The formation heights of coronal shocks from 2D density and Alfvén speed maps

Zucca, Pietro, Carley, Eoin, Bloomfield, Shaun and Gallagher, Peter (2014) The formation heights of coronal shocks from 2D density and Alfvén speed maps. Astronomy & Astrophysics, 564. A47. ISSN 0004-6361

[img]
Preview
Text
Formation heights.pdf - Accepted Version

Download (5MB) | Preview
Official URL: http://dx.doi.org/10.1051/0004-6361/201322650

Abstract

Context. Super-Alfvénic shocks associated with coronal mass ejections (CMEs) can produce radio emission known as Type II bursts. In the absence of direct imaging, accurate estimates of coronal electron densities, magnetic field strengths, and Alfvén speeds are required to calculate the kinematics of shocks. To date, 1D radial models have been used, but these are not appropriate for shocks propagating in non-radial directions.

Aims. Here, we study a coronal shock wave associated with a CME and Type II radio burst using 2D electron density and Alfvén speed maps to determine the locations that shocks are excited as the CME expands through the corona.

Methods. Coronal density maps were obtained from emission measures derived from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) and polarized brightness measurements from the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). Alfvén speed maps were calculated using these density maps and magnetic field extrapolations from the Helioseismic and Magnetic Imager (SDO/HMI). The computed density and Alfvén speed maps were then used to calculate the shock kinematics in non-radial directions.

Results. Using the kinematics of the Type II burst and associated shock, we find our observations to be consistent with the formation of a shock located at the CME flanks where the Alfvén speed has a local minimum.

Conclusions. The 1D density models are not appropriate for shocks that propagate non-radially along the flanks of a CME. Rather, the 2D density, magnetic field and Alfvén speed maps described here give a more accurate method for determining the fundamental properties of shocks and their relation to CMEs.

Item Type: Article
Uncontrolled Keywords: Sun: radio radiation, Sun: magnetic fields, Sun: corona, Sun: coronal mass ejections (CMEs)
Subjects: F500 Astronomy
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Becky Skoyles
Date Deposited: 09 Jul 2018 09:21
Last Modified: 11 Oct 2019 17:02
URI: http://nrl.northumbria.ac.uk/id/eprint/34874

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics