
Northumbria Research Link

Citation: Quick, Matthew, Li,  Guangquan and Brunton-Smith, Ian (2018) Crime-general
and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at
the small-area scale. Journal of Criminal Justice, 58. pp. 22-32. ISSN 0047-2352 

Published by: Elsevier

URL:  http://dx.doi.org/10.1016/j.jcrimjus.2018.06.003
<http://dx.doi.org/10.1016/j.jcrimjus.2018.06.003>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/35005/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


 1 

** Published at Journal of Criminal Justice 

 

Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime 

types at the small-area scale 

 

Matthew Quick a 

Guangquan Li b 

Ian Brunton-Smith c 

 

a School of Planning, University of Waterloo, Waterloo, Canada 

b Department of Mathematics, Physics and Electrical Engineering, Northumbria University, 

Newcastle-upon-Tyne, United Kingdom 

c Department of Sociology, University of Surrey, Guildford, United Kingdom 

 

Funding: This research was supported by the Social Sciences and Humanities Research Council 

of Canada [grant number 767-2013-1540] 

  



 2 

Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime 

types at the small-area scale 

 

Purpose: To examine if, and how, spatial crime patterns are explained by one or more underlying 

crime-general patterns. 

 

Methods: A set of Bayesian multivariate spatial models are applied to analyze burglary, robbery, 

vehicle crime, and violent crime at the small-area scale. The residual variability of each crime 

type is partitioned into shared and type-specific components after controlling for the effects of 

population density, deprivation, residential instability, and ethnic heterogeneity. Shared 

components account for the correlations between crime types and identify the crime-general 

patterns shared amongst multiple crimes. 

 

Results: Two shared components are estimated to capture the crime-general pattern for all four 

crime types and the crime-general pattern for theft-related crimes (burglary, robbery, and vehicle 

crime). Robbery and violent crime exhibit the strongest positive associations with deprivation, 

instability, and ethnic heterogeneity. Shared components explain the largest proportions of 

variability for all crime types. Burglary, robbery, and vehicle crime each exhibit type-specific 

patterns that diverge from the crime-general patterns. 

 

Conclusions: Crime-general patterns are important for understanding the spatial patterning of 

many crime types at the small-area scale. Multivariate spatial models provide a framework to 
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directly quantify the correlation structures between crimes and reveal the underlying crime-

general patterns shared amongst multiple crime types. 

 

Keywords: spatial pattern, crime-general, correlation, multivariate, Bayesian model, shared 

component 
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1. Introduction 

Many crime types exhibit similar spatial patterns, are associated with the same set of risk factors, 

and are interpreted using the same ecological theories (Schmid, 1960; Wikstrom and Dolmen, 

1990; Anselin et al., 2000; Ceccato et al., 2002; Schreck et al., 2009; Brantingham and 

Brantingham, 2010; Andresen, 2011; Chamberlain and Hipp, 2015). For example, social 

disorganization theory has been widely used to explain the neighbourhood-level spatial 

patterning of crime and, correspondingly, structural characteristics including socioeconomic 

disadvantage, residential instability, and ethnic heterogeneity have been found to be associated 

with crime categories, such as total crime, violent crime, and property crime, as well as specific 

violent and non-violent crime types (Warner and Pierce, 1993; Peterson and Krivo, 1996; Hipp, 

2007; Hirschfield and Bowers, 1997). Despite the theoretical and empirical similarities between 

the geographical distributions of many crime types at the neighbourhood or small-area scale, 

little research has investigated the degree to which the spatial patterns of individual crime types 

are explained by one or more underlying crime-general patterns (Weisburd et al., 1993; 

Brantingham, 2016). Crime-general spatial patterns arise from geographically-situated processes 

and characteristics associated with multiple crime types and can be contrasted with crime-

specific patterns, or the unique spatial patterns that arise from the processes and characteristics 

associated with only a single type of crime. One reason for the lack of research exploring crime-

general patterns is that conventional quantitative methods analyze a single crime type (or a single 

dependent variable) and cannot directly model the geographical correlation structures between 

two or more crime types. 

This paper applies a Bayesian multivariate spatial modeling approach to analyze the 

spatial patterns of burglary, robbery, vehicle crime, and violent crime at the small-area scale in 
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Greater London, United Kingdom. Multivariate models provide a formal statistical framework 

for modeling, summarizing, and visualizing the correlation structures between multiple 

dependent variables (Wang and Wall, 2003). For crime types with similar theoretical 

explanations, multivariate models allow for the total area-specific risk of each crime type to be 

explained by multiple data-generating processes, including shared components, which capture 

the underlying crime-general patterns shared amongst two or more crime types, and type-specific 

components, which capture the divergent spatial patterns for each crime (Knorr-Held and Best, 

2001; Tzala and Best, 2008). Conceptually, shared components represent geographically-varying 

latent processes that are simultaneously associated with two or more crime types and type-

specific components represent latent processes associated with only one type. 

This paper illustrates the first application of a multivariate spatial modeling approach to 

more than two crime types at the small-area scale. In this study, the best fitting model estimates 

two shared components that capture the spatial pattern shared amongst all four crimes (burglary, 

robbery, vehicle crime, and violent crime) and the spatial pattern shared amongst the theft-

related crime types (burglary, robbery, and vehicle crime) after controlling for the effects of 

population density, deprivation, residential instability, and ethnic heterogeneity. The shared 

components are found to explain the largest proportions of residual variability for all crime 

types. For theoretical inference, this study highlights the importance of unobserved crime-

general processes for understanding the spatial patterning of burglary, robbery, vehicle crime, 

and violent crime, and provides insight into where crime-general and/or crime-specific processes 

shape the local composition of crime. For crime prevention policy, visualizing and differentiating 

the shared and type-specific spatial patterns helps to understand where the risks of multiple crime 

types are correlated and clustered, and where interventions should target crime-general or crime-
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specific processes (Weisburd et al., 1993). In the following sections of this paper, the theories 

used to explain the spatial patterning of multiple crime types are reviewed, a set of hypotheses 

regarding crime-general and crime-specific spatial patterns are proposed, the Bayesian 

multivariate spatial modeling approach is detailed, and the crime-general and crime-specific 

patterns exhibited by burglary, robbery, vehicle crime, and violent crime in Greater London are 

visualized and discussed. 

 

2. Theoretical perspectives on correlated spatial crime patterns 

Little existing research has investigated how crime composition, or the mix of two or more crime 

types, varies within and between small-area units (Schreck et al., 2009; Brantingham, 2016). 

This may reflect, in part, the historical orientation of geographical analyses towards identifying 

determinants of specific types for law enforcement applications, rather than exploring if and how 

ecological crime theories are generalizable across crime types (Weisburd et al., 1993). However, 

the intra-urban spatial patterns of many crime types have been shown to be positively correlated 

at the small-area scale (Schmid, 1960; Andresen and Malleson, 2011) and many crime types 

have been explained using the same set of ecological theories, including social disorganization, 

routine activity, and crime pattern theories (Roncek and Maier, 1991; Andresen, 2006; Kinney et 

al., 2008). 

Social disorganization theory hypothesizes that the high levels of crime found in some 

neighbourhoods result from limited informal social control (Shaw and McKay, 1942). In more 

disorganized communities, residents are less capable of realizing common values and mobilizing 

to control delinquent behaviour, leading to increased crime (Sampson and Groves, 1989). While 

social disorganization theory was originally proposed to explain the residential locations of 
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young offenders, contemporary research has found that neighbourhoods with high 

disorganization, as operationalized by socioeconomic disadvantage, residential instability, and 

ethnic heterogeneity, often have high rates of total crime offenses, violent crime offenses, and 

property crime offenses, as well as specific offense types including robbery, burglary, and motor 

vehicle theft (Sampson and Groves, 1989; Peterson and Krivo, 1996; Smith et al., 2000; 

Morenoff et al., 2001; Hipp, 2007; Schreck et al., 2009; Chamberlain and Hipp, 2015). 

Extending social disorganization theory with a focus on how cultural contexts influence 

crime, differential opportunity theory proposes that the strength of social ties between residents 

interacts with structural characteristics to influence both the frequency of crime and the 

composition of crime types within neighbourhoods, specifically distinguishing the processes 

associated with violent and non-violent crimes (Cloward and Ohlin, 1960). In socially 

disorganized neighbourhoods with weak social ties, conflict subcultures may lead to higher risks 

of violent crime as there are fewer opportunities to learn the skills required for property crime 

offending. In contrast, in disorganized neighbourhoods with dense ties and interconnected social 

networks, criminal subcultures emerge, property crime skills are more effectively transferred 

between residents, and higher property crime rates are anticipated. Supporting differential 

opportunity theory, Schreck et al. (2009) found that neighbourhoods with weaker network ties 

had greater ratios of violent crimes to property crimes after accounting for variables representing 

social disorganization. 

Shifting focus from neighbourhood social or cultural processes to the locations of crime 

opportunities within the urban environment, routine activity theory hypothesizes that crime 

offenses result from the convergence of motivated offenders, suitable targets, and a lack of 

capable guardianship in space and time (Cohen and Felson, 1979). Crime pattern theory situates 
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the tenets of the routine activity theory in the urban environment, focusing on the ways in which 

locations attract motivated or opportunistic offenders (Brantingham and Brantingham, 2010). 

Like social disorganization theory, routine activity and crime pattern theories have been applied 

to interpret the spatial patterns of many crime types, including aggregated crime categories (e.g., 

property crime, violent crime, and predatory crime) and specific crime types, such as assault, 

residential and street robbery, burglary, motor vehicle theft, and break and enter (Sherman et al., 

1989; Kinney et al., 2008; Roncek and Maier, 1991). While past research using routine activity 

and crime pattern theories has found that related crime types often exhibit similar patterns at the 

small-area scale (e.g., vandalism, vehicle crime, and burglary at the basomrade scale in 

Stockholm, Sweden (Ceccato et al., 2002), and vehicle crime, robbery, and violent crime at the 

census dissemination area scale in Vancouver, Canada (Andresen, 2011)), these perspectives also 

recognize that the spatial patterns of some crime types may be driven by the location of type-

specific targets. For example, motor vehicle thefts and burglaries may be strongly correlated in 

many small-areas because neighbourhoods with high concentrations of residences are likely to 

have high concentrations of vehicles, but these crime types may have weaker correlations in 

areas with a high concentration of only one target type. 

Routine activity and crime pattern theories both assume that criminal acts result from 

rational decision-making and that each crime type has a distinct set of choice-structuring 

properties, or opportunities, costs, and benefits (Cornish and Clarke, 1987). Crime types with 

similar choice-structuring properties may be substitutable and correlated both within and 

between small-areas, as offenders may respond to generalized, rather than crime-specific, 

environmental cues (Hakim et al., 1984; Brantingham, 2016). Environmental cues provide 

information about the behaviour that is appropriate in a given context and, as applied to rational 
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offender decision-making, influence the attractiveness of a location for criminal behaviour 

(MacDonald and Gifford, 1989; Brantingham and Brantingham, 1993). For example, both 

burglary and vehicle theft are motivated by economic gain and, providing that the would-be 

offender does not specialize in one crime type, it is possible that these crime types are 

substitutable based on situational characteristics – such as the availability of specific target types 

– or environmental cues representing barriers to crime – such as the presence of a fence or a 

garage – or environmental cues representing the presence (or lack) of capable guardianship – 

such as visual indicators that a dwelling is occupied (MacDonald and Gifford, 1989). Likewise, 

despite robbery offences involving violence, an intended burglary or vehicle crime may be 

recorded by police as a robbery due to an unanticipated violent confrontation between offender 

and victim. While there are distinctions between crime types and choice-structuring properties at 

the incident-level, when crime data are aggregated by location and type, and are analyzed at the 

neighbourhood or small-area scale, the spatial patterns of crime types with similar choice-

structuring properties may be correlated and share an underlying crime-general pattern. 

 

2.3 Separating crime-general and crime-specific patterns 

Summarizing ecological crime theories and past empirical research, a set of hypotheses 

regarding the crime-general and crime-specific spatial patterns of burglary, robbery, vehicle 

crime, and violent crime are proposed. Conceptually, we consider the total area-specific risk of 

each crime type to be associated with multiple data-generating processes, some of which are 

crime-general and some of which are crime-specific. Consider, for example, two types of theft 

crime distributed across a set of areas with similar levels of informal social control (social 

disorganization theory) but with varying concentrations of type-specific and geographically-
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fixed crime targets (routine activity theory). In areas where there are equivalent concentrations of 

targets for both crime types, the risk of both crimes may be proportional to their association with 

informal social control (i.e., the proportion of risk due to the concentration of targets is the same 

for both crime types). In areas where the type-specific targets for only one crime type dominate, 

however, the number of opportunities and the number of offenses for the crime type with many 

targets will be greater than for the crime with few targets, even after accounting for the effects of 

informal social control on each type. 

 

Hypothesis 1 (H1): Burglary, robbery, vehicle crime, and violent crime will share a crime-

general pattern. We anticipate that this crime general-pattern will be evident after accounting for 

small-area structural characteristics because social, economic, and demographic census data do 

not entirely capture the social processes hypothesized by social disorganization theory. 

 

Hypothesis 2 (H2): The crime types with similar choice-structuring properties and/or with 

correlated targets, as outlined by routine activity and crime pattern theories, will share a crime-

general spatial pattern. This applies to the crime types involving theft (Hypothesis 2A (H2A): 

burglary, robbery, and vehicle crimes) and the crime types involving violence (Hypothesis 2B 

(H2B): robbery and violent crime). The crime-general patterns shared amongst subsets of the 

four crime types will be distinct from the crime-general pattern shared amongst all four crime 

types. 

 

Hypothesis 3 (H3): Violent crime will exhibit a type-specific pattern that is different from the 

crime-general patterns. This hypothesis is anticipated by differential opportunity theory, which 
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contends that violent crimes are more common than non-violent crimes in socially disorganized 

areas with weak social ties (Schreck et al., 2009). 

 

Hypothesis 4 (H4): Burglary, robbery, and vehicle crime will each exhibit crime-specific 

patterns that are distinguishable from the crime-general patterns and the type-specific pattern for 

violent crime. Each of these three crime types involves theft, has specific target types, and often 

involves geographically-fixed targets, such as buildings, dwellings, and parked vehicles (Hipp, 

2016). 

 

3. Methods for analyzing multiple crime patterns 

Existing studies that explore the spatial patterns of multiple crime types have adopted four 

methodological approaches: cluster detection methods, the spatial point pattern test, regression 

analyses, and multivariate modeling of two crimes (i.e., with two dependent variables). Cluster 

detection methods are used to identify crime hotspots, or groups of areas or points that have high 

levels of crime and that exhibit positive spatial autocorrelation relative to a null hypothesis of no 

spatial autocorrelation (Anselin et al., 2000). To investigate the patterning of multiple crime 

types, past studies have separately identified clusters for each crime type and compared the 

locations of clusters (e.g., local Moran’s I was used by Cohen and Tita (1999), Andresen (2011), 

and Bowers (2014)). For example, Weisburd et al. (1993) identify hotspots by choosing groups 

of addresses with high reported crime counts and analyze the pairwise correlations between 

fourteen crime types at these locations, finding that some crime types with similar choice-

structuring properties were positively correlated, such as robbery and theft, and robbery and 

burglary. Haberman (2017) also investigates the composition of crime types at clusters, 
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separately identifying hotspots for eleven crime types and counting the number of intersections 

classified as a cluster for more than one type. Importantly, inferences regarding the correlations 

between crime types in hotspot analyses are based on only a subset of the available data (i.e., 

hotspot locations), and because cluster detection methods are univariate, hotspot analyses are not 

capable of analyzing covariates or quantifying the correlation structures between multiple 

dependent variables. 

The spatial point pattern test quantifies the similarity of two geographically-referenced 

point datasets. This method iteratively samples a subset of points from one dataset (i.e., one 

crime type), establishes confidence intervals based on the sampled data, and calculates the 

percent of small-areas for which the second dataset (i.e., the non-sampled second crime type) 

falls within confidence intervals from the sampled dataset (Andresen, 2009). The spatial point 

pattern test has been applied to compare patterns of two crime types, showing that some crime 

types, including burglary and robbery, exhibit similar spatial patterns at the small-area scale 

(Andresen and Linning, 2012). Like cluster detection methods, the spatial point pattern test 

quantifies the degree to which one pattern is different from another (treating an existing crime 

pattern as the null hypothesis) but does not accommodate covariates or comparisons between 

more than two crime types. 

Past studies analyzing multiple crime types via regression models typically compare the 

statistical significance and/or magnitude of coefficients from separate regression models fit to 

each crime type (e.g., Roncek and Maier (1991) and Hipp (2007)). Regression models have also 

been used to quantify the relationship between two crime types (Bowers, 2014) and the 

relationships between neighbourhood characteristics and a ratio of violent to nonviolent crimes 

(Schreck et al., 2009). While similar coefficient magnitudes for two or more crime types suggest 
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that they follow a similar spatial pattern based on observed explanatory variables, past 

applications of regression models overlook the potential correlation structures amongst model 

residuals, or the latent covariates not analyzed. To investigate the similarity of spatial crime 

patterns after controlling for explanatory factors, Ceccato et al. (2002) visualize the area-specific 

residuals from spatial regression models and find that the modelled crime risks for vandalism, 

residential burglary, and theft of/from cars were underestimated in low-income areas. This is 

conceptually similar to the multivariate modeling approach used in this paper, but whereas 

Ceccato et al. (2002) infers the correlations between crime types via map visualization, we 

directly model the correlation structures between multiple crime types. 

In the aforementioned approaches, the correlations between crime types are inferred 

based on comparing the results of separate univariate analyses (i.e., for a single crime type or 

dependent variable). Multivariate modeling approaches, in contrast, analyze two or more 

dependent variables and directly estimate one or more model parameters that reveal and/or 

explain the correlation structures between dependent variables. One study has applied a 

multivariate model to two crime types. Liu and Zhu (2017) analyze burglary and non-motor 

vehicle thefts in a Bayesian spatial model featuring a multivariate conditional autoregressive 

(MVCAR) prior distribution. The MVCAR quantifies the strength of correlation between 

multiple spatially autocorrelated patterns (Besag et al., 1991; Gelfand and Vounatsou, 2003), and 

while the MVCAR prior is mathematically similar to the shared component models used in this 

research (MacNab, 2010; see Section 5), it assumes a single correlation structure for all crime 

types and cannot identify multiple correlation structures or spatial patterns shared amongst 

different subgroups of two or more crime types. 
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4. Study region and data 

Greater London is the largest metropolitan region in England and is composed of the City of 

London and thirty-two surrounding boroughs. The geographic unit of analysis for this research 

was the lower super output area (LSOA). LSOAs are constructed by grouping together socially 

homogenous households (based on tenure and social status), have populations between one 

thousand and three thousand residents, and have been used to approximate the spatial boundary 

of neighbourhoods in past research (Sutherland et al., 2013; Malleson and Andresen, 2016). 

 

4.1.  Crime counts in Greater London 

Reported crime data for 2015 for the City of London Police and the Metropolitan Police Service 

were retrieved from https://data.police.uk/. These data have been shown to provide an accurate 

picture of crime risk for LSOAs (Tompson et al., 2015). Four crime types were analyzed: 

burglary, robbery, vehicle crime, and violent crime (Table 1). Burglaries were defined as 

entering a dwelling or non-dwelling with the intent of theft, robberies as theft with force or threat 

of force, vehicle crimes as theft of or from a vehicle, and violent crimes included common 

assaults and offences involving bodily harm (Tompson et al., 2015; The Home Office, 2016). 

Note that this crime dataset does not include information for specific subtypes of burglary, 

robbery, vehicle crime, or violent crime. While Greater London is geographically contiguous and 

crime data were retrieved from one source, it is possible that reporting and classification 

differences between the two police agencies, and the relatively lower residential population 

density in the City of London (mean of 883 residents per km2 compared to a mean of 10,170 per 

km2 for the region), may influence the results of this study. Results were not changed by 
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excluding LSOAs in the City of London, likely because the City of London covers less than one 

percent of the total number of areas analyzed. 

 

Table 1. Descriptive statistics for crime counts and explanatory variables. 

Crime types Total count Mean Std. Dev. Min. Max. 

    Burglary 70,209 14.52 9.72 0 173 

    Robbery 21,371 4.42 6.96 0 175 

    Vehicle crime 82,076 16.98 11.91 0 166 

    Violent crime 190,798 39.46 39.94 0 950 

Explanatory variables      

    Population density (per km2) NA 10,170 3,252.23 123 90,950 

    Deprivation NA 7.53 2.57 1.63 17.33 

    Residential instability NA 15.13 7.00 3.79 63.85 

    Ethnic heterogeneity NA 0.56 0.21 0.04 0.96 

 

Figure 1 maps the spatial patterns of burglary, robbery, vehicle crime, and violent crime 

counts. For all crime types, areas with high counts were located in and around Inner London, and 

areas with low counts were located to the southwest, southeast, and northwest. Robbery and 

violent crime appear to have similar spatial patterns, with high counts located in north and 

central Greater London, however violent crime had an additional group of LSOAs with high 

counts in the west of the study region. High counts of both burglary and vehicle crime were 

located along the north side of the Thames River in the east and along the northern boundary of 

Greater London. Detailed maps of crime counts in Inner London and in the City of London are 
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shown in Appendix 1. Positive pairwise correlations between the small-area counts of all crime 

types support the visual similarities of spatial crime patterns (Appendix 2). The crime types 

involving violence, violent crime and robbery, were the most strongly correlated (Kendall’s τB = 

0.48), while the weakest positive correlations were between violent crime and nonviolent crime 

types, specifically burglary (τB = 0.27) and vehicle crime (τB = 0.29). Most LSOAs had a mix of 

multiple crime types (Appendix 3). 

 

Figure 1. Quantile maps of burglary, robbery, vehicle crime, and violent crime counts. Each map 

class includes one-quarter of all LSOAs in Greater London. 

 



 17 

4.2. Explanatory variables 

Four variables were chosen to explain the spatial patterns of all crime types: population density, 

deprivation, residential instability, and ethnic heterogeneity (Table 1). These variables are 

commonly used to operationalize social disorganization and have been found to be associated 

with burglary, robbery, vehicle crime, and violent crime at a variety of small-area scales (Shaw 

and McKay, 1942; Sampson and Groves, 1989; Morenoff et al., 2001; Hooghe et al., 2011; 

Sutherland et al., 2013; Chamberlain and Hipp, 2015). Population density was operationalized as 

the number of usual residents per square kilometre and data were retrieved for 2015 from the 

Office for National Statistics1. Population density was included as an explanatory variable and 

the relationship between population density and each crime type was directly quantified. This 

was because the population for these four crime types is not well-defined. Also, treating 

residential population as a population at risk (i.e., when constructing crime rates for models 

requiring continuous data or when constructing log-offsets for models requiring count data) may 

not be appropriate in Greater London, where crime has been shown to cluster in areas with 

smaller residential populations, such as the city centre (Wikstrom and Dolmen, 1990; Malleson 

and Andresen, 2016). Deprivation was derived from the index of multiple deprivation by 

removing the crime indicator and re-calculating according to the original weights for education, 

                                                 
1 Usual residents include people who were in the United Kingdom (UK) on census day, people 

who had been in the UK for 12 months or more prior to census day, and people with a 

permanent address in the UK but who were outside of the UK on census day for a period of less 

than 12 months. 

 



 18 

health, housing, income, and living environment dimensions (Department for Communities and 

Local Government, 2015). Residential instability and ethnic heterogeneity data were retrieved 

from the 2011 Census of England and Wales. Residential instability was operationalized as the 

percent of residents who did not live at the same address in the year prior and ethnic 

heterogeneity was operationalized as the index of ethnic heterogeneity2, where values range 

between zero (low heterogeneity) and one (high heterogeneity). 

 

5. Bayesian multivariate spatial modeling 

Let Oik denote observed crime counts for small-area i (= 1, …, 4835) and type k (= 1, …, 4) 

where Oi1 represents area-specific counts of burglary, and Oi2, Oi3, and Oi4 represent area-

specific counts of robbery, vehicle crime, and violent crime, respectively. Conditioning on the 

underlying crime risk µik, Oik’s are modelled as independent Poisson random variables. The 

Poisson model is often used in Bayesian spatial modeling of small-area count data (Richardson et 

al., 2004; Haining et al., 2009). A Bayesian modeling approach was employed because it allows 

for the estimation of hierarchical generalized linear mixed models with structured random effects 

that would be otherwise intractable via frequentist methods (Breslow and Clayton, 1993). The 

multivariate models used to analyze the four crime types are described below. 

Model 1 analyzes the spatial pattern of each crime type independently and assumes no 

correlation structure between crime types. In Model 1, the small-area risk of each crime type 

                                                 
2 The index of ethnic heterogeneity for area i = 1 - ∑ pid

2 , where pid is the proportion of residents 

of ethnicity d in area i relative to the total population in area i. Ten ethnicities (d = 10) were 

included in the index calculation (Table KS201UK: Office of National Statistics (2011)). 
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(µik) is modeled (on the log scale) as the sum of type-specific intercepts (αk), a set of type-

specific spatially structured random effects (sik), and a set of type-specific unstructured random 

effects (eik). The type-specific intercepts capture the average risk of each crime type across 

Greater London. The two random effects terms, sik and eik, capture spatial autocorrelation and 

overdispersion of count data, respectively. The sum of sik and eik is known as the BYM structure 

after Besag et al. (1991) and, when mapped, these parameters represent the type-specific patterns 

of each crime. For example, areas with high values of (si1 + ei1) have high type-specific risk of 

burglary and areas with low values of (si2 + ei2) have low type-specific risk of robbery. 

log(µik) = αk + sik + eik       (1)  

In Model 2, we separate the spatial pattern of each crime type into one shared component 

and four type-specific components. The shared component (λk · fi) models the geographical 

correlations between all crime types, where λk are four type-specific scaling parameters and fi is 

a set of spatially structured random effects terms that are common to all four crime types. When 

mapped, fi represents the crime-general pattern shared amongst all crime types. The scaling 

parameters allow each crime type to have a different risk gradient or loading on the crime-

general pattern. For example, if the pattern of violent crime is close to the crime-general pattern 

shared amongst all crimes, the scaling parameter for violent crime (λ4) will be positive and away 

from 0, but if it does not resemble the crime-general pattern of fi, the scaling parameter will be 

close to 0 (Knorr-Held and Best, 2001). A crime-general pattern common to all crime types is 

theoretically supported by past research showing that social disorganization is generalizable to 

burglary, robbery, vehicle crime, and violent crime (see Section 2), and empirically supported by 

the positive pairwise correlations between all crime types in Greater London (Appendix 2). In 

addition to the one shared component, type-specific components sik and eik were included to 
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capture the crime-specific patterns that diverge from the crime-general pattern (Held et al., 2005; 

Tzala and Best, 2008). 

log(µik) = αk + (λk · fi) + sik + eik      (2) 

Model 3 adds a second shared component to account for the crime-general pattern shared 

amongst burglary, robbery, and vehicle crime (γ1:3 · νi). This shared component was added based 

on the similar motivations and choice-structuring properties of theft-related crime types, with 

past research showing that theft crimes are substitutable in response to changes in deterrence 

policies (Hakim et al., 1984), the possibility that the target types for these crime types may be 

correlated within small-areas, and preliminary results from Model 2 showing that the type-

specific spatial patterns of these crime types were similar. This shared component is the product 

of three unknown scaling parameters (γ1:3) and a set of spatially structured random effects (νi), 

where νi represents the crime-general pattern shared amongst the theft-related crimes and where 

scaling parameters γ1:3 quantify the relative associations between the three theft-related crimes 

and νi. Note that the scaling parameter for violent crime (γ4) was fixed to 0 so νi is only shared 

by burglary, robbery, and vehicle crime. 

log(µik) = αk + (λk · fi) + (γ1:3 · νi) + sik + eik    (3)  

In Model 4, we add regression coefficients (βnk, with subscript n denoting the nth 

explanatory variable) to estimate the associations between each crime type and population 

density, deprivation, residential instability, and ethnic heterogeneity. Compared to Model 3, 

which separates the total risk of each crime type into two shared components and four type-

specific components, Model 4 separates the residual risk of each crime type into shared and type-

specific components after controlling for observed covariates. For reference, shared components 

are analogous to regression coefficients insofar as they explain the spatial variability of all crime 
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types, however, whereas 𝑥𝑥ni are observed data, both fi and νi are unobserved parameters that 

capture the residual crime-general patterns that arise from the geographical correlations amongst 

multiple crime types. Note that we tested an additional model with a shared component common 

to only robbery and violent crime, however this model did not converge. This suggests that the 

correlations between violent crime and robbery were entirely captured by the four explanatory 

variables and the crime-general pattern common to all crimes (see Section 7). 

log(µik) = αk + (βnk · 𝑥𝑥ni) + (λk · fi) + (γ1:3 · νi) + sik + eik   (4)  

To quantify the degree to which model parameters explain the overall variability of each 

crime type, variance partition coefficients (VPCs) were calculated for all parameters in Models 

2, 3, and 4 (Goldstein et al., 2002). In Model 1, the variability of all crime types was entirely 

explained by the type-specific parameters. The VPC estimating the amount of variability 

explained by the crime-general pattern common to all crime types in Model 2, for example, is 

equal to the empirical variance of (λk · fi) divided by the sum of the empirical variances of (λk · 

fi) and (sik + eik). The VPCs for observed covariates in Model 4 were calculated as βnk
2 · var(𝑥𝑥ni) 

and were added to the denominators when calculating the VPC for all model parameters (Section 

6; Appendix 4). 

 

5.1. Prior distributions 

In Bayesian modeling, all parameters are treated as random variables and assigned prior 

probability distributions. The improper uniform distribution was assigned for each of the type-

specific intercepts (αk) (Thomas et al., 2004). A vague normal distribution with a mean of zero 

and a variance of 1,000 was assigned to each regression coefficient (β’s). For the two shared 

components, the logarithm of each scaling parameter (i.e., log(λk) and log(γ1:3)) was assigned a 
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normal distribution with a mean of zero and a variance of 0.17. This prior, which was the prior 

originally proposed for shared component modeling in disease mapping applications, has two 

assumptions (Knorr-Held and Best, 2001). First, all of the scaling parameters are assumed to be 

positive, implying that all four crime types are positively correlated. This is supported by 

exploratory analysis of this dataset (see Appendix 2). Second, this prior assumes that, before 

analyzing the data, each scaling parameter ranges between 0.2 and 5 with a 95% probability 

(Knorr-Held and Best, 2001; Held et al. 2005). We also considered two other values (0.2 and 

0.5) for the prior variance, each corresponding to a prior distribution with weaker information 

than Normal(0, 0.17). The results from analyses using these alternative priors were very similar 

to those presented here, meaning our findings were not sensitive to the prior choice. Following 

Held et al. (2005), a sum-to-zero constraint was imposed on log(λk) and log(γ1:3) (i.e., log(λ1) + 

log(λ2) + log(λ3) + log(λ4) = 0; log(γ1) + log(γ2) + log(γ3) = 0) to avoid the non-identifiability 

problem between the scaling parameters and the random effects terms fi and νi. 

The type-specific unstructured random effects terms (eik) were independently assigned a 

normal distribution with a mean of zero and an unknown type-specific variance (σek
2 ). The 

spatially structured random effects terms in shared and type-specific components (fi, νi, and sik) 

were modeled via the intrinsic conditional autoregressive (ICAR) model. In the ICAR model, the 

conditional distribution of each fi, νi, and sik is a normal distribution with mean equal to the 

average of the fi’s, νi’s, and sik’s in neighbouring areas (Besag et al., 1991). Neighbourhood 

structure was defined via a first-order queen contiguity matrix, where two areas are neighbours if 

they share a common boundary, a common vertex, or both. The variances of common spatially 

structured random effects (σf
2 and σ𝜈𝜈2 ) were set to one to guarantee a unique solution and the 

variances for type-specific spatially structured random effects (σsk
2 ) were treated as unknown 
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(Tzala and Best, 2008). Note that, because the variances of fi and νi were set to one, the scaling 

parameters within each shared component are interpreted relative to each other (Held et al., 

2005; Wang and Wall, 2003). For example, the influence of the crime-general pattern fi on 

burglary relative to the influence of fi on robbery is equal to λ1 / λ2. 

Hyperprior distributions were assigned to the variances of type-specific random effects 

terms sik and eik. A positive half Gaussian prior, Normal+∞ (0, 10), was assigned to the type-

specific standard deviations σsk and σek (Gelman, 2006). Similar results were obtained when an 

Inverse Gamma(0.5, 0.0005) or an Inverse Gamma(0.001, 0.001) prior distribution was assigned 

to the variances σsk
2  and σek

2  (Kelsall and Wakefield, 1999). 

 

5.2. Model fitting 

All models were fit via the Markov chain Monte Carlo (MCMC) algorithm in WinBUGS v.1.4.3. 

Population density, deprivation, and residential mobility were standardized in Model 4 to 

improve convergence. Two MCMC chains were run and model convergence was reached at 

600,000 iterations (or 300,000 for each chain). Convergence was monitored by visual inspection 

of history plots and formally assessed via Brooks-Gelman-Rubin diagnostics (Brooks and 

Gelman, 1998). An additional 200,000 iterations (for each chain) were sampled for posterior 

inference, where every fortieth iteration was retained to reduce autocorrelation of the MCMC 

samples. A total of 610,000 iterations were used for posterior inference. The Monte Carlo errors 

for all model parameters were less than five percent of corresponding posterior standard 

deviations, indicating that the 610,000 iterations were sufficient to approximate the posterior 

distributions (Lunn et al., 2012). The Deviance Information Criterion (DIC) was used for model 

comparison. The DIC balances goodness of fit and model complexity, where goodness of fit is 
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assessed via the posterior mean deviance (D ���) and model complexity is assessed via the effective 

number of parameters (ρD). The model with the smallest DIC value is considered to be the best 

fitting model (Spiegelhalter et al., 2002). 

 

6. Results 

Table 2 compares the four multivariate spatial models using the DIC. The DIC decreased from 

Model 1 to Model 2, providing evidence that burglary, robbery, vehicle crime, and violent crime 

are correlated and share an underlying crime-general pattern. Model fit also improved in Model 3 

when adding a second shared component to capture the crime-general pattern shared amongst the 

three theft-related crimes. Model 4, which added four explanatory variables, had the smallest 

DIC, and was identified as the best fitting model. The WinBUGS code for Model 4 is shown in 

Appendix 5. 

 

Table 2. Model comparison of the four multivariate spatial models using DIC. 

Model Description D ��� ρD DIC 

1  Type-specific patterns 100,344 14,119 114,463 

2 Type-specific patterns, one crime-general pattern 100,387 11,881 112,268 

3 Type-specific patterns, two crime-general patterns 100,150 12,078 112,228 

4 Type-specific patterns, two crime-general patterns, 

explanatory variables 

100,125 11,855 111,980 

 

Results from Model 4 are shown in Table 3. The regression coefficients are shown as 

relative risks (i.e., exp(βn)), where a relative risk estimate greater than one indicates a positive 
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association with crime. Uncertainty of model parameters is indicated by the 95% credible 

interval (95% CI), or the interval that contains the true value of a parameter with 95% 

probability. Population density was found to be negatively associated with all crime types, which 

aligns with past research showing that areas with high crime often have low residential 

population densities in Greater London (Malleson and Andresen, 2016). Deprivation and 

residential instability were positively associated with all crime types, and ethnic heterogeneity 

was only positively associated with robbery and violent crime at 95% CI. Of the four crime 

types, robbery and violent crime had stronger positive relationships with deprivation, residential 

instability, and ethnic heterogeneity, supporting past research showing that the structural 

characteristics of social disorganization often have greater positive associations with crime types 

involving violence than with non-violent crimes (Warner and Rountree, 1997; Hipp 2007; 

Sutherland et al., 2013; Hirschfield and Bowers, 1997). 

