Corticospinal excitability during shortening and lengthening actions with incremental torque output

Škarabot, Jakob, Tallent, Jamie, Goodall, Stuart, Durbaba, Rade and Howatson, Glyn (2018) Corticospinal excitability during shortening and lengthening actions with incremental torque output. Experimental Physiology, 103 (12). pp. 1586-1592. ISSN 0958-0670

[img]
Preview
Text
Skarabot_Tallent_etal-FINAL.pdf - Accepted Version

Download (665kB) | Preview
Official URL: https://doi.org/10.1113/EP087347

Abstract

The modulation of motor evoked potentials (MEPs), an index of corticospinal excitability, has been shown to increase during isometric contractions with incremental torque output in accordance with the contribution between motor unit recruitment and firing rate of the muscle to increases in required torque output. However, motor unit strategy of the muscle might not be the only factor influencing this behaviour since differences in pre- and postsynaptic control have been reported between lengthening and shortening or isometric contractions. In thirty healthy adults, MEPs were elicited in tibialis anterior during shortening and lengthening contractions at 15, 25, 50 and 80% contraction type specific maximal voluntary contraction torque. Background electromyographic activity increased progressively with greater torque output (p<0.001), but was similar between contraction types (p=0.162). When normalised to the maximal muscle response, MEPs were greater during shortening compared to lengthening contractions (p=0.004) and increased step-wise with increased 48 contraction intensities (p=0.001). These data show an increase in corticospinal excitability with torque output from lower to higher contraction intensities, suggesting greater contribution of motor unit recruitment to increased nervous system gain in the tibialis anterior. Despite differences in corticospinal control of shortening and lengthening contractions, the data suggest the corticospinal responses to increases in torque output are not dependent on contraction type since corticospinal excitability increased similarly during shortening and lengthening actions. Thus, it is likely that the relationship between motor unit recruitment and firing rate of the muscle is the main determinant of corticospinal output with variations in nervous system gain.

Item Type: Article
Uncontrolled Keywords: eccentric contractions, electromyography, transcranial magnetic stimulation
Subjects: B100 Anatomy, Physiology and Pathology
Department: Faculties > Health and Life Sciences > Applied Sciences
Faculties > Health and Life Sciences > Sport, Exercise and Rehabilitation
Depositing User: Becky Skoyles
Date Deposited: 02 Oct 2018 14:49
Last Modified: 16 Oct 2019 03:30
URI: http://nrl.northumbria.ac.uk/id/eprint/36006

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics