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Summary. Ranking sportsmen whose careers took place in different eras is often a con-

tentious issue and the topic of much debate. In this paper we focus on cricket and examine

what conclusions may be drawn about the ranking of Test batsmen using data on batting scores

from the first Test in 1877 onwards. The overlapping nature of playing careers is exploited to

form a bridge from past to present so that all players can be compared simultaneously, rather

than just relative to their contemporaries. The natural variation in runs scored by a batsman

is modelled by an additive log-linear model with year, age and cricket-specific components

used to extract the innate ability of an individual cricketer. Incomplete innings are handled

via censoring and a zero-inflated component is incorporated into the model to allow for an

excess of frailty at the start of an innings. The innings-by-innings variation of runs scored by

each batsman leads to uncertainty in their ranking position. A Bayesian approach is used

to fit the model and realisations from the posterior distribution are obtained by deploying a

Markov Chain Monte Carlo algorithm. Posterior summaries of innate player ability are then

used to assess uncertainty in ranking position and this is contrasted with rankings determined

via the posterior mean runs scored. Posterior predictive checks show that the model provides

a reasonably accurate description of runs scored.

1. Introduction

There is a great deal of discussion in many sports, from the experts through to the fans,
about who is the ‘greatest’. Discussions often conclude with the notion that it is impossible
to obtain definitive answers. In many cases the game played out in the modern day, in front
of the massed media with large teams of supporting staff dedicated to nutrition, fitness
and psychology, bears little or no relation to the backdrop at the genesis of the sport. The
richness of data now available however suggests that there may be merit in a sophisticated
statistical approach to the problem.

The analysis of sports data has undergone something of a boom in recent years with
statisticians and data analysts at the forefront. In baseball, for example, sabermetrics has
become an accepted term for the use of in-game statistical analysis (Marchi and Albert,
2013), and there is an increasing trend of sports science and data analysis being routinely
performed by major sports organisations across the globe.

In this paper we focus on the sport of cricket and look at the performance of Test match
batsmen. Cricket is a bat-and-ball game played between two teams of eleven players each
on a cricket field, at the centre of which is a rectangular 22-yard-long pitch with a target
called the wicket (a set of three wooden stumps topped by two bails) at each end. Each
phase of play is called an innings during which one team bats, attempting to score as many
runs as possible, whilst their opponents field. In Test matches the teams have two innings
apiece and, when the first innings ends, the teams swap roles for the next innings. This
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sequence can only be altered by the team batting second being made to ‘follow-on’ after
scoring significantly fewer runs than the team batting first. Except in matches which result
in a draw, the winning team is the one that scores the most runs, including any extras
gained. Individual players start their innings with zero runs and accumulate runs as play
progresses, leading to a final score which is a non-negative count. The highest individual
score in Test cricket is 400 runs and the average score is around 30 runs. Smaller scores are
more likely than larger scores as the aim of the opposition is to bowl out each batsman as
quickly as possible and at the cost of as few runs as possible.

The earliest work on the statistical modelling of cricket scores was undertaken by El-
derton (1945) and Wood (1945) who considered modelling samples of individual first-class
cricket scores from both Test matches and the County Championship (the domestic first-
class cricket competition in England and Wales, sitting one level below Test cricket) as a
geometric progression and found evidence of a reasonable fit, although Wood commented
that the ‘series show discrepancies at each end, and particularly at the commencement’
due to a larger than expected number of scores of zero, or ducks in cricketing parlance.
Incomplete (‘not-out’) scores were assumed to continue at the start of the next innings in
the former (acknowledged as a ‘pleasant fiction’ by the author) and treated as complete
innings by the latter. Later Pollard et al. (1977) investigated the distribution of runs scored
by teams in county cricket and found the negative binomial distribution to offer a good fit.
Scarf et al. (2011) confirmed this finding for runs scored in both batting partnerships and
team innings in Test cricket.

Kimber and Hansford (1993) considered the merits of the geometric distribution for
samples of individual cricket scores from Test and first class matches, including Australia’s
domestic Sheffield Shield competition, along with one day internationals, concluding that
‘there was little evidence against the . . . model in the upper tail’ but rejecting its validity
for low scores, mainly due to the excess of ducks in the data. Their work focused on
an alternative batting average measure using a non-parametric product-limit estimation
approach. Some of these points will be revisited later. They also looked at the independence
of cricket scores for a batsman and found ‘no major evidence of autocorrelation’ via a point
process approach, surmising that ‘it is quite reasonable . . . to treat scores as if they were
independent and identically distributed observations’. Durbach and Thiart (2007) later
concluded that batting scores can be considered to come from a random sequence based
on a study of sixteen Test match batsmen. We note that studies in other sports of lack of
independence of points- or run-scoring, sometimes referred to as the ‘hot hand’, have largely
concluded that there is little evidence to support the notion of ‘form’ (Gilovich et al., 1985;
Tversky and Gilovich, 1989).

Published work in sports statistics covers a wide range of sports. Initially much of this
work centred around the analysis of football and baseball, and focussed on predicting future
outcomes but now increasingly looks at gains that might be made using an optimal strategy.
The most famous model-based method used in cricket today is, of course, the Duckworth–
Lewis–Stern formula (Duckworth and Lewis, 1998, 2004; Stern, 2009) for interrupted one-
day cricket matches, with subsequent modification by, for example, McHale and Asif (2013).
Other work such as Silva et al. (2015) looks at the effect of powerplay in such matches.
In this paper the focus is instead on comparing past and current players, an area where
relatively little research has been done (Rohde, 2011; Radicchi, 2011; Baker and McHale,
2014), and study Test cricketers in particular. The innate ability of each player is modelled
by taking into account the heterogeneous effect of ageing on sporting performance, any year
effects which act as a surrogate for changes to the game that may have made it easier or
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Table 1. Timeline of Test match milestones

Test Match # Year Elapsed years

1 1877
100 1908 31
500 1960 52
1000 1984 24
2000 2011 27

more difficult in certain eras, home advantage and some cricket-specific components. Berry
et al. (1999) considered how to compare players from different eras in three, predominately
US-based, sports: baseball, golf and ice hockey. Their argument, which is adopted here, is
that comparisons between modern-day players and players from bygone eras are possible by
considering the overlap in playing careers: modern players at the start of their careers will
have played against older players at the end of their careers, which started much earlier,
and these older players would, in their youth, have played against players from earlier eras
once more. In such a way a bridge from present to past is formed.

The paper is structured as follows. The data are described in Section 2. The model de-
scription in Section 3 begins by outlining an initial model before introducing modifications
to handle some nuances of cricket batting data. Sections 4 and 5 detail the prior and pos-
terior distributions respectively along with the MCMC algorithm. Section 6 describes some
of the results such as the posterior mean of player ability, and a ranking by this measure,
and summaries of the posterior distribution of player rankings. The paper concludes with
some discussion and avenues for future work in Section 7.

2. The data

Cricket is a highly data driven sport, perhaps more than any other with the exception
of baseball. Players’ entire careers are typically judged by a one-number summary: their
average. There is a large amount of data, typically in the form of scorecards, available
for all formats of cricket at both international, domestic and even regional level. For some
players there is even ball-by-ball data recorded (the Association of Cricket Statisticians and
Historians have these data for Sir Jack Hobbs) although such a level of granularity is not
generally available and so is not considered further here.

The data used in this paper consists of individual innings by all Test match cricketers
(n = 2855) from the first Test played in 1877 up to Test 2269, in August 2017. There are
currently ten Test playing countries and many more Test matches are played today than at
the time of the first Test. Indeed for the first twelve years the combatants were exclusively
England and Australia. A demonstration of the growth of Test match cricket is given in
Table 1. We note that, in contrast to the standard presentation of historical batting av-
erages such as at http://stats.espncricinfo.com/ci/content/records/282910.html,
we include all batsmen irrespective of the number of career innings played. However, in
keeping with other lists, we do not include World Series Cricket matches as these matches
are not considered official Test matches by the International Cricket Council (ICC).

In addition to runs scored, the data contain other useful information such as the venue,
the opposing team and whether or not the batsman’s innings is incomplete (this can happen
for a variety of reasons; see Section 3.1.1). Thus we can determine whether a Test match is
played at ‘home’ and investigate the extent of any home advantage. Note that there have
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Fig. 1. Innings played by Ian Bell against Australia between 2009 and 2015. Triangles – away

matches; open symbols – not outs; numbers – innings number.

been twenty-nine Tests played at neutral venues and we class these as away matches for
both teams. The data also include the match innings index which is potentially important
as (generally) the conditions in the final innings of a Test match are at their worst for
batting and the pressure, due to the game situation, is often at its highest – it is an axiom
of cricket that batting last is difficult.

Some aspects of the game that have changed over time are not explicitly recorded in the
data: at one stage Tests were ‘timeless’, continuing until a result was achieved; the number
of balls in an over has varied between four, five, six and eight; pitches were uncovered and left
exposed to the elements up to around 1960; the introduction of limited-overs international
cricket in 1971 along with the recent advent of Twenty20 cricket in 2003 and the abolition of
‘amateur’ status in 1962. Together these aspects may well have affected the performance of
batsmen, particularly possible changes to pitches and changes to the game dynamic induced
by the shorter formats. We will consider these on annual and decade scales respectively.

A typical profile of batting scores is given in Fig. 1. This plot shows the runs scored
in the Test match innings of England batsman Ian Bell against Australia between 2009
and 2017. The innings are shown in sequential order and away matches and not outs
are indicated by the plotting symbol. Note that, although Bell was in the England side
throughout this period, he did not bat in many innings. This feature is typical and can be
due to many factors such as big wins where the follow-on was deployed and the winning
team did not need to bat a second time, or if the match is drawn due to bad weather or
running out of time. The figure highlights the capricious nature of batting and suggests
that, while year, ageing and game-specific effects may affect run-scoring on an overall level,
the innings-by-innings variation is considerable.

3. The model

Runs scored in an innings are counts and a natural starting point is to consider modelling
them via the Poisson distribution, with

Xijk|λijk
indep
∼ Po(λijk), i = 1, . . . , 2855; j = 1, . . . , ni; k = 1, . . . , nij ,
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where i is the player index, j is the year index and k is the innings index so that Xijk

represents the number of runs scored by player i in his jth year during his kth innings of
that year. Also ni and nij denote respectively the number of years in the career of player i
and the number of innings played during year j in the career of player i.

Notation for other available information is as follows. For player i in the kth innings of
their jth career year: yijk is the year the innings was played, aijk is the age of the player,
hijk indicates whether the innings was played in the batsmen’s home country (1 = home,
2 = away), mijk is a within-match innings index (different from the within-year innings
label k), oijk is the opposition country, and eijk is an indicator for the era of play, which
here is considered on a decade scale. These last two pieces of information together allow us
to study possible changes to the performance of a country over time.

Within this Poisson framework we adopt a log-linear model for the run scoring rate
which includes the main components thought to influence its outcome, with

log λijk = θi + δyijk
+ fi(aijk) + ζhijk

+ νmijk
+ ξoijk + ωoijk,eijk (1)

where θi represents the ability of player i, the difficulty of the year is captured through δℓ
(the data span 141 years), and fi(a) is a player-specific ageing function, of which more in
a moment. The remaining terms in the model are game-specific, representing respectively
the effect of playing at or away from home, the match innings effects, the quality of the
opposition and an interaction term allowing for the quality of the opposition to change over
different eras. Here we take eras to be decades to reduce the number of parameters in the
model.

The player ability parameter captures the contribution to runs scored that can be at-
tributed to the fundamental talent of the player. As mentioned earlier, ageing can have a
strong impact upon sporting performance so we incorporate an individual quadratic ageing
function as suggested by Albert’s discussion in Berry et al. (1999), namely

fi(a) = −α2i(a− α1i)
2,

where α1i is the age at which the peak is attained and α2i is the curvature of the function
which measures the rate at which the individual matures and declines.

The year effects are a composite of several factors: clearcut changes such as depth of
competition (more Test playing countries), game focus (scoring rates are far higher in mod-
ern times and there are fewer draws) and law changes (e.g fewer bouncers per over allowed
to make batting easier) whereas others are more subtle, for instance technological advances
and game conditions (most pitches are prepared to last five days to ensure maximum profit).
We anticipate that the year effects vary smoothly over time and allow for this by using a
random walk prior; see Section 4. The year effects also need to be standardised for iden-
tifiability reasons and so we compare these effects relative to the final year in the dataset
(2017) by taking δ141 = 0.

The remaining terms in the model account for home advantage, which is common in
many team sports, and two further context-specific effects to represent that as pitches
deteriorate, and the match situation becomes more acute, batting may become more difficult
and to take into account the quality of the opposition. We set the home effect as the reference
level (by taking ζ1 = 0) and measure the impact of playing away by ζ2. The innings effects
are represented through νg to reflect the difficulty of innings g where g = 1, 2, 3, 4 is the
innings of the match in which the runs were scored, and with ν1 = 0 for identifiability.
The quality of the opposition is taken into account via ξq for q = 1, . . . , 10 to represent
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the ten Test playing countries, some of which have traditionally been stronger than others.
Here we number the countries alphabetically. For reasons of identifiability we will take
Australia, the first team in the alphabetical ordering of the Test match playing nations, as
the reference opposition country, with ξ1 = 0. Further, the opposition-decade interactions
are compared to the final decade (by taking ω1:10,14 = 0) and to that of Australia (by also
taking ω1,1:13 = 0).

Thus in this model exp(θi) is the average number of runs per innings scored by player i
when he is at his peak age, playing at home against Australia, and in the first innings of a
Test match taking place in 2017.

3.1. Poisson random effects model

There is substantial variation in individual innings-by-innings cricket scores. As such, the
inherent assumption of equidispersion in the Poisson model is unlikely to hold. Under this
model and considering players that score on average ten or more runs per innings one would
expect their distribution of scores to be broadly Gaussian. However any follower of cricket
would intuitively feel that this is not the case and that excess variability to that provided by
the Poisson model is present. The data in Fig. 1 on Ian Bell are typical of many other players
and show extra-Poisson variation with censored observations and perhaps more ducks than
anticipated. We now augment the model to allow for each of these features.

We allow for the extra-Poisson variation by introducing random effects, acting multi-
plicatively on the Poisson mean parameter, so that

Xijk|λijk, vijk
indep
∼ Po(λijkvijk).

There are many possible choices of distribution for the random effects vijk, such as gamma,
log-normal, inverse Gaussian or general power transforms (Hougaard et al., 1997). We will
use the gamma distribution as this gives a negative binomial distribution for the num-
ber of runs after integrating over vijk (Cameron and Trivedi, 1986; Greene, 2008). This
choice allows a direct comparison with earlier work, particularly as the geometric distri-
bution is a special case. For further flexibility we allow the random effects distributions
to be player-specific, reflecting that player characteristics, such as aggression, can lead to
substantial differences in variability between players of comparable ability. Thus we take
vijk ∼ Ga(ηi, ηi), with E(vijk) = 1 and V ar(vijk) = 1/ηi. Therefore (marginally) we use a
negative binomial model for runs scored, with

Xijk|λijk, ηi
indep
∼ NB{ηi, ηi/(ηi + λijk)}.

Note that introducing the random effects makes no change to the (marginal) mean but has
inflated the (marginal) variance to V ar(Xijk) = λijk(1 + λijk/ηi), with the basic Poisson
model being recovered as ηi → ∞. This form of variance function is appropriate for mod-
elling batting scores as the variability is smaller for players of lesser ability (they have a
more restricted range of runs scored and rarely achieve high numbers of runs) and larger for
players of higher ability (although they score high numbers of runs, they will typically also
have innings with very low scores). The form of the negative binomial success probability
is cumbersome and so to simplify the exposition we will use βijk = λijk/ηi.

We now augment the model to deal with (i) incomplete scores – innings where the
batsmen is not dismissed; (ii) potential zero-inflation in the data – more ducks (zero scores)
in the data than the model suggests.
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3.1.1. Censoring

Approximately 13% of innings are incomplete, referred to as ‘not out’ in cricketing vernac-
ular, and are typically due to the completion of a team innings, which, by necessity, must
include one incomplete innings at the fall of the final wicket, or two incomplete innings in
a successful run chase (or if the match has not been completed due to adverse weather or
running out of time). Incomplete innings can also happen when the team captain ‘declares’
and brings the innings to a premature close (typically to aid the prospect of victory) and
this can result in either one or two incomplete innings. Historically, cricket has dealt with
incomplete innings in a somewhat ad hoc manner whereby the runs are added to the nu-
merator in the batting average without any increment to the denominator. Clearly such
innings ought not to be dealt with in the same way as a complete innings and the standard
cricketing treatment can exaggerate the contribution of incomplete innings and thereby
affect the batting average. From a statistical viewpoint, a not-out is simply a censored
observation. Kimber and Hansford (1993) claim that ‘x not-out is representative of all
scores of x or more’ and so we assume non-informative censoring. Thus, denoting a not-out
(censored) innings by the binary variable c, the likelihood contribution from player i, for
the kth innings of the jth year of his career, is

{(

xijk + ηi − 1

xijk

)

β
xijk

ijk /(1 + βijk)
ηi+xijk

}1−cijk

× P (Xijk ≥ xijk)
cijk , (2)

where Xijk has a negative binomial distribution.

3.1.2. Zero-inflation

After ignoring censored zeroes, ducks account for almost 11% of the observations in the
data. Even Sir Donald Bradman (with a Test batting average of 99.94) had a modal score
of zero with seven ducks out of eighty innings. This high proportion of zeroes is likely to
be due to players being vulnerable early in their innings (Brewer, 2008), taking time to
acclimatise to conditions and ‘get their eye in’ rather than owing to some other process that
causes scores to be necessarily zero. Thus the proportion of ducks is likely to be higher than
expected using the Poisson random effects model and so we modify the model to allow for
this inflation of zeros. We also allow for different levels of zero-inflation for each player.

There are two basic ways of dealing with zero inflation. One way is to model the
probability of getting a zero by a mixture of the primary model and a point mass at zero
(Lambert, 1992) and the other is to use a hurdle model which contains a model for zero
counts (the hurdle component) and a separate model for the strictly positive counts (once
the hurdle, a batsmen playing a scoring stroke for instance, has been cleared). Hurdle
models are particularly popular in the economics literature; see, for example, Gurmu (1997,
1998). They are the natural choice when the zeroes are entirely structural, such as in
a biological process (Ridout et al., 1998) or a weather pattern (Scheel et al., 2013). We
favour the mixture representation as this can be interpreted as the number of ducks being
a mixture of (the Poisson random effects) model based zeros and a component representing
the increased vulnerability of a batsman early in an innings. This representation has the
additional advantage (not followed up here) of providing a framework for generalising the
model to inflate other scores, such as four or six, that may occur more frequently due to
being achievable with a single scoring stroke, that is, via a ‘four’ or a ‘six’.
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The excess zeroes are assumed to be unrelated to the other effects and so we model the
probability of getting a (completed) duck for player i as

Pr(Xijk = 0) = πi + (1− πi)/(1 + βijk)
ηi .

Note that as the player-specific parameter πi → 0, the zero-inflated component diminishes
and the number of (completed) ducks is well described by an orthodox Poisson random
effects model. Thus, denoting a batsman with a (completed) duck by the binary variable d,
the likelihood contribution from player i, for the kth innings of the jth year of his career,
is amended from that in (2) to

{πi + (1− πi)/(1 + βijk)
ηi}

(1−cijk)dijk

×

[

(1− πi)

{(

xijk + ηi − 1

xijk

)

β
xijk

ijk /(1 + βijk)
ηi+xijk

}1−cijk

P (X ≥ xijk)
cijk

]1−dijk

.

(3)

Introducing a zero-inflation effect also reduces the expected number of runs scored by a
factor of (1− πi).

4. The prior distribution

We need to construct a joint prior distribution for the many parameters in this model.
In general, we have chosen to describe our prior beliefs by taking fairly weak independent
priors for each parameter component. This has the benefit of “letting the data speak” and
gives our results a reasonable level of robustness against our choice of prior.

We adopt a random effects style (or hierarchical) prior for the player-specific ability
parameters in which ability varies between batsmen by taking

θi|µθ, σθ
indep
∼ N

(

µθ, σ
2
θ

)

.

We also take semi-conjugate prior distributions for the ability parameters, with µθ ∼
N(mµ, s

2
µ) and σ2

θ ∼ IG(aσ, bσ), where IG(a, b) denotes the Inverse Gamma distribution
with mean b/(a − 1). It was felt that the median number of runs scored across all innings
(including not-outs) would be around 20 and so we take mµ = log 20. Also the variability
between decades of runs scored was likely to be within a 60%-fold increase or decrease and
so we take sµ = 0.25 (as e0.5 ≃ 1.6). Variation of player ability was thought to be typically
about a four fold increase/decrease around the decade mean, giving σ2

θ a mean of around
0.5, and that the probability that this fold increase/decrease would exceed ten was around
5%. Together these requirements give a prior distribution with (roughly) aσ = 3 and bσ = 1.

It was felt that the year effects δℓ should vary fairly smoothly in time and that prior
beliefs were less certain for years going further and further into the past. Therefore, together
with the identifiability constraint δ141 = 0, we use the (backwards) simple random walk
δℓ = δℓ+1 + σδǫℓ, ℓ = 140, . . . , 1, where the ǫℓ are independent standard normal quantities.
To see its smoothing role, it is useful to note that this random walk induces

δℓ|δ(ℓ), σδ ∼ N

(

δℓ−1 + δℓ+1

2
,
σ2
δ

2

)

, for ℓ = 2, . . . , 140,
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with δ1|δ(1), σδ ∼ N(δ2, σ
2
δ ), where δ(ℓ) = (δi, i 6= ℓ) represents all of the year effects except

year ℓ. For notational convenience we write δ for the year effects δ(141). These descriptions
lead to the prior distribution of the year effects being δ|σδ ∼ N140(0, σ

2
δ Q

−1) where the
inverse correlation matrix Q has the tri-diagonal structure

Q =















1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2















.

The parameter σδ describes the smoothness of the year effects and, as this impacts player
ability on an exponential scale, it was felt that σ2

δ should have an IG(aδ, bδ) prior distribu-
tion with mean 0.01 and only a 5% probability of exceeding 0.03. This leads (roughly) to
a choice of prior parameters aδ = 2 and bδ = 0.01.

We now consider the prior distributions for the remaining parameters, beginning with
the game-specific parameters: the effect of playing away ζ2, the innings effects ν2:4, the
quality of the opposition ξ2:10 and the opposition-era interactions ω2:10,1:13 (recall that
ζ1 = ν1 = ξ1 = ω1:10,14 = ω1,1:13 = 0 for identifiability). The strength of our opinion
on their potential size is quite weak and so we give these parameters zero mean normal
prior distributions with standard deviation 0.5, this taken to equate to a 95% prior credible
interval for these effects spanning an increase/decrease of around 2.7–fold on the runs scored.
Our prior beliefs about the player-specific ageing function are that the peak age is around
30 years old and that the rate of maturity/decline of players at seven years before (after)
their peak is roughly 2/3 (−2/3). We represent our fairly weak prior beliefs by taking
α1i ∼ N(30, 4) and α2i ∼ LN(−3, 9).

Previous studies have considered a geometric random effects distribution for runs scored
and so we give the individual random effects heterogeneity parameters ηi a log-normal prior
with unit prior median, but also make this prior fairly weak by taking ηi ∼ LN(0, 1). Our
prior beliefs about the individual zero-inflation parameters πi are captured by a Beta(aπ, bπ)
distribution with mean 0.1 and only a 5% probability of πi exceeding 0.3. This leads
(roughly) to a choice of prior parameters aπ = 1 and bπ = 9.

5. The posterior distribution

The posterior density can be factorised as

π(κ,η,π|x, c,d) ∝ π(x, c,d|κ,η,π)π(κ)π(η)π(π)

with λ = λ(κ), where x, c and d are the vectors of runs scored and associated censoring
and duck indicators respectively, and κ = (θ, δ, σδ,α, ζ2,ν, ξ,ω) contains the remaining
parameters in the model, with ν = (ν2:4), ξ = (ξ2:10), and ω = (ω2:10,1:13). This posterior
distribution is analytically intractable and we therefore turn to a sampling-based approach
and make inferences via the use of Markov chain Monte Carlo (MCMC) methods.

In our MCMC scheme we generally use Metropolis-Hastings steps with symmetric nor-
mal random walk proposals on an appropriate scale and centred on the current value; for
example, on the log scale for positive quantities or the logit scale for quantities restricted
to (0, 1). Overall we have found this strategy to work well except for updates to the year
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effects δ. Here Gibbs updates are available for each component δℓ but their full conditional
distributions depend strongly on the values taken by the year effects on either side, that
is, π(δ1|·) = π(δ1|δ2, ·) and π(δℓ|·) = π(δℓ|δℓ−1, δℓ+1, ·), ℓ 6= 1. This is not surprising given
the dependence structure in the prior distribution for δ. It is well known that such strong
dependence can lead to poor mixing such as that in, for example, the distribution of hidden
states in hidden Markov models. Also this strong dependence prohibits using software such
as JAGS (Plummer, 2004) to obtain posterior realisations in a timely manner. Instead we
follow Gamerman (1997) and construct a normal proposal distribution for δ via a Taylor
series approximation to its full conditional distribution; see the supplementary materials for
further details. We have found this strategy to greatly improve the mixing of the scheme.

6. Results

An implementation of the MCMC scheme in R (R Core Team, 2014) is available from
https://github.com/petephilipson/Ranking-Test-batsmen together with the data. We
report here results from a typical run of the MCMC scheme which used a burn-in of 5K
iterations and was then run for a further 200K iterations, with this (converged) output
thinned by taking every 20th iterate. This gave a posterior sample of N = 10K (almost)
un-autocorrelated values for analysis. Convergence was assessed through a variety of graph-
ical and numerical diagnostics via the R package coda (Plummer et al., 2006).

6.1. Random effects distribution for player ability

The (marginal) posterior distributions for the mean and standard deviation (µθ and σθ) of
the random effects distribution for player ability are shown in Fig. 2. Clearly the data have
been quite informative. We can get a quick understanding of this posterior distribution by
looking at its implication for the (random effects) distribution of the number of runs scored
(by players at their peak age, playing at home against Australia, and in the first innings
of a Test match taking place in 2017). Ignoring the (player-specific) zero-inflation effect,
the five number summary (Min–LQ–Med–UQ–Max) for the median number of runs scored
(exp(µθ)) is 24.7− 26.4− 27.3− 28.3− 30.2, and that for the average number of runs scored
(exp(µθ+σ2

θ/2)) is 25.2−26.9−27.9−28.8−30.8. These distributions seem reasonable after
taking into account that the zero-inflation parameters π are around 8% (see section 6.4).

6.2. Year effects

The posterior distribution for the year effects is summarised in the upper panel of Fig. 3.
The effects are shown on an exponential scale and so represent the multiplicative effect on
run scoring for each year, relative to playing against Australia in the most recent year (2017),
here shown by the horizontal dashed line. It is clear that there are very few important year
effects, with the main (and negative) deviation being 1887–1891, a period when it is widely
acknowledged that bowling conditions were favourable. The next strongest (and positive)
deviation occurred in 2009, a year featuring four of the sixteen highest team scores of all
time. The bottom-left panel of Fig. 3 shows the prior and posterior distribution of the
smoothing parameter σ2

δ for the year effects. The slight shift in the posterior towards lower
values suggests that the prior distribution did not over smooth.
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Fig. 2. Prior (solid line) and posterior (dashed line) density plots for ability parameters µθ (left plot)

and σθ (right plot).

6.3. Home advantage, innings and opposition effects

The bottom-right panel of Fig. 3 provides a visual comparison of the size of the multiplicative
effect on run-scoring when batting in different innings and playing away from home. Note
that these effects are all relative to playing at home against Australia in the first innings in
2017, represented by the dashed horizontal line. The effect of playing away from home on
runs scored, exp(ζ2), has posterior mean 0.90 and 95% confidence interval (0.89, 0.92). Thus,
there is a pronounced detrimental effect of playing away from home, leading to batsmen
scoring 10% fewer runs. This finding is consistent with that found for ‘home advantage’
in other sports (Pollard and Pollard, 2005; Jones, 2007; Baio and Blangiardo, 2010). The
posterior means (with 95% confidence intervals) for the second, third and fourth innings
effects (exp(ν2:4)) are 0.95 (0.93, 0.97), 0.90 (0.88, 0.92) and 0.84 (0.81, 0.86) respectively,
with the reference value of one for the first innings. These effects act multiplicatively on
run-scoring. Hence, performance decreases as the match goes on, with the innings effect at
its strongest in the final innings of the match, as cricketing folklore would have predicted.
The second innings of a Test match is tougher than the first innings with a reduction of 5%
in runs scored, but the effect increases to a 10% reduction in runs scored in the third innings
and a 16% reduction in the final innings (compared to the first innings). It’s interesting to
see that the effect of batting in the third innings and that of playing away from home are
very similar.

Fig. 4 displays the posterior means and associated 95% intervals of exp(ξq +ωqd) for the
ten Test playing countries (q = 1, . . . , 10) over the fifteen decades (d = 1, . . . , 15) during
which Test cricket has been played. As mentioned earlier, fewer countries played Test cricket
when it commenced as an international sport. The estimates in each case are relative to
the strength of the current Australian Test team (represented by the horizontal dotted
line on each plot). There are twenty instances of opposition effects that show appreciable
deviation from that of Australia in the most recent decade: these are split as six instances
of an opposition being significantly more difficult to score runs against than the current
Australia team and fourteen cases where the opposition are easier to score runs against.
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away effect exp(ζ2).

The largest deviations (and with the lowest posterior means) were England in the 1880s
and 1950s, and the West Indies in the 1980s, each causing a 20-25% reduction in average
runs scored.

The two newest Test playing nations, Bangladesh and Zimbabwe, have struggled at
times to be competitive and the three largest (significant) posterior means are for these two
countries. Batsmen have preyed on this weakness, scoring on average over 50% more runs
against Bangladesh and over 30% more runs against Zimbabwe. New Zealand were also
relatively weak when they first played Test cricket (in the 1930s) with batsmen scoring on
average 30% more runs. Other noteworthy examples of weaker opposition were India in the
1950s, India and New Zealand in the 1970s and England in the 1980s. In each case batsmen
scored on average around 20% more runs against these countries in these decades.

We investigated the sensitivity of our conclusions on opposition effects to using five year
time periods rather than decades and found very little difference. Also there is no need to
standardise opposition scores against the current Australia side and it is straightforward to
standardise scores against any opposition team in any decade. We provide the results for
any choice of team and decade via an RShiny application, available at
https://petephilipson.shinyapps.io/opposition/
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Fig. 4. Posterior mean and central 95% bands for the multiplicative opposition effects by decade,

exp(ξq + ωqd).

6.4. Random effects heterogeneity and zero-inflation

Five number summaries of the posterior means and standard deviations for the player-
specific random effects heterogeneity parameters (ηi) are 0.48 − 0.87 − 1.01 − 1.16 − 2.19
and 0.07−0.24−0.40−0.54−0.89 respectively. The posterior distributions for a number of
batsmen show clear deviation from the geometric model (ηi = 1) for cricket scores postulated
by Elderton (1945) and Wood (1945). We note that these authors did not account for zero-
inflation (or censoring) but Wood did remark on a lack of fit for scores of zero.

Five number summaries of the posterior means and standard deviations for the player-
specific zero-inflation parameters (πi) are 0.01− 0.06− 0.08− 0.11− 0.34 and 0.01− 0.04−
0.06 − 0.08 − 0.15 respectively. The posterior distributions show clearly both evidence
for zero inflation in Test match cricket scores and variation between players. The modal
batsman’s score in Test cricket is zero, and the commonly held belief that batsmen are at
their most vulnerable at the onset of their innings is a plausible explanation here. Posterior
means of the πi for the top thirty ranked batsmen are included in Table 2. The excess of
zeroes observed by Wood is a genuine feature of Test cricket scores. It is interesting to note
the discussion on the use of the standard cricket batting average summary in Kimber and
Hansford (1993): they point out that such a measure is only a consistent estimate if the
scores follow a geometric distribution.

6.5. Individual ageing

We determine the ageing profile for a batsman by examining the posterior distribution of
their expected runs scored at various ages a, that is, (1 − π) exp{θ + f(a)}. Fig. 5 shows



14 R.J. Boys and P.M. Philipson

SPD Smith SR Waugh

MD Crowe RT Ponting

JB Hobbs KS Williamson

HH Gibbs HM Amla

AD Nourse GA Headley

20 30 40 20 30 40

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

0
25
50
75

Age

R
u

n
s

Fig. 5. Posterior mean and central 95% bands for the ageing profile (1−πi) exp{θi+fi(a)} of various

batsmen together with their posterior mean adjusted runs scored.

posterior mean profiles (and central 95% bands) for a selection of players of broadly similar
ability but with quite different ageing profiles. Also included in the plot are the posterior
mean adjusted runs scored for each player, that is, the posterior mean of

∑

j,k:aijk=a

xijk × exp{−(δyijk
+ ζhijk

+ νmijk
+ ξoijk + ωoijk,eijk)}/nia

where nia is the number of completed innings played by player i at age a. The figure
shows that the quadratic function largely captures the ageing profiles, particularly when
taking account of the (posterior) uncertainty on the mean adjusted scores (not shown). The
posterior mean of the peak ages (α1i) is typically late twenties; see Table 2.

6.6. Player rankings

The posterior distribution of mean runs scored by the top thirty ranked players are shown
as boxplots in Fig. 6, with numerical summaries in Table 2. Here the players are listed
by their posterior mean of (1− π) exp(θ), that is, their expected runs scored at their peak
age assuming the year of play is 2017 (no year effect) and batting at home in the first
innings of a Test match against Australia. It is striking just how far Sir Donald Bradman
is ahead of the other batsmen, in terms of posterior mass; his extraordinary average is
well-known to cricket fans and the plot captures this clearly. The posterior distributions of
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the players ranked from two to thirty are largely similar, with considerable overlap. After
Bradman it is unclear who is the next ‘best’ batsman. This point is further underlined
by the posterior distribution of each player’s rank, calculated across the MCMC samples.
The figure also shows the median posterior rank, together with equi-tailed 95% confidence
intervals. The numerical summaries for each batsman can be found in Table 2. Note that
these are summaries of marginal distributions for each player and not, for example, the most
probable joint ranking across all players. Therefore it is possible, and happens here, that
no batsman has a posterior median rank of, say, two. However, given the level of variation
in runs scored, it does not seem reasonable to rank batsman by a single number summary,
be it mean score or median rank. Kimber and Hansford (1993) make a similar argument,
stating that ‘it is clear that a one-number summary of the distribution of a batsman’s scores
is not enough’. Our rank confidence intervals give a much more reasonable measure of rank
position and its uncertainty.

The interval for Bradman’s rank is quite narrow, ranging from rank 1 to rank 14. There
is little difference in the career batting averages of many players after Bradman and this is
borne out in the spread of the confidence intervals for the rankings, which are largely similar
and noticeably wide. It is interesting to see the level of (posterior) uncertainty on player
rankings. Fig. 6 shows confidence intervals for the top twenty players along with players
ranked 100th, 500th and every five-hundredth player thereafter up to the 2500th player
and the final player, ranked 2855th. The high level of posterior uncertainty in these ranks
chimes with a remark by Goldstein and Spiegelhalter (1996) when comparing institutional
performances, that ‘such variability in rankings appears to be an inevitable consequence
of attempting to rank individuals with broadly similar performances’. A full list of the
ability scores and ranks for all 2855 batsmen can be found via the RShiny application at
https://petephilipson.shinyapps.io/BatsmenRankings/

There are two established rankings lists with which we can compare our rankings. The
first is the traditional rankings by career Test batting average and the second is the ‘Reliance
ICC Best-Ever Test Championship Rating’ (ICC) list. These two differ in that the former
is a single measure across a player’s entire career whereas the latter is the maximum of a
dynamic index which places a greater emphasis on recent innings. Our approach could be
considered to be a compromise between these two systems. Overall, of the top 30 in our
rankings by posterior mean runs scored, we have 23 in common with all-time highest career
batting average rankings, and 19 in common with the ICC rankings. Five batsmen in Table 2
do not appear in either of these established ranking lists; these batsmen (with our ranking
by posterior mean runs and 95% confidence interval for their rank) are Waugh 6 (7, 168),
Crowe 8 (4, 304), Border 19 (14, 180), Williamson 20 (4, 343) and Flower 28 (12, 274). This
illustrates a central problem in ranking batsmen by a single number summary when there
is a high level of innings-to-innings variation in runs scored by each batsman. In particular
the traditional ranking does not adjust for any covariate information. The ICC rank does
adjust for opposition/pitch effects but is empirical and has some other ad hoc adjustments.
Neither system adjusts for the censoring (not-out) problem in a way that takes account of
player ability.

6.7. Model fitting

We can study the ability of the model to predict ducks (zero scores) by looking at the
(model-based) posterior predictive probability of a duck and seeing how this correlates with
observed ducks. This predictive probability is calculated by averaging a typical model-



16 R.J. Boys and P.M. Philipson

Table 2. Player rankings (ordered by posterior mean runs at peak age) together with posterior

means for peak age and zero-inflation proportions, and summaries of player rank distributions.

Peak Zero- Median rank
Rank Name Debut Innings Runs SD age inflation (95% CI)

1 DG Bradman 1928 80 93.7 14.3 28.2 7% 2 (1-14)
2 SPD Smith 2010 100 66.3 10.1 27.9 2% 27 (3-158)
3 GS Sobers 1954 160 64.1 7.9 27.8 5% 33 (5-137)
4 GA Headley 1930 40 63.2 12.8 27.0 4% 40 (2-360)
5 CL Walcott 1948 74 63.2 9.6 28.4 2% 38 (4-206)
6 SR Waugh 1985 260 62.0 7.7 29.6 5% 43 (7-168)
7 H Sutcliffe 1924 84 61.9 9.0 28.2 3% 44 (5-218)
8 MD Crowe 1982 131 61.6 10.7 27.0 4% 48 (4-304)
9 JB Hobbs 1908 102 61.4 8.2 28.4 4% 45 (6-204)

10 JH Kallis 1995 280 61.3 6.8 28.6 3% 47 (8-144)
11 SR Tendulkar 1989 329 61.2 6.4 27.2 2% 46 (10-139)
12 ED Weekes 1948 81 60.5 8.6 27.8 5% 52 (6-233)
13 RT Ponting 1995 285 59.8 6.8 27.8 3% 55 (10-189)
14 WR Hammond 1927 140 59.4 7.4 28.1 2% 59 (9-212)
15 RG Pollock 1963 41 59.2 11.7 27.7 3% 69 (3-406)
16 KF Barrington 1955 131 58.9 7.1 28.6 2% 62 (11-217)
17 L Hutton 1937 138 58.7 7.3 28.1 2% 65 (10-224)
18 BC Lara 1990 232 58.6 5.8 28.3 3% 64 (16-173)
19 AR Border 1978 265 58.5 6.0 27.9 2% 64 (14-180)
20 KS Williamson 2010 110 58.0 10.4 27.7 3% 81 (4-343)
21 Y Khan 2000 213 57.7 6.6 28.7 5% 73 (13-219)
22 KC Sangakkara 2000 233 57.5 5.8 28.9 2% 72.5 (16-198)
23 R Dravid 1996 286 57.5 5.7 27.8 1% 73 (17-198)
24 GS Chappell 1970 151 57.4 6.7 28.2 5% 75 (12-242)
25 AC Voges 2015 31 57.2 14.2 28.5 4% 91 (3-644)
26 HM Amla 2004 183 57.2 8.5 28.5 2% 80 (9-329)
27 JE Root 2012 107 57.1 7.8 27.7 2% 79 (9-303)
28 A Flower 1992 112 56.9 7.3 28.5 2% 80 (12-274)
29 SM Gavaskar 1971 214 56.7 6.1 28.0 2% 81 (18-226)
30 M Yousuf 1998 156 56.6 7.2 28.6 5% 87 (11-267)
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based probability Pr(Xijk = 0|κ, ηi, πi) over the uncertainty in the posterior distribution.
Therefore we estimate these predictive probabilities using

Pr(Xijk = 0|x, c,d) =
1

N

N
∑

ℓ=1

Pr(Xijk = 0|κ(ℓ), η
(ℓ)
i , π

(ℓ)
i ),

where {κ(ℓ),η(ℓ),π(ℓ) : ℓ = 1, . . . , N} is the posterior sample. Fig. 7 shows a summary of
this information. The left hand plot shows the (posterior) predictive distribution for the
total number of ducks in the dataset and confirms that this is consistent with its observed
data value. In the right hand plot, the predictive probabilities have been first grouped
into centiles and then the observed proportion of ducks in each centile has been plotted
against the mid-point of each centile. The plot shows good agreement between the model
predictions and observed proportions as there is little deviation from the 45o line. Fig. ??
in the supplementary materials shows plots similar to that in the right hand plot in Fig. 7
but gives a more comprehensive picture. Instead of just showing the calibration of duck
predictions, this plot contains that for all numbers of runs scored (grouped into intervals,
typically of size ten). Overall these plots show that, although the model does not provide
a perfect calibration, it does give a fairly accurate description of runs scored.
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Fig. 7. Left: Posterior predictive distribution of total ducks (dashed line – observed number in the

data); Right: Observed proportion of ducks against centiles of posterior predictive probabiities of a

duck.

7. Discussion

The data clearly show that there is considerable within batsmen variability in cricket scores
and there is demonstrable evidence that batsmen are especially vulnerable at the beginning
of their innings. Also the standard cricket batting average measure makes the unreason-
able assumption that run scoring follows a geometric distribution. Further the zero-inflated
random effects Poisson model (with log-linear factors) gives a good description of the runs
scored in Test matches. In terms of ranking players, we found that Sir Donald Bradman,
unsurprisingly, was the best player (under the model) and there was relatively little uncer-
tainty about his ranking. However, there was considerable uncertainty in the rankings of
players lower down the list.

We compared our rankings with those of two established lists: one list by career Test
batting average and the other, the ICC Best-Ever Test Championship Rating list. Not sur-
prisingly we found disagreement between all three lists. This illustrates a central problem in
ranking batsmen by a single number summary when there is a high level of innings-to-innings
variation in runs scored by each batsman. In these circumstances it is more appropriate
to summarise a career by a distribution which recognises the uncertainty in these single
number summaries. In this paper we look at the player’s overall ability within a model
which accounts for the high level of innings-to-innings variation, various cricket-specific
factors (not-outs, zero inflation) and adjusts for various important player-independent fac-
tors. Even without such adjustments, simple data averages can easily mislead as some
batsmen play relatively few innings: the five number summary for career innings played
is 1 − 4 − 12 − 35 − 329. We summarise our understanding of the player’s ability by a
distribution or an interval which accounts for uncertainty. These summaries are impacted
less by circumstance and luck (such as when an lbw decision goes in the batsman’s favour
and he makes a big score) than any fundamental difference in ability.

The model represents the quality of the opposition through dynamic opposition-specific
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parameters in order to capture potential changes in the performance of Test playing coun-
tries over time, such as periods of notable strength and weakness. Other factors were
considered for inclusion in the model but omitted due to data limitations or in the interests
of model parsimony. The effect of playing at home was explicitly accounted for, and this
could be sub-categorised further into individual Test match grounds. However, although
some grounds such as Lord’s and the Sydney Cricket Ground have been staples on the
Test match roster, there has been a lot of change in venues used in the sub-continent and
so insufficient data is available to be able to account for individual stadium effects. Test
matches are typically played as part of a series but data on the match number within a
series was not available in our dataset. Similarly, we might take account of the position of
the batsmen in the batting order. However, we believe that batting position is chosen to
suit the individual characteristics of each player in order to maximise runs scored, and so
leave out this factor from our model.

An obvious extension of this work would be to apply it to the performance of both
batsmen and bowlers. The approach could be further extended to analyse data from one
day internationals (ODIs), which, despite only being an international sport since 1971, has
already seen around 3900 fixtures take place. This equates to almost the same amount of
data as used here for Test matches since ODIs feature one innings per team per match. A
larger meta-model simultaneously analysing the Test/ODI batsmen and bowlers could also
help in addressing the issue of ranking players as such a model would have the potential
to identify not only the quantity of the runs but also refine attempts to ascertain their
‘quality’ by explicitly factoring in more granular data relating to the opposition, such as
the strength of the bowling attack in a given innings. Twenty20 cricket is another avenue
for future work but currently there may be insufficient data for an analysis of the type used
in this work.
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