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Abstract

Recent advances in machine intelligence, particularly Artificial Neural Networks (ANNs)
and Particle Swarm Optimisation (PSO), have introduced conceptually advanced
technologies that can be utilised for financial market share trading analysis.

The primary goal of the present research is to model short-term daily trading in Financial
Times Stock Exchange 100 Index (FTSE 100) shares to make forecasts with certain levels
of confidence and associated risk. The hypothesis to be tested is that financial shares time
series contain significant non-linearity and that ANN, either separately or in conjunction
with PSO, could be utilised effectively. Validation of the proposed model shows that non-
linear models are likely to be better choices than traditional linear regression for short-term
trading. Some periodicity and trend lines were apparent in short- and long-term trading.
Experiments showed that a model using an ANN with the Discrete Fourier Transform
(DFT) and Discrete Wavelet Transform (DWT) model features performed significantly
better than analysis in the time domain.

Mathematical analysis of the PSO algorithm from a systemic point of view along with
stability analysis was performed to determine the choice of parameters, and a possible
proportional, integral and derivative (PID) algorithm extension was recommended. The
proposed extension was found to perform better than traditional PSO. Furthermore, a
chaotic local search operator and exponentially varying inertia weight factor algorithm
considering constraints were proposed that gave better ability to converge to a high quality
solution without oscillations. A hybrid example combining an ANN with the PSO
forecasting regression model significantly outperformed the original ANN and PSO
approaches in accuracy and computational complexity.

The evaluation of statistical confidence for the models gave good results, which is
encouraging for further experimentation considering model cross-validation for

generalisation to show how accurately the predictive models perform in practice.
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Chapter 1. Introduction
1.1.  Overview
This chapter introduces material that is fundamental to understanding the nature of the

financial shares and machine learning approach and processes.

A stock market is a public market for securities where the organized issuance and trading
of company stocks take place either through exchange or over the counter in physical or
electronic forms. It is nowadays commonly known that huge amounts of capital are traded
through stock markets across the world (Al Wadia, et al., 2011). However, the accurate
prediction of stock market movements is highly challenging as well as being an important
issue for investors, and it has received much attention from practitioners and experts in

financial time series research (Chandar, et al., 2015).
This chapter covers the following:

¢ Financial shares and the stock market

e Aims and objectives

e Theoretical framework

e Methodology including data analysis

e Contribution to the research field
1.2. Introduction
Ordinary financial shares are issued by companies to raise share capital and entitle their
holders to receive yearly profits called dividends (Lexicon.ft.com, 2017, Staff, 2017). They
offer investors potential rewards for the risks they take. Furthermore, ordinary shareholders
have voting rights in proportion to the number of shares they own. Ordinary shares are the

subject of this research.

Major newspapers, television reports and various other information sources such as those

on the Internet presently show data from the Financial Times Stock Exchange (FTSE) 100

1



Price in pence

in the UK, the Standard and Poor (S&P) 500 and Dow Jones 30 in the US and the Nikkei

Dow in Japan. Such information is quoted frequently on national television and in other

news reports and is now easily downloaded from web sources. Shares are traded daily from

Monday to Friday (252 days per year) from 8:00am — 17:00pm on stock markets such as

those in London, New York, and Tokyo. Most share and option pricing models are

founded on one simple model for asset price movements involving parameters derived

from historical or market data.

Figure 1-1 (https://uk.finance.yahoo.com/quote/BARC.L?p=BARC.L) gives a snapshot of

the Barclays PLC share data on Friday 16th November 2012 and includes the intraday

graph of the share price.

& Add to Portfolio Like - 14

Barclays PLC (BARC.L) - L&
239.55 - 0.30(0.13%) wov 15, 11:36AM EST
Prev Close: 239.25 Day's Range:
Open: 23915 52wk Range:
Bid 234.15 Volume:
Aslc 234,25 Ava Vol (3m):
1y Target Est: 260.29 Market Cap:
Beta: N/A P/E (ttm):
Mext Earnings Diate: NIA EPS (ttm):
Div & Yield:

BARCLAYS PLC ORD 25P
EBARC.L

233.20 - 241.75

147.90 - 288.00 242

240

45,263,424
Jil 23
45,714,700 2
5 2%
8758 = -
119,774.99 3 © valuo! 25
Aam 10am 12pm 2pm 4pm
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NiA (N/A) d 50 1m 3m 6m 1y 2y 5y max

FIGURE 1-1 BARC.L 2012-11-16

An alternative short-term trading timescale period of three months from August to

November 2012 is given in Figure 1-2

Sep 15, 2012: == BARC.L 223.20

Ao o A
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| Sewy e W
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FIGURE 1-2 BARC.L AUGUST-NOVEMBER 2012
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Figure 1-3 shows annual data from November 2011 to November 2012:

Aug L7, 2012: == BARC.L 19285

i 60

v \ N\ 290
e\

‘-f\

220

o | .'\.-b\ : | 200

l{\_’ 180

2011 2012 Feb Mar Apr May Jun Jul Aug Sep Oct Now

Time in months
FIGURE 1-3 BARC.L FROM NOVEMBER 2011 TO NOVEMBER 2012

The stock share index is a time series representation of share prices for a certain period,
such as a day, month or year, and contains a time dimension. Prediction applications with
one or more time-dependent attributes are called time series problems. Time series analysis
usually involves predicting numerical outcomes, such as the future price of an individual
stock or the closing price of a share (Siraj, 2011). Most research into time-dependent data
analysis has been statistical and limited to predicting the future value of a single variable.
However, both statistical and non-statistical data mining techniques can be used for time
series analysis. Typical data mining approaches use traditional linear regression and, more

recently, neural networks.

The first step toward time series modelling and prediction solutions is setting up the time
series prediction problem. Essentially this uses data from the recent past to construct one or
more indicators which can be used as inputs to a profitable trading system. An example of
time series forecasting in econometrics is predicting the opening price of a stock based on
its past performance. In such predictions, neural networks are used to construct a new class
of indicators which have predictive power. Most technical indicators, such as moving
averages (MAs), relative strength indicators (RSIs), and directional indicators (+DI, —DL
ADX, ADXR), are elements of parametric models. They are included in formulae that have

been developed to measure some effect which is believed to be present in the data. Various

3



parameters, such as a smoothing period, are adjusted to maximize profit when incorporated
into a larger system. The output of these indicators is typically used in conjunction with
other indicators as one component of a trading strategy. A time series model generally
reflects the fact that observations close together in time will be more closely related than
observations further apart. In addition, time series models often make use of the natural
one-way ordering of time, so that values for a given period will be expressed as deriving in
some way from past values. Methods for time series analysis may be divided into two
classes: frequency-domain methods and time-domain methods. The former include auto-
correlation, cross-correlation analysis, spectral analysis, and recently, wavelet analysis.
Time-domain auto-correlation and cross-correlation analyses are completed in the time

domain as well (Jani, 2012).

Technical analysis and fundamental analysis are the two main approaches to the analysis of
financial markets. Technical analysis looks at the price movements of a security and uses
this data to predict its future price movements. Fundamental analysis, on the other hand,
looks at economic factors, known as fundamentals, examining earnings, dividends, new

products, research conducted and the like.

Investment theory usually states that it is impossible to "beat the market”, because stock
market efficiency causes existing share prices always to incorporate and reflect all relevant
information. According to the Efficient Market Hypothesis (EMH), or “no arbitrage”
(Harper, 2012), stocks always trade at their fair values on stock exchanges, making it
impossible for investors to either purchase undervalued stocks or sell stocks for inflated

prices.

As such, it should be impossible to outperform the overall market through expert stock
selection or market timing, so that the only way an investor can possibly obtain higher

returns is by purchasing riskier investments. In fact the EMH contradicts the basic tenets of



technical analysis by stating that past prices cannot be used to profitably predict future

prices. Thus, it holds that technical analysis cannot be effective.

Traditional linear methods fail to predict breaks in trends, stock market collapses and
recessions, which brings into question the core assumption that financial markets follow a
purely random walk and the EMH. However, due to the non-linear, non-stationary, highly
noisy and chaotic characteristics of the stock market, forecasting is always considered to be
a very difficult and challenging process (Atsalakis, 2009). Different kinds of technical,
fundamental and statistical measures have been proposed and used in financial forecasting,
such as the simple moving average, linear regression, the Support Vector Machine (SVM)
(Huang, et al., 2011) and Back Propagation Neural Network (BPNN) (Devadoss, et al.,
2013). The current belief is that the market’s behaviour is a result of many non-linear
processes and interactions. Hence, slight differences in initial conditions can cause the
market to evolve in completely different ways (Baestaens, et al., 1994). This research
advances these approaches by developing a methodology and deep learning techniques
with hybrid ANN and PSO models in both time and digital domains . Despite the
complexity and uncertainty of the context, stock market traders continue to have an
intuitive feeling that there are recurrent return and volatility patterns that can be isolated
and used as the basis for trading and investments. These patterns may be observed both
with individual shares and on a cross-sectional basis. The new presumption of chaos
encourages investigations that might identify these patterns using improved and mainly
stochastic and non-linear methods to analyse complex and dynamic economic and financial
data. Common features of the analytic techniques required in this domain are pattern

recognition and generalization capabilities.

For regular stock exchange dealers, ‘short-term’ trading means buying in the morning and
selling at a profit the same day and, if possible, to do that five days a week. More moderate

trading uses a spread-betting approach. It is not often that a share price moves up



significantly within one day. It is more realistic to set a time limit for short-term trading
which is more likely to be successful under normal market conditions, such as two-three

weeks.

1.3. Aims and Objectives

The hypothesis to be tested here is an educated guess about an outcome of some event; for
example, that it is possible to predict in the short term (a day’s trading) the share price with
a certain level of confidence. Typically, the outcome is stated in the form of a null
hypothesis which takes a negative point of view in asserting that any relationship found is
due purely to chance; for example, prediction based on past data. The null hypothesis
declares that the outcome would show no significant difference between models based on

the linear and non-linear nature of financial share prices.

A plausible formulation of the null hypothesis for this research is that there is no
significant difference in predictability between linear models such as linear regression and
non-linear models like those using ANNs, and the confidence level of the predictions is not
useful. The reason for pessimism rather than optimism is that there is no prior guarantee
that assuming the non-linear stochastic nature of the shares is true and furthermore that
using an ANN would be a successful approach. Experiments will be conducted to prove or

disprove the hypothesis.

A confusion matrix for the null hypothesis is given in Table 1-1 below

TABLE 1-1 CONFUSION MATRIX

Computed Accept Computed Reject
Accept Null Hypothesis True Accept Type 1 Error
Reject Null Hypothesis Type 2 Error True Reject




A type 1 error occurs when a true null hypothesis is rejected. A type 2 error is observed

when a null hypothesis that should have been rejected is accepted.

For the experiments in this research, a type 1 error would have one believe that prediction
has significant evidential support. Likewise, a type 2 error would state that the prediction

fails.

An important requirement for this methodology is that an independent dataset is used.

The primary objectives of the present research are the modelling of short-term (daily
trading) changes in FTSE 100 shares (Aminian, et al., 2006, Amman, et al., 2010) by
means of the use of Artificial Neural Networks (ANNs) to predict their performance with a
certain confidence level (Rotundo, 2004) and associated risk levels. This research
represents an advance in the use of present machine learning approaches with hybrid ANN
and PSO models in both time and digital domains and a suitable methodology is

developed as follows to:

1. Identify and model actual real-world trading processes.

2. Identify financial share types and trading strategies.

3. Research ANNSs and time series analysis.

4. Apply ANNSs to financial share prediction.

5. Investigate the ANN convergence and acceleration methods.
6. Identify alternative approaches to evaluate the findings.

7. Evaluate the results, including real share datasets.

8. Simulate the model using computational simulation.



1.4. Theoretical Framework

The results gained from the use of neural networks are difficult to interpret, and so deriving
corresponding formal mathematical models such as stochastic or autoregressive models
could help with the understanding of the results. Secondly, it is interesting to compare the

results of a stochastic model and those of machine learning (ANN and PSO) approaches.

The theoretical framework is used to investigate the analytical mathematical modelling of
financial shares via modelling through analysis and simulation. Numerous research studies
that have been conducted with financial derivatives and particularly options are adopted.
The assertion is that the models should not be very different. This is likely to be formulated
as a null hypothesis for the methodological purposes of consistency. Furthermore, the
outcomes of numerical solutions for partial differential equations are similar to those of

regression and neural networks, and the parallels could be relevant.

Knowledge of the characteristics of share probability distributions provides insight into

how to model investment returns, future prices and their confidence intervals. Asset returns

are usually considered to be normally distributed, as shown in Figure 1-4.
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The log normal distribution is specific to expected stock prices. Such a distribution is non-
zero and skewed to the right, although it has no theoretical upper limit but cannot fall
below zero as shown in Figure 1-5. The expected price is the product of the current stock
price and various rates of return which are assumed to be normally distributed.

Compounding the returns creates a lognormal distribution (Zucchi, 2017).
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Figure 1-5 Lognormal distribution (Zucchi, 2017)

The confidence level of a model associated with uncertainty could be determined with
Bayesian reasoning, certainty factors and evidential reasoning and building a fuzzy system

(Kodogiannis, et al., 2002) or the operation of sets, rules, and inferences (Roiger, et al.,

2003).
The unified approach to financial equities modelling is conducted via partial differential

equations (PDEs) of the diffusion type, which is considered to be the best approach to the

modelling of financial subjects. A popular example of this is the Black-Scholes model



(Black, 1972). The simplest case of predicting a share would be sufficient for the
hypothesis. The preference is for the engineering of the numerical solution of the model,
rather than an explicit analytical solution, wherever possible and appropriate. Numerical
analysis is faster than exact solutions which are rare as well. The mathematical basis
emphasised is the derivation and use of deterministic differential equations and associated
numerical methods. This is a more intuitive approach, rather than in the terms of stochastic

processes. In this way the directness of the approach is improved.

1.5. Methodology Including Data Analysis

The proposed methodology is the conceptual ANN methodology for learning and
generalization. An artificial neural network is built from interconnected neurons, and two
types of neural networks can be distinguished: static neural networks, which are often
described as feed-forward networks; and dynamic neural (or recurrent) networks. Initially
the focus is anticipated to be on static networks, for simplicity, but further investigation of
dynamic networks is considered. Static feed-forward neural networks are composed of
static neurons, and the output of the network is computed as soon as input values are
presented and can be organised in several topologies. When not all neurons are output
neurons, the network contains hidden neurons. The most general architecture is realised
when the different neurons are fully connected (with no recurrent connections) to the
others, and for most applications the different neurons are grouped in layers. A basic

structure of a feed-forward neural network with one hidden layer is shown in Figure 1-6.

input layer output layer
input —_| . /f - output
input — s %(_; — output
™

input — f—  output

hidden layer

FIGURE 1-6 FEED-FORWARD NEURAL NETWORK
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Designing a neural network involves defining the architecture and values of weights. The
first issue is the ANN architecture. Its design is not a trivial task, and requires the number
of hidden layers to be defined, how many units are in each, how many connections there
are and what learning parameters are to be used. The usual procedure relies on trying
different architectures with different patterns of connectivity to find the 'best' or at any rate

a satisfactory model.

The second issue is finding the right values for the weights, which is often described as
'learning' or 'training the network'. The learning phase is concerned with different ways to
obtain a close fit between the mapping function and the training set. During the learning
phase, synaptic coefficients are computed so that the network performs a task (such as
classification or time series prediction) where the required performance is defined by a
training set that consists of examples with their desired output values. The learning can be
viewed as an optimisation problem with the goal of minimising an error measure with
respect to the weights for a given set of training samples. Aspects of the learning phase to
be considered are error criteria, back-propagation, convergence and acceleration methods
(weight initialisation, avoiding local minima, data sequencing, batching, momentum,

learning rate control, change in the sigmoid derivative, and so on).

Nevertheless, the goal of forecasting is not to memorise the training set but to learn
something about the past that can be generalised in the future when given a new example
of the problem. The generalization phase is the ultimate estimation of network behaviour
and its performance with the entire population of all possible examples (the universe of
possible cases). In general, it is impossible to access this set, and there is a practical
problem of trying to maximise performance relative to the universal dataset rather than
encouraging the network to fit the 'noisy' training set too closely. Aspects of the
generalization phase to be taken into account are issues of noise and over-fitting such as

sample size, concurrent descent, cross-validation and regularization.
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Particle Swarm Optimization (PSO) is a stochastic optimization technique. The algorithm
is based on the behaviour of swarms, such as groups of birds. The PSO idea has expanded
to become a common heuristic optimization algorithm with many interpretations of its
concepts, issues, and applications. Despite the relative simplicity of individuals, swarm
systems display complex behaviour. They are made up of numerous individuals and tend to
be flexible and robust. Swarm intelligence thus provides a framework for the design and
implementation of systems made up of many agents that are capable of cooperation for the
solution of highly complex non-linear optimization problems and thus suitable to combine
with the neural network technique. One common feature of heuristic approaches is that
they use probabilistic rules to find global optimal solutions and may prove to be very
effective in solving problems without modifying the shape of their cost curves. A basic

concept of a particle swarm optimization algorithm is shown in Figure 1-7

FIGURE 1-7 PARTICLE SWARM OPTIMIZATION ALGORITHM

The discrete Furrier transform and discrete wavelets transformations of time series
changes the representational space from the time domain to the digital domain. In
analyzing financial shares trading, this provides another way to interpret and understand
data patterns. It is then possible to perform certain types of time series processing and
measurement operations with much less computational effort compared to analysis in the

time domain, reducing complexity and increasing the understanding of patterns in the data
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and the selection of important features. A basic concept of a time-to-frequency

transformation model is shown in Figure 1-8.
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FIGURE 1-8 TIME TO FREQUENCY TRANSFORMATION MODEL

A mathematical analysis of the PSO algorithm is conducted from a system point of view in
both continuous-time and discrete time settings along with a stability analysis for the
choice of the parameters currently employed for the algorithm. A basic block diagram of

the PSO algorithm is shown in Figure 1-9.
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FIGURE 1-9 CLOSED LOOP FEEDBACK SYSTEM

Furthermore, a possible integral and differential extension is proposed. The analysis is

carried out only in the scalar case in order to simplify the demonstration.
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1.6.

Contribution to the Research Field

The main contributions to the research field that have been done in this thesis are:

1.

The related to the financial market modelling and trading problems and current
approaches to them have been identified. Many people use different methods in this
area but have not used recent machine learning (deep learning) investigations or
considered the validity of these techniques.

Different trading strategies with the focus on short-term one-day trading have been
investigated and identified trading criteria: long term (investments) and short term

(speculation) trading exploring the volatility (historic and implied) and risks taken.

. A comparison between different methods and algorithms has been done and has

been proven that the approaches taken complement each other and gradually
improve quality (optimum), generalization, robustness and performance.

Real data in real time has been collected and applied: intraday, daily, weekly and
monthly trading strategies with a sustainable success.

A survey of the existing researched methods has been done, the literature has been
researched and the most recent research trends have been selected.

The trend/patterns in the modelling of the financial market have been investigated.
Deep learning techniques have been applied to the financial domain model features
to identify specific trends, periodicity, seasonal features and digital (DFT & DWT)
presentations.

Systemic improvements of the PSO for convergence/stability and response quality
with the PID algorithm have been proposed based on control theory analysis and
design.

Hybrid PSO and ANN both technical implementation and methodology (how to

apply them) have been integrated.
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10. The stochastic and non-linear nature of financial shares has been proven and
appropriate approaches to deal with them with ANN, PSO and control theory have
been identified.

In this work, new models based on neural networks and particle swarm optimization are
derived that improve prediction performance. The focus is on improvements in both the

convergence and confidence levels of the results.

The poor prediction accuracy of linear regression analyses of typical financial shares daily
closing prices time series, such as the shares listed in FTSE 100, National Association of
Securities Dealers Automated Quotations (NASDAQ) and Dow Jones Industrial Average
(DJIA), suggests that a non-linear model, such as one using multi-layer neural networks, is
more likely to be a better choice. A prior assumption is that financial shares time series
contain significant non-linearity and that artificial neural networks, either separately or in
conjunction with other techniques such particle swarm optimization, can deal with them.
The methodology used is time series analysis and forecasting in the financial domain. The
research therefore makes contributions in the domain of computational geometry and

statistical analysis.

A new systematic methodology comprising both simulation and theoretical mathematical
approaches from control theory is derived, providing a framework to study and evaluate

the models developed.

It could be seen that there is a similarity between artificial neural networks and statistical
and numerical non-linear methods, implying possible convergence and mutual application
to improve prediction and the computational convergence of both parametric and non-
parametric models. However, this would make the suggested hypothesis concerning

artificial neural networks and parametric methods less obvious.

The work considered in this thesis has been published in the following papers:

15



Turkedjiev, E., Busawon, K. and Angelova, M., 2013. Validation of artificial neural
network model for share price. In: UKSim2013: 15th International Conference on

Modelling and Simulation, Cambridge, UK.

Rani, C., Petkov, E., Busawon, K. and Farrag, M., 2014, November. Chaotic adaptive
particle swarm optimisation using logistics and Gauss map for solving cubic cost economic
dispatch problem. In Environmental Friendly Energies and Applications (EFEA), 2014 3rd

International Symposium on (pp. 1-5). IEEE.

Rani, C., Petkov, E., Busawon, K. and Farrag, M., 2014, November. Particle swarm
optimization with exponentially varying inertia weight factor for solving multi area
economic dispatch. In Environmental Friendly Energies and Applications (EFEA), 2014

3rd International Symposium on (pp. 402-407). IEEE.

Busawon, K., Rani, R., Turkedjiev, E., and Binns, R. (submitted) Extension of particle
swarm optimisation algorithm: application to economic dispatch. In Transaction on

Evolutionary Computation

1.7. Structure of the Thesis

Chapter 1. Introduction
Introduces material that is fundamental to understanding the nature of financial

shares and machine learning approaches and processes.

