What are Bit Strings? The View from Process

Nick Rossiter
Northumbria University
Outline

• Process as a Monad/Comonad
• Underpinning by Cartesian Closed Category
 – Adjointness
 – Composition
 – Product/Exponentiation
 – Finite products
• Generation of Strings
 – Kleisli Category
 – Free Monoids
Current State of Play

• Process
 – Viewed as monad/comonad
 – Three cycles in each direction:
 • One reflective – monad
 • Other anticipatory – comonad
 – Handles transaction concept
 • In databases (ACID)
 • In universe
Example of Adjointness

If conditions hold, then we can write $F \dashv G$
The adjunction is represented by a 4-tuple: $<F,G,\eta, \varepsilon>$
η and ε are unit and counit respectively

Endofunctor $T = GF$
Fig. 2. After three cycles \(GFGFGF\) from left-hand category and three cycles \(FGFGFG\) from right-hand category: \(\eta\) and \(\delta\) map onto other than \(\perp\), \(T\) maps onto other than \(\epsilon\) and \(\mu\)

\[
\text{Monad } = \langle T, \eta, \mu \rangle
\]

\[
\text{Comonad } = \langle S, \epsilon, \delta \rangle
\]
Cartesian Closed Category (CCC)

- Underpins applied category theory
- Basis of many fundamental structures in applications
 - Partial order
 - Boolean/Heyting algebras
 - Pullbacks/ Pushouts
 - Scott domains
- Also emerges in lambda calculus
- In computing functions become first-class data
 - Functional programming languages
 - Database design (normalisation)
Definition of CCC paraphrased

- CCC-1 There is a terminal object
- CCC-2 Each pair of objects has a product with projections
- CCC-3 There is only one path between the product and the related objects.
In more detail: CCC-1

• For every object A in the category, there is exactly one arrow $A \rightarrow T$
 - T is the terminal object
• Category is closed on top T
• Each pair of objects A and B of the category has a product $A \times B$ with projections
 $\pi_l: A \times B \to A$
 $\pi_r: A \times B \to B$
• Category has products and projections
 – Giving route to relationships
CCC-3a

• Notion of currying: change function on two variables to a function on one variable
• For function \(f : C \times A \rightarrow B \)
• Let \([A \rightarrow B]\) be set of functions from \(A \) to \(B \)
• Then there is a function:
 \[\lambda f : C \rightarrow [A \rightarrow B] \]
 where \(\lambda f(c) \) is the function whose value at an element \(a \in A \) is \(f(c,a) \)

• Equivalent to typed lambda calculus
• Examples:
 \(f : \text{multiply}(_,2) \rightarrow \mathbb{R} \) curries to \(\lambda f : \text{double}(_) \rightarrow \mathbb{R} \)
 \(f : \text{exponentiate}(_,2) \rightarrow \mathbb{R} \) curries to \(\lambda f : \text{square}(_) \rightarrow \mathbb{R} \)
CCC-3b

• For every pair of objects A and B, there is an object $[A \to B]$ and an arrow $\text{eval}: [A \to B] \times A \to B$ with the property that for any arrow $f: C \times A \to B$ (where C is a product object) there is a unique arrow $\lambda f: C \to [A \to B]$ such that the following diagram commutes:
[A \to B] is termed B^A: all arrows from A to B, A is the exponent of B.
Uniqueness

• The category is CCC if (other conditions satisfied) and:
 – λf is unique (one path)

• Notes
 – eval is also a function
 – eval: $[A \to B] \to B$
 refers to one A object and its associated B object
 -- eval: $[A \to B] \times A \to B$
 refers to all A objects and their associated B objects
Finite Products

• CCC is not restricted to binary products
• Can have finite products
• For any objects A_1, \ldots, A_n and A of a CCC and any $i=1,\ldots,n$, there is an object $[A_i \to A]$ and an arrow:
 eval : $[A_i \to A] \times A_i \to A$
• such that for any $f : \prod A_k \to A$, there is a unique arrow:
 $\lambda_i f : \prod A_k \to [A_i \to A]$ \quad (k > 1)

Finite products give construction of n-tuples which can represent strings.

