution m(s, t) =
∑3
j=1mj(s, t) ej of (1.2) reads

[24]:

m1(s, t) + im2(s, t) = −2 (1 + L1)L2 , m3(s, t) = 2 |1 + L1|2 − 1 , (3.19a)

where the scalar functions L1 ≡ L1(s, t) and L2 ≡ L2(s, t) are given by

L1 = −C̃HFÑHFΓ̃−1
HFA

†−1
C̃†HF =

det
(
In̄ −A†

−1
Q̃HFAÑHF

)
det(Γ̃HF)

− 1 ,

L2 = B̃HFΓ̃−1
HFA

†−1
C̃†HF =

det
(
Γ̃HF +A†

−1
C̃†HFB̃

†
HF

)
det(Γ̃HF)

− 1 .

(3.19b)

In Appendix 5, alternative formulae for u(s, t) and for m(s, t), along with their time
and space derivatives, are provided in forms that are easier to handle than (3.18)
and (3.19) in view of their numerical evaluations.

Now we are ready to show the preservation of the localization for the spherical
indicatrix map B in the general reflectionless case. Indeed, from equation (3.3),
we know that the spherical indicatrix map entails 2 |u| = ‖ms‖. Using the ex-
plicit expressions of the reflectionless solutions of NLS and HF, (3.18) and (3.19),
respectively, then, after a tedious and rather cumbersome computation, we obtain

|u|2 = tr
[
Γ̃−1

NLS

∂

∂ s
Γ̃NLS

]
s

and ‖ms‖2 =
1
4

tr
[
Γ̃−1

HF

∂

∂ s
Γ̃HF

]
s
. (3.20)

Formulae (3.20) show that, if we take a matrix triplet (A,B,C) and we use it
to construct a solution of HF according to (3.19), so that AHF = A, BHF = B,
CHF = C, then the solution of NLS that we get via the spherical indicatrix map
B features the very same norm that we would have obtained had we used directly
the same matrix triplet (A,B,C) in the NLS solution formula (3.18), namely with
ANLS = A, BNLS = B, CNLS = C. Conversely, if we take a matrix triplet (A,B,C)
and we use it to construct a solution of NLS according to (3.18), so that ANLS = A,
BNLS = B, CNLS = C, then the solution of HF that we get via the spherical
indicatrix map B features the very same norm of the spatial derivative that we
would have obtained had we used directly the same matrix triplet (A,B,C) in the
HF solution formula (3.19), namely with AHF = A, BHF = B, CHF = C.

In the following, we provide four examples of localized solutions of HF built
from reflectionless solutions of NLS and viceversa, utilizing the spherical indicatrix
map B as described in Section 3.1. In particular, in order to construct a localized
solution of HF from a reflectionless solution of NLS we proceed as follows.

(1) We choose a matrix triplet (ANLS, BNLS, CNLS) and we construct, via (3.18),
the corresponding solution of NLS, u(s, t).

(2) We specialize the solution at t = 0, u(s, 0), and we compute the curvature
κ̃(s, 0) and the torsion τ̃(s, 0) of the corresponding Da Rios curve via the
Hasimoto map (3.3).
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(3) We evaluate the Frenet-Serret frame, (t, n, b), along the Da Rios curve
characterized by the curvature κ̃(s, 0) and the torsion τ̃(s, 0), by integrating
numerically, for all s in a given interval [s1, s2] and at t = 0, the Frenet-
Serret system (1.4) with initial conditiont

n
b


s=s1

=

0 0 1
1 0 0
0 1 0

 . (3.21)

From identity (2.5), we know that the vector t obtained in this manner
corresponds to the magnetization at t = 0, t = m(s, 0). If the numerical
integration is carried out in the finite interval [s1, s2], then the choice of
the initial condition (3.21) entails a rigid translation of the magnetization
at infinity to s = s1. For this reason, the numerical values of s1 and s2

are chosen in such a way that, for those values, the Da Rios curve be
approximately a straight line (namely, κ̃(s1, 0) ≈ κ̃(s2, 0) ≈ 0), so that the
magnetization m, which is exactly e3 at s = s1 because of (3.21), be also
close to e3 at s = s2. We remind here that the HF equation (1.2) is invariant
under translations. The numerical integration is carried out by means of
the adaptive, seven-stage Dormand-Prince (4, 5) embedded Runge-Kutta
method, implemented as part of a Matlab R2017a routine.

(4) Finally, we integrate numerically the HF equation (1.2) with initial con-
dition m(s, 0), as obtained above, using the method of lines with a pseu-
dospectral, Fourier discretization in space and the same adaptive Dormand-
Prince method for the time stepping, all implemented in a single Matlab
R2017a routine. It is worth observing here that the above procedure for
producing m(s, 0) cannot be repeated for all points in time, as the choice
of the initial condition would imply a different translation of the magneti-
zation at infinity.

On the other hand, to construct a localized solution of NLS from a reflectionless
solution of HF we proceed as follows.

(1) We choose a matrix triplet (AHF, BHF, CHF) and we construct, via (3.19),
the corresponding solution of HF.

(2) Via (3.3), we find the curvature κ̃(s, t) and τ̃(s, t) of the Da Rios curve
whose spherical indicatrix on S2 is the Heisenberg curve m(s, t).

(3) Finally, we use the Hasimoto map (3.4a) to reconstruct a solution of the
NLS equation (2.1).

Figure 3 illustrates a one-soliton solution of NLS utilized to construct a one-
soliton solution of HF and viceversa. The one-soliton solution of NLS in Figure
3(a) is obtained, via (3.18), from the following matrix triplet:

A = (a) , B = (1) , C = (c) , (3.22a)

with

a =
√

7 + i

4
, c =

−7 + i3
√

7
8

e−2(
√

7+i) . (3.22b)

Similarly, the one-soliton solution of HF in Figure 3(d) is obtained, via (3.19), from
the same matrix triplet (3.22). Here n̄ = n = 1 and the matrix A is a scalar. As
shown in [6], if this matrix triplet is employed to construct a one-soliton solution
of NLS, then the soliton obtained propagates with velocity V = 4 Im(a) = 1 and
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has amplitude 2 Re(a) =
√

7
2 . On the other hand, as shown in [24], if this matrix

triplet is used to construct a one-soliton solution of HF, then the soliton obtained
propagates with the same velocity V = 4 Im(a) = 1 of the NLS soliton and is
characterized by the precession frequency ω = 4|a|2 = 2. Figures 3(b) and 3(c)
show the corresponding solutions of HF and NLS, respectively, as obtained from
the given solution of NLS and HF, respectively, via the spherical indicatrix map B.
The relevant Da Rios and Heisenberg curves are illustrated, at different times, in
Figure 7(a), along with the evolution of the length of the Heisenberg curve, which,
in this case, keeps the constant value of 2π, as expected.

Figure 4 illustrates a two-soliton solution of NLS utilized to construct a two-
soliton solution of HF and viceversa. The two-soliton solution of NLS in Figure
4(a) is obtained, via (3.18), from the matrix triplet:

A =

(√
7+i
4 0
0

√
7−i
4

)
, B =

(
1
1

)
,

C =
(
−7+i3

√
7

8 e−5(
√

7+i)/2 −3
√

7+i7
8 e−5(

√
7−i)/2

)
.

(3.23)

Similarly, the two-soliton solution of HF in Figure 4(d) is obtained, via (3.19), from
the same matrix triplet (3.23). Here n̄ = n = 2, and the matrix A features two
distinct eigenvalues. The relevant Da Rios and Heisenberg curves are illustrated,
at different times, in Figure 7(b), along with the evolution of the length of the
Heisenberg curve. We observe two loop solitons propagating and interacting along
the Da Rios curve. When the HF solitons are well separated in space, the magne-
tization in the region between them is close to the asymptotic magnetization e3,
and the Heisenberg curve is formed by two (almost overlapped and almost indistin-
guishable, for this choice of the matrix triplet) branches, each one of them starting
and ending at the north pole of S2. As long as the two HF solitons get close to
each other enough, the magnetization in the region between them moves more and
more away from the asymptotic state e3, and the Heisenberg curve does not pass
twice through the north pole, turning into a single branch: its length decreases
as the solitons get close to one another, reaches a minimum at the centre of the
interaction, and then increases again as the solitons separate.

Figure 5 illustrates a two-pole solution of NLS utilized to construct a two-pole
solution of HF and viceversa. The two-pole solution of NLS in Figure 5(a) is
obtained, via (3.18), from the matrix triplet

A =
(√

2 1
0
√

2

)
, B =

(
1
1

)
, C =

(
8 4
√

2(1−
√

2)
)
. (3.24)

Similarly, the two-pole solution of HF in Figure 5(d) is obtained, via (3.19), from
the same matrix triplet (3.24). Here n̄ = 2 and n = 1, and the matrix A is in Jordan
form, thus it features one eigenvalue with algebraic multiplicity 2 (that is why the
corresponding solution is called a “two-pole” solution). The relevant Da Rios and
Heisenberg curves are illustrated, at different times, in Figure 8(a), along with the
evolution of the length of the Heisenberg curve. The general behaviour is similar
to that of the two solitons case, however, at the maximum of the interaction, the
two loop solitons along the Da Rios curve form a super-loop, namely a loop-over-
a-loop. The length of the Heisenberg curve shows a cusp at the time of maximum
interaction.
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Figure 6 illustrates a breather-like solution of NLS utilized to construct a breather-
like solution of HF and viceversa. The breather-like solution of NLS in Figure 6(a)
is obtained, via (3.18), from the matrix triplet

A =

(
1√
5

0
0 1√

10

)
, B =

(
1
1

)
, C =

(
2
√

17+12
√

2
5

√
2
√

17+12
√

2
5

)
. (3.25)

Similarly, the breather-like solution of HF in Figure 6(d) is obtained, via (3.19),
from the same matrix triplet (3.25). Like in the two soliton case, here n̄ = n =
2, and the matrix A features two distinct eigenvalues. The conditions for the
existence of an oscillating, breather-like solution (which is formed by two entangled
propagating or stationary solutions) are dictated by the norming constant matrix
C, see [24]. In particular, with this choice of the values in the matrix triplet, we
expect a periodic solution with period 5π ≈ 15.7080 (see [24]). The relevant Da
Rios and Heisenberg curves are illustrated, at different times, in Figure 8(b), along
with the evolution of the length of the Heisenberg curve. The breather on the
Da Rios curve is an oscillating structure formed by two loop solitons, periodically
attracting, interacting and overtaking each other. Like in the case of the two-pole
solution, we observe the (periodic) formation of a super-loop along the Da Rios
curve at the maximum of the interaction of the two solitons forming the breather.

In all the examples, as expected from (3.20), the solution of HF that we obtain
from a reflectionless solution of NLS corresponding to a matrix triplet (A,B,C)
via (3.18) is the same that we would have obtained had we used directly the same
matrix triplet (A,B,C) in the HF solution formula (3.19), see Figures 3(a) and 3(b),
Figures 4(a) and 4(b), Figures 5(a) and 5(b), and Figures 6(a) and 6(b). Similarly,
in all the examples, the solution of NLS that we obtain from a reflectionless solution
of HF corresponding to a matrix triplet (A,B,C) via (3.19) is the same (modulo
a phase shift) that we would have obtained had we used directly the same matrix
triplet (A,B,C) in the NLS solution formula (3.18), see Figures 3(d) and 3(c),
Figures 4(d) and 4(c), Figures 5(d) and 5(c), and Figures 6(d) and 6(c). This
confirms that the spherical indicatrix map B preserves the localization and the
typology of the solutions on which it acts, namely it maps reflectionless solutions
of HF to the same typology of reflectionless solutions of NLS and viceversa.

4. Conclusions and outlooks

In this paper we have studied the properties of the spherical curve associated to
the Heisenberg equations. The natural variables for the description of this curve
motion are the geodesic curvature K and the arc-length σ which are related to the
magnetic vector m by (2.24),

K = ‖m + mσσ‖ , σs = ‖ms‖ ,

where s is a time independent curve parameterization. Our study is based on the ge-
ometrical relation between the binormal-velocity motion of a curve (Da Rios model)
and the induced motion on the related spherical indicatrix (HF model). While the
binormal motion is purely geometrical, being the evolution of curvature and torsion,
which is independent from the chosen curve parameterization, the induced spheri-
cal motion depends on the “metric” on the curve. This is the reason of the main
geometrical difference between the two curve motions: the Da Rios case is asso-
ciated to a non-stretching curve (featuring time-independent arc-lenght), whereas
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(a) One-soliton solution of the NLS equation
(2.1) obtained directly via (3.18) with the ma-

trix triplet (3.22).

(b) Solution of the HF equation (1.2) generated
via the map B from the one-soliton solution of

the NLS equation, the latter having been ob-

tained via (3.18) with the matrix triplet (3.22).