Chapter 2: Models, Methods and Performance Evaluation
Formalizes data mining problems and details advanced modelling methods such as
autoregressive moving average, artificial neural networks and particle swarm
optimization.

Chapter 3. Validation of ANN Model for Share Prices

Applies formal statistical and non-statistical methods for evaluating outcomes of

linear regression, artificial neural networks and bi-linear regression models.
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Chapter 4. Stochastic Share Price Model
Models the behaviour of financial shares prices, deriving an analytical continuous-

time model considering stochastic calculus and Wiener processes and volatility.

Chapter 5. Time Series
Applies to the financial time series standard statistical analysis such as summary

statistics, confidence intervals and particularly analysis of variance and correlation.

Chapter 6. Discrete Fourier Transform
Extends financial time series modelling in the time domain, specifically focusing
on discrete Fourier transform analysis and forecasting including neural network

utilization.

Chapter 7. Discrete Wavelet Transform
Similar to the discrete Fourier transform, this extends the financial time series

investigation with the discrete wavelet transformation

Chapter 8. Hybrid Particle Swarm Optimization and Artificial Neural Networks
Introduces the particle swarm optimization (PSO) paradigm and using techniques
and models drawn from the control theory analyzes its stability. A further
proportional, derivative and integral (PID) extension of the basic algorithm is
proposed. Integration with neural networks and methodology of application is

proposed.

Chapter 9. CAPM and Risk Analysis

Explains the classical capital asset pricing model (CAPM) and the related risk

concept.

Chapter 10. Conclusions and Future Work

Outlines the major conclusions of the study andrecommends future work.
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1.8.  Summary

As the existing literature suggests, neural networks have not been extensively utilised and
evaluated in the field of the modelling of short-term financial stock market shares
exclusively in respect of the time interval (short-term trading) and confidence and risk

levels (low, medium, high) in various day trading strategy models.

The primary goal of the present research is to model short-term daily trading in FTSE 100
shares to forecast with certain levels of confidence and associated risk. The hypothesis to
be tested is that financial shares time series contain significant non-linearity and that ANN,

either separately or in conjunction with PSO, could be utilised effectively.

The combined application of artificial neural network modelling and optimization
approaches such as particle swarm optimization can improve convergence and
performance. Investigations with digital transforms such as Fourier and wavelets can

produce superior results compared to time domain analysis.
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Chapter 2: Models, Methods and Performance Evaluation

2.1. Overview

This chapter formalizes data mining problem and details advanced modelling methods
such as the autoregressive moving average, artificial neural networks and particle swarm

optimization and their performance evaluation.

Effective model development requires a train-test methodology. Depending on the
objective of the application, the best model may be based on how well it interpolates (as
measured by performance on the test dataset), or how well it performs in a deployed
environment (using the validation dataset). To evaluate how well a model interpolates, the
model training process should be periodically interrupted and the network tested and/or
validated. Performance can be evaluated only in terms of the performance of the entire
system. Standard technical measures such as root mean square (RMS) error and mean

squared error (MSE) are common indicators of system performance.

This chapter covers the following subjects:

e datasets and data collection

e finding historical prices

e retrieving Google finance quote live

e evaluating performance

e autoregressive moving average (ARMA)

e artificial neural networks
2.2. Datasets and Data Collection
Stock index datasets are time series representations of Open, High, Low, Close, Volume
and Adjusted Close prices. The data source is the Yahoo Finance website

(http://finance.yahoo.com/) that gives prices of USA, European and Asian markets in

downloadable Excel and “csv” spreadsheet formats. There are options for start and end
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dates as well as whether the information is to be summarised by day, week or month.
Examples that have been downloaded and ready for data mining are FTSE 100 (*"FTSE)
(from 2/04/1984 to 7/07/2011) and Barclays PLC (BARC.L) (from 01/01/2003 to

07/07/2011).

Attributes are Date represented in DD/MM/YYYY, Open, High, Low, Close and AdjClose

in GBP and Volume in number integer.

2.3. Finding Historical Prices
1. Go to http://uk.finance.yahoo.com/.

2. Enter “BARC.L” in “Get Quotes” window shown in Figure 2-1.

-~ =2 & x | @r vahoo!

File Edit Wiew Favorites Help

Sis ETI Blackboard A Suite ) Citrix XenApp - Logon 24 gmail Email from Google [ Google &3¢

Mew User? Register | Signin | Help

YA ETOOY FinANCcE

~4.00 1746
~ol13% —0.13%

Customize

I VY all Street Week Ahead: Stock

FIGURE 2-1 GET QUOTES
3. Follow “Historical Prices” menu on the left shown in Figure 2-2.

e.yahoo.com/afs=BARC.LSwqli—1 O - = s >

File

Tools Help

iz EIN Blackboard SAca Suite (P Citrix XenApp - Logon 238 grmail Email from Google [E

TN F Ao OF FINANCE

HOME NVESTIMG

Dow 8 0.13% MNMasdaqg T 0.13%

More On BARC.L

QuoTEs
> Summonan

Barclays PLC (BARC.L) - SE
Hictoricat Prices
P 223775 +1.70(0.77%) sep z1. 11
At et e

FIGURE 2-2 HISTORICAL PRICES

4. Select “Set Date Range” shown in Figure 2-3.

FIGURE 2-3 SET DATE RANGE
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5. Follow “Download to Spread sheet” at the bottom of the page shown in Figure 2-4.

Jun 25, 2012 199 65 200,80 192.09 18425 33,386,900 19425
Jun 22, 2012 198.30 204.90 19574 200.70 24,832,300 200.70
| Jun21, 2012 204.35 20860 | 20170 | 20230 34,720,700 20230
Jun 20, 2012 199.85 206.50 199.05 205.75 44,890,300 20575
Jun 19, 2012 196.75 20235 193.95 20060 33,217.700 20060

* Close price adjusted for dividends and spits.
First | Pre 15 | Next | Last

iDownload to Spreadsheet

Currency in GBp.

Capital 1Q - al chart da aily updates provided by Commodity Systems, Inc. (CS1). Intemalio

FIGURE 2-4 DOWNLOAD TO SPREAD SHEET

6. Sorting oldest to newest in Excel: select all columns; Sort & Filter tab (Sort Oldest

to Newest).

Barclays PLC long term share prices 22/09/2011 to 21/09/2012 are shown in Figure 2-5.

300 BARC.L
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200 e - = -

150 £V
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Historic Volatilityaround 51%

100

BARC.L

50

Time in months
FIGURE 2-5 BARC.L FROM 22/09/11 T0 21/09/12

Long-term distribution 22/09/2011 to 21/09/2012 is shown in Figure 2-6.
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The BARC.L share short term prices dataset from 27/08/2012 to 21/09/2012 is shown in
Appendix C: Table 1 and BARC.L share closing prices dataset from 27/08/2012 to

21/09/12 is shown in Appendix C: Table 2.

A graph of BARC.L share closing prices from 27/08/12 to 21/09/12 is shown in Figure

2-7.
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FIGURE 2-7 BARC.L SHARE CLOSING PRICES FROM 27/08/12 T0 21/09/12

The distribution of BARC.L share closing prices from 27/08/12 to 21/09/12 is shown in

Figure 2-8.
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2.4. Retrieving Google Finance Quote Live

Matlab script is used to retrieve a stock quote (last trade) from Yahoo! Finance. Yahoo’s
quotes are delayed by 15 minutes, limiting their timeliness, where as there is no delay in
Google Finance’s quotes and so it is better to retrieve data from the Google site instead.
The method used to get a free real-time stock quote from Google Finance in Matlab code is
described elsewhere (luminouslogic, 2015).

Functions: periodic_prices stop.m, timerCallback.m, get last _trade record google.m,
and periodic_prices_start. mwith default of 10secondsand‘BARC.L’.

Execution Sequence:

(Symbol ‘BARC.L’ and 10sec period are hardcoded.)

>>periodic_prices_start (Excel spreadsheet is created)

stock symbol date time last trade
BARC.L 07/27/16 16:26:38  149.95
BARC.L 07/27/16 16:26:48  149.57

2.5. Evaluating Performance

When building a system that uses neural network indicators, a trading strategy and an

evaluation system to measure the performance of the combined system must also be
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developed (Deboeck, 1992, Pardo, 1992). Performance is measured in terms of system
objectives, such as profit, Sharpe ratio (Sharp, 1994), which is a measure for a risk-
adjusted return to variability, or maximum drawdown before a new peak for a specified
period. If the current network scores higher than prior ones, it is saved as the best network.
Training stops when the measured system performance is repeatedly less than the current
best performance.

Standard technical measures such as RMS error may be quite poor predictors of system
performance. Defining the system objectives and then integrating them into the neural
network development process is essential.

Model performance is most often evaluated with some measure of test set error rate. For
categorical outputs this is the ratio of test set errors to total test set instances. For numerical
outputs it is the MSE or the RMS. The distribution of sample means taken from a set of
independent samples of the same size is distributed normally, and so the test set error rate
can be treated as a sample mean. Using the properties of the normal distribution, the error
rate confidence intervals can be computed. Also, classical hypothesis testing can be used to
compare test set error rates for different models. These techniques allow one to associate
measures of confidence with the results. When a model fails to perform as expected, an
appropriate strategy is to evaluate the effect which every component has had on model
performance, such as training and test data, input attributes, learning technique, and user-
specified parameters (Roiger, et al., 2003).

2.5.1 Evaluating Supervised Models with Numerical Output

* Mean Squared Error (MSE)

MSE = ¥(xi— p)° @-1)
* Root Mean Squared Error (RMS), where applying the square root reduces the
dimensionality of the MSE to that of the actual error computation. The value of ¢ is

used as a measure of convergence with the ANN:
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RMS = [S(xi— p)’ (2-2)

* Mean Absolute Error (MAE). This is less affected by large deviations
MAE = |xi — u| (2-3)

2.5.2 Model for Significant Model Difference

The classical model to test for a significant difference between the mean scores of a
measured parameter is through the value of the ratio P of the absolute difference between
the mean scores and the standard error for the distribution of mean differences.

|E1- E2|

i, vz
Cragey

P= (2-4)

where:
P is the significant difference score,
E1 and E2 are the sample means of the test dataset error,

y1 and y2 are variance scores for the respective means

the mean y, or average value, is computed via u =

e
ne

the variance 02 measures the dispertion about the mean, 2 = Y(e; — 1)?, and

the denominator / (Z—i + Z—z) is the standard error for the distribution of means

differences
This model is valid for independent test datasets because the distribution of differences
between sample means is normal, like the distribution of means. As a result to be 95%

confident that the means are different, the ratio P has to be greater than 2.

2.5.3 Pair wise Comparison for Model Difference

1
Y12 = EZ’{[(aeli — ae2;) — (mael; — mae2)]? (2-5)
p— |mael—-mae2| (2_6)
JE
where:
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Y12 1s the joint variance,

ael; and ae2; are the absolute errors, and

mael; and mae?2; are the absolute error means.

2.5.4 Confidence Interval for Numerical Output

y(mae) = = Si(aei —m )?

SE = y(mae
n

confidenceUpperLimit(error) = mae + 2SE

confidenceLowerLimit(error) = mae — 2SE

accuracyUpperLimit = 100% — confidanceLowerLimit

accuracyLowerLimit

2.6.

100% — confidanceUpperLimit

accuracyUpperLimit

Autoregressive Models

(2-7)

(2-8)

For generalization performance purposes, it is important to reduce attribute correlations.

Correlation graphs between the normalized current value at ¢, and previous values at ¢, , #;.

2... tisare illustrated in Figure 2-9.
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Correlation graphs show gradually less linear relations (correlations) between the current

value at ¢; and the previous values at ¢, ;... t.s. The relationship trends are declining as
well, from one when there is one-to-one value equivalence without a time difference shift
between the values 7; vs ¢ to a slightly declining trend of approximately 0.6~0.8 at the

furthest values at time #; vs. f;.5.

2.6.1 Autoregressive Moving Average (ARMA)

The most popular type of time-domain time—series modeling based on statistics and signal
processing in econometrics are autoregressive moving average (ARMA) models, which are
sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology (Box,
1970) usually used to estimate them. They assume auto-correlated time series data. Given a
time series of data X;, the ARMA model is a tool for understanding and, perhaps,
predicting future values in this series. The model consists of two parts, an autoregressive
(AR) part and a moving average (MA) part. The model is usually then referred to as the
ARMA (p, q) model where p is the order of the autoregressive part and ¢ is the order of the
moving average part, as in the equation below:

Xe=pu+e+ 2?21 QX + Z?:l 0;c_i (2-9)
where:

u is the mean

X is the time series

€ are white noise terms

p is the order of the autoregressive part

q is the order of the moving average part

@ are the autoregressive parameters

6 are moving average parameters

2.6.2 ARMA Methodology

The original ARMA modeling methodology uses an iterative three-stage modeling

approach (Brockwell, et al., 1987, Pankratz, 1983), which involves the following stages:
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1. Model identification and selection, making sure that the variables are stationary,
identifying seasonality in the dependent series (seasonally differencing it if
necessary), and using plots of the autocorrelation and partial autocorrelation
functions of the dependent time series to decide which (if any) autoregressive or
moving average components should be used in the model.

2. Parameter estimation, using computation algorithms to arrive at coefficients, which
best fit the selected ARMA model. The most common methods use maximum
likelihood estimation or non-linear least-squares estimation.

3. Model checking, by testing whether or not the estimated model conforms to the
specifications of a stationary univariate process. In particular, the residuals should
be independent of each other and constant in mean and variance over time. The
means and variances of residuals are plotted over time and a Ljung-Box test (Ljung,
et al., 1978) is performed, or plotting the autocorrelations and partial
autocorrelations of the residuals is helpful to identify misspecification. If the
estimation is inadequate, we have to return to step one and attempt to build a better
model.

Estimating the parameters for Box—Jenkins models is a quite complicated non-linear
estimation problem. The main approaches to fitting Box—Jenkins models are to use non-
linear least squares and maximum likelihood estimation. Maximum likelihood estimation
is generally the preferred technique (Brockwell, et al., 1987).

2.6.3 ARMA Investigations
The results with the ARMA (5,3) model with p=5 and ¢=3 for time-lags of 5 days for

BARC.L from 27/08/2012 to 21/09/2012 with dataset in Appendix C: Table 3 are shown in
Figure 2-10 and Table 2-1 The models parameters are as follows:
Xy = 0.056¢;_5 —0.379¢;_4, + 0.416¢,_3 — 0.45¢x;_, 1.291¢,_, +

15.321 + 1.040¢, + 1.091¢,_, + 1.073¢,_, 2-10
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TABLE 2-1 ARMA FROM 27/08/2012 T0 21/09/2012

Date  Target ARMA(5,3) abs(err)
8/27/2012 187.20 184.82 2.38
8/28/2012  188.95 188.11 0.84
8/29/2012 186.35 190.14 3.79
8/30/2012 183.50 188.06 4.56
8/31/2012 183.25 185.86 2.61

9/3/2012 184.30 184.34 0.04
9/4/2012  181.25 185.37 4.12
9/5/2012  181.95 180.57 1.38
9/6/2012  193.05 183.97 9.08
9/7/2012  206.40 197.52 8.88
9/10/2012  207.75 211.78 4.03
9/11/2012 213.50 212.27 1.23
9/12/2012 217.00 220.17 3.17
9/13/2012  217.95 219.41 1.46
9/14/2012  229.05 220.83 8.22
9/17/2012  228.00 232.68 4.68
9/18/2012 225.40 225.16 0.24
9/19/2012  225.15 225.70 0.55
9/20/2012  222.05 223.09 1.04
9/21/2012  223.75 219.37 4.38

The ARMA model fits well the target with the sum of absolute error errors for the last five
days of 10.89 corresponding to a mean error of 2.18. The r2 value (the graphs similarity
fit) for the whole data range is good at 0.94 but marginal for the last five days at 0.63,
which is obvious from the graph where the last day in the model is in the opposite direction

to the target original graph. The model is quite sensitive to the random autoregressive
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second part, though generally without significant differences in the performance sum of
absolute errors less than 10%. The model is quite robust to the order p (the order of the
average part) and ¢ (the order of the autoregressive part) as well.
2.6.4 Statistical Regression
Statistical regression is a supervised technique that generalizes a set of numerical data by
creating a mathematical equation relating one or more input attributes to a single output
attribute. With linear regression, we attempt to model the variation in a dependent variable
as a linear combination of one or more variables, for example see Table 2-2:

flx1, X0 X)) =y =myxy + MyXy +-mpXxy, + b (2-11)
where:
m; are parameters,
b is a constant, and
x; are independent values.

Excel support is the LINEST function (LINEST.Support.office.com, 2017)

TABLE 2-2 EXCEL LINEST FUNCTION

A | B | ¢ | © | E T F
gl mp M. mz M- b
| 2 | =ep e 1] e SEp
8] 2 ey
. df
5

FF¥reg | S¥resid

where:

m values are coefficients corresponding to each x-value
sel,se2,...,sen are the standard error values for the coefficients m1,m2,....mn.
seb - is the standard error value for the constant b.

r2 is the coefficient of determination, which compares estimated and actual y-values, and
ranges in value from 0 to 1. If it is 1, there is a perfect correlation in the sample — there

is no difference between the estimated y-value and the actual y-value. At the other
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extreme, if the coefficient of determination is 0, the regression equation is not helpful in

predicting a y-value.
sey is the standard error for the y estimate.

F' is the F statistic, or the F-observed value used to determine whether the observed

relationship between the dependent and independent variables occurs by chance.

df is the degrees of freedom used to find F-critical values in a statistical table. The values
found in the table are compared to the F statistic returned by LINEST to determine a

confidence level for the model.
ssreg is the regression sum of squares.

ssresid is the residual sum of squares

2.6.5 Statistical Regression Investigations with LINEST
The results with Excel LINEST function for time-lags of 3 and 5 days for BARC.L target

data in Table 2-5 from 27/08/2012 to 21/09/2012 Appendix C: Table 1 and Appendix C:
Table 2 are shown in Figure 2-11 graphs and Table 2-5. Model parameters specified in
Table 2-2 are given in Table 2-3 and Table 2-4

TABLE 2-3 LINEST 5 DAYS

0.055974 -0.37928 0.416048  -0.4547 1.291492 15.32143
0.281587 0.417605 0.440336 0.435629 0.262299 17.36956
0.944012 5.090413  #N/A #N/A #N/A #N/A
47.21082 14 #N/A #N/A #N/A #N/A
6116.706 362.7723  #N/A #N/A #N/A #N/A
#N/A #N/A #N/A #N/A #N/A #N/A

TABLE 2-4 LINEST 3 DAYS

-0.00017 -0.33294 1.288545 10.33216 #N/A  #N/A
0.259345 0.404207 0.246675 13.85784 #N/A  #N/A
0.938197 5.002824  #N/A #N/A #N/A  #N/A
80.96218 16 #N/A #N/A #N/A  #N/A
6079.026  400.452  #N/A #N/A #N/A  #N/A

#N/A #N/A #N/A #N/A #N/A  #N/A
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FIGURE 2-11 STATISTICAL REGRESSION CHART
TABLE 2-5 STATISTICAL REGRESSION RESULTS

S e
P

'

L Target

srepsian S

srepsson 3

Regression 3

Target

27/08/2012 187.2 188.32
28/08/2012 188.95 189.98
29/08/2012 186.35 191.45
30/08/2012 183.5 186.30
31/08/2012 183.25 184.33
03/09/2012 184.3 185.12
04/09/2012 181.25 186.00
05/09/2012 181.95 180.58
06/09/2012 193.05 184.08
07/09/2012 206.4 199.46
10/09/2012 207.75 212.19
11/09,/2012 213.5 208.42
12/09/2012 217 220.32
13/09/2012 217.95 222.05
14/08/2012 229.05 222.85
17/09/2012 228 240.08
18/09/2012 225.4 231.09
19/09/2012 |225.15 231.32
20/08/2012 |222.05 232.42
21/08/2012 |223.75 227.09

output

MSE

67.01

12
1.03
5.10
2.80
1.08
0.82
4.75
-1.37
-8.97
-6.94
4.44
-5.08
3.32
4.10
-6.20

12.08
5.69
6.17

10.37
3.34

error

RMS
8.19

186.13
190.31
190.89
186.60
185.43
184.41
185.73
180.73
185.44
198.97
211.89
209.66
223.13
218.30
223.85
240.65
227.66
23512
229.62
225.70
output

MSE
65.11

Regression 5

-1.07
1.36
4.54
3.10
2.18
011
4.48
-1.22

-7.61

-7.43
4.14
-3.84
6.13
035
-5.20

12.65
2.26
9.97
71.57
1295

error

RMS
B8.06

The results show that there is no significant difference between the three and five day

parameter models MSE;=67.01 and MSEs=65.11 and RMS;=8.19 and RMS;5=8.06. There

is an inertia (affinity) in following the trend of the time-series that is eventually

compensated for at the end of the predication period which seems to be similar to the

length of the model's input data; that is, three and five days in these cases. The 72 (the

graphs' similarity, with maximum value of 1) values for three and five days are close and

are good for the whole data range 0.94 but are marginal for the last five days at 0.68.
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2.6.6 Non-linearity Regression

One of the first types of non-linear approaches was proposed by Tong in 1983 and referred
to as threshold auto regression (TAR) (Tong, 1983), which switches between different
linear AR models according to pre-set thresholds. Subsequently STAR models were
introduced, standing for “smooth' TAR models, where a continuous threshold indicates the

proportions in which different models are used.

2.7.  Attificial Neural Networks

The artificial (computing) neural network (ANN) is a relatively new advanced non-linear
approach method that has become popular in this field. ANNs are adaptive artificial
intelligence software systems that are inspired by how biological neural networks work.
The concept originated in the social sciences, physiology and economics and is now central
to understanding the behaviour of financial markets. The benefits of ANNs are consistent
with Simon’s ‘bounded rationality’ argument (Simon, 1997, Godoi, 2009), according to
which market efficiency is expected to be subject to human limitations in processing
information. ANNs offer an alternative for investors struggling in environments where pre-
existing knowledge about an evolving situation is scarce . A well-structured neural
network allows data to be used to determine both the structure and parameters of a general
framework for locating evolving relationships. The generic approach with ANNs is data-
driven as opposed to the traditional parameterized and/or rule-based expert systems

generally used in practice.

ANNSs represent a class of techniques known as nonparametric models, in contrast to
parametric models. A parametric model is a formula with a form derived from some
external theory, which describes the dynamics of a market. For example, the Moving
Average Convergence Divergence (MACD) method of trading analysis (Staff MACD,
2017) uses the difference between two moving averages as a trading signal. The length of

the fast-moving average is the first parameter and the length of the slow-moving average is

33



the second parameter in this parametric function. Non-parametric models, however, use a
very general formula. Typically, they are capable of approximating a wide variety of
relationships between input and output variables. In particular, non-linear non-parametric
models developed using the back-propagation neural network are capable of approximating
almost any relationship between input and output variables. Building a neural network is

equivalent to constructing a mathematical formula.

2.7.1 ANN for Forecasting

The focus of this study is to assess the suitability of neural nets for classification problems
and time series analysis. Classification problems in this case are concerned with
positioning shares into a number of categories (concerning confidence or risk levels) with
categorical classification (low-, medium- and high-risk being the most appropriate); for
example, discriminating between low-risk and high-risk investments or surviving and
failing companies. The use of time series, on the other hand, is concerned to generate
future values for a target variable based on information on current and past values for

related and environmental factors.

In the main, a neural network consists of a set of fully connected neuron nodes. The neuron
itself comprises a single linear combiner with adjustable synaptic weights independent of

the input values, where the output is passed further along to an activation function f(x).

input i, neuron

i
input :

input

iy
input

f(x) - Activation function

FIGURE 2-12 NEURON NODE

The activation function output propagates activity, with output of a value close to 1 only
when significantly excited (Roiger, et al., 2003). The perceptron is a type of neural

network (Minsky, et al., 1990) that is a binary classifier mapping its real-valued input
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vector w to a single binary output value across an input-output matrix. It comprises a linear
combiner (neuron) with adjustable synaptic weights independent of the input value
threshold b (that does not depend on any input value) and a hard limiter step activation

function (Roiger, et al., 2003).

X=Yriw; = ijwy + iawy + -+ iwy, (2-12)
1if X >0

= 2-13

f&) { else0 ( )

In multi-layered neural networks, the hidden or output layer node generally combines the

input values into a single value and uses it as an input to an activation function.

input layer output layer
input —_| | output
input — O output
input —% D output

hiclden layer

FIGURE 2-13 MULTI-LAYERED ANN

Neural network input indicators attempt to predict market trends and turning points, such
as relative strength indicators or directional movement indicators, to decide what the
appropriate trading position should be: long, short, or out. These indicators together with
the ideal trading signal are used to develop a neural network indicator. Much of the data
selected for input to a network is time series data. The method used to capture time-varying
information is by using a sliding window on each of the data inputs. Neural network
indicators usually cannot deal with the wide ranges of values found in raw data. The data

must be scaled into a usable range, usually [0, +1] or [-1, +1].

The generic learning-generalization methodology could be mapped to classification
problems and time series analysis, which differ mainly in the presence or absence of a

temporal order between the examples.
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In a classification problem, it is required to assign static patterns to classes. Choosing the
statistical representation of a given pattern is a key issue in any statistical pattern-
recognition problem. This is referred to as pre-processing the data, and extracting relevant
and discriminant features of the pattern usually involves considerable problem-related
expertise. Different choices of features lead to different patterns of the dispersion of
distribution and convexity of clusters of examples in the input space, requiring boundaries
of different complexity (from linear to highly non-linear). Better pre-processing simplifies

the classification task.

2.7.2 Neural Network Building Procedure

In building a neural network classifier, the following stepwise procedure could be
considered:
1. Data:

e Collect a database of representative examples of the classification task to be
realised.

e Split the data into a training set and a test set.

2. Pre-processing:

e Choose a pattern representation selecting a set of discriminant features and
transform the data into appropriate inputs for the network (scaling,
standardisation, etc.).

e Choose a presentation format for the target value(s).

3. Network design, learning and evaluation:

e Choose a network topology: number of units and connectivity (input, layers,
and output).

e Choose the activation functions to be used.

e Choose an appropriate learning algorithm for the network.
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Estimate the performance of the network (on a validation set or with an information
criterion) as a function of its complexity, and eventually try to optimise the architecture

(weight decay, pruning by removing sections that provide little contribution, etc.).

e Retain the 'best generalising' network and estimate its performance with the test
set.
4. Use and diagnostics:
e Study the impact of different features on the decision (heuristics).
e Study the marginality of misclassifications.
e Revert as necessary to step 2 with other pattern representations or a cleaned
database.

e Develop the trained network for implementation.

The design of a good classifier is highly dependent on the quality of the data available, and
no classification paradigm, whether in pattern recognition, machine learning or
multivariate statistics, will ever produce an adequate classifier unless the data sample
available is large enough to be representative of the population with which the model will

be used.

In the time series literature, a time series is defined as a series of observations x;, and a set
of real variables ordered and regularly spaced in time (=1, 2,...,7). To investigate
relationships with past values, the vector of lagged values (x,.;, x.2... xt.,) lies in the n-
dimensional time delay space or lag space. The goal of time series analysis is to extract
information from a given time series by building a mathematical model for the data. The
aim is to describe the data in terms of, for example, randomness, trends, periodicity or
stationarity in order to allow filtering such as smoothing, or the removal of outliers and so
on, and finally to forecast future values. The model has to define an appropriate phase
space (selecting a set of indicators or variables) from which forecasting or extrapolation

results can be constructed. Since time series measurements typically exhibit stochastic
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fluctuations and noise, the performance of the model depends on its ability to approximate
the assumed underlying structure of the data while ignoring as much as possible of the
noise. Neural networks can be seen as a generalisation of classical approaches to time
series analysis. They bring an additional capability to model non-linear phenomena and to
detect chaotic behaviour. Because of their adaptability, where they can realise a wide
variety of mappings with the same topology, they are able of capturing a wide range of
structures in the phase space. Interestingly all of the traditional AR models can be
implemented using neural networks. A multi-layered network can be used to reproduce any

relationship that is represented with a continuous non-linear function.

2.7.3 Financial Forecasting Neural Network Set-up

However, there is no statistically satisfying methodology available for time series
modelling with connectionist networks. Usually, a rather heuristic framework is used since
neural nets combine complex interactions among various factors. The set-up of a financial
forecasting application with neural networks is usually conducted in the following way:
1. Pre-processing

e Data acquisition

e Data archiving

e Data filtering

e Indicator selection

2. Analysis and forecasting

Building the model

e Learning optimization

Static and adaptive learning

Selection and testing of the model
3. Trading

e Post-processing
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e Trading scenarios

e Trading room

Decisions in the pre-processing stage relate mainly to the problem of specifying the type
and number of indicators assumed to contribute to the underlying process, including the lag
structure. Next, a topology for the network needs to be chosen. If feed-forward networks
are used, the number of hidden units has to be specified. In order to estimate model
parameters, an error criterion has to be selected together with an optimisation (learning)
algorithm. Then, diagnostics tools have to be used to check the different properties of the
model. Finally, the output of the network has to be interpreted and may be used as input for

yet another decision-supporting system.

2.7.4 Experimental Three Layer ANN

Experiments can be constructed for supervised learning; that is, induction-based supervised
concept learning. The feed-forward ANN is a simple and popular supervised learning built

with perceptron components (nodes) as shown in Figure 2-14.

X1
Wy
Xz Wia > " sum ¥
- E } = Flzum] } -
Wg }\"—\._ - _.—"/ B — (J.
Xs b

FIGURE 2-14 ANN PERCEPTRON
Here:
sum=YX;w; +b=Xw; + X,w, +--+b (2-14)
Y = F(sum) (2-15)

The sigmoid (squashing) function shown in Figure 2-15 produces a continuous Output in a

limited range (0, 1).

y=—— (2-16)

T 14esum
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)

FIGURE 2-15 SIGMOID FUNCTION

There are two asymptotes associated with the sigmoid function:
e Output —1 as sum—»®

e  OQOutput —0 as sum—-o (2-17)

The variable x, is the target output and the inputs are Xy, X,-;, Xn-2, Xn-3 Xn-« and x,,.s. The

configuration of the three-layers ANN is shown in Figure 2-16.

X i & i
= o e
Xn2 \ J\_ )\ ) Outputlayer
Input layer w, Wi Output layer ey, S
TR~ N PR R
5 Y 4 N | ] 2
R R L /_ L \_ J\_ ) Hidden layer
o i b= A ¥ . .\r"
Wo ~5Nb - g
; ri R o kY
Xn4 s \_J\_J\_J Inputlayer
X, !
" X X X

FIGURE 2-16 ANN IMPLEMENTATION

The training of a perceptron uses the following protocol:
1. Start weights at random
2. Present inputs and calculate outputs
3. Find error compared with desired output
4. Adjust weights
5. Repeat steps 2-4 until:
* Either you have the outputs you want
*  Or the results are not getting any better
6. Then use the network to make predictions
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The learning rule is as follows:
* How to adjust the weights?
— Ifinput > 0:
» Ifthe answer is too big, reduce the weight.
» Ifitis too small, increase it.
— butif input <0:
* Ifthe answer is too big, increase the weight.
e Ifitis too small, reduce it.
— Only increase or decrease the weight by a little at a time
error = output — target
rate = 0.2(for example)
Whew = Woiq — (error = input = rate) for analogue inputs
Whew = Woiq — (error = (—1) = rate)for binary threshold inputs

2.7.5 Three Layers ANN Results
The ANN results are shown in Figure 2-17 for data in Table 2-6.

TABLE 2-6 ANN RESULTS

(2-18)

Target ANN-5
27082012 187.2 185.61 B41
2B/08/2012 1BE.95 195.28 5.33
29/08/2012 1B6.35 194 B2 B.AaT
30/08/2012 1835 123 73 1023
31/08/2012 183.25 192 46 9.21
03,/09/2012 1B4.3 191.79 7.49
04,/09/2012 181.25 191 22 997
05,/09/2012 181.95 12081 B85
06,/09/2012 193.05 192 .25 -0.80
07,/09/2012 206.4 197.04 -0 36
10/09/2012 207.75 203.19 -4 56
110942012 2135 20840 -5.10
120942012 217 211.00 -6.00
13/09/2012 217.95 21296 -4.99
14/09/2012 22905 233 11 -5.04
17/09/2012 228 227 66 -0.34
18/09/2012 2254 227 28 1.88
19/09/2012 33515 22491 -0.24
20092012 222 05 219.03 -3.02
21/09/2012 33375 219 38 -4.37

O UTLT =TT
MSE  B.39
RMS 252
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The ANN results are good for both MSE-= 6.39 (about 2.6% of the share price scale) and

RMS= 2.52 (about 1% of the share price scale) errors and fitness. The r2 (graphs

similarity, the max value is 1) values are good for the whole data range at 0.91 and are

acceptable for the last five days at 0. 78.

2.7.6 Comparison of Three Layers ANN vs. Statistical Linear Regression

The performance of the ANN compared to linear regression is illustrated in Figure 2-18

based on the data shown in Table 2-7.

TABLE 2-7 ANN VS. REGRESSION

27/08/2012
2E/08/2012
2s/08/2012
30/08/2012
51/08/2012
03/09/2012
oa/os/2012
05/09/2012
05/02/2012
07/09/2012
10/09/2012
11/08/2012
12/08/2012
13/05/2012
14/09/2012
17/09/2012
18/08/2012
18/08/2012
20/09/2012
21/08/2012

Target

187.2
1EB.85
1B5.35

183.5
183 28

184.3
iBi.25
1E1.95
123.05

206.4
207.75

213.8

217
217.95
229.05

228

225.4
225.15
22205
223.7T5

ANN-5
195.61 841
19528 533
184 82 8.47
183.73 10.23
152 45 8.21
181789 7.48
191.22 S8.87
i90.81 8.86
192 .25 -0.80
i97.0a -5.35
203.19 -4.55
208.20 -5.10
21100 =£.00
212 56 -1.58
223 11 -5 84
22T7.66 .34
227.2B 188
2Za.91 £.24
218,03 -3.G2
215.38 -a.37
ouUtput —

MSE 538

RMS 252

Regression-5

iss5.13 -1.07
1590.31 136
180.B8 4.54
186.60 3.10
i85.a3 2.18

18441 011
1B85.73 .33

180.73 -1.22
iB5.aa -7.81
188 87 -7.43
211.89 <12
205 .66 -3.B4

223.13 €.13
21B.30 Q.35
223.85 -5.20
230.65 12.65
227.66 2.28
235.12 P87
229.62 57
225.70 185

output —
MSE 65.11
RMS B.OS
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FIGURE 2-18 ANN VS. REGRESSION

There is a significant improvement in performance between linear autoregressive and
neural network models, changing from MSEs5 ag=65.11 and RMSs.4z=8.06 for the
autoregressive model to MSEs axn=6.39 and RMSs_anxn =2.52 for the later model
predictions. The ARMA model performance lies between that of the statistical linear and
neural network models, though it is sensitive to the randomness of the autoregressive AR
component. Furthermore there is a closer ANN fit with the predictions to the actual test
data, so there is an improved robustness to variations in input data trend, which makes the
neural network model's overall performance superior to that of the autoregressive models.

The graph similarity r2 tests results are:

20-days 5-days
ARMA 0.947165 0.636626651
ANN 0.915519664 0.781246538
LINST 0.944012112 0.688230109

The 72 (graph similarity, max value is 1) ARMA value is the best for the whole data range
at 0.947 and is acceptable for the last five days at 0. 78.

2.8.  Summary

The generic learning-generalization methodology could be mapped to forecasting time

series autoregressive and neural network regression models.
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Correlation between the input model parameters impacts on the generalization of the
models and their future performance with unknown data. The correlation graphs between
the current value at time the previous time values show a gradually less linear relationship
(correlation). The relationship trends decline as well, from one to a slightly declining trend

of approximately 0.6~0.8 at the furthest time values,

For models with numerical outputs, standard technical measures such as root mean square

error and root mean squared error are the common measures of system performance.

Autoregressive models have a simple mathematical structure. The analysis with a sample
model using three and five days input parameters does not give a significant difference in
performance (errors values are similar):

e mean square error 67.01 and 65.11

e root mean square error 8.19 and 8.06.

e there is an affinity prediction graph to follow the trend of the input data which is

eventually compensated for at the end of the prediction period.

The next step in time series analysis is non-linear modelling such as non-linear
autoregressive models or neural networks. The experiments with the neural network model
have found that there is a significant improvement in performance compared to that of the
linear autoregressive model:

e mean square error from 65.11 to 6.39

e root square error from 8.06 to 2.52

e there is a closer fit between predictions and actual test data.
Overall, the non-linear models such as the neural network model are superior to the linear
autoregressive models in performance and robustness. This supports the hypothesis that

financial shares time series are non-linear as well.
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Chapter 3. Validation of ANN Model for Share Prices

3.1. Overview

This chapter applies formal statistical and non-statistical methods to evaluate the outcomes

of the linear regression, artificial neural network and bi-linear regression models.

The objective of the chapter is to justify the use of the ANN for the short-term prediction
of share prices, particularly in the banking sector (Petkov, et al., 2012). The assumption is
that time series data for financial shares contain significant non-linearity and that the ANN
can be utilized effectively.

This chapter covers the following subjects:

e Introduction to short-term trading and long-term investment
e Experiments with linear regression, neural network and bi-linear generalized scalar
regression models

e Comparison and evaluation of the experimental results

3.2. Introduction

Share values are represented by a time series of prices over a certain period, such as a day,
month or year, and sampled accordingly, usually with a natural time ordering. Time series
analysis normally tries to predict future numerical outcomes (such as the closing or opening
prices of an individual share) based on past performance. The hypothesis tested is that data
over a short period are expected to be more closely correlated than data over a longer
period. This encourages the use of short-term range data.

Figure 3-1 below gives a snapshot of the intraday chart of the BARC.L share price on

Wednesday 27th June 2012.
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Another short-term trading timescale, which justifies a one-two week trading strategy
during the three months of July to September 2012, is given below in Figure 3-2. For
example, prices in the period between September 5th at 181.95p and the 14th at 229.05p,
prices are clearly non-linear with an eventual profit of 47.1p compared with the intraday

prices of 193.05p and 196.8p, giving 3.75p profit for 27th June.
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In contrast, the opposite share dealing strategy is known as long-term investment. Finally,
for a long-term investment period from September 2011 to September 2012 as given below
in Figure 3-3, it could be argued that both linear and non-linear models could have generally

comparable performance considering monthly periods such as from January to March 2012.
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FIGURE 3-3 BARC.L SEPTEMBER 2011 TO SEPTEMBER 2011

The distribution of the share price during the twelve months’ period from 22/09/2011 to

21/09/2012 is given below in Figure 3-4.
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For regular dealers, ‘short-term’ usually means daily trading, involving buying in the
morning and selling at a profit on the same day. In fact, under normal market conditions,
share prices are not expected to change significantly within a day. It would make more
sense to aim for successful trading within one to two weeks rather than daily, which would

furthermore reduce trading costs.

The underlying models commonly used by traders for analysis are known as technical or
chart analysis and are based on linear regression. A novel perception is that share
performance is affected by many small non-linear processes and interactions, and slightly
different initial conditions could cause very diverse outcomes, hence being non-linear
processes (Baestaens, et al., 1994). This encourages the investigation of stock market
behaviour that might be explained by non-linear models with commonly expected features
such as pattern recognition and generalization abilities. These features are genuine
characteristics of artificial neural networks (ANN). Moreover, there is as yet limited ,
mainly for proprietary internal use, evidence that neural network models have been used or
released for the general public and individual traders or available from major providers

such as Yahoo Finance.

3.3.  Experiments

3.3.1 Hypothesis

The original proposition is that the outcome of experiments would show a significant
difference between models based on the linear or non-linear nature of changes in financial

share prices. The null hypothesis is that there is no difference between the models.

3.3.2 Dataset

The share datasets that have been used are time series representations of Open, High, Low,
Close, Volume and Adjusted Close share prices. The source of data is the Yahoo Finance
website (http://finance.yahoo.com/) which gives the prices of US, European and Asian

markets in downloadable Excel and “csv” spreadsheet formats. There are options for start
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and end dates as well as whether the information is to be summarized by day, week or

month.

Examples downloaded for data mining are of the Barclays PLC (BARC.L) share price.
Attributes are that the date is represented in DD/MM/YYYY and Open, High, Low and

Close values in pence number integers.

The share price working dataset during the one-month period from 27/08/2012 to
21/09/2012 is given in Appendix C: Table 1 and the working dataset of closing share
prices used for the models with a time-lag of five days during the one-month period from
27/08/12 to 21/09/12 is given in Appendix C: Table 2. All prices are given in GB pence.
The share price chart during the one-month period from 27/08/12 to 21/09/12 is given

below in FIGURE 3-5.
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Data from 27/08/2012 to 14/09/2012 is used to train the models, while data from

17/09/2012 to 21/09/2012 is used for model evaluation.
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3.3.3 Model Evaluation
To evaluate the models’ performance (Roiger, et al., 2003), their results have to be
examined by checking the error rate, which for numerical outputs is measured as the mean

squared error (MSE):
MSE = X(x; — w)? (3-1)

where x; is the share price value of the i-th share price value of the share’s time series and

4 1s the mean.

For the root mean squared error (RMS), applying the square root reduces the
dimensionality of the MSE to that of the actual MSE error. It is generally used as a

measure of convergence with the ANN:

RMS = [%(x; - u)° (3-2)

The mean absolute error (MAE) is less affected by large deviations,
MAE = |x; — pl (3-3)
Furthermore, if the dataset has a normal bell-shaped distribution, then the confidence

intervals can be computed as well (Roiger, et al., 2003), as follows:

f(0) =1/ (V2ma)e™ -2 (3-4)
where 4 is the mean and o2 is the variance, given by:
n==3n X (3-5)
0% = Nl (1 — %)’ (3-6)
3.3.4 Model Validation

The validation of model performance is conducted by using the significance score P value

with instance-by-instance pair-wise comparison, given as:
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p= \/ﬁ (3-7)
V12 = ﬁZ?[(eu —ey) — (B — Ez)]z (3-8)

where E; is the overall error for the ANN model, E, is the overall error for the linear
model, eq; is the error for instance i for the ANN model, e,; is the error for instance i for

the linear model and y;, is the joint variance.

To have 95% confidence that the performance of the different models is statistically

different, the significance score P has to be greater than or equal to 2 (Roiger, et al., 2003).

3.3.5 Linear Regression Analysis

Linear regression curve fitting generalizes a numerical dataset with an equation using one
or more input data values (such as the daily close price) to a single output. It attempts to
model the variation in a dependent variable y as a linear combination of one or more input

variables x;,i = 1, 2,..,n with coefficients m;,i = 1,2,..,n:
y=f(x1,.., %) = myxy+..+mux, + b (3-9)
For a time-lag of five days the model is:

Y =f(Xn-s) ) Xn1) = MyXp_q + MaXy_p + MaXp_3 + MyXp_g + MsXp_s +b
(3-10)
where x,,_; the closing price at day n-/ is, x,,_; is the closing price at the day before day

n-1, and so on.

The learning algorithm that is used is the well-known learning gradient descent algorithm

(Deboeck, 2003). For the coefficient m,, for example,

my, =my,  — (error; *rate * xn_y,) (3-11)

The calculated model for a time-lag of five days is:
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y= 018*x,_4+0.09*x,_,+0.01xx, 3+ (=0.09) *x,_4,+011 xx,,_5 +
(—0.14) (3-12)
The results of the linear regression for a time-lag of five days are given below in Table 3-1
where the shaded area represents the testing. The performance up to the last five days is
good but in the last five days there is a big bump although at the end both graphs match at
the final day21/09/2012. Further generalization such as cross-validation would eventually
help forecasting. These results are worse than the statistical linear regression as in Table

2-5 due to the superior model tuning algorithm.

TABLE 3-1 LINEAR REGRESSION RESULTS FOR BARCLAYS PLC

Date Target Output Error
27/08/2012 187.2 211.43 24.23
28/08/2012 188.95 17437 -14.58
29/08/2012 186.35 200.00 13.65
30/08/2012 183.5 184.75 1.25
31/08/2012 183.25 182.87 -0.38
03/09/2012 184.3 182.07 -2.23
11/09/2012 213.5 203.44 -10.06
12/09/2012 217 217.76 0.76
13/09/2012 217.95 204.40 -13.55
14/09/2012 229.05 239.93 10.88
17/09/2012 228 247.27 19.27
18/09/2012 2254 246.55 21.15
19/09/2012 225.15 242.09 16.94
20/09/2012 222.05 23536 13.31
21/09/2012 223.75 226.72 2.97
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The linear regression charts for a time lag of five days are given below in Figure 3-6.
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The linear regression model results suggest that an alternative model capable of dealing

with implied time series non-linearity may perform better with financial shares forecasting.

The neural networks are capable of managing non-linear patterns and therefore can be

constructed for supervised forecast learning. The feed-forward perceptron model is a

simple and popular supervised learning model for the modelling of time series. A single

layer perceptron with five inputs is shown below in Figure 3-7.

FIGURE 3-7 ANN WITH A SINGLE LAYER PERCEPTRON
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The output Y is:

_ 1
T 1+eS

S=Y"1wux, ;+b

(3-13)

(3-14)

The ANN learning algorithm that is used in this study is the well-known learning gradient

descent algorithm (Deboeck, 2003). It is intuitive iterative optimization algorithm to find a

local minimum of a cost function using gradient descent by takings steps proportional to

the negative of the gradient. For the coefficient w;, for example:

wy, =wy,  — (err ;xrate xx,_q;)

The calculated model for a time-lag of five days is:

S = 0.91x,_, + 0.59%,_, + 0.23x,_3 + (—0.10)x,,_, + 0.33x,,_s + 2.85

(3-15)

(3-16)

The results for the single one-layer ANN for a time lag of 5-days are given in Figure 3-8

and Table 3-2, where the shaded area represents the testing. The graphs generally follow

the same movement patterns with a closer match at the final five days, which is the

opposite to the linear regression. These results are worse than the results for a three-layer

ANN as in Table 2-6. Target and ANN model output charts for 5-days are given below in

Figure 3-8.
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TABLE 3-2 ANN RESULTS FOR ONE MONTH BARCLAYS PLC

Date  Target Output  Error
27/08/2012 187.2 199.14 11.94
28/08/2012  188.95 196.60  7.65
29/08/2012  186.35 196.45 10.10
30/08/2012 183.5 195.70  12.20

31/08/2012  183.25 194.27 11.02

10/09/2012  207.75 199.16  -8.59
11/09/2012 213.5 204.65 -8.85
12/09/2012 217 209.50 -7.50
13/09/2012  217.95 21220 -5.75
14/09/2012  229.05 214.10 -14.95
17/09/2012 228 220.77 -7.23
18/09/2012 225.4 22327 -2.13
19/09/2012  225.15 222.08 -3.07
20/09/2012  222.05 219.65 -2.40

21/09/2012  223.75 215.07 -8.68

3.3.7 Bi-linear Regression Model
It is of specific interest to compare the ANN with an alternative non-linear type of model
such as a bi-linear scalar regression model for data fitting, such as:

y=X1aixn_i + Xn X0 b;jxn_iX,_j + Noise (3-17)

The learning algorithm that is used is the well-known learning gradient descent algorithm
(Deboeck, 2003). For the coefficient a,, for example:

a,, = a1, , — (error; xrate * x,,_). (3-18)
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For the joint coefficients, both inputs are used in the learning algorithm. For the
coefficient b;,, for example:

by, = by, , — (error; xrate * x,_q, * Xp_3,). (3-19)
The generic model includes noise as well but, for consistency with the use of the ANN
model, this is omitted from the model used for the experiments. For a time lag of five days,
the model is;

Y = QiXn_1 + AXn_p + A3Xn_3 + D12Xn_1Xn—2 + b13Xn_1Xn_3 +
by3Xn-2Xn-3 (3-20)

The calculated model for a time lag of five days is:

y = 0.18x,,_1 + 0.02x,_, + (—0.008)x,,_3 + 0.017x,,_1xp_5 + 0.01x,_1Xx,_3 +
(—=0.002)xp,_xp_3 (3-21)
The results for a time lag of 5-days are given in Figure 3-9 and Table 3-3 where the shaded
area represents the testing. Overall very good performance resulted in a close graphs match
over the whole period and almost overlapping at the final five days. The results are
encouraging although further cross-validation generalization is recommended. So far it

looks the best model fit to this dataset. The bi-linear charts are given below in Figure 3-9.
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TABLE 3-3 BI-LINEAR RESULTS FOR BARCLAYS PLC
Date  Target Output  Error

27/08/2012 187.2  189.43 2.23

28/08/2012  188.95  188.15 -0.80

30/08/2012 183.5  187.50 4.00

31/08/2012  183.25  184.24 0.99

03/09/2012 1843  183.43 -0.87

05/09/2012  181.95 181.79 -0.16

06/09/2012  193.05  181.87 -11.18

07/09/2012 206.4  191.70 -14.70

10/09/2012  207.75 20831 0.56

11/09/2012 2135  213.05 -0.45

12/09/2012 217 220.18 3.18

13/09/2012 21795  219.73 1.78

14/09/2012  229.05  216.90 -12.15

17/09/2012 228  226.79 -1.21

18/09/2012 2254  227.779 2.39

19/09/2012  225.15  224.16 -0.99

20/09/2012  222.05  223.57 1.52

21/09/2012 22375 22096 -2.79

3.4. Comparison of the Experimental Results

The evaluation of the results of the linear regression model for a time lag of five days
shows that MSE=258.31and RMS=16.07.
The evaluation of the results of the ANN regression model for a time lag of five days

shows that MSE=29.47 and RMS=5.42.

57



The evaluation of the results of the bi-linear regression model for a time lag of five shows

that MSE=3.65 and RMS=1.91.

These results are worse than the results for statistical linear regression (Table 2-5
MSE=65.4 and RMS=8.06) and the three-layer ANN (Table 2-6 MSE=6.39 and
RMS=2.52) due to superior statistical regression tuning and layer architecture for the
ANN. The point of this validation is to justify the non-linear hypothesis and the models are

simplified to facilitate the interpretation of the results.

The results demonstrate significantly better performance of the ANN model compared to
linear regression, as the values of MSE and RMS are respectively 9 times and 3 times
better (lower). The best performance is achieved with the bi-linear model, as MSE and
RMS values are 8§ times and 3 times better respectively than the corresponding ANN errors

and furthermore almost 70 times and 8 times better than the linear regression.

The calculated significant difference ratio P for the experimental results with instance-by-
instance pair-wise comparison between ANN and linear regression is P=6.58 with a joint
variance y4,= 34.88, which, therefore, gives 95% statistical confidence in the comparison
of the models’ performance. The calculated ratio P for the experiments with instance-by-
instance pair-wise comparison between the ANN and bi-linear regression model is P=3.85,
which, therefore, gives 95% statistical confidence in the comparison of these models’

performance.

3.5.  Summary

The performance of the ANN model is compared to that of a linear regression model. Non-
linearity is shown by deduction via a comparison of experimental results using the ANN
and linear regression models. Furthermore, the ANN model is compared to another non-
linear type of model, the bi-linear model. Experiments are conducted based on real

monthly (four-week) datasets, and the performance of the models is formally evaluated.
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The non-linear models are likely to be a better choice than a traditional linear regression
model for short-term trading, and furthermore the bi-linear model outperforms the ANN.
Experiments have been conducted with a single-layer in order to clearly compare the ANN
with linear regression models. The results for mean squared error (MSE) and root mean
square (RMS) are shown below:

* For the linear regression model, MSE=258.31and RMS=16.07.
* For the ANN regression model, MSE=29.47 and RMS=5.42.
* For the bi-linear regression model, MSE=3.65 and RMS=1.91.

It is expected that a multilayer ANN would improve the results further. However, the
interpretation of the ANN model results is more difficult and comparison with the linear
model is less straightforward.

The validation of the ANN model for share price investigations has found that non-linear
models are likely to be a better choice than traditional linear regression for short-term
trading. The conclusions are positive with good statistical confidence, encouraging further
experimentation such as considering further generalization with experiments using cross-
validation, inclusion of a noise component in the model, or other methods for choosing

model parameters.
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Chapter 4. Stochastic Share Price Model

4.1. Overview

This chapter models the behaviour of financial share prices, deriving an analytical
continuous-time model considering stochastic calculus and Wiener processes and

volatility.

It is often stated that asset prices must move randomly, which is due to the efficient market
hypothesis. There are several different forms of this hypothesis with different restrictive

assumptions, but they all basically say two things (Wilmott, et al., 1996):

e Past history is fully reflected in the present price, which does not hold any further
information;

e Markets respond immediately to any new information about an asset.

Thus, the modelling of asset prices is really about modelling the arrival of new information
which affects the price. Given the two assumptions above, a Markov process represents
unanticipated changes in an asset price (Wilmott, et al., 1996). The movement of share
prices is described as a random walk, which underlines the notion that future prices cannot
be predicted with certainty. This implies that any model must include a degree of

unpredictability.
This chapter covers the following subjects:

e Brownian motion and the Wiener process
e Analytical modelling

e Market and normal distributions

e Stochastic model predictions summary

e Volatility

e Historic volatility

e Online volatility indices
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4.2. Introduction

A random walk is defined as a process relating the value of a variable S,, at time n to

its previous position according to the rule:
Sn =51+ Wy (4-1)

where W;,i = 1,2, ...,n, are independent and identically distributed random

variables.

A risk-neutral valuation is one which values an investment solely via the present value of
its return. Financial share models assume that geometric Brownian motion turns all
investments involving buying and selling into fair bets (Wilmott, et al., 1996). For this
reason, these valuations are called risk-neutral valuations. Brownian motion means that, if
S(t) is the price of the security at a time t, then, for any price history up to time ¢, the ratio
of the price at a specified future time (¢ + 7) to the price at time ¢ has a log-normal
distribution. The mean and variance parameters will be normal random variables with
mean #u and variance fo”. Black and Scholes (1973) showed, that given the assumption that
price changes follow geometric Brownian motion, there is a single price that does not
allow an idealized trader to follow a strategy that will result in a sure profit in all cases.
There will be no certain profit (i.e., no arbitrage). Price volatility is a rate at which the
price of a security increases or decreases for a given set of returns; that is, the degree of
variation of a trading price series over time. In addition, the price depends only on the
variance parameter ¢ of the geometric Brownian motion. Because parameter ¢ is a measure

of the volatility of the security, it is often called the volatility parameter.

Share prices move up and down throughout the working day and they are recorded
and updated every 15 minutes. The latest price will either have moved up or down
from, or stayed the same as, the previous price. If we record the price of a

commodity over a long period of time we get a graph plot such as the one shown in
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Price in pence

Figure 4-1. This graph refers to the closing price of Barclays bank shares over a

period of about 11 months in 2014-15.
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The jumps in its value are independent of each other and the share price moves
irregularly with time with no evidence of a trend as the series progresses. A later
realisation of the same share price is shown below in Figure 4-2. The graph has a

similar appearance to the one above, illustrating this property of the process.

2 Feb 2016: == BARC.L 172.75

1.,
3 A .I
= W .
& nf'\\fd \\\/\/_
£ "
3
& bt |
Ulnlll /VP\ |
W N v |
.w/\ "“\:
2015 Jun Jul Aug Sep Oct Now Dec 2016 Feb Mar A

1D | 5D (1M  3M | ¥TD | 6M | 1¥ | 2¥ | 5¥ | Max FROI'uI:f‘H\."Ia\.-2015._ TO:E_29A0r201Ei_i

Time in months
FIGURE 4-2 BARCLAYS PLC SHARE PRICE 01/05/2015 1O 29/08/2016

This means that, if S,, is known at time n, then further information before time n is
not relevant to its future values. The random process has the property that its future

values depend on its present value and not in any way on its past values.
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We shall denote the value of the share price at time 7 as S¢,t = 0, where the value
of the share at t = 0 is zero, Sy = 0 . If the price moves up or down, it is equally
likely, then, for each value of ¢, that the random variable S; should have a
symmetrical distribution with a mean of zero. Also, the change in its value from time s

to s + tdenoted by Sg ;415 given by:
Ss,s+t = Sert— Ss (4'2)

This should have the same distribution as So , = S; and be independent of
historical values of S; before time ¢. This means that S; is a stationary process

and is continuous.

These three conditions of symmetry, stationarity and continuity lead to the random
process called Brownian motion or the Wiener process. This is formally defined as
follows. The Wiener process or Brownian motion is defined as a random

process Sg, t = 0, with Sy = 0 such that the following conditions hold:

1. Every increment S ¢4, is normally distributed asN (0, 0%t), where o2 is
constant.

2. For every pair of disjoint intervals (t,, t;) and (t3, t4), the increments S; ,
and S3 4 are independent random variables following the above distribution.

3. §; is continuous.

From property 1, it follows that S;~N (0, c2t). The parameter o is called the

volatility parameter and is a measure of the standard deviation.

We want to model the corresponding return on the asset. Suppose that at time ¢ the
asset price is S(¢). Let us consider a small subsequent time interval df, during

which S changes to (S + dS).

64



The anticipated return is based on the return on money invested in a risk-free bank account.
The most common model of share prices decomposes the return into: deterministic and
random parts. The deterministic and predictable part gives a contribution udt to the return
dS/S, where the mean p is a measure of the average rate of growth of the asset price, also
known as drift. In simple models, p is taken to be a constant. The deterministic part pSdt
corresponds to the return on money invested in a risk-free bank where p is the interest rate.

In more complicated models u can be a function of S and ¢.

The second contribution to dS/S models the random change in the asset price in response to
external effects. It is represented by a random sample drawn from a normal distribution
with a mean of zero and it adds a term adW to dS/S. The parameter o is called volatility,
which measures the standard deviation of the returns. The quantity dW is the sample from a
normal distribution which contains the randomness that is certainly a feature of asset
prices. The random part 6S@W is the random change in the asset price in response to

external effects such as unexpected news. This is known as a Wiener process.

4.3.  Analytical Model

Putting these contributions together, we obtain a stochastic differential equation as a

mathematical representation of a simple asset price:

% = udt + adW (4-3)
where S is the asset price, u is the average rate of growth, o is the volatility which is
measured by the standard deviation of the returns, and d# which contains the randomness

known as a Wiener process.

Normally, ¢ and u are variable functions of time and can depend on other things as well.
However, for a short period of time, o, 4 =const. Constant volatility means constant
noisiness in the share price, while constant drift means a constant trend of an increase or

decrease in the share price.
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The stochastic differential equation is solved as follows:

% = udt + adW (4-4)

Despite uncertainty in share prices, a certain determinism can be derived in a small time

period using Ito’s lemma (Wilmott, 1996) :
d(InS) = 5 - Zo%dt (4-5)

Replacing % gives:
d(InS) = put + cdW — %azdt (4-6)
Then, integrating:
[d(nS) = [ut + [ odW — - [ o%dt (4-7)
nS = oW + (i — %02) t+4C (4-8)

The initial conditions are t = 0, S, # 0 and W, = 0 which is giving C = In .

Consequently
ln:—0= (k=30%)t+ow (4-9)
therefore,
s = 5,e(h50%)trow (4-10)

If we assume that volatility o = 0, we can ignore the randomness of the asset. The
accuracy of this assumption depends on the observation period and the relative percentage
of variations. Usually in normal market conditions for one-two trading weeks daily trading,
the variations are small compared to the price. When p is constant, the equation above can

be solved exactly to give:
S = S,ett (4-11)

where S is the value of the asset at t = 0. Thus, if ¢ = 0, the asset price is totally

deterministic and we can predict the future price of the asset with certainty.
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This equation is a particular example of a random walk, with the probability density
function represented by a skewed bell-shaped curve known as the log-normal distribution.

This random walk is known as a log-normal random walk.

4.4. Methodology

The results of this investigation can be summarized as follows:

1. Datasets for share prices from 2015-06-01 to 2015-10-04:
a. 2015-06-01 to 2015-10-04, the whole dataset.
b. 2015-06-01 to 2015-08-31,the training dataset.
c. 2015-08-31 to 2015-10-04, the testing dataset.
d. Share prices for selected companies were analysed: in the financial sector:
BARC.L, HSBA.L, RBS.L and LLOY.L and in the retail sector: TSCO.L,
MRW.L, MKS.L and SBRY.L

e. Data is sorted from the oldest to the newest.

2. The share price ratio R; = i logarithm [n(R;) was calculated.

i1

3. A check for normality was performed (normal distribution) of the In(R); that is, for
a log-normal distribution. The Kolmogorov - Smirnof (Jistel, et al., 1997) test was
performed.

4. Descriptive statistics for the training dataset from 2015-06-01 to 2015-08-31 were
calculated; namely mean p and standard deviation o.

5. A normalization is performed for time units for a year replacing

uwithm and o with s where m = 252u and s = gV 252, taking into account

the number of 252 trading days in the UK stock market, where \/% is the length of

one trading day measured in years. The predicted price is:
s2
Sgo = S * €% "7 (4-12)

6. The results are plotted for volatility
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Price in pence

Price in pence

7. Different distributions such as Brownian motion or binomial models are tested.

4.5. Datasets and Results

Share prices and results for selected retail and financial sector companies are shown for
the financial sector: BARC.L Appendix C: Figure 1, HSBA.L Appendix C: Figure 3,

RBS.L Appendix C: Figure 2 and LLOY.L Appendix C: Figure 4.

And for the retail sector: TSCO.L Appendix C: Figure 5, MRW.L Appendix C: Figure 7,

MKS.L Appendix C: Figure 6 and SBRY.L Appendix C: Figure 8

Stochastic model weekly and monthly predictions show not very good fits with the target

and little variation, as shown for BARC.L in Figure 4-3 below
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FIGURE 4-3 STOCHASTIC MODEL BARC.L WEEKLY AND MONTHLY PREDICTIONS
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The stochastic model predictions are summarized in Table 4-1 and Table 4-2.

TABLE 4-1 FINANCIAL SECTOR PREDICTIONS

HSBA.L LLOY.L
BARC.L RBS.L
(65 (65
(65 samples) (65 samples)
samples) samples)
Daily Mean | m=AVERAGE -0.28% -0.2% -0.03% -0.02%
Annualised u
-71.78% -52.76% -7.22% -5.26
mean = mean * 252
Volatility s=STDEV 1.53% 1.2% 1.68% 1.64%
Annualised
o =s%*v252 24.30% 19.19% 26.66% 26.18
volatility
error ,Z error? 10.19% 7.36% 13.36% 17.45%
TABLE 4-2 RETAIL SECTOR STOCHASTIC MODEL PREDICTIONS
MKS.L TSCO.L
MRW.L SBRY.L
(65 (65
(65 samples) (65 samples)
samples) samples)
Daily Mean | m=AVERAGE -0.17% -0.14% -0.01% -0.03%
Annualised u
-42.55% -35.69% -2.07% -8.38%
mean = mean * 252
Volatility s=STDEV 1.55% 1.61% 1.50% 1.48%
Annualised
o =s%*V252 24.61% 25.48% 23.85% 23.47%
volatility
error /Z error> 9.79% 10.36% 9.66% 9.45%

The analysis of the results as shown in the summary tables shows consistent market

annualized volatility in the range 19.19%-26.66% and consequently the expected

prediction error is similar in the range of 7.36% - 17.45% with better retail sector

performance between 9.45% to 10.36%.




4.6. Market and Normal Distributions
A comparison check for normal distribution is shown for BARC.L in Figure 4-4 and for
the generated normal distribution in Figure 4-5, confirming the BARC.L normal

distribution hypothesis.
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4.7. Volatility

Annual volatility (t = ﬁ, 252 trading days) from historic data (Hull, 2008) for three
months daily closing price data is calculated for AV.L (Aviva), BARC.L (Barclays),
BNC.L (Banco Santander), BP.L (BP), HSBA.L (HSBC), LLOY.L (Lloyds) RBS.L (Royal
Bank of Scotland), STAN.L (Standard Chartered), TSCO.L (Tesco) and VOD.L
(Vodafone). The investigation is conducted mostly for BARC.L and the other shares
considered are just for three months, equivalent to 66 days. The closing daily share prices

are downloaded for the period 22/09/2011 to 22/09/2012. It is assumed that the length of
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e

time interval (7) for the three months’ data is equivalent to 66 days, for two months 44 days

and one month 22 days.

. s(i)
u(i) =In s(i—l)) (4-13)
0 = V252 x STDEV [u(i) : u(i —1)] * 100 % (4-14)

The charts (axis x, time) are presented below backwards in time, where 1 corresponds to
the most recent day 21-09-2012 and the 263-rd point to 22-09-2011, as shown in Figure

4-6.
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FIGURE 4-6 VOLATILITY DATASET BARC.L

The share trend chart for each day and the whole period is produced using the Excel

SLOPE built-in function with a 14 days’ backward window as displayed in Figure 4-7.
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FIGURE 4-7 EXCEL SLOPE FOR 14 DAYS
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4.8. Historic Volatility

The historic volatility of the Barclays share price on 22-09-2012 was 51.49%. The historic
volatility chart is shown backwards for every day from 22-09-2012 to 03-01-2013 for 66

days (three months) time lag in Figure 4-8.
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FIGURE 4-8 HISTORIC VOLATILITY BARC.L FOR 66 DAYS FROM 22-09-2012

The historic volatility slope is shown in Figure 4-9.
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FIGURE 4-9 VOLATILITY SLOPE BARC.L FOR 66 DAYS
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Volatility in percentage

Volatility is calculated for each day with STDV windows of 12 days (two weeks), 22 days

(one month), 44 days (two months) and 66 days (three months), as shown in Figure 4-10.
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FIGURE 4-10 VOLATILITY FOR 12, 22, 44 AND 66 DAYS

The volatility trend-slopes for 44 days (two months) and 66 days (three months) with a 14

days’ backward window are shown in Figure 4-11.
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The volatility of the Barclays share price for 20 days, following the example given by Hull

(Hull, 2008), is still quite high at 38.50%, as shown in Table 4-3.

TABLE 4-3 VOLATILITY CALCULATIONS FOR 20 DAYS

W e N b wN = O

L g
© Wb KN E WN RO

B C D B F G H | J K L M
closing
stock price u(i) daily
price relative  return (ufi))r2
223.75 tau=1/252 trading days 0.003968
222.05| 0.99240 -0.00763 5.82E-05 SUM[u(i)] -0.17835
225.15| 1.01396 0.013864 0.000192 SUM[u(i)*2] 0.012765
225.4| 1.00111 0.00111 1.23E-06 STDEV(u) 0.024251 0.024251
228| 1.01154 0.011469 0.000132 sigma-volatility
229.05| 1.00461 0.004585 2.11E-05 standard error 6.09%

217.95| 0.95154 -0.04967 0.002468
217| 0.99564 -0.00437 1.91E-05
213.5| 0.98387 -0.01626 0.000264
207.75| 0.97307 -0.0273 0.000745
206.4| 0.99350 -0.00652 4.25E-05
193.05| 0.83532 -0.06687 0.004471
181.95| 0.94250 -0.05922 0.003507
181.25| 0.99615 -0.00385 1.49E-05
184.3| 1.01683 0.016688 0.000278
183.25| 0.99430 -0.00571 3.26E-05
183.5| 1.00136 0.001363 1.86E-06

BARC.L for 20 days following Hull

250

200

| 150

———BARC.L for 20 days
following Hull

Price in Del;

100

186.35| 1.01553 0.015412 0.000238
188.95| 1.01395 0.013856 0.000192 50

187.2| 0.99074 -0.0093 8.66E-05 Time in days
187.2] 1.00000 0 0 0 -

123456 7891011121314151617181920

Retail and financial institution share price charts and volatility for 66 days are shown in

Appendix C: Figure 9 for Aviva (AV.L)

Appendix C: Figure 10 for Banco Santander (BNC.L)

Appendix C: Figure 11 for BP.L (BP).

Appendix C: Figure 12 for HSBA.L (HSBC)

Appendix C: Figure 13 for Lloyds (LLOY.L)

Appendix C: Figure 14 for Royal Bank of Scotland (RBS.L)

Appendix C: Figure 15 for Standard Chartered (STAN.L)

Appendix C: Figure 16 for Tesco (TSCO.L)

Appendix C: Figure 17 for Vodafone (VOD.L)

4.9.

Online Volatility Indices

Volatility indices are available online from the Financial Times and are shown in Table
4-4.
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4.9.1 Financial Times, UK
http://www.ft.com/home/uk
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Select “Data Archive” tab (http://markets.ft.com/research/Markets/Overview)
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FIGURE 4-14 FT PORTAL OVERVIEW
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Select the data: “Select a category”, “Select a report” and “Select a date” and “Download

data” (http://markets.ft.com/research/Markets/Data-Archive)
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FIGURE 4-15 FT PORTAL ARCHIVE

Equities and UK Equity Volatility Indices
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FIGURE 4-16 FT PORTAL VOLATILITY INDICES

TABLE 4-4 VOLATILITY INDICES

VOLATILITY INDICES

Oct16 Day Chng Prev. 52 wk high 52 wk low
VIX T 1:5:22 -0.05 1527 37.53 13.30
VXD 13.84 -0.14 13.98 33.87 11:90
VXN 1717 -0.38 17.55 37.19 1.3.79
VDAX £ 16.62 -0.45 i[5 AR 31.78 16.22

T CBOE. VIX: S&P 500 index Options Volatility, VXD: DJIA Index Options Volatility, VXN: NASDAQ
Index Options Volatility, £ Deutsche Borse. VDAX: DAX Index Options Volatility.

4.9.2 VIX Chicago Board Exchange Market Volatility Index

VIX (http://en.wikipedia.org/wiki/VIX) is a trademarked ticker symbol for the Chicago

Board Exchange Market Volatility Index, which is a popular measure of the implied
volatility in the S&P 500 index. It is often referred to as the fear index, representing one
measure of implied stock market volatility over the next 30-day period. Figure 4-17 shows

the value of the CBOE volatility index on 31% December from 1985 to 2012.
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FIGURE 4-17 VIX VOLATILITY INDEX

The VIX is quoted in percentage points and translates, roughly, to the expected movement
in the S&P 500 index over the next 30-day period, which is then annualized. For example,
if the VIX is 15, this represents an expected annualized change of 15% over the next 30
days; thus it can be inferred that the index option markets expect the S&P 500 to move up
or down 15%/~N12 = 4.33% over the next 30-day period. The index is priced with the
assumption of a 68% likelihood (one standard deviation) that the magnitude of the change

in the S&P 500 in 30-days will be less than 4.33% (up or down).

The VIX can be used to calculate implied volatility, because volatility is one of the factors
used to calculate the value of these indices. Higher or lower volatility of the underlying
security makes it more or less valuable, because there is a greater or smaller probability
that the security will be above the market value. Thus, a higher index price implies greater

volatility, all other things being equal.

4.9.3 VXD
The VXD (http://wiki.fool.com/VXD) is the CBOE DIJIA volatility index (CBOE, 2015),

meaning that it is an index established by the Chicago Board Options Exchange to measure
investor sentiment about near-term volatility in the Dow Jones Industrial Average as

shown in Table 4-5 and Figure 4-18.
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TABLE 4-5 VXD DELAYED QUOTES

x 14 3g| (DJdX | 13546 -0.06
< 1420 |BXD 24152 0.00
E E;g VXD 1399 015
o !
1390 DIA | 135.29.-0.01
10AM L2PM 2PM 4PM DXL 435457 -0.61
Time in hours Delayed Quotes
1 year
5 30.00
3
R=
Z 25.00
E
g 20,00

Time in months
FIGURE 4-18 CBOE DJIA VOLATILITY INDEX

The CBOE DIJIA volatility index (VXD) is based on the real-time prices of options on the
Dow Jones Industrial Average SM (DJIA, with an options ticker of DJX), and is designed

to reflect investors' consensus view of future (30-day) expected stock market volatility.

The Fund Evaluation Group (FEG) (2007) issued a new study entitled "Evaluation of Buy
Write and Volatility Indexes: Using the CBOE DJIA Buy Write Index (BXD) and the
CBOE DIJIA Volatility Index (VXD) for Asset Allocation and Diversification Purposes."
This paper studied the 109-month period from October 1997 to November 2006, and

presented several findings on the 9-year performance of the VXD Index:

e The volatility index can reduce portfolio volatility. Including a small (10%)

allocation to the CBOE DIJIA Volatility Index (VXD) could have reduced the
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volatility of an all-stock security by about 26%, without materially affecting
returns.

e Low correlation and diversification. The VXD and the DJIA were inversely
correlated (-0.62). VXD increased more during market declines, reacting more to
stock market declines than to stock market advances), indicating that the VXD has
potential as a diversification tool.

e Impact on risk-adjusted returns. The inclusion of a small (5%) allocation to the
VXD Index boosted risk-adjusted returns for a stock-oriented portfolio, and

lowered the risk-adjusted returns for a fixed-income-oriented security.

4.10. Summary

Stochastic model weekly and monthly predictions show not very good fits (not following
the target variations) and not very good error performance. The results generally show a
simple straight line trend across the target share prices chart, as shown for BARC.L in

Figure 4-3.

The analysis of the results as shown in the summary Table 4-1 and Table 4-2 shows
consistent market annualized volatility in the range 19.19%-26.66% and consequently the
expected prediction error is similar in the range of 7.36% - 17.45% with better retail sector

performance between 9.45% to 10.36%.

Evaluation of the volatility indices shows that the volatility index can reduce portfolio
volatility, that there is low correlation and diversification and lowered risk-adjusted returns
for a fixed-income-oriented security. Furthermore, inclusion of the index can increase the
risk-adjusted returns for a stock-oriented portfolio, and lower the risk-adjusted returns for a

fixed-income-oriented security.
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Chapter 5. Time Series

5.1. Overview

This chapter applies standard statistical analysis such as summary statistics, confidence

intervals and particularly analysis of the variance and correlation to financial time series.

Visualising data is convenient for data analysis and provides insight into experimental or
simulated data. Data for the 2013 yearly period is relatively flat, without drastic changes. A
first look at the BARC.L share price graph indicates a slight polynomial hill and major
monthly oscillations, as shown in Figure 5-1. A one-month dataset (January 2013) is
shown in Appendix C: Table 4 and the graph is shown in Figure 5-2 which shows an
exponential slope and some harmonics as well. Both the polynomial hill and exponential
slope could be approximated with a linear gradient. These visual observation encourage
curve-fitting and regression models explorations.

This chapter covers the following areas:

e Probability distribution

e Statistical analysis

e Analysis of variance (ANOVA)

e Correlation analysis

e Time Series analysis

e Confidence intervals of trend coefficients

e Components model

e Curve fitting and regression

e Time-share price curve regression (fitting) for one attribute

e Multiple attribute regression with neural networks
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5.2.  Probability Distribution

In probability theory, a probability density function (pdf), or the density of a random

variable, is a function that describes the relative likelihood of this random variable taking a
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given value. The share price is suggested to have a normal distribution, as shown in Figure

5-3 and Appendix C: Table 5.
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FIGURE 5-3 BARCLAYS PLC PROBABILITY DISTRIBUTION FUNCTION
The pdf is derived from the BARC.L histogram with fifty and hundred bin ranges. Bin
ranges define the data frequencies or the number of data samples within the sub-range
(bin). For example, for a bin of 100, the entire data range from 249.0 to 333.85 is divided

into 100 sub-ranges, with the first from 249.0 to 249.8485.

The more precise the bin is in relation to the dataset size (in this case 284 samples), the
closer the chart would be to the actual distribution (see Figure 5-3). Scaling is required for
a bin of fifty sub-ranges, and the scaling coefficient is 0.5 which reflects the number of

sub-ranges. The probability is calculated by dividing the frequency by the size of the
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dataset. The bin acts like a frequency filter, although it still generally shows the nature of

the distribution.

5.3.  Statistical Analysis

Summary descriptive statistics help to understand the nature of a dataset, with measures

such as central tendency and dispersion of the data.

The purpose of taking a random sample from a population such as share prices and
computing these statistics is to approximate the mean of the population. How well the

sample statistics estimates the underlying population values is always an issue.

A confidence interval provides a range of values, which is likely to contain the parameter
of interest for the population. Confidence intervals are constructed at a confidence level,
such as 95 %, selected by the user. This means that, if the same population is sampled on
numerous occasions and interval estimates are made on each occasion, the resulting
intervals would bracket the true population parameter in approximately 95 % of cases.
Confidence stated at the /—a level can be thought of as the inverse of a significance level,
o. A confidence interval is a range of values that is likely to contain an unknown
population parameter most frequently to bind the mean, with a range of values so defined
that there is a specified probability that the value of a parameter lies within it. If a random
sample is drawn many times, a certain percentage of the confidence intervals will contain

the population mean. This percentage is the confidence level (95.%).

The kurtosis characteristic represents the relative peakedness or flatness of a distribution
compared with the normal distribution. Positive kurtosis indicates a relatively peaked

distribution. Negative kurtosis indicates a relatively flat distribution.

Skewness indicates the degree of asymmetry of a distribution around its mean. Positive

skewness indicates a distribution with an asymmetric tail extending toward
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values that are more positive. Negative skewness indicates a distribution with an

asymmetric tail extending toward values that are more negative.

BARC.L descriptive statistics of the closing price over the long term from 01/01/2013 to

31/01/2014 are shown in Table 5-1.

TABLE 5-1 DESCRIPTIVE STATISTICS OF BARCLAYS PLC SHARE PRICE

Mean 288.641
Standard Error 1.160 Standard Deviation/Count
Median 288.650 The number in the middle of a set of numbers.

The most frequently occurring, or repetitive, value in an
Mode 287.200

array or range of data.
Standard Deviation 19.550 SQRT(VAR)
Sample Variance (VAR) | 382.219 > (x-x)°

(m 1)

Characteristic representing the relative flatness of a
Kurtosis -0.681

distribution compared with the normal distribution.

Characteristic indicating the degree of asymmetry of a
Skewness -0.004

distribution around its mean.
Range 84.850 Maximum minus Minimum
Minimum 249.000 Minimum value
Maximum 333.850 Maximum value
Samples 284 Number of samples in the set
Confidence Level (0.95,

2.274
95%) Value used to construct a confidence interval for a
Confidence Level population mean.
1.908

(90.0%)
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A kurtosis of -0.681 indicates a relatively flat distribution. As can be seen from the pdf, the
maximum is 0.0317 and this is quite symmetrical with a skewness of -0.004 slightly to the
negative (left side) of the mean of 288.650. Furthermore, the median and the mean are
almost the same, with the mode close as well. All of these indicate a relatively

deterministic process.

The mean is in the centre of the range + 2.274 (2.2% of the range); for example, the share
price mean of 288.641 is at the centre of the range 288.641 + 2.274, which is the range of
population means. Before running any statistical test, the alpha level has to be determined
first, which is also called the “significance level” or the probability of making a wrong
decision. The traditionally common 95% confidence interval of 2.274 is not much different
from 1.908, which is the 90% interval, which relaxes the experimental accuracy.
Interestingly the 99% confidence interval of 2.988 is a significant accuracy expectation
although quite close to the traditional and relaxed intervals. This all reassures us of the

investigation's statistical providence.

Short-term dataset analysis is used to determine if there are differences from the long-term
dataset. Data from a period of three weeks (15 days) are analysed, as is intended for use in

modelling a dataset time-window.

Appendix C: Table 4 shows the BARC.L share price from 13/01/2014 to 31/01/2014 with

the descriptive statistics in Appendix D: Table 1

Appendix C: Table 7 shows the BARC.L share price from 23/12/2013 to 10/01/2014 with

the descriptive statistics in Appendix D: Table 2.

Both 15-day datasets are quite similar statistically but differ significantly from the long-
term standard deviation, particularly in the case of ~7.5 versus 19.5 and in the confidence
level range of ~18% versus 2.7%. Short periods have a more deterministic nature with less

wide distribution and confidence level/range percentage. This gives a case for the
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selection of the short- term time-window of 10-15 days for the modelling of short-term
trading. Table 5-2 shows the comparative statistics for the BARC.L share prices over short

and long periods.

TABLE 5-2 BARCLAYS SHORT AND LONG PERIODS COMPARATIVE STATISTICS

13/01/2014-  23/12/2013-  1/1/2013-

short short long

Mean 273.29 281.12 288.641

Standard Error 1.83 2.23 1.160

Median 271.95 278.9 288.65

Mode 265.45 #N/A 287.20

Standard Deviation 7.09 8.65 19.50
Sample Variance 50.37 74.90 382.219
Kurtosis -1.17 -1.23 -0.681

Skewness 0.43 0.41 -0.004

Range 20.05 27.15 84.850

Minimum 264.35 269.35 249.00

Maximum 284.4 296.5 333.80

Count 15 15 284

Largest 284.4 296.5 333.85

Smallest 264.35 269.35 249.00

Confidence Level/Range 0.19 0.17 0.027
Confidence Level(95.0%) 3.93 4.79 2.274

5.4. Analysis of Variance (ANOVA)

In experiments, some differences are expected among the different samples for better
model training. ANOVA is a simple analysis of variance on data for two or more samples.

The analysis provides a test of the hypothesis that each sample is drawn from the same
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underlying probability distribution against the alternative hypothesis that the underlying
probability distributions are not the same for all samples. ANOVA compares the statistical
differences among two datasets checking for the variation in the datasets via comparing the
amount of variation between datasets with the amount of variation within datasets. It
calculates the F-ratio, which is used to obtain the probability P-value. A significant P-
value (usually taken as P>0.05) suggests that datasets are significantly different, allowing
the null hypothesis to be rejected. The null hypothesis is that the samples are statistically

the same (for example, all population means are equal).

The F ratio separates the variation in the datasets into two parts, between-datasets and
within-dataset, called the sums of squares. The between-dataset variation MSg (or between
sums of squares BSS) is calculated by comparing the mean of each dataset with the overall
mean of the data. The within-group variation MSy, (or within sums of squares WSS) is the

variation of each observation from its dataset mean. The F ratio is:

__ MsSgp
MSy *

(5-1)

If the average difference between groups is similar to that within groups, the F ratio is
approximately one. As the average difference between groups becomes greater than that
within groups, the F ratio becomes larger than 1. To obtain a P-value, the F ratio can be

tested against the F' distribution of a random variable with the degrees of freedom

associated with the numerator and denominator of the ratio.

If the P-value is less than the supplied alpha and the obtained F-value is greater than the
critical /" value, this implies that the null hypothesis (of statistically the same samples

datasets) should be rejected.

Examples of BARC.L share prices for two fifteen days periods(13/1/2014 and 9/1/2014 are

shown in Appendix C: Table 8. A summary of the ANOVA results is shown in Table 5-3.
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TABLE 5-3 ANOVA RESULTS SUMMARY BETWEEN AND WITHIN GROUPS

Groups Count Sum Average Variance
Column 1 15 4216.9 281.12 74.9003
Column 2 15 4237.35 282.49 66.1579
ANOVA
Source of Variation SS df MS P-value F crit
Between Groups  13.94 1 13.94 0.1976 0.6600 4.1959
Within Groups 1974.81 28 70.52
Total 1988.75 29

Since P(0.66)>alpha(0.05) and F(0.19)<F-critical, the null hypothesis that the datasets are

statistically the same is accepted.

Examples of BARC.L share prices for two fifteen days periods from 13/1/2014 and

20/12/2013 are shown in Appendix C: Table 9. A summary of the ANOVA results

between and within the groups is shown in Appendix C: Table 11.

TABLE 5-4 ANOVA SIXTEEN DAYS STARTING DATE SHIFT 13/01/2014 AND 20/12/2013

ANOVA SUMMARY
Groups Count Sum Average Variance

Column 1 15 4216.9 281.1267 74.90031
Column 2 15 4075.55 271.7033 53.28088
ANOVA
Source of variation SS df MS F P-value F crit
Between Groups ~ 665.9940833 1 665.9941 10.39145 0.003208 4.195971707
Within Groups 1794.536667 28 64.0906
Total 2460.53075 29
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Since P(0.003)<alpha(0.05) and F(10.39)>F-critical, the null hypothesis that the datasets

are statistically the same is rejected.

Tests for datasets with different starting dates show that statistically independent samples
must not overlap. To reject the null hypothesis that the datasets are statistically the same,
there should be sixteen day's difference between the starting date of the two dataset

samples; see row day=16. More similar results allow the hypothesis for the same datasets

to be accepted. The results are summarized in Table 5-5 below.

TABLE 5-5 TESTS FOR STATISTICAL INDEPENDENCE FOR DIFFERENT STARTING DATES

Day

13

14

15

16

Average-1 Average-2 VAR-1 VAR-2 P>alpha alpha F<F-critical F-critical
281.13 281.13 74.9 74.9 0.99 0.05 1.20E-14 4.19
281.13 281.87 74.9 69.4 0.81 0.05 0.05 4.19
281.13 282.49 74.9 66.1 0.66 0.05 0.19 4.19
281.13 275.12 74.9 65.29 0.059 0.05 3.86 4.19
281.13 275.12 74.9 65.29 0.059 0.05 3.86 4.19
281.13 273.3 74.9 50.3 0.011 0.05 7.34 4.19
281.13 271.7 74.9 53.2 0.003 0.05 10.39 4.19

Result
accept
accept
accept
accept
accept
reject

reject

5.5. Correlation Analysis

Working with a multivariable problem requires an assessment of the correlation
coefficients between variables before conducting any modelling. In the case of share
prices, the variables considered are opening, highest, lowest and closing share prices. This
reduces the dimensionality of the analysis and avoids using highly correlated (or linear)
independent variables, which can produce poor results. A correlation coefficient such as
the Pearson product-moment correlation coefficient is a measure of the extent to which two
measurement variables "vary together". The correlation coefficient is scaled so that its
value is independent of the units in which the two measurement variables are expressed.

For example, if the two variables are opening and closing share prices, the value of the
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correlation coefficient is unchanged if the closing price is converted from pence into
pounds. Figure 5-4 shows the scatter plot for Open, High and Low ranks to Close. The
value of any correlation coefficient must be between -1 and +1, and a correlation analysis
can examine each pair of variables to determine whether they tend to move together, so
that large values of one variable tend to be associated with large values of the other
(positive correlation), or if small values of one variable tend to be associated with large
values of the other (negative correlation), or if values of the two variables tend to be
unrelated with a correlation near to zero. The BARC.L two trading weeks dataset from
01/01/2013 to 14/01/2013 is shown in Appendix C: Table 10.

The correlation coefficient between opening and closing prices shows a very high positive
correlation of 0.976725 in the fourth row of the first column, which means that these
variables move together. Overall, the high positive correlations of approximately 0.98
between the Open, High, Low and Close share prices allows the number of independent
variables to be reduced and to use just one, such as the closing share price. Open, High and
Low share prices are positively correlated and in a regression analysis, for example, they
should be excluded from the curve-fitting. The Pearson product-moment correlation matrix

1s shown in Table 5-6.

TABLE 5-6 CORRELATION MATRIX PEARSON PRODUCT-MOMENT

Open High Low Close
Open 1
High 0.98455263 1
Low 0.97800967 0.972681403 1
Close 0.976725 0.986709797 0.980223731 1

An alternative method is the Spearman rank correlation. The Spearman correlation
coefficients between two variables will be high when observations have a similar rank, or

identical for a correlation of 1. The ranks indicate relative positions of the observations
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within the data for the strength of relationships between the two variables, and a
correlation is low when observations have a dissimilar (or fully opposed for a correlation
of -1) rank between the two variables. The Spearman coefficient is given by the following

formula (Bourg, 2006):

6y d?
N(N2-1)

r=1- (5-2)

where d is the difference between the ranks in corresponding values for both variables and
N is the number of data points.

TABLE 5-7 SPEARMAN RANK COEFFICIENTS

Share Prices Rank
Open High Low Close Close  Open  High Low
2624 262.4 2624 262.4 257 256 261 243
272,85 277,08 269.6 275.6 207 216 212 213
274,65 27885 27283 276 206 210 206 200
215 278.50 273.5 276.7 205 208 208 158
281 28846 276,04 281.2 143 153 166 130
2356 29543 232.5 281.2 143 166 134 158
289 298.15 238.8 294.75 114 139 119 116

For example, in Table 5-7 the rank of the first row Open 262.4 has the rank 256.

TABLE 5-8 SPEARMAN RANK CORRELATION COEFFICIENTS

Open High Low Close
Open 1 0.98386 0.9751  0.975163
High 0.98386 1 0.969012  0.984064
Low 0.9751 0.969012 1 0.977824
Close 0.975163 0.984004  0.977824 1

The scatter plot for Open, High and Low ranks to Close is shown in Figure 5-4.
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FIGURE 5-4 SCATTERED PLOT OPEN, HIGH AND LOW RANKS TO CLOSE

The scatter plot and Spearman correlation coefficients for closing and opening prices show
a linear relationship between the variables. For example, the coefficient for closing and
opening prices is 0.975163, in row one, column four of Table 5-8. The conclusion from the
Pearson and Spearman correlation results is to use one variable such as Close share price.
Open, High and Low share prices as shown in Table 5-6 and Table 5-8 are correlated and

in the regression analysis they should be excluded from curve fitting.

To train the model, a dataset has to be constructed selecting datasets from the population
where the columns are the datasets commencing from the date on the top in ascending
order. For example in Appendix C: Table 11, the first column shows the dataset starting
from 13/01/2014 to 31/01/2014 the bottom values. There is an overlap in the first six

columns, which is highlighted.
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A correlation matrix for 13" January is shown in Table 5-9.

TABLE 5-9 CORRELATION MATRIX FOR 13 JANUARY

10-Jan 9-Jan 8-Jan 26-Dec 24-Dec 20-Dec 18-Nov

13-Jan 0.88 0.75 0.55 -0.82 -0.85 -0.80 -0.93

This correlation matrix indicates positive correlations of 0.88, 0.75 and 0.55 between dates
close to each other (10", 9™ and 8™ J anuary) and negative correlations with further away
samples of -0.82, -0.85, -0.80 and -0.93 (26th, 24th, 20" December and 18™ November).
The scatter plot of the samples confirms that data for the dates closer to each other have a

declining slope moving together and the further away dates have generally a positive slope.
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FIGURE 5-5 SHARE PRICE CHART OF THE CORRELATION DATASET SERIES

It is constructive to generate uncorrelated samples for the model by random value selection
from the whole dataset, as shown in Appendix C: Table 12. The randomly assembled

dataset samples look uncorrelated in the scatter plot shown in Figure 5-6. Uncorrelated
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Price in pence

samples add robustness and predictive capability to the derived model and could be further

investigated with Monte Carlo, ANN, regression and curve-fitting.
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5.6. Time Series Analysis

Time series analysis can be used to study applications for stock market prediction, and it
includes the pre- and post-processing of data, visualizing results, and making forecasts.
Fourier analysis allows time series data to be transformed into the frequency domain, and

back again, for further analysis.

The most common visualization of a time series display of continuous data over time is a
line chart with markers, set against a timescale. This is ideal for showing trends in data at
equal intervals. The data is distributed evenly along the horizontal axis (time), and all value
data (share price) is distributed evenly along the vertical axis and displayed with markers

to indicate individual data values as in Figure 5-7. Line charts are useful to show trends
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over time or ordered categories, especially when there are many data points and the order

in which they are presented is important.
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FIGURE 5-7 BARCLAYS PLC SHARES CLOSING PRICE IN PENCE

There are many different trends in such data, although a common type of representation in
financial analysis is a linear trend line. To add a trend to a chart, first the type of regression
to be used should be chosen, such as linear, logarithmic, polynomial, power, exponential,

or moving averages. The type of data determines the type of trend line to be used.

A linear trend line usually shows that something is increasing or decreasing at a steady
rate, and is used with simple linear datasets, as in:

y=mx+b (5-3)
where m is the slope and b is the intercept.

A logarithmic trend line is a best-fit-curved line that is most useful when the rate of change

in the data increases or decreases quickly and then levels out, as in:
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y=cln(x)+b (5-4)

where ¢ and b are constants, and In is the natural logarithm function.

A polynomial trend line is a curved line that is used when data fluctuates. It is useful, for
example, for analysing gains and losses in a large dataset. The order of the polynomial can
be determined by the number of fluctuations in the data or by how many bends hills and
valleys appear in the curve. An order 2 polynomial trend line generally has only one hill or
valley. An order 3 line generally has one or two hills or valleys, and order 4 generally has
up to three:

y=b+cix+ c3x% + c3x3 + -+ cex® (5-5)

where b and ¢; are constants.

A power trend line is a curved line that is best used with datasets that compare
measurements that increase at a specific rate;
— yb
Yy =cx (5-6)

where ¢ and b are constants.

An exponential trend line is a curved line that is most useful when data values rise or fall at
increasingly higher rates.
— bx
y =ce (5-7)

where ¢ and b are constants, and e is the base of the natural logarithm.

A moving average trend line smoothes out fluctuations in data to show a pattern or trend
more clearly. A specific number of data points is averaged, and the average value is used
as a point in the trend line. If the period is set to 2, for example, then the average of the
first two data points is used as the first point in the moving average trend line. The average

of the second and third data points is used as the second point in the trend line, and so on:

ArtAr_ 1+ +Ar—n+1
F = = (5-8)
N
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Price in pence

The moving average is thus a sequence of averages computed from parts of a data series.
The number of points in a moving averages trend line equals the total number of points in

the series less the number that is specified for the period.

To give data closer to the forecast priority over that which is further away, weighted
moving averages can be used:

Vo = Yy + (1008, (5-9)
where Y, is the smoothed value, S,, is the actual share value and,x is a damping

(smoothing) factor.
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FIGURE 5-8 BARCLAYS PLC SHARE PRICE WITH SMOOTHING AND MOVING AVERAGES

Some smoothing of data could be useful for removing randomness (noise) in a time
series, and so some trade-offs have to be accepted to distinguish between information and

noise, and to define the level of zooming in the data required.

Figure 5-9 shows examples of share price time series data for 15-days commencing on 13-

Jan (Series 1), 17-Dec (Series 2), 15-Nov (Series 3), 22-Oct (Series 4), 5-Aug (Series 5),
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and 27-Sep (Series 6). A common feature is a slope with about one or two hills or valleys

indicating a polynomial of the second order.
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The coefficient of determination R° measures how well the model fits the data; that is, how

the observed outcomes are replicated by the model based on the proportion of total

variation in outcomes explained by the model. In general, a model fits the data well if the

differences between the observed values and the model's predicted values are small and

unbiased. How well the model equation describes the data (the 'fit'), is expressed as a

correlation coefficient, R’ (R-squared). The closer R’is to 1.00, the better is the fit.

If p is the mean of the observed data then:
1
H= ;Z?ﬂ Yi
The total sum of squares is proportional to the variance of the data:

SStor = i(yi — #)2

The sum of squares of residuals is also called the residual sum of squares:
SSres = 2ivi — f)? = L&’

R2 — 1 _ SSres
SStot
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where y; is the observed data and f; is the model data.

Usually, financial time series are complex combinations of trend lines, harmonics
frequencies and random components. The first step in the discrimination of the
components would be to identify trends in the time series. Trend lines are used to
graphically display trends in data and to help analyse problems of prediction, and such
analysis is named regression analysis. By using regression analysis, a trend line in a chart
can be extended beyond the actual data to predict future values. Furthermore, removing it
from the time series for further analysis is referred to as data centralization and is

recommended before applying further stochastic analysis and eventual modelling such as

with an ANN.
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FIGURE 5-10 MOVING AVERAGES, LINEAR TREND LINES

TABLE 5-10 R’ FOR DIFFERENT TYPE OF TREND LINES

Linear  Exp. Log Power Poly-2 Mov-2

R® 0.8228 0.8234 0.7705 0.7689 0.8681 0.9496

A special case is the trend with an ANN. A two-layered ANN is tried, as shown in Figure
5-11, where S/ is the output of the first layer and S2 is the output of the second layer. The

results are shown in Appendix C: Table 13.
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FIGURE 5-11 TWO-LAYER ANN

The coefficients of the first (hidden) layer are K=-0.1 and »=0.25. The output layer
coefficients are k2=4 and b=-2, which were obtained via manual tuning.

k1 -0.1 k2 4

bl 025 b2 -2
The graphs shown in Figure 5-12 indicates almost linear trends for both the first and
second ANN layers with fitness values of R2=0.832361 and 0832393 respectively, which

are close to the exponential (0.8234) and linear (0.8228) trends.
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FIGURE 5-12 ANN FIRST AND SECOND LAYERS

Removing the bias or trend from a time series is generally required before processing the

data using forecasting methods. The standard approach is to subtract the trend of the data
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from each data item. Examples are shown in Appendix C: Table 14 for the BARC.L share

prices from 13/01/2014 to 31/01/2014 and in Figure 5-13 and Figure 5-14.
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5.7. Confidence Intervals of Trend Coefficients

Confidence intervals for trend coefficients can be used to estimate the robustness of a
model by calculating the boundary range of the trend approximation function coefficients
and calculating the percentage of the range of the last value. Generally, the longer the

range then the distribution and eventual forecasting error are wider.
The algorithm’s operation can be summarized as follows,

1. Find the coefficients of the modelling function Y=f(X), such as a polynomial
Y=p(X) of degree n that fits the data.

2. (nlinfif) Estimate coefficients for the non-linear regression of the responses in Y on
the predictors in X using the model specified by a modelling function Y=f(X).

3. (nlparci) Calculate the 95% confidence intervals (ci) for the non-linear least
squares parameter estimates beta. Before calling nilparci, use nlinfitto to fit a non-
linear regression model and get the coefficient estimates beta, residuals resid, and

estimated coefficient covariance matrix (sigma).

The algorithm functions are defined as follows.
polyfit
p = pobfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the data,
p(x(i)) to y(i), in a least squares sense. The result, p, is a row vector of length n+/
containing the polynomial coefficients in descending powers:

p(X) = p1x™ + p2x" 7+ -+ PuX + P (5-14)
nlinfit
beta = nlinfit(X,Y,modelfun, beta() returns a vector of estimated coefficients for the non-
linear regression of the responses in Y on the predictors in X using the model specified by
the modelling function. The coefficients are estimated using iterative least squares

estimation, with initial values specified by beta0.

nlparci
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ci = nlparci(beta,resid, 'covar’,sigma) returns the 95% confidence intervals ci for the non-
linear least squares parameter estimates (beta). Before calling niparci, nlinfitis is used to fit
a non-linear regression model and to derive the coefficient estimates (beta), residuals

(resid), and estimated coefficient covariance matrix (sigma).

The following examples illustrate the action of the algorithm:

5.7.1 The last (most recent) 15 samples trend with coefficients confidence level

The trend function is Price=At+B

A=-1.50 is in the range of [-2.03 to -0.97] at the 95% confidence level.

B=292.53 is in the range of [287.88 to 297.19] at the 95% confidence level.

The last trend price of 270.03 confidence level in the range [257.45 to 282.61] is 9.32%.

The last trend residual is 2.47 (0.91%).

5.7.2 All samples trend with coefficients confidence level

The trend function is Price=At+B

A=-0.15 is in the range of [-0.17 to -0.13] at the 95% confidence level
B=310.24 is in the range of [306.70 to 313.77] at the 95% confidence level
The last trend price 267.20 confidence level range [257.55 276.84] is 7.22%

The last trend residual is 5.30 (1.95%).

340

Price
330 - = Trend

Min Trend Boundary
320 —GE— Max Trend Boundary

3107y
300

290

Price

280

B o B l e

260 | U

250

270

240 1 1 1 1 1 1
0 50 100 150 200 250 300
time

FIGURE 5-15 MINIMUM AND MAXIMUM LINEAR TREND BOUNDARIES OF THE 284 SAMPLES
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5.8. Components Model

A time series could be composed of several components: long term trend (L7T), short-term
trend (S77), cyclical (CYCL) and irregular (/RR) components (Bourg, 2006) . There is a
seasonal (SEA) component that could be considered as well, although in the banking sector
this is not very obvious and generally could be covered by a cyclical component:

S =LTT + STT + CYCL + IRR + SEA (5-15)
The first step would be to find the long-term trend (L77), such as a linear trend over a
period one-year long. The "Linear" column is the linear trend calculated for this point and
"Centred" is the difference between the actual share price and the linear trend values. The
fitness R=0.4053 is not very high, as is apparent from the plot. This value of " Centred"
will be the input to the second level of de-trending in a short period of fifteen days or three

weeks.

Linear=-0.1516t + 310.24

R?=10.4053
An example of a centred (Centered = Close-Linear) long term BARC.L share prices dataset
is shown in Appendix C: Table 15 for one year from 01/01/2013 to 31/01/2014 and the

original and centred graphs are shown in Figure 5-17 and Figure 5-18.
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FIGURE 5-18 CENTRED SHARE PRICES LONG-TERM TIME SERIES

The second component, short term trend (S77), for fifteen days is de-trending the output of

the long-term trending (L77), and there is a much better fitness, of R?= 0.6813
Linear = -1.3485¢ + 23.073 (5-16)
R?>=10.6813 (5-17)
An example of a centred (Centered= Scntr - Linear) ) short- term BARC.L share price

dataset is shown in Appendix C: Table 15 for two weeks from 10/01/2014 to 29/01/2014,

and the original and centred graphs in Figure 5-19 and Figure 5-20.
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FIGURE 5-20 CENTRED SHORT TERM 15 DAYS SHARE PRICES
The third component, cyclic (CYCL), is assumed to be the sum of the frequencies Fi, F2
and F3 and is used to approximate the S-centred short-term time series. Three sinusoidal
frequencies are considered. To find the amplitude (A4), period (7) and phase (P) of each
frequency, the centred series is manually analysed. For example, the period of the first
frequency F'/ is about 10 days long, its amplitude is 7 and shift (phase) is about -1. The

values are found manually by changing variables and checking the error.
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An example of a centred cyclic short term BARC.L share prices dataset is shown in
Appendix C: Table 17 for two weeks from 10/01/2014 to 31/01/2014 and the original and
centred graphs are shown in Figure 5-23 and Figure 5-21, Figure 5-22 and Figure 5-24.
The three harmonics parameters using the EXCEL solver tool and further manual tuning
(amplitude, period and phase) are shown in Table 5-11.

TABLE 5-11 HARMONICS PARAMETERS: AMPLITUDE (A), PERIOD (T) AND PHASE (P)

F1 F2 F3
A 7 6 4
T 10 12 6
P -1 -8 -1

£
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FIGURE 5-21 CENTRED WITH THE FIRST AND THE SECOND HARMONICS
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FIGURE 5-22 CENTRED WITH THE THIRD HARMONIC AND CYCL (ALL HARMONICS)
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The composite approximation combining long and short linear trend and all three cyclic
CYCL harmonics is quite good, with a value of R”=0.93 which is particularly close to the

forecasting point at the end of the period.
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FIGURE 5-23 COMPOSITE APPROXIMATION AND ACTUAL SHARE TIME SERIES CHART
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FIGURE 5-24 CENTRED WITH COMPOSITE CY CL APPROXIMATION

There is a commonly accepted belief that prices on Monday and Friday are low with a peak
on Wednesday. To check this hypothesis for weekly variation in the time series, as to
whether or not there is a weekly pattern in Monday, Tuesday, Wednesday, Thursday and
Friday between weeks, the weekly (seasonal) indices should be computed. Finding the

average-percentage is a commonly used method. The testing dataset consists of weekly
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time series for weeks beginning on 06/01/2014, 13/01/2014, 20/01/2014, 27/01/2014 as

shown in Table 5-12 and Figure 5-25.

Price in pence

TABLE 5-12 DATASET FOR FOUR WEEKLY PATTERN TIME SERIES

06/01/2014 13/01/2014 20/01/2014 27/01/2014
Mon 277.5 291.7 282.8 269.35
Tue  280.95 291.75 280.6 2733
Wed 283.7 296.5 278.2 274.95
Thu 284.4 290.45 278.9 275.05
Fri 283.6 288.6 272.25 272.5
Weekly Average 282.03 291.8 278.55 273.03
30 el 01/06/2014
—@-13/01/2014
295 /‘\ —@—20/01/2014
o &>
i 6] _ (//_A”"_\.
- / Qo Q.
275 O O .
0 O5.e
27 O

-

L

Time in days
FIGURE 5-25 WEEKLY PATTERN TIME SERIES CHARTS

The horizontal axis shows weekdays 1-Mon, 2-Tue, 3-Wed, 4-Thu and 5-Fri. and there is

no obvious pattern.

In the seasonal average-percentage method, for weekdays, the average percentage indices

are calculated by dividing the day value by the average for the week, as shown in Table

5-13, and the value for Monday 6/01/2014 is 277.5. The index is 277.5/282.03 = 0.9839.

The weekly seasonal indices for the five week days are shown in Table 5-14 and the graphs

in Figure 5-26.
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The diagram of the weekday indices shows some weekly patterns confirming the

TABLE 5-13 AVERAGE-PERCENTAGE INDEXES

Mon

Tue

Wed

Thu

Fri

06/01/2014

0.9839

0.9962

1.0059

1.0084

1.0056

13/01/2014 20/01/2014 27/01/2014

0.9997

0.9998

1.0161

0.9954

0.9890

1.0153

1.0074

0.9987

1.0013

0.9774

0.9865

1.0010

1.0070

1.0074

0.9981

suggestion that there is a peak in midweek, the so-called “hump day”.

]

(]
o

[=
= 0.9850

0.9900

S 1 2 3 4 5

Time in days
FIGURE 5-26 WEEKDAY INDICES
TABLE 5-14 WEEKLY SEASONAL INDICES
06/01/2014 13/01/2014 20/01/2014 27/01/2014 Index-2  Index-3 Index-4

Mon 0.9839 0.9997 1.0153 0.9865 1.0009 1.0005  0.9963
Tue 0.9962 0.9998 1.0074 1.0010 1.0042 1.0027  1.0011
Wed 1.0059 1.0161 0.9987 1.0070 1.0029 1.0073 1.0070
Thu 1.0084 0.9954 1.0013 1.0074 1.0043 1.0013 1.0031
Fri 1.0056 0.9890 0.9774 0.9981 0.9877 0.9882  0.9925
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The seasonal weekday’s index is the average of the corresponding weekdays indices for
one, two, three and four weeks. For example, Index-3 for Mondays is the average of
Monday indices for the weeks 13/01/2014, 20/01/2014, 27/01/2014. The average index is
the generalized average of these indices. In conclusion, there is some pattern in the weekly

prices but this in fact is negligible and can be ignored.

5.9.  Curve Fitting and Regression

A common approach when analysing data is to fit a curve through the data. This is the
process of trying to find a curve which represents a model equation best representing the
sample of data; or, more specifically, the relationship between independent and dependent
variables in the dataset. When the results of the curve-fitting are to be used for making new
predictions of values of a dependent variable, this process is called regression, which can
be used to fit the curve to interpolate a set of data. Curve-fitting can be used to predict
parameters of some known model (formula) given a set of observed data. The fitting could
be linear or non-linear. To measure the degree of fit, R2 is used as the coefficient of
determination, which is a number that indicates the proportion of the variance in the
dependent variable that could be predicted by the independent variable. The value of R-
squared is a measure of the goodness of fit of the trend line to the data and a value of 1 is a
perfect fit. Linear curve-fitting generally superimposes a trend line over the dataset.
Multiple regression is used when the dependent variable is affected by more than one

independent variable.

Neural networks include a large class of different architectures. In many cases, the issue is
to approximate a static non-linear, mapping f (x) with a neural network ANN(x). The most
common neural network used in function approximation is the Multilayer Layer Perceptron
(MLP). An MLP consists of an input layer, several hidden layers, and an output layer. A
node i, also called a neuron, in an MLP network includes a summer and a non-linear
activation function.
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FIGURE 5-27 MLP ARCHITECTURE

The inputs ‘x’ to the neuron are multiplied by weights ‘w’ and summed together with the
constant ‘bias’ term. The result is the input to the activation function ‘g’. The activation
function as a sigmoid function (or tanh) is most commonly used in simulating human brain

neuron activation.

1-e™*

1+e*

tanh(x) = vi = gi = g wix; + 6)) (5-18)
An MLP network is formed by connecting several nodes in parallel and series. A

multilayer perceptron network with one hidden layer is shown in Figure 5-28. The same

activation function g is used in both layers.

Input layer Hidden layer Cutput layer

FIGURE 5-28 MLP ONE HIDDEN LAYER ARCHITECTURE

The output of the MLP network is:
Vi = 9(2?:1 szig(njl) + 9]'2) = 9(2?=1szi9(211§=1 Wlijxk + 9]'1) + 9]'2) (5'19)
It can be concluded that an MLP network is a non-linear parameterized map from input to

output spaces. The parameters are the weights and the biases. Activation functions are

113



usually assumed to be the same in each layer and are known in advance. In the example in
Figure 5-28 the same activation function is used in all layers. Given input-output data,
finding the best MLP network is formulated as a data-fitting problem, where the

parameters to be determined are the weights and biases.

First, the designer has to determine the structure of the MLP network architecture in terms
of the number of hidden layers and neurons (nodes) in each layer. The activation functions
for each layer are also chosen at this stage; that is, they are assumed to be known. The

unknown parameters to be estimated are the weights and biases.

Many algorithms exist for determining network parameters. In the neural network
literature, these algorithms are called learning or teaching algorithms, whereas in system
identification studies they are termed parameter estimation algorithms. The most well-
known are the back-propagation and Levenberg-Marquardt algorithms. Back-propagation

is a gradient-based algorithm, which has many variants.

The procedure for teaching algorithms for multilayer perceptron networks can be
summarized as follows:
a. The structure of the network 1is first defined. In the network, activation functions
are chosen and the network parameters, weights and biases, are initialized.
b. The parameters associated with the training algorithm such as error goal, and
maximum number of epochs (iterations), are defined.
c. The training algorithm is called.
d. After the neural network has been determined, the results are first tested by
simulating the output of the neural network with the measured input data. The
outcomes are compared with the measured outputs. Final validation must be carried

out with independent data.

The MATLAB commands used in the procedure are newff, train and sim. The MATLAB

command newff generates an MLPN neural network, which is called the net. The default
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algorithm for the command newff'is Levenberg-Marquardt (More, 1978), trainim. Default
parameter values for the algorithms are assumed and hidden from the user. They need not
be adjusted in the first trials. Initial values of the parameters are automatically generated by
the command. It should be noted that their generation is random, and therefore the answer
might be different if the algorithm is repeated. After initializing the network, network
training is initiated using the #rain command. To test how well the resulting trained MLP
net approximates the data, the sim command is applied. The trained model is then used on

a new test dataset with the sim.

5.10. One Attribute Regression with Neural Networks

The ANN for time-share price curve-fitting models the relationship between time and
price; that is, the dependent variable of price and the independent variable of time. The
ANN models fits time-price data to the training curve and then applies it to new samples.
First the model is trained with a dataset of fourteen consecutive samples from day 265
(06/01/2014) to day 278 (23/01/2014) of price and time data and it is then tested with a
dataset from day 270 (13/01/2014) to day 283 (30/01/2014). There is an overlap between
the datasets from day 270 (11/01/2014) to day 278 (23/01/2014) and the actual forecasting
of five new samples to the model from day 279 (24/01/2014) to day 283 (30/01/2014). The
new forecast values are compared with the actual values in the period outside the training

dataset.

5.10.1 Perceptron

The perceptron model architecture with one attribute and one hidden layer is shown in
Figure 5-29 and the perceptron algorithm in Figure 5-30. The working dataset with training
and testing subsets is given in Appendix C: Table 18. The graphs for the training and

testing in Figure 5-31.
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Hidden Layer Qutput Layer

FIGURE 5-29 PERCEPTRON ARCHITECTURE ONE ATTRIBUTE AND ONE HIDDEN LAYER

Algorithms

Data Division; Random (dividerand)
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error (mse)
Derivative;  Default (defaultderiv)

FIGURE 5-30 PERCEPTRON ALGORITHMS

The following code is used:
net = newff(input_training set,output_training set,[1]);
net.layers{1}.transferFcn="logsig’; % transfer function for the neurons in the Ist
hidden layer is log sigmoid.
net.layers{2}.transferFcn="purelin’; % transfer function for the neurons in the
output layer is linear
net = train(net,input_training set,output training set); % train the network with
the training samples.
Y testing = sim(net,input_testing set); % compute the output of the trained
network

The MATLAB command for the ANN training is

net = train(net,input_training set,output training set); % train the network with the

training samples.
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The MATLAB comand for the testing is ime in days
Y testing = sim(net,input_testing set); % compute the testing output of the trained
network

Testing Perceptron index= 270 Log= 14 R2= 0 68621
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FIGURE 5-31 TRAINING AND TESTING WITH PERCEPTRON

The performance graph for the training of the model are shown in Figure 5-32.

Best Validation Performance is 4.5855 at epoch 2
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FIGURE 5-32 PERFORMANCE GRAPH PERCEPTRON
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The testing and training performance (R”) with the perceptron model are not very good at
0.41 and 0.68 respectively in terms of graphs matching.

5.10.2 MLPN

For an MLPN model with one attribute and 10 neurons in the first hidden layer and 5 in the

second layer, as shown in Figure 5-33. The working dataset with training and testing

subsets is given in Appendix C: Table 19.

Neural Network

FIGURE 5-33 MLPN ONE ATTRIBUTE WITH TWO LAYERS [10, 5]

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error (mse)
Derivative: Default (defaultderiv)

FIGURE 5-34 MLPN ALGORITHMS
The following code is used:

net = newff(input_training set,output_training set,[10 5]);
net.layers{1}.transferFcn="logsig'; % transfer function for the neurons in first
hidden layer is log sigmoid.

net.layers{2}.transferFen="logsig'; % transfer function for the neurons in second
hidden layer is log sigmoid.

net.layers{3}.transferFcn="purelin’; % transfer function for the neurons in the
output layer is linear.

net.trainParam.epochs = 40; % set to 40 the number of times the training samples

will be used to train the network
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net = train(net,input_training set,output_training set); % train the network with
the training samples.
% once the training is performed the network can be used to forecast
Y training = sim(net,input_training set); % compute the output of the trained
Y testing = sim(net,input_testing set); % compute the testing output of the trained
network

The training and testing charts are shown in Figure 5-35.

The MATLAB command for the ANN training is:

net = train(net,input_training set,output_training set); % train the network with the

training samples.
Training ANMN 10-5 index= 265 Log= 14 R2= 0.87639
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The MATLAB comand for the testing is:

Y testing = sim(net,input_testing set); % compute the testing output of the trained

network
Testing ANMN 5-2 index= 270 Log= 14 R2= 0 89982
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FIGURE 5-35 MLPN TRAINING AND TESTING CHARTS
The performance graph for the training of the model are shown in Figure 5-36.
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Best Validation Performance is 18.3464 at epoch 28
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FIGURE 5-36 MLPN PERFORMANCE TRAINING

There is a significant improvement in performance (R*) with the perceptron model with

values of 0.41 and 0.68 to MLPN values of 0.87 and 0.89.

5.11. Multiple Attribute Regression with Neural Networks

The ANN for multiple attribute regression models the time series share price data by
transforming a one-dimensional time series of price and time into an m-dimensional model
where price; = f(price;_1,price;_,,..,price;_,,). Here the index is time and w is the

number of attributes, and the composed input dataset has [m, m] dimension price =

price(price,_q,price,_,, ...price,_,,) and uses vector curve-fitting to model

price;fromprice;_,price;_,,..,price;_y,.

An illustrative simple example of how to compile a dataset with four multiple is shown in

Table 5-15, Table 5-16 and Table 5-17.
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TABLE 5-15 SHARE PRICE TIME SERIES FROM 01/01/2013 10 10/01/2013

Time Date Close
1 01/01/2013 262.4
2 02/01/2013 275.6
3 03/01/2013 276
4 04/01/2013 276.7
5 07/01/2013 287.2
6 08/01/2013 287.2
7 09/01/2013 294.75
8 10/01/2013 294.6

The multiple attributes dataset with a window-lag of four is shown in Table 5-16.

TABLE 5-16 FOUR ATTRIBUTES MODEL

Attr. 1 Attr. 2 Attr. 3 Attr. 4 target

P(t-4) P(t-3) P(t-2) P(t-1) P(t)
P1 P2 P3 P4 P5
P2 P3 P4 P5 P6
P3 P4 P5 P6 P7
P4 P5 P6 P7 P8

The actual values are shown in Table 5-17.

TABLE 5-17 SHARE PRICES WITH FOUR ATTRIBUTES
Attr. 1 Attr.2  Attr. 3 Attr. 4 target

P(t-4) P(t-3) P(t-2) Pt-1)  P(Y)

262.4 2756 2760 2767 287.2
275.6 2760 2767 2872 2872
276.0 2767 2872 2872  294.75

276.7  287.2  287.2 29475 294.6

The experimental dataset is for training from 23rd December 2013 to 24th January 2014

and testing from 30th December 2013 to 31st January 2014 as shown in Appendix C:
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Table 20. The transformed multiple attributes training dataset is shown Appendix C: Table

21 and the testing set is shown in Appendix C: Table 22.

5.11.1 Perceptron Model

Experiments are conducted with a perceptron model with multiple attributes, and with one
hidden layer only, as shown in Figure 5-37. The algorithm used in the perceptron is shown

in Figure 5-38.

Neural Network

Hidden Layer
Input
12
\ \
1 1

FIGURE 5-37 PERCEPTRON MODEL MULTIPLE ATTRIBUTES

Algorithms

Data Division; Random (dividerand)
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error (mse)
Derivative:  Default (defaultderiv)

FIGURE 5-38 ALGORITHMS FOR PERCEPTRON MODEL MULTIPLE ATTRIBUTES

The following code is used:
net = newff(input_training set,output_training set,[1]);
net.layers{1}.transferFcn="logsig'; % transfer function for the neurons in the Ist
hidden layer is log sigmoid.
net.layers{2}.transferFcn="purelin’; % transfer function for the neurons in the
output layer is linear
net = train(net,input_training set,output_training set); % train the network with

the training samples.
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Y testing = sim(net,input _testing set); % compute the output of the trained
network
The target and model training and testing graphs are shown in Figure 5-39. The

performance graphs are shown in Figure 5-40.
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FIGURE 5-39 TRAINING AND TESTING PERCEPTRON WITH MULTIPLE ATTRIBUTES
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FIGURE 5-40 PERCEPTRON PERFORMANCE WITH MULTIPLE ATTRIBUTES
The results for training and testing performance are 0.92816 and 0.89035 respectively and
these are better than with one attribute at 0.41 and 0.68. A disadvantage is that the
forecasting requires the previous day’s values and so only one day could be predicted,
although it could be used to produce a forecast with one attribute and to validate it with

multiple attributes.
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5.11.2 MLPN Model
An MLPN model with multiple attributes and two hidden layers (10 neurons in the first

hidden layer and 5 in the second layer), is shown in Figure 5-41. The algorithm used in the

perceptron is shown in Figure 5-42 .

Neural Network

Pl

FIGURE 5-41 MULTIPLE ATTRIBUTES MULTIPLE NEURONS LAYERS [10, 5]

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error (mse)
Derivative: Default (defaultderiv)

FIGURE 5-42 ANN ALGORITHMS

The following code is used:
net = newff(input_training set,output_training set,[10 5]);
net.layers{1}.transferFcn="logsig"; % transfer function for the neurons in first
hidden layer is log sigmoid.
net.layers{2}.transferFcn="logsig'; % transfer function for the neurons in second
hidden layer is log sigmoid.
net.layers{3}.transferFcn="purelin’; % transfer function for the neurons in the
output layer is linear.
net.trainParam.epochs = 40; % set to 40 the number of times the training samples
will be used to train the network
net = train(net,input_training set,output training set); % train the network with

the training samples.
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Y training = sim(net,input_training set); % compute the output of the trained
network
% once the training is performed the network can be used to forecast
Y testing = sim(net,input_testing set); % compute the output of the trained
network

The target and model training and testing graphs are shown in Figure 5-43. The

performance graphs are shown in Figure 5-44.
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FIGURE 5-43 TRAINING AND TESTING MULTIPLE ATTRIBUTES AND LAYERS

125



Best Validation Performance is 3.5287 at epoch 3

Mean Squared Error (mse)

6 Epf)chs
FIGURE 5-44 PERFORMANCE MULTIPLE ATTRIBUTES AND MULTIPLE LAYERS

The training and testing performance values are 0.9444 and 0.9124 respectively and these

are better than with one hidden layer, whose performance values are 0.92816 and 0.89035.

5.12. Summary

Some periodicity was apparent in short-term and long-term trading. Decomposition of the

share time series revealed trends, harmonics and seasonality in the banking share sector,

which helps with generalization and improving the performance of the model.

Statistical probability analysis of the share prices for various time intervals suggests that

price time series generally have a normal distribution. Furthermore, short-term datasets

have a more deterministic nature than long-term, which justifies stochastic model

assumptions and gives a case for the selection of short-term trading.

Statistical independence tests of the datasets with different starting dates show that to have

fully statistically independent samples, there should be a shift about two trading weeks

between their starting date which is confirmed by the correlation analysis as well. The

correlation analysis also show that share open price, close price and the rest of the

available daily data move together, which allows the number of independent variables to

be reduced and just one, such as the closing share price, can be used.

The results of the experiments with neural networks with multiple attribute models show

notably better performance than common practice regression models.
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Chapter 6. Discrete Fourier Transform

6.1. Overview

This chapter extends the financial time series modelling in the time domain, specifically
focusing on the discrete Fourier transform (DFT) analysis, forecasting and validation. This
includes a contribution to knowledge with multiple DFT features composition for neural
network utilization for the short-term trading. Furthermore a novel fitting methodology is

proposed for its application as well.

Spectral analysis, also known as frequency domain analysis, decomposes a time series into
a spectrum of cycles of different lengths and it can be used for the analysis of a time series,

filtering and forecasting.
This chapter covers the following:

e Experimental definition

e Experimental definition of the algorithm in Excel

e Experimental definition in MATLAB

e Forecasting exploration

e DFT and ANN for regression dataset

e Standard error of the Mean (SEM) calculations

e Coefficient of determination (R-square) calculations
e Fast and inverse Fourier transforms

e DFT investigations

e Time domain

e Power distribution frequencies

6.2. Introduction

The Discrete Fourier Transform (DFT) decomposes a time series into sine and cosine

components. The DFT of f{z) denoted by F(u), is given by:
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Fw) =S¥ f(0e™ 2™ (6-1)
The frequency domain is simply the coordinate system spanned by F(u), with u as the
frequency variable. This is analogous to the time domain, which is the coordinate system
spanned by f{?). The transform is complex. If R(u) and I(u) represent the real and imaginary
components of F(u), the frequency spectrum is defined as:

IF| =y R*() + I*(u) (6-2)

The phase angle of the transform is defined as:

p(u) = tan_l(%) (6-3)

The discrete Fourier transform allows us to manipulate time series data either in the
frequency or time domains. DFT components represent the input dataset as the sum of the
trigonometric sine-cosine functions. The main motivation for its use is to extrapolate and
forecast beyond the input dataset. A Fourier transform produces the same number of
frequency bins, or bands, as in the time series samples. The time series has to be centred in
order to be de-trended and its FFT algorithm is simplest by far if V is an integral power of
2(2,4,8, 16, ...). The latter is the only requirement of the most popular implementation of
this algorithm (Radix-2 Cooley-Tukey) (Cooley, 1965) where the number of points in the

series should be a power of 2.

The Fourier transform produces complex numbers, where DFT z = x + yi. The power
spectrum represents the distribution of the frequency content of the time series. The power

p of a frequency band is the absolute value (modulus) of the corresponding complex

2
number p = lrzl—lz The series amplitude is symmetrical around the g component. From the
power plot, the major contributing frequencies (maximum plot peaks) can be identified.

The corresponding periods are T = %, where i is the frequency bin on the plot peak and n

is the size of the time series. For example, if there are 32 samples in the time series and the

plot peak is at frequency bin (sample number) four, then the period will be 8 (8=32/4).
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The example in Figure 6-1 displays an example of the magnitude and phase plots of the

DFT for an example of a time series.
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FIGURE 6-1 DFT PRICE, MAGNITUDE AND PHASE

The further away from the start of the time series period a share is, the higher its
corresponding frequency will be, such as for sample number 4 of 32 samples time series it

is 4/32 (period 8) and for sample number 16 it is 16/32 (period 2). The magnitude variable
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measures the change in values between neighbouring prices; for example, the change from
240.53 to 250.13 is 9.6. The phase measures the shift from the origin at the corresponding

frequency, such as 2 sample periods.

The results show that the magnitude spectrum plot contains components of all frequencies,
but that their magnitudes become smaller for higher frequencies. Hence, low frequencies
contain more time series information than higher ones. Share price time series are low-
frequency signals. The display of the phase plot does not yield much new information
about the structure of the share price time series in the time domain; however, the phase in

formation is needed to reconstruct the original time series.

The main properties of the DFT are as follows:
e Completeness (it is invertible).
e De-correlation (DFT coefficients are not correlated).
e Energy compaction (the energy in financial share price time series is mostly
grouped in low frequencies in the DFT domain).
e Invariance (the spectrum is invariant to shifting).
e Robustness (DFT coefficients could be robust against many time series processing

operations such as noise).

The main disadvantage of Fourier extrapolation is that it merely repeats the series with a

period N, where N is the length of the original time series.

The Discrete Cosine Transform (DCT) is an alternative digital transformation. It represents

a time series as a sum of cosine functions of varying magnitudes and frequencies, as

follows:
F(w) = = Cw) B f(©) cos (5 (£ +3)) (6-4)
c(0) = %C(t) =1,ift #0 (6-5)
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The values of the DCT are real (negative and positive). The DCT has the property that, for
a typical time series, most of the significant information about it is concentrated in just a
few coefficients of the DCT. The example in Figure 6-2 displays an example of the

magnitude and phase plots of the DFT for the time series example.
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FIGURE 6-2 DCT PRICE, MAGNITUDE AND PHASE

The main properties of the DCT are as follows:

e Completeness (the DCT is invertible).
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e De-correlation (it removes redundancy between neighbouring time domain points).

e Energy compaction (the energy of the image is concentrated in the low frequency
region.

e Robustness, the DCT coefficients can be robust against many processing operations

such as noise.
6.3. Experimental Definition

The following time series samples are taken every day for the closing price of a share for a
total of N=16 samples. The data making up this time series is shown in Appendix C: Table
23 and the share price graphs in the original Figure 6-3 and centred Figure 6-4. These are a

portion of a bigger time series of 153 samples as shown in Figure 6-5.
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FIGURE 6-5 TRADING SHARES FULL 153 SAMPLES TIME SERIES

The first column in Appendix C: Table 23, labelled “Date” contains the date at which each
sample was taken. The second column, labelled “Frequency cycle”, contains the
frequencies in standard units of the sample per cycle - index/cycle. This information will
be used in the model as a time parameter. The third column, labelled “n”, contains an index
identifying the sample number. The fourth column, labelled “Frequency trading”, contains
the frequencies in normalised yearly cycle - index/252, where the trading day is the time
span for which a particular stock exchange is open and it is accepted that there are 252
trading days in one year. Finally, the fifth column, labelled “Y”, contains the sampled
vertical ordinate. If the time series exhibits a significant trend, it is recommended to de-

trend it first.

A Fourier transform produces the same number of frequency bins, or bands, as time series
samples, and so there are 16 frequency bins in this time series. The size of the range of the
time series should be a power of 2 (for example, 21, 22, 23, 2%, and so on). If the time
series data is not a power of 2, then the end of the series should be padded to the next
power of 2. Time series data is often padded on one end before being transformed, due to
the so-called wraparound effect that can distort results when convolving data. The padded
values of the time series should be 0 if the original time series is centred or de-trended. If
the time series is not centred, then the average value of the time series ordinates can be

used as the pad value.

133



The column DFT(Y) in Appendix C: Table 24 contains the discrete Fourier transform of
the time series generated with the Fourier analysis tool in MS Excel. These are complex
numbers, and looking, for example, at 05/01/2016, the second sample in the time series, it
appears like this: 12.2802009957215-0.228725990422478i. At this point, this is the
frequency domain version of the original time series. It can be manipulated in many

different ways to suit the type of analysis being conducted.

To generate a power spectrum of the time series, which is used to analyse its frequency
content, the power contained in each frequency band has to be calculated. To compute the
power contained in each frequency band p;, the absolute value of a complex number DFT;

(modulus |DFT;| Excel function IMABS) to the power of two is divided by the size N of

2
l

. . DFT
the time series to the power of two, p; = 2z - For example, the power of the second

frequency band of 0.0625 sample/cycles is 0.589279891. The use of a factor of 2 for all
intermediate frequency power calculations is due to the periodicity of the Fourier
transform. The power is calculated for each frequency band up to the highest frequency,
the Nyquist frequency (0.5 sample/cycles). The calculations are shown in Appendix C:
Table 24. The column “power(Y)” contains the power spectrum for this time series. The

plot of the power spectrum is shown in Figure 6-6.
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FIGURE 6-6 POWER FREQUENCY DISTRIBUTION (PFD) OF THE CENTRED PLOT

There is a strong component of 1.977 at a frequency of about 0.125. Furthermore, there is a

clear contribution of 0.993 at a frequency of 0.250, although this is not as strong as the one
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at 0.125, which should be considered in an eventual frequency approximation model for

this share price time series example.

To conduct further analysis, a frequency filter can filter the data in the frequency domain to
isolate the 0.125 component of the original series. Firstly, an appropriate filter has to be
constructed and applied and then an inverse Fourier transform is performed to show the
resulting filtered series in the time domain. A suitable filter for this example would be a
band-pass filter centred at a frequency of 0.125 samples per cycle. This is a standard
Gaussian band-pass filter with f,=0.125 and ¢ = 0.07 as shown in Figure 6-7. PFD of
the centred and Gaussian filtered time series is shown in Figure 6-8. Finally, the filtered =

and the original share \ojprice are shown in Figure 6-9.
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The graph shows that the filter removes the high frequencies from the original signal and is
a low band-pass filter. The resulting time series have less small changes in the amplitude as

the original signal is smoothed.