Note: this notation may offend Gödel’s theorems!
Abstract View of CCC

• An adjoint relationship
 – $F \dashv G$
 – Free functor F creates binary products
 – Underlying functor G checks for exponentials (one path)
Adjoint

- **Left adjoint** -- free functor on category \mathbf{C}:
 \[X \times A : \mathbf{C} \to \mathbf{C} \]

 For fixed object A and an object B, this gives binary product $B \times A$ and an arrow:
 - $f \times \text{id}_A : B \times A \to C \times A$

- **Right adjoint** – underlying functor G on value of object C on right-hand side:
 - Unique arrow $\lambda f : B \to G(C)$ such that $\text{eval} \circ (\lambda f \times A) = g$

- Adjointness requires both left and right adjoints to exist
Composition for there to be a Right Adjoint

\[
B \times A \xrightarrow{\lambda f \times A} G(C) \times A
\]

One path from product
Compositions for Adjointness with unit/counit

Unit of adjunction η

Counit of adjunction ε

ε is eval

$_XA(G(C))$ is GCXA

$_XA(B)$ is BXA

$_XA(f)$ is $F\lambda f$
Locally CCC

- Satisfied when:
 - The category \mathbf{C} has pullbacks and either:
 - The pullback functor has a right adjoint OR
 - For every object A in \mathbf{C}, the slice category \mathbf{C}/A is cartesian closed
- Pullbacks express relationships over objects in a particular context
- Locally CCC provide more expressiveness in capturing the real world
Product vs Pullback

Product and projections

Pullback of A and B in the context of C
Kleisli Category

- Free algebra
- Based on monad earlier $\mathbf{T} = \langle T, \eta, \mu \rangle$
 - where T is endofunctor GF for adjoint functors $\mathcal{F} \dashv \mathcal{G}$
 - η is unit of adjunction $\eta : 1_A \to GFA$
 - μ is multiplication $\mu : GFGF \to GF$
 - compares results of 2nd and 1st cycles
 - \mathbf{T} is a category
 - A is an object in left-hand category
Kleisli Category 2

• In Kleisli category
 – $\mathbf{T} = \langle T, \eta, \mu \rangle$
 – The arrows are substitutions
 – μ can be thought of as carrying out a computation

• For arrow $f : A \to B$
 – then $A \to TB$
 – where T defines the substitutions as functions
Kleisli example

- For $f : A \to TB$

 $A = \{g, h\}$ and $B = \{i, j, k\}$

 $f(g) = \text{cddc}$, $f(h) = \text{ec}$

- $Tf : TA \to TTB$

 TA is for example string ‘ghhg’

 TTB is $(\text{cddc}), (\text{ec}), (\text{ec}), (\text{cddc})$ (concatenations)

- $\mu : TT \to T$ is ‘cddcececcddc’ \to ‘ghhg’

- In the comonad:

 $\delta : T \to TT$ is ‘ghhg’ \to ‘cddcececcddc’

- So we have string generation through substitution
Kleene Closure

• Given a set A:
 – The Kleene closure A^* of a set A is defined as
 • the set of strings of finite length of elements of A

• In adjointness terms:
 \[F : A \rightarrow A^* \]
 \[G : A^* \rightarrow A \]

• The closure is then GFA

• F is the free functor, adding structure
• G is the underlying functor, removing structure
Example

• $A = \{a, b, c, d, \ldots, z\}$ (alphabet)
• $F(A) = A^* = \text{all finite strings constructed from } A \text{ by } F$
• $G(A^*)$ returns the alphabet
• The closure relies on adjointness
 – F can be free and open (all possibilities)
 – G can check for language rules
Example 2

- The adjoint (if it exists) is $\langle F, G, \eta, \varepsilon \rangle$
 - F constructs all possibilities
 - G applies the language rules
 - η defines the change from $A \rightarrow GFA$ in the alphabet
 - ε defines the change from $FGA^* \rightarrow A^*$ in the language
Summary

• Category Theory provides a number of routes for generating strings:
 – n-tuples through cartesian closed categories
 – String expansion through substitution as in Kleisli categories
 – String generation through free functors as in the Kleene closure