 

Table 3. Posterior medians and 95% CI’s for parameters from Model 4. 

 Burglary Robbery Vehicle crime Violent crime 

Intercept (exp(αk)) 13.79 

(12.31, 15.55) 

1.53  

(1.26, 1.89) 

15.82 

(14.04, 17.94) 

15.34 

(14.20, 17.04) 

Population density (β1) 0.80  

(0.77, 0.82) 

0.73  

(0.70, 0.77) 

0.76  

(0.74, 0.79) 

0.79  

(0.77, 0.82) 

Deprivation (β2) 1.06  

(1.02, 1.09) 

1.41 

(1.33, 1.49) 

1.03 

(0.99, 1.07) 

1.40  

(1.36, 1.45) 

Residential instability (β3) 1.15  

(1.12, 1.18) 

1.28  

(1.22, 1.34) 

1.09  

(1.06, 1.12) 

1.22  

(1.18, 1.24) 
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Ethnic heterogeneity (β4) 0.84 

(0.68, 1.01) 

2.29 

(1.57, 3.22) 

0.83  

(0.67, 1.01) 

3.27  

(2.64, 3.78)  

Scaling parameters 

All crimes (λk) 0.74 

(0.71, 0.77) 

1.48 

(1.43, 1.52) 

0.72 

(0.70, 0.75) 

1.26 

(1.23, 1.29) 

Theft-related crimes (γ1:3) 0.87  

(0.83, 0.91) 

1.19 

(1.14, 1.24) 

0.96 

(0.92, 1.00) 

NA a 

Empirical variances of random effects terms 

All crimes (λk · fi) 0.11  

(0.09, 0.12) 

0.41  

(0.38, 0.45)  

0.10 

(0.08 0.12) 

0.30 

(0.28, 0.32) 

Theft crimes (γ1:3 · νi) 0.20 

(0.17, 0.26) 

0.38 

(0.30, 0.49) 

0.25 

(0.20, 0.32) 

NA 

Type-specific (sik + eik) 0.08 

 (0.05, 0.10) 

0.27 

(0.21, 0.33) 

0.13 

(0.10, 0.16) 

0.001 

(0, 0.01) 

  a γ4 = 0. 

 

The scaling parameters in both shared components were unambiguously greater than zero 

for all crime types, indicating that the crime types grouped together in each shared component 

were significantly associated with the corresponding crime-general patterns (Tzala and Best, 

2008). For the shared component common to all four crimes, the scaling parameters were 

significantly greater for robbery and violent crime than for burglary and vehicle crime at 95% CI 

(Table 3). Accordingly, the crime-general pattern for all crime types had about two times the 

influence on robbery (λ2 / λ3 = 1.48 / 0.72 = 2.06 (95% CI: 1.95, 2.14)) and on violent crime (λ4 
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/ λ3 = 1.26 / 0.74 = 1.75 (95% CI: 1.67, 1.82)) than on vehicle crime. The crime-general pattern 

for all crime types had about the same influence on both burglary and vehicle crime (λ1 / λ3 = 

0.74 / 0.72 = 1.03 (95% CI: 0.98, 1.08)) 

The crime-general pattern for the three theft-related crimes had the strongest positive 

influence on robbery (γ2 = 1.19) and the weakest positive influence on burglary (γ1 = 0.87). 

Figure 2 maps the crime-general spatial patterns shared amongst all four crime types and 

amongst the three theft-related crime types. In general, areas with high risk due to the crime-

general pattern for all crimes were located in central areas of Greater London whereas areas with 

high risk due to the crime-general pattern for theft-related crimes were located in the northern 

half of Greater London. 

 

Figure 2. The crime-general pattern shared amongst all crime types (exp(fi) from Model 4) and 

the crime-general pattern shared amongst the theft-related crime types (exp(νi) from Model 4).  

 

Figure 3 maps the type-specific patterns that diverge from the crime-general patterns. 

Burglary and violent crime show no clear type-specific pattern, however burglary had areas with 

moderately high and moderately low risk dispersed across Greater London whereas the type-
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specific risk of violent crimes was small and essentially uniform across all areas (range between 

0.98 and 1.03). This suggests that the four explanatory variables and the shared component 

common to all crimes captured almost all of the spatial variability of violent crime (also see 

Figure 4). In contrast, the type-specific patterns of robbery and vehicle crime were distinctly 

clustered. For robbery, high risk areas surrounded the city centre and low risk areas were located 

around the periphery of the study region. For vehicle crime, high risk areas were concentrated 

along the Thames River, particularly at the easternmost and westernmost boundaries of Greater 

London. Visually, areas with high type-specific burglary risk appear to overlap with areas with 

low type-specific vehicle crime risk. 

 

Figure 3. Type-specific spatial patterns of burglary, robbery, vehicle crime, and violent crime 

(exp(sik + eik) from Model 4). 



 29 

 

The VPCs for the shared components, type-specific components, and explanatory 

variables from Models 3 and 4 are visualized in Figure 4 (see Appendix 4 for posterior medians 

and uncertainty intervals). In Model 3, the shared component common to all crimes explained the 

largest proportions of variability for violent crime and robbery (99% and 50%, respectively), and 

the shared component for the theft-related crimes explained the largest proportions of vehicle 

crime and burglary (51% and 49%, respectively). This finding was consistent in Model 4 after 

accounting for explanatory variables; for violent crime and robbery, the largest proportions of 

variability were explained by the shared component common to all crimes (52% and 30%, 

respectively), and for burglary and vehicle crime, the largest proportions of variability were 

explained by the shared component common to theft-related crimes (45% and 44%, 

respectively). In total, the four covariates added in Model 4 explained about 48% of the 

variability of violent crime, but only between 13% and 21% percent of the variability of 

burglary, robbery, and vehicle crime. For robbery and violent crime, the variance explained by 

regression coefficients/explanatory variables in Model 4 was largely transferred from the shared 

components common to all crime types. Note that violent crime had almost no residual type-

specific variability, confirming the lack of a type-specific violent crime pattern (Figure 3). 

 

Figure 4. Variance partition coefficients from Model 3 and Model 4. 
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7. Discussion 

This paper has examined if, and how, multiple crime types share underlying crime-general 

patterns through the application of a Bayesian multivariate spatial modeling approach. In this 

study, the best fitting model estimated two shared components that captured the crime-general 

pattern shared amongst burglary, robbery, vehicle crime, and violent crime, and the crime-

general pattern shared amongst the three theft-related crimes (burglary, robbery, and vehicle 

crime). Because shared and type-specific components are estimated as random effects terms in a 

regression modeling framework, crime-general and crime-specific spatial patterns have specific 

interpretations as latent/unobserved covariates or processes associated with multiple crime type 

or only one crime type, respectively. 

 

7.1. Interpreting crime-general and crime-specific patterns 

Focusing first on the shared component common to all four crime types, the results of this 

research show that burglary, robbery, vehicle crime, and violent crime share an underlying 

crime-general spatial pattern. This supports H1, which contends that there are geographically-

situated crime-general processes simultaneously associated with these four crime types after 

accounting for population density, residential instability, deprivation, and ethnic heterogeneity. 

In fact, the crime-general pattern common to all four crime types explained a larger proportion of 

variability of all crime types than all but one observed covariate (the relationship between 

deprivation and violent crime) (Figure 4; Appendix 4). This provides quantitative evidence that, 

in Greater London, the crime-general processes captured by the spatially structured shared 

component are relatively more important for understanding the overall spatial patterning of 
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crime, broadly defined, than the structural characteristics commonly used to operationalize social 

disorganization. One interpretation of this crime-general pattern is that it reflects dimensions of 

social disorganization not entirely represented via small-area structural characteristics, such as 

collective efficacy, the density of friendship networks amongst residents, or the level of social 

cohesion and trust between residents. Past research has shown that, in addition to structural 

characteristics, these features are important for understanding the social and cultural contexts of 

neighbourhoods with high levels of a range of crime types (Sampson and Groves, 1989; 

Sampson et al., 1997; Peterson and Krivo, 1996; Sutherland et al., 2013). 

Focusing on the shared component for theft-related crimes, burglary, robbery, and vehicle 

crime were also found to be positively associated with a second underlying crime-general 

pattern. This supports H2A, which draws on the similarities in choice-structuring properties of 

theft crimes and the geographical correlations of theft targets to posit that there is a second 

distinct crime-general pattern shared by the three theft-related crimes. Based on the necessary 

elements for theft crimes as outlined by routine activity theory, specifically the convergence of 

motivated offenders, suitable targets, and a lack of capable guardianship, and the underlying 

economic motivation for the crime types involving theft, it is possible that the crime-general 

pattern for burglary, robbery, and vehicle crime is representative of environmental cues that 

concurrently influence the offense types involving theft (Cohen and Felson, 1979; Brantingham, 

2016). In Greater London, for example, the crime-general pattern for burglary, robbery, and 

vehicle crime was highest in the adjacent boroughs of Westminster, Camden, and Haringey, 

where the average relative risk amongst LSOAs was more than fifty percent higher than average 

(exp(νi) > 1.5). These boroughs are close to the City of London, have relatively highly transient 

and dynamic populations (Malleson and Andresen, 2016), and have some of the highest levels of 



 32 

income inequality in Greater London (Sutherland et al., 2013; Trust for London, 2018). 

Combined, these characteristics may be interpreted by offenders as environmental cues that 

reduce perceptions of capable guardianship (i.e., anonymity due to the transient and dynamic 

populations) and increase the attractiveness of theft targets (i.e., economically valuable material 

goods) for burglary, robbery, and vehicle crime (Brantingham and Brantingham; 1993; Chiu and 

Madden, 1998; Rice and Smith, 2002; Hipp, 2007). 

A third shared component that included only robbery and violent crime was tested to 

investigate the presence of a crime-general pattern shared amongst the crimes involving violence 

(H2B). This shared component did not converge during modeling and, therefore, this study does 

not appear to support H2B insofar as this crime-general pattern is estimated using a shared 

component with spatially structured random effects terms. However, there were similarities 

between the patterns of robbery and violent crime, as both crime types had the strongest positive 

associations with deprivation, residential instability, and ethnic heterogeneity (Table 3), and both 

crime types had the largest amounts of variability explained by the crime-general pattern (or 

shared component) common to all crime types (Figure 4). This suggests that the correlations 

between the patterns of robbery and violent crime were entirely captured by the structural 

characteristics and the crime-general pattern for all crimes. Note that this finding does not 

preclude a crime-general pattern shared amongst multiple crime types involving violence under 

alternative model specifications (i.e., without structural characteristics or without a shared 

component common to all crimes) or when analyzing specific violent crime subtypes. 

In addition to the crime-general patterns, this research identified crime-specific patterns 

for burglary, robbery, and vehicle crime, but did not identify a divergent crime-specific pattern 

for violent crime. While the lack of a type-specific violent crime pattern is inconsistent with H3, 
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it is possible that the joint effects of social ties and structural characteristics on violent crime, as 

outlined by differential opportunity theory (Schreck et al., 2009), are captured by the structural 

characteristics and the crime-general pattern common to all crime types. Alternatively, it is 

possible that, because the violent crime category includes a number of different subtypes and is 

the most frequent crime type analyzed (Table 1), violent crime dominates the crime-general 

pattern for all crimes such that it summarizes the type-specific pattern of violent crime as well as 

some of the matching elements of burglary, robbery, and vehicle crime.  

Each of burglary, robbery, and vehicle crime exhibited type-specific patterns. This 

finding supports H4. These crime types had between 15% and 25% of their overall variabilities 

explained by type-specific components, supporting the hypothesis that these crime types would 

exhibit crime-specific patterns as they involve geographically-situated targets, such as dwellings, 

residents, or vehicles. Interestingly, burglary and vehicle crime appear to have opposing type-

specific patterns; the type-specific patterns of these crimes were negatively correlated (Kendall’s 

τB correlation between (si1 + ei1) and (si3 + ei3) was -0.36) and only two percent of areas in the 

top quintile of burglary risk were also in the top quintile for vehicle crime risk. One possible 

interpretation of this opposing pattern is that burglary and vehicle crime are substitutable insofar 

as the differences between these crime-specific patterns represent the differences in the 

availability of targets. For example, areas with high type-specific vehicle crime risk but low 

burglary risk located on the western and eastern boundaries of Greater London correspond to 

Heathrow Airport and London City Airport, both locations with high concentrations of vehicle 

crime targets but low concentrations of burglary targets (Figure 3). 

 

7.2. Multivariate spatial modeling and policy applications 
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In general, past research exploring the spatial patterns of multiple crime types have separately 

identified hotspots for individual crime types and examined if hotspot locations overlap or if 

crime types are correlated between hotspot locations (Weisburd et al., 1993; Haberman, 2017). 

These approaches, however, make inferences from a subset of the available data (i.e., only 

hotspot locations) and assume that the small-area risks of each crime type are driven by a single 

unobserved data-generating process (i.e., separate models for each type with no covariates). In 

contrast, this multivariate modeling approach uses data from all areas to model the correlation 

structures between crime types and allows for the small-area risks of each crime type to be 

simultaneously generated from multiple observed and latent covariates, some of which are 

crime-general and some of which are crime-specific. Regardless of the theoretical interpretation 

of the shared and type-specific components and the associated crime-general and crime-specific 

patterns, this research shows that quantifying and investigating the residual structure of spatial 

crime patterns, and the correlation structures between crime types amongst area-specific 

residuals in particular, provides important insight into where, and why, crime-general and/or 

crime-specific processes shape the local composition of crime types. 

Applied to crime prevention policy, the crime-general patterns estimated via shared 

components identify locations where crime prevention initiatives should be designed to address 

the underlying mechanisms associated with multiple crime types. For example, areas with high 

risk due to the crime-general pattern shared amongst all crime types may be best suited for 

interventions that aim to increase informal social control amongst neighbourhood residents, 

perhaps through initiating or funding community-based organizations (Schreck et al., 2009; 

Sharkey et al., 2017). It is possible that strengthening informal social control may reduce all 

types of crime, with particular effects on violent crime and robbery as these types had the largest 
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scaling parameters for this shared component (Table 3). Areas with high risk due to the crime-

general pattern for theft-related crimes, on the other hand, may be best suited for initiatives 

focused on modifying the environmental cues associated with all types of theft crimes, perhaps 

through more prevalent police patrols to increase offender perceptions of guardianship, through 

urban design guidelines that establish a sense of territoriality amongst residents and improve 

natural surveillance of high theft areas, or through increasing awareness of theft crimes amongst 

local place managers, such as store employees or government staff (Eck and Weisburd, 1995; 

Groff, 2014). In contrast, implementing crime prevention initiatives designed for a specific crime 

type in areas with high risk due to the crime-general patterns may reduce the prevalence of a 

single crime but be ineffective at addressing the underlying mechanisms shared amongst multiple 

crimes.  

 

7.3. Limitations and future research 

One limitation of this study, and of most geographical research analyzing official crime data, is 

that each crime type includes a number of subtypes and that the differences between the intended 

and recorded crime types are not acknowledged (Brantingham, 2016). While data are not 

currently available for more detailed types at the small-area scale, it is possible that there may be 

interesting crime-general or crime-specific patterns not observed with the current data, such as 

for assault or homicide, for thefts and narcotics offenses, or for commercial or residential 

burglaries (Brantingham, 2016). Second, we interpret the two crime-general patterns using 

ecological theories applied in past literature, however little research has explored how crime 

composition varies at the small-area scale and no previous studies have applied shared 

component models to analyze crime data (Schreck et al., 2009). As such, we cannot 
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contextualize the results of this study based on other study regions, time periods, or crime types. 

Our proposed explanations and our multivariate modeling approach should be further tested on a 

range of different crime types, in different study regions, at different spatial scales (e.g., street 

segments and points), and using additional covariates (e.g., land use, collective efficacy) to refine 

understanding of the latent crime-general and crime-specific processes that are modeled via the 

shared and type-specific components. When analyzing more specific crime types or using more 

precise geographical units, future research should consider statistical models that accommodate 

zero-inflated count data and ensure that the scaling parameters and random effects terms within 

shared components are appropriately specified. 

Future research should also look to extend this Bayesian shared component model to 

spatiotemporal contexts, where the space-time patterns of two or more crime types are separated 

into at least one shared spatial pattern and at least one shared time trend (Tzala and Best, 2008). 

Studies may look to quantify how the correlation structures between crime types become 

stronger or weaker in response to longer-term processes of neighbourhood change or shorter-

term processes related to law enforcement interventions targeting one or more crime types in a 

set of locations. Researchers applying multivariate spatial models to spatiotemporal data, to 

higher resolution spatial or spatiotemporal data, or to more crime types should note that the 

models implemented in this paper will be computationally expensive (i.e., the MCMC methods 

used in this paper would take a very long time to converge), and alternative approaches to fitting 

multivariate models should be considered, such as Integrated Nested Laplace Approximation for 

Bayesian inference (Blangiardo et al., 2013). Furthermore, research should investigate how 

identifying and differentiating crime-general and crime-specific spatial patterns can be used to 
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inform and evaluate place-based crime prevention policies, for example analyzing the degree to 

which hotspot policing initiatives influence all or only a subset of crime types. 
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Appendix 1: Crime counts in Inner London and in the City of London. 
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Appendix 2: Pairwise Kendall’s τB correlation coefficients for LSOA crime counts.  

 Burglary Robbery Vehicle crime Violent crime 

Burglary --    

Robbery 0.30 --   

Vehicle crime 0.37 0.30 --  

Violent crime 0.27 0.48 0.29 -- 
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Appendix 3: Crime type composition within LSOAs. 

The composition of crime types within each LSOA was assessed via the Gibbs-Martin 

heterogeneity index (GMI). The GMI, which is also referred to as the Herfindahl concentration 

formula or Simpson’s index of diversity, has been used in past research to measure crime type 

mix within small-area units (Haberman, 2017). The calculation for GMIi = 1 - ∑ pik
2 , where p is 

the proportion of crime type k relative to the total count of the four crime types in small-area i. A 

GMI score of zero indicates that an area has only one crime type. With four crime types, the 

maximum possible value is 0.75 and occurs when the four types occur in equal proportions. 

Approximately 89% percent of LSOAs had GMI scores greater than 0.5, indicating that a 

majority of areas have a mix of two or more crime types (Figure A2). 

 

Figure A2. Histogram and map showing the mix of crime types in London. 
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Appendix  4: Posterior medians and 95% CI’s of variance partition coefficients from Models 2, 

3, and 4. 

 

Model 2 Burglary Robbery Vehicle crime Violent crime 

λk · fi 0.54 (0.48, 0.59) 0.82 (0.72, 0.89) 0.45 (0.40, 0.52) 0.73 (0.68, 0.76) 

sik + eik 0.46 (0.41, 0.52) 0.18 (0.12, 0.28) 0.55 (0.48, 0.60) 0.28 (0.24, 0.32) 

 

Model 3 Burglary Robbery Vehicle crime Violent crime 

λk · fi 0.29 (0.22, 0.34) 0.50 (0.45, 0.54) 0.22 (0.16, 0.26) 0.99 (0.98, 1.00) 

γ1:3 · νi 0.49 (0.43, 0.54) 0.24 (0.19, 0.29) 0.51 (0.46, 0.55) NA 

sik + eik 0.23 (0.17, 0.28) 0.26 (0.22, 0.30) 0.28 (0.23, 0.32)  0.003 (0, 0.005) 

 

Model 4 Burglary Robbery Vehicle crime Violent crime 

λk · fi 0.22 (0.19, 0.25) 0.30 (0.26, 0.33) 0.17 (0.14, 0.20) 0.52 (0.50, 0.55) 

γ1:3 · νi 0.45 (0.38, 0.50) 0.28 (0.23, 0.34) 0.44 (0.37, 0.50) NA 

sik + eik 0.16 (0.12, 0.19) 0.19 (0.16, 0.23) 0.23 (0.19, 0.27) 0.002 (0, 0.02) 

β1k · x1i 0.11 (0.08, 0.14) 0.07 (0.05, 0.09) 0.12 (0.10, 0.15) 0.10 (0.08, 0.12) 

β2k · x2i 0.006 (0, 0.02) 0.08 (0.06, 0.11) 0.001 (0, 0.01) 0.20 (0.16, 0.23)  

β3k · x3i 0.04 (0.03, 0.06) 0.04 (0.03, 0.06) 0.01 (0, 0.03) 0.07 (0.05, 0.08) 

β4k · x4i 0.003 (0, 0.02) 0.02 (0, 0.05) 0.002 (0, 0.02) 0.11 (0.08, 0.15) 

 

 

 



 49 

Appendix 5: WinBUGS code for Model 4 
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