(c) Solution of the NLS equation generated via

the (inverse) map B from the one-soliton so-
lution of the HF equation, the latter having

been obtained via (3.19) with the matrix triplet
(3.22).

(d) One-soliton solution of the HF equation

obtained directly via (3.19) with the matrix
triplet (3.22).

Figure 3: Preservation of the spectrum and of the localization from the application
of the spherical indicatrix map B between a one-soliton solution of the NLS equation
(2.1) and a one-soliton s olution of the HF equation (1.2). The corresponding Da
Rios and Heisenberg curves are illustrated in Figure 7(a).

the HF case is related to a stretching curve. As a consequence the total length
of the spherical curve associated to the Heisenberg motion is not constant: this
gives a possible indication on the behavior of the mean value of the spin variation.
Moreover, this geometrical interpretation of the classical mapping between Da Rios
and HF simplifies computationally the study of qualitative features of the local-
ized solutions on the spherical curve (breathers, solitons, multipoles, and mixed
combinations among them).

Finally, as already remarked in the paper, we recall that many hydrodynamic
models of ferromagnetism has been proposed (see, for instance, [78, 83, 69, 42]),
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(a) Two-soliton solution of the NLS equation
obtained directly via (3.18) with the matrix

triplet (3.23).

(b) Solution of the HF equation generated via
the map B from the two-soliton solution of the

NLS equation, the latter having been obtained

via (3.18) with the matrix triplet (3.23).

(c) Solution of the NLS equation generated via
the (inverse) map B from the two-soliton so-

lution of the HF equation, the latter having

been obtained via (3.19) with the matrix triplet
(3.23).

(d) Two-soliton solution of the HF equation
obtained directly via (3.19) with the matrix

triplet (3.23).

Figure 4: Preservation of the spectrum and of the localization from the application
of the spherical indicatrix map B between a two-soliton solution of the NLS equation
(2.1) and a two-soliton solution of the HF equation (1.2). The corresponding Da
Rios and Heisenberg curves are illustrated in Figure 7(b).

mainly in two or three dimensions: the hydrodynamic reduction of HF presented
here, even if simplified as it is one-dimensional in space, has the peculiar feature
of connecting Heisenberg ferromagnetism directly to geometrical objects, using in-
trinsic variables.

This work opens a promising outlook on the study of the theoretical (and po-
tentially also experimental) repercussions of the notion of gradient catastrophe in
the context of ferromagnetism.
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(a) Two-pole solution of the NLS equation
obtained directly via (3.18) with the matrix

triplet (3.24).

(b) Solution of the HF equation generated via
the map B from the two-pole solution of the

NLS equation, the latter having been obtained

via (3.18) with the matrix triplet (3.24).

(c) Solution of the NLS equation generated via
the (inverse) map B from the two-pole solution

of the HF equation, the latter having been ob-

tained via (3.19) with the matrix triplet (3.24).

(d) Two-pole solution of the HF equation ob-
tained directly via (3.19) with the matrix

triplet (3.24).

Figure 5: Preservation of the spectrum and of the localization from the application
of the spherical indicatrix map B between a two-pole solution of the NLS equation
(2.1) and a two-pole solution of the HF equation (1.2). The corresponding Da Rios
and Heisenberg curves are illustrated in Figure 8(a).

5. Appendix

In this appendix we provide formulae alternative to (3.18) and (3.19) for the
numerical evaluation of the solutions of NLS and HF, respectively, along with their
space and time derivatives. For the sake of simplicity, in this section we drop the
subscripts NLS or HF from the matrix triplets (A,B,C) and from the auxiliary
matrices N , Q, and Γ. In particular, given the matrix triplet (A,B,C) according
to (3.14), we consider the matrix-valued function

C(t) = Ce−4itA2
= C̃(0, t) , (5.1a)



EJDE-2018/106 CURVE EVOLUTION FOR THE HEISENBERG EQUATION 25

(a) Breather-like solution of the NLS equation
obtained directly via (3.18) with the matrix

triplet (3.25).

(b) Solution of the HF equation generated via
the map B from the breather-like solution of the

NLS equation, the latter having been obtained

via (3.18) with the matrix triplet (3.25).

(c) Solution of the NLS equation generated via
the (inverse) map B from the breather-like so-

lution of the HF equation, the latter having

been obtained via (3.19) with the matrix triplet
(3.25).

(d) Breather-like solution of the HF equation
obtained directly via (3.19) with the matrix

triplet (3.25).

Figure 6: Preservation of the spectrum and of the localization from the application
of the spherical indicatrix map B between a breather-like solution of the NLS equa-
tion (2.1) and a breather-like solution of the HF equation (1.2). The corresponding
Da Rios and Heisenberg curves are illustrated in Figure 8(b).

along with the auxiliary matrix N , and the matrix-valued function Q(t),

Q(t) = (e−4itA2
)†Qe−4itA2

= Q̃(0, t) . (5.1b)

5.1. Alternative formulations of the solution of NLS and its space and
time derivatives. Formula (3.18) can be rewritten as

u(s, t) = −2B̃†Γ̃−1C̃† =
det
(
Γ̃− 2C̃†B̃†

)
det(Γ̃)

− 1
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(a) Time evolution of the Heisenberg

curve (right) for the one-soliton solu-

tion of HF obtained via (3.19) with the
matrix triplet (3.22), see Figure 3(d),
alongside that of the Da Rios curve

(left) for the corresponding one-soliton
solution of NLS, as obtained via the

spherical indicatrix map B, see Figure

3(c).

(b) Time evolution of the Heisenberg

curve (right) for the two-soliton solu-

tion of HF obtained via (3.19) with the
matrix triplet (3.23), see Figure 4(d),
alongside that of the Da Rios curve

(left) for the corresponding two-soliton
solution of NLS, as obtained via the

spherical indicatrix map B, see Figure

4(c).

Figure 7: Time evolutions of corresponding Da Rios and Heisenberg curves for the
one-soliton and two-soliton solutions.

=
det
(
e2sA†N−1e2sA +Q(t)− 2C(t)†B†N−1e2sA

)
det
(
e2sA†N−1e2sA +Q(t)

) − 1 (5.2a)

=
det
(
N−1 + e−2sA†Q(t)e−2sA − 2e−2sA†C(t)†B†N−1

)
det
(
N−1 + e−2sA†Q(t)e−2sA

) − 1 , (5.2b)
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(a) Time evolution of the Heisenberg

curve (right) for the two-pole solution

of HF obtained via (3.19) with the
matrix triplet (3.24), see Figure 5(d),
alongside that of the Da Rios curve

(left) for the corresponding two-pole
solution of NLS, as obtained via the

spherical indicatrix map B, see Figure

5(c).

(b) Time evolution of the Heisenberg

curve (right) for the breather-like solu-

tion of HF obtained via (3.19) with the
matrix triplet (3.25), see Figure 6(d),
alongside that of the Da Rios curve

(left) for the corresponding breather-
like solution of NLS, as obtained via the

spherical indicatrix map B, see Figure

6(c).

Figure 8: Time evolutions of corresponding Da Rios and Heisenberg curves for the
two-pole and breather-like solutions.

where expression (5.2a) is convenient for evaluating numerically u(s, t) when s ≤ 0,
whereas (5.2b) is convenient for evaluating numerically u(s, t) when s ≥ 0.

Similarly, for the space derivative, we get

∂

∂s
u(s, t) = 4B̃†Γ̃−1

[
A† − Q̃AÑ

]
Γ̃−1C̃†
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(a) One-soliton solution, see Fig. 7(a) (b) Two-soliton solution, see Fig. 7(b)

(c) Two-pole solution, see Fig. 8(a) (d) Breather solution, see Fig. 8(b)

Figure 9: L(t), length of the Heisenberg curve, for the cases illustrated in Figures
7 and 8.

=
det
(
Γ̃[A† − Q̃AÑ ]−1Γ̃ + 4C̃†B̃†

)
det
(
Γ̃[A† − Q̃AÑ ]−1Γ̃

) − 1

= det
(
In̄ + 4Z−1

	 C(t)†B†N−1e2sA
)
− 1 (5.3a)

= det
(
In̄ + 4Z−1

⊕ e−2sA†C(t)†B†N−1
)
− 1 , (5.3b)

where

Z	 =
(
e2sA†N−1e2sA +Q(t)

) [
A†e2sA†N−1e2sA −Q(t)A

]−1

×
(
e2sA†N−1e2sA +Q(t)

)
,

(5.4a)

Z⊕ =
(
N−1 + e−2sA†Q(t)e−2sA

) [
A†N−1 − e−2sA†Q(t)e−2sAA

]−1

×
(
N−1 + e−2sA†Q(t)e−2sA

)
.

(5.4b)

It is clear that expression (5.3a) with (5.4a) is convenient for evaluating ∂
∂su(s, t)

when s ≤ 0, whereas (5.3b) with (5.4b) is convenient for evaluating numerically
∂
∂su(s, t) when s ≥ 0.
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Finally, for the time derivative, we have

∂

∂t
u(s, t) = 8B̃†Γ̃−1

[(
A†
)2

+ Q̃A2Ñ
]

Γ̃−1C̃†

=
det
(

Γ̃
[(
A†
)2 + Q̃A2Ñ

]−1

Γ̃ + 8C̃†B̃†
)

det
(

Γ̃
[
(A†)2 + Q̃A2Ñ

]−1

Γ̃
) − 1

= det
(
In̄ + 8W−1

	 C(t)†B†N−1e2sA
)
− 1 (5.5a)

= det
(
In̄ + 8W−1

⊕ e−2sA†C(t)†B†N−1
)
− 1 , (5.5b)

where

W	 =
(
e2sA†N−1e2sA +Q(t)

) [(
A†
)2
e2sA†N−1e2sA +Q(t)A2

]−1

×
(
e2sA†N−1e2sA +Q(t)

)
,

(5.6a)

W⊕ =
(
N−1 + e−2sA†Q(t)e−2sA

) [(
A†
)2
N−1 + e−2sA†Q(t)e−2sAA2

]−1

×
(
N−1 + e−2sA†Q(t)e−2sA

)
.

(5.6b)

Again, it is clear that expression (5.5a) with (5.6a) is convenient for evaluating
∂
∂tu(s, t) when s ≤ 0, whereas (5.5b) with (5.6b) is convenient for evaluating nu-
merically ∂

∂tu(s, t) when s ≥ 0.

5.2. Appendix: Alternative formulations of the solution of HF and its
space and time derivatives. The functions L1(s, t) and L2(s, t) in formula (3.19)
can be rewritten as

L1(s, t) = −C̃Ñ Γ̃−1A†
−1
C̃† =

det
(
In̄ − (A†)−1Q̃AÑ

)
det(Γ̃)

− 1

=
det
(
e2sA†N−1e2sA − (A†)−1Q(t)A

)
det
(
e2sA†N−1e2sA +Q(t)

) − 1 (5.7a)

=
det
(
N−1 − (A†)−1e−2sA†Q(t)e−2sAA

)
det
(
N−1 + e−2sA†Q(t)e−2sA

) − 1 , (5.7b)

L2(s, t) = B̃Γ̃−1A†
−1
C̃† =

det(Γ̃ +
(
A†)−1C̃†B̃†

)
det(Γ̃)

− 1

=
det
(
e2sA†N−1e2sA +Q(t) + (A†)−1C(t)†B†N−1e2sA

)
det
(
e2sA†N−1e2sA +Q(t)

) − 1 (5.7c)

=
det
(
N−1 + e−2sA†Q(t)e−2sA + e−2sA†(A†)−1C(t)†B†N−1

)
det
(
N−1 + e−2sA†Q(t)e−2sA

) − 1 ,

(5.7d)

where expressions (5.7a) and (5.7c) are convenient for evaluating numerically m(s, t)
when s ≤ 0, whereas expressions (5.7b) and (5.7d) are convenient for evaluating
numerically m(s, t) when s ≥ 0.
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Similarly, for the space derivative we have
∂

∂s
(m1 + im2) = −2

( ∂
∂s
L1

)
L2 − 2(1 + L1)

( ∂
∂s
L2

)
, (5.8a)

∂

∂s
m3 = 4 Re

[( ∂
∂s
L1

)
(1 + L∗2)

]
, (5.8b)

with
∂

∂s
L1 = 2C̃AÑ Γ̃−1A†

−1
C̃† + 2C̃Ñ Γ̃−1[A† − Q̃AÑ ]Γ̃−1A†

−1
C̃†

=
det
(
e2sA†N−1e2sA +Q(t) + 2

(
A†
)−1

C†(t)C(t)A
)

det
(
e2sA†N−1e2sA +Q(t)

)
− det

(
In̄ − 2Z−1

	 (A†)−1C†(t)C(t)
)

(5.9a)

=
det
(
N−1 + e−2sA†Q(t)e−2sA + 2(A†)−1e−2sA†C†(t)C(t)e−2sAA

)
det
(
N−1 + e−2sA†Q(t)e−2sA

)
− det

(
In̄ − 2Z−1

⊕ (A†)−1e−2sA†C†(t)C(t)e−2sA
)
, (5.9b)

and
∂

∂s
L2(s, t) = −2B̃†Γ̃−1[A† − Q̃AÑ ]Γ̃−1A†

−1
C̃†

= det
(
In̄ − 2Z−1

	 (A†)−1C(t)†B†N−1e2sA
)
− 1 (5.9c)

= det
(
In̄ − 2Z−1

⊕ e−2sA†(A†)−1C(t)†B†N−1
)
− 1 , (5.9d)

where Z	 and Z⊕ are defined as in (5.4). It is clear that expressions (5.9a) and
(5.9c) with (5.4a) are convenient for evaluating ∂

∂sm(s, t) when s ≤ 0, whereas
expressions (5.9a) and (5.9c) with (5.4b) are convenient for evaluating numerically
∂
∂sm(s, t) when s ≥ 0.

Analogously, for the time derivative we have
∂

∂t
(m1 + im2) = −2

( ∂
∂t
L1

)
L2 − 2(1 + L1)

( ∂
∂t
L2

)
, (5.10a)

∂

∂t
m3 = 4 Re

[( ∂
∂t
L1

)
(1 + L∗2)

]
, (5.10b)

with
∂

∂t
L1 = 4iC̃A2Ñ Γ̃−1A†

−1
C̃† − 4iC̃Ñ Γ̃−1[(A†)2 + Q̃A2Ñ ]Γ̃−1A†

−1
C̃†

=
det
(
e2sA†N−1e2sA +Q(t) + 4i

(
A†
)−1

C†(t)C(t)A2
)

det
(
e2sA†N−1e2sA +Q(t)

)
− det

(
In̄ − 4iW−1

	 (A†)−1C†(t)C(t)
)

(5.11a)

=
det
(
N−1 + e−2sA†Q(t)e−2sA + 4i(A†)−1e−2sA†C†(t)C(t)e−2sAA2

)
det
(
N−1 + e−2sA†Q(t)e−2sA

)
− det

(
In̄ − 4iW−1

⊕ (A†)−1e−2sA†C†(t)C(t)e−2sA
)
, (5.11b)

and
∂

∂t
L2(s, t) = 4iB̃†Γ̃−1[(A†)2 + Q̃AÑ ]Γ̃−1A†

−1
C̃†
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= det
(
In̄ − 4iW−1

	 (A†)−1C(t)†B†N−1e2sA
)
− 1 (5.11c)

= det
(
In̄ − 4iW−1

⊕ e−2sA†(A†)−1C(t)†B†N−1
)
− 1 , (5.11d)

where W	 and W⊕ are defined as in (5.6). It is clear that expressions (5.11a) and
(5.11c) with (5.6a) are convenient for evaluating ∂

∂tm(s, t) when s ≤ 0, whereas ex-
pressions (5.11a) and (5.11c) with (5.6b) are convenient for evaluating numerically
∂
∂tm(s, t) when s ≥ 0.
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orthogonal nano-contact spin torque oscillators, Physica B, 435, 84–87 (2014).

[64] K. Nakamura, T. Sasada, Soliton and wave trains in ferromagnets, Phys. Lett. A, 48A(9),
321–322 (1974).

[65] K. Nakamura, T. Sasada, Gauge equivalence between one-dimensional Heisenberg ferromag-

nets with single-site anisotropy and nonlinear Schrodinger equations, J. Phys. C: Solid State

Phys., 15, 915–918, (1982).
[66] K. Nakayama, H. Segur, M. Wadati; Integrability and the motion of curves, Phys. Rev. Lett.

69, 18, 2603 (1992).
[67] S. P. Novikov, S. V. Manakov, L. B. Pitaevskii, V.E. Zakharov; Theory of Solitons. The

Inverse Scattering Method, Plenum Press, New York, 1984.

[68] Y.-C. Ma, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl.

Math., 60, 43–58 (1979).



34 F. DEMONTIS, G. ORTENZI, M. SOMMACAL EJDE-2018/106

[69] N. Papanicolaou, T.N. Tomaras, Dynamics of Magnetic Vortices, Nucl. Phys. B, 360, 425–

462 (1991).

[70] C. Rogers, W. K. Schief; Intrinsic Geometry of the NLS Equation and its Auto-Bäcklund
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