6.4. Experimental Definition of the Algorithm in Excel

The discrete Fourier transform may be used to identify periodic structures in time series
data. Suppose that a physical process is represented by the function of time, A(?). The
function is sampled at N times, /(k). From these measurements, complex amplitudes are

determined, which satisfy the following equation:

. 21N
itk—

Hy, = Y320 hpe™ v (6-6)

The sampled function then has the discrete Fourier expansion

2k

hie = 2 ENZ3 Hpe ™ (6-7)

. . . e 2 21, T,
This equation can be cast in a familiar form with % = T—n FO = wokAt = wyty:
0

hy =~ SNZ4 H, e~ imWotk (6-8)

TN
The right-hand side is the discrete analogue to the complex form of the Fourier expansion:
h(t) = Yoo cpe™ otk (6-9)
where the complex coefficients are given by:
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tn =7 Jo " h(t)e~ Mot dt (6-10)
0

The Excel data analysis package has a Fourier analysis routine, which calculates complex
coefficients from time series data. The routine requires that the number of samples in the

time series data be of a power of 2.

To select Fourier analysis, click on Data in the Excel menu bar, and select Data Analysis.
In Data Analysis, select Fourier Analysis, and a simple dialog box appears. Make sure that

the “Inverse” box is not checked (selected).
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FIGURE 6-10 EXCEL DATA ANALYSIS, FOURIER ANALYSIS MENU

For Input Range, enter the location of the time series data, and for output range enter a
convenient place on the worksheet. After selecting the OK button, Excel returns the

complex coefficients in the selected output column.

The power in each frequency bin is proportional to the square of the magnitude of the

complex coefficient normalized with (divided by) the square of the size of the time series,
2

p= I;—lz The absolute value of a complex number |z| is accomplished with the function

IMABS(z). Applying the IMABS (z) function to the complex coefficients z and dividing

by N produces the magnitude of the Fourier coefficients, where magnitude = l;—l The

power at each frequency (except for zero frequency) is the square of the magnitude.
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To select Inverse Fourier Analysis, click on Data in the Excel menu bar, and select Data
Analysis. In Data Analysis, select Fourier Analysis, and a simple dialog box appears. Make

sure that the “Inverse” box is checked (selected).
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FIGURE 6-11 EXCEL DATA ANALYSIS INVERSE FOURIER

For Input Range, enter the location of the complex coefficient, and for output range enter a
convenient place on the worksheet. After selecting the OK button, Excel returns the
Inverse Fourier Transform in the selected output column. The results of the inverse
transform are real numbers; however, Excel formats them as text (that its, as the real part
of an imaginary number). The IMREAL function is used to convert these imaginary

numbers into values which can be used.

The multiplication of two complex numbers is accomplished with the function
IMPRODUCT(z1, z2). This is used when applying a Gaussian filter to the complex
coefficient in order to isolate a specific frequency.

6.5. Experimental Definition in MATLAB

A common use of Fourier transforms is to find the frequency components of a signal

buried in a noisy time domain signal, such as is the case with share price data.

The DFT takes a discrete signal in the time domain and transforms that signal into the
discrete frequency domain. The DFT is only defined in the region between 0 and the
sampling frequency f;. When the range [0, f;] is examined, it can be seen that there is an
even symmetry around the centre point, 0.5 f;, which is the Nyquist frequency. This

symmetry adds redundant information.
138



The DFT of a vector x of length 7 is another vector y of length #:

Yk+1 = Znzo ON° X1 (6-11)
where o is a complex nth root of unity:

w = e~2Ti/N (6-12)
This notation uses j for the imaginary unit. Data in the vector x are assumed to be separated

by a constant interval in time or space, dt = fi, where f; is the sampling frequency. The
N

DFT y is complex-valued. The absolute value of y at index p+1 measures the amount of

the frequency present in the data.
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FIGURE 6-12 TIME TO FREQUENCY DOMAIN TRANSFORMATION MODEL

The first element of y, corresponding to zero frequency, is the sum of the data in x. This
data component is often removed from y so that it does not obscure the positive frequency

content of the data.

When using FFT algorithms, a distinction is made between window length and transform
length. The window length is the length of the input data vector. The transform length is
the length of the output, which is the computed DFT. An FFT algorithm pads or chops the

input to achieve the desired transform length.
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FIGURE 6-13 FFT ALGORITHM DIAGRAM

The FFT is a faster version of the Discrete Fourier Transform (DFT).

The MATLAB fft function returns the DFT y of an input vector x using a fast Fourier
transform algorithm:
y =Jix); (6-13)

In this call to ff#, the window length m = length(x) and the transform length n = length(y)

are the same.
The transform length is specified by an optional second argument:
y = Jixn); (6-14)

If the length of x is less than n, x is padded with trailing zeroes to increase its length to n
before computing the DFT. If the length of x is greater than n, only the first n elements of x

are used to compute the transform.

The basic spectral analysis using FFT allows the component frequencies in data to be
efficiently estimated from a discrete set of values sampled at a fixed rate. Relevant

quantities in a spectral analysis are listed in Table 6-1.
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Price in pence

TABLE 6-1 RELEVANT SPECTRAL ANALYSIS QUANTITIES

Chuantity

m = lengthi{x)

Description

Sampled data

window length inumber of samples)
Samplesfunit time

Time increment per sample
Time range for data

Discrete Fourier transform (DFT)
Amplitude of the DFT

Power of the DFT

Frequency increment
Frequency range

Myqguist frequency

Consider the following ‘Close’ price data in Appendix C: Table 25 and with a graph as

shown in Figure 6-14.
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The DFT, dft of y (‘Close’ price) is computed using fft with dft=ffi(y). The power of the

DFT y and its Power are then computed Power=abs(dft) as shown in Appendix C: Table

24 and the graph as shown in Figure 6-15.
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6.6. Forecasting Exploration

For a time series that is known to have seasonal or daily patterns, Fourier analysis could be
used for forecasting. After running a discrete Fourier transformation ff# on time series data

and obtaining coefficients, these could be used to make predictions.

The FFT assumes that all data it receives constitute one period and then, if the coefficient
data are simply expanded appropriately, it also regenerates the continuation of the time
series, and so using ifff these values can be used for prediction. Simply put, ff# is run for
=0, 1, 2, ... 10 then ifft is used on the coefficients to regenerate the time series for z= 11,
12, ... 20.

Generally, the process involves finding "patterns" in the time series, finding the dominant
frequency components in the observed time series, taking the Fourier transform and
preserving the most important, for example the largest coefficients, and eliminating the
rest. Preserving the most important coefficients has a "smoothing”, “blurring”, or "de-
noising" effect on the signal as well. Then, to expand time series Fourier coefficients Y to
twice the size of the most important coefficients, Z are repeated in every second element in
the expanded Y, to be exact, Y(1,1)=Z7(1,1), Y(1,2) = 0, Y(1,3)= Z(1,2). Then a following
ifft(Y) regenerates the expanded time series y. The new series will be twice as long as the
original. Note that the amplitude has to be multiplied by 2 if x is expanded twice. The

algorithm is illustrated with code below.

window_expand=2*window;

X = fft(x) % DFT original signal x

Y = zeros (1, window_expand) % expanded

% an algorithm for finding important frequencies in X, to be defined

% Z [important frequencies] = X [important frequencies] % to be defined

Z=X; % original frequencies (until the “important” frequencies are defined)
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Y(1:2:end) = Z % every second element in Y is equal to next Z (or the original X)
y=2*real(ifft(Y)); % it has to be multiplied by 2 because of twice period

figure; hold on;

plot(x);

plot(y,"-r'); %

Alternatively, adding up all the harmonics k corresponding to the coefficient indices y =
sum(y(k)) will essentially expand the original time series, where y(k)=
Amplitude(k)cos(Period(k)+Phase(k)), and Amplitude(k), Period(k) and Phase(k) are the
Amplitude(k), period and the phase of the kg, harmonic respectively. The algorithm is
illustrated with code below,

y=zeros(I, window _expand),;

for i=1:max_frequency,
period=i;
phase=angle(Z(period+1));
amplitude=abs(Z(period+1))/window*2;
d1=amplitude*cos(period*((0:window_expand-1)/window*2*pi)+phase);
y=y+dl;

end

plot(y,"-k'); %

The main disadvantage of Fourier extrapolation is that it merely repeats the original time
series with the period N, where N is the length of the original time series as shown in

Figure 6-16 which repeats the graph 1-15 to 16-31 days.
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The visual example in Figure 6-16 demonstrates the weakness of the method. The
frequency domain, by its nature, produces fixed cycles in the time domain. The red line
(from day 17 to day 32) in the extrapolation above is simply a copy of the beginning
segment of the blue (observed) line (from day 1 to day 16), although de-noised slightly.
Therefore, to perform any meaningful short-term prediction over 4 time units in the future,
where h<the number of historical observations, only the most significant high frequency
coefficients should be used in the prediction. A "high" frequency threshold can be

arbitrarily defined in relation to 4.

To further clarify this, the extrapolated hump at time ~ day32 in Figure 6-16 is just a copy
of the blue hump at ~ day15. If the historical period had instead been initiated right before
the hump at 15, then the very first predicted units would have that copy of the hump, which
seems pointless and arbitrary. Thus, by either eliminating or down-weighting the high
frequency components, the arbitrariness induced by the starting point in the historical data

can be reduced.

Usually, modelling assumes that the future will behave as the model suggests. Models
depend on parameters, which are estimated using present or past observations, and so
"predicting" is actually merely fitting a model. Usually in a signal, there are some
frequencies that have significantly higher amplitudes than others, and so selecting these

frequencies allows the periodic nature of the time series to be identified.
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6.7. DFT and ANN for Regression Dataset

Using a dataset of about ten time series 8 or 16 days long, the DFT is calculated for each of
the time series and is the target of the neural network. Time series values are the features.
The output DFT of the most recent (the last) training model is used for forecasting. In the
example in Table 6-2, samples is with the most recent data, and sox, is the latest data

and the neural network model output modelDFTs would be used for forecasting.

TABLE 6-2 NEURAL NETWORK FOR REGRESSION

attr, attr, attrs attr, attrs attr, attr, attrg Target Model

sample; x; Xy X3 Xy Xs Xg X7 Xg DFT, modelDFT
sample, x, X3 X4 Xs X Xy Xg X DFT, modelDFT,
sample;  x3 X4 Xc X Xy Xg X X10 DFT; modelDFT:
sample, x, Xs Xg X7 Xg Xo X109  Xq11 DFT, modelDFT)|
samples  xg Xg X7 Xg X X0 X11 X2 DFT: modelDFT,

6.8. Standard Error of the Mean and Coefficient of Determination

The standard error of the mean (SEM) describes the certainty of the mean in the

underlying population based on its sample. The SEM is the theoretical standard deviation
of the sample-mean's estimate of a population mean. The SEM is more informative when
converted into a confidence interval. With a confidence interval, assuming normality, there
is an X% chance that the underlying population mean falls within certain limits. The limits
can be calculated for any certainty level. A 95% confidence interval means that there is a
95% chance that the underlying population mean falls within that certain range of values.
To calculate it, the SEM is simply scaled by the appropriate quantile from the normal
distribution. For example, 95% of the data will fall within 1.96 standard deviations of a

normal distribution. So the 95% confidence limits are as follows:
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sem=std(data)/sqrt(length(data)); % standard error of the mean (6-15)

sem = sem * 1.96 % 95% confidence interval (6-16)

Generally, the coefficient of determination (R-square) measures the variability of the

estimation errors against the variability of the original values:

X-f)?
r2=1- ﬁ (6-17)

6.9. Fast and Inverse Fourier Transforms

6.9.1 fft - Fast Fourier Transform

Y = ffi(x) (6-18)
Y = fiixn) (6-19)

The functions Y = ff#(x) and x = ifft(Y) implement the transform and inverse transform pair

which for vectors of length N is given by:
X() = Z)y x(Daoy 4 (6-20)
x() = (1/N) ERoy X ()aoy ™V (6-21)
wherewy = e(72m/N
Y = ffi(x) returns the discrete Fourier transform (DFT) of vector x, computed with a fast

Fourier transform (FFT) algorithm.

Y = fft(X,n) returns the n-point DFT. ff#(X) is equivalent to ff¢(X,n), where n is the size of X.
If the length of X is less than n, X is padded with trailing zeroes to length n. If the length of

X is greater than #n, the sequence X is truncated.

6.9.2 ifft - Inverse Fast Fourier Transform

y = iffX) (6-22)
y = ifft(X;n) (6-23)
vy = ifft(X) returns the inverse discrete Fourier transform (DFT) of vector X, computed with

a fast Fourier transform (FFT) algorithm.
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It should be noted that the sinusoid's frequency is &/N cycles per sample.

It can be concluded that the DFT fully describes the discrete-time Fourier transform
(DTFT) of an N-periodic sequence, which comprises only discrete frequency components.
Further improvements of the discrete Fourier transform approach would involve using

wavelets.

6.10. DFT Investigations

To investigate further the method of forecasting with the DFT, sixteen training sample time
series are used to forecast the subsequent sixteen share prices from the full dataset. The
model with three cyclical trends is shown in Figure 6-17. Experiments are conducted only
with sixteen sample time series, and not the long term full dataset, so as to focus on the

purpose of this thesis which is short-term forecasting,.
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The parameters of the model are as follows:

R2=0.95728 and 0.88908 coefficient of determination,

rmse = 2.1688 and 5.9471 root mean square error,

stdv = 2.2399 and 5.1867 standard deviation,

sem = 1.0976 and 1.7971 standard error of the mean.

6.10.1 Model with Trend and Zero Frequency Component

) _

xm —_ AO (6'24)
Trend y=mx+b (6-25)
where m =-2.15, b =213.57, SORT(err"2) = 13.53, R>=0.90

TABLE 6-3 TREND WITH ZERO FREQUENCY HARMONICS COMPONENT

Drate Freguency n W appr trend cntrd err™2
1/4/2016 0 Q 21425 21357 213.5702 0.680 046
1/5/2016 00625 1 21525 21142 2114154 3.835 14.70
1/6:2016 0.125 o 211.75 20028 2002807 2. 480 620
172016 0.1875 3 20555 207.11 207.1052 -1.558 .42
1/8/2018 0.25 4 200.15 20495 2049511 -4.801 23.05
1/11/2016 03125 5 1207 20280 2027063 -3.096 o .50
1/12/2016 0375 6 20235 20064 2006415 1.708 202
1/13/2016 04375 7 2017 198 40 198 48568 3.213 10.32
1/14/2016 0.5 8 1977 196 33 196.332 1.368 1.87
1/15/2016 0.5625 o 191.8 194 18 1941772 -2.377 5.85
1/18/2016 0625 10 187.65 162 02 1920224 -4.372 19.12
17192016 06875 11 1809 189087 1898876 0.032 000
1/20:2016 075 12 182 05 18771 187.7129 -5.8663 32.07
1/21/2016 08125 13 186.15 18555 185.5581 0.592 0.35
1/22/2016 O.875 14 190.75 183 .40 183 4033 7.347 53.07
1/25/2016 09375 15 18185 18125 1812485 0.601 035
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6.10.2 Model with Trend and One Frequency Component
Using the first frequency component (k=1):
x99 =4, (6-26)
x,(,? =Ay+A;cos(p;+w )= x,(,?) + A;cos (¢, + wm) (6-27)
where A_t-s=3.74, T t-s= 6.49, F_t-s = 0.66, SORT(err"2)= 8.32, R>= 0.96.

TABLE 6-4 TREND WITH ONE FREQUENCY HARMONIC COMPONENT

Date  Frequency
1/4/2016 0
1/52016  0.0623

i ¥ appr  trend cotrd em™  Fl  fiqSUM er{entr)"2
0 21425 21581 2135702 0680 244 24 1M 144
1 21525 21516 2114154 3835 001 374 3H4 0.01
1462016 0125 2 21175 21126 2002607 2480 024 200 200 024
1772006 01875 3 20555 20563 2071059 -13536 001 -148 -148 0.01
182016 025 4 20015 20128 2049511 -4801 127 -367 -367 127
112016 03125 5 1997 20012 202.7963 -3.006 017 -268 -2.68 0.17
1122016 0375 6 20235 20128 2006415 1708 115 064 064 115
V132016 04375 7 2007 20189 1984868 3213 004 340 340 0.04
1142016 035 8 1977 19955 106332 1368 342 312 311 342
V152016 03625 9 1918 19442 1941772 -2377 686 024 024 6.86
/182016 0625 10 18765 18008 1920224 -4372 205 -194 -194 205
1192016 06875 11 1899 18629 1898676 0032 1301 -357 -337 13.01
1202016 075 12 18205 18661 1877129 -5663 2075 -1I1 -L11 20.75
1212016 08125 13 18615 18788 1835381 03592 299 232 132 199
1222016 0875 14 19075 18714 1834033 7347 1304 314 1IN 13.04
1252016 09375 15 18185 18316 1812485 0601 172 191 191 1712
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6.10.3 Model with Trend and Two Frequency Components

Using the first and second frequency components (A4=2):

x9 =4, (6-28)
x,(,? = x,(,?) + A cos (¢, + wm) (6-29)
x,(,f) = x,(,p + A,cos (¢, + 2wm (6-30)

where 4 t-s= 3.721.95, T t-s = 6.513.99, F t-s=0.84 -1.33, SORT(err"2) = 6.39, R’
0.98.
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Power

TABLE 6-5 TREND WITH TWO FREQUENCY HARMONIC COMPONENTS

Date Fregne n ¥ appr trend cntrd err™2 Fi F2 frgSTUM

1/4/2016 0 0 21425 21458 2135702 0680 0.11 271 -1.70 1.01
1/5/2016 00625 1 21525 21410 2114154 3835 132 3.64 -0.96 2.69
1/6/2016 0.125 2 21175 21241 2002607 2489 044 1.44 1.71 315
1/7/2016 01875 3 20555 20606 2071059 -1556 026 -200 095 -1.05
1/8/2016 025 4 20015 19952 2049511 -4.801 040 372 -1.71 -5.43
1/11/2016 03125 5 1997 199061 2027963 -3.096 001 224 -094 -3.18
1/12/2016 0.375 G 20235 20352 2006415 1708 1.38 1.17 1.71 288
1/13/2016 04375 7 201.7 202909 1984868 3213 167 3.57 094 451
1/14/2016 0.5 2 197.7 19752 196332 1368 0.03 200 -172 1.18
1/15/2016 05625 9 191 8 19298 1941772 2377 140 -027 -093 -1.19
1/18/2016 0.625 10 18765 19054 1920224 -4372 835 320 172 -1.48
1/12/2016 06875 11 1829 187.40 1898676  0.032 623 -338 092 -2.446
1/20/2016 075 12 18205 18334 1877129 -5663 1080 -0a65 -1.73 -2.38
1/21/2016 08125 13 18615 18729 1855581 0592 129 264 0091 1.73
1/22/2016 0875 14 19075 18879 1834033 7347 382 366 1.73 530
1/25/2016 09375 15 18185 18368 1812485 0601 336 1.53 091 243
e |
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6.10.4 Model with Trend and Three Frequency Components

Using the first three frequency components (k=3):

x99 =4, (6-31)

x,(,? = x,(,?) + A cos (¢, + wm) (6-32)

x,(rf) = x,(nl) + A,cos (¢, + 2wm) (6-33)

x,(,f) = x,(,f) + Ascos (¢3 + 3wm (6-34)
whered t-s=3.70 193 1.43,T t-s=6.60 4.02 2.56,F t-s=0.94 -1.33 -
0.21, SORT(err"2) = 4.99, R> = 0.99

TABLE 6-6 TREND WITH THREE FREQUENCY HARMONICS COMPONENTS
Date Frequency n y apprx trend cotrd  er™?  Fl F2 F3  figSUM
1/4/2016 1] 0 21425 21406 2135702 0680 004 288 -169 -0.70 0.49
1/5/2016 0.0625 1 21525 21535 2114154 3835 001 356 -095 133 3.94
1/6/2016 0.125 2 21175 21083 2002607 2480 0B4 126 167 -136 1.57
1/7/2016 0.1875 3 20555 20675 2071059 -1556 144 -211 098 078  -035
1/8/2016 0.25 4 20015 19974 2049511 -4801 016 -370 -166 015 521
/112016 0.3125 5 1907 19860 2027963 -3.096 122 -218 -1.00 -101 -420
1/12/2016 0.375 6 20235 20487 2006415 1708 636 117 164 142 423
1/13/2016  0.4375 7 2017 20185 1984868 3213 003 3354 102 -119 337
1/14/2016 05 8 1977 10806 196332 1368 013 2984 -163 042 1.73
1/15/2016  0.5625 9 1918 10353 1941772 2377 200 -013 -105 053 -0.63
1/18/2016 0.625 10 18765 18030 1020224 -4372 273 300 162 -125 -272
1/19/2016  0.6875 11 1829 18880 1808676 0032 102 -345 107 140 -008
1/20/2016 0.75 12 18205 18427 1877129 -54863 491 092 -160 -093 -345
172172016 0.8125 13 18615 18689 1835581 0392 Q55 230 -109 004 1.34
1/22/2016 0.875 14 19075 18054 1834033 7347 145 369 158 087 6.14
1/25/2016  0.9375 15 18185 18287 1812485 0401 103 1890 112 -139 1.62
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6.10.5 Model with Trend and Frequency Components in MATLAB
De-trending of the time series is done with a linear trend as follows:

y=mx+b (6-35)
where m =-2.15, b=213.57

An example of the use of the first frequency components &= 3 is:

x99 =4, (6-36)
x,(,}) = x,(,?) + A cos (¢, + wm) (6-37)
x,(,f) = x,(,f) + Ajycos (¢, + 20m) (6-38)
x,(,f) = x,(,f) + Ajcos (¢p3 + 3wm) (6-39)

TABLE 6-7 BARCLAYS SHARE PRICES TIME SERIES FROM 2016-01-04 T0 2016-01-25

Date Freguency u 'l w tremd centred
1/42018 Lo 8 214 25 213 5702 Doas0
1552016 0625 1 215 25 211 4154 F_ B35
1562016 O_125 2 211.F5 200 2807 2. 480
1572016 1875 3 205 .55 207 _ 1059 -1.556
1842016 .25 4 200.15 204 2511 -3 801
11172016 33125 5 199 7 202 ToOsL3 -3 0SS
1122016 0375 L&) 202 35 200 G841 5 1. 708
1132016 O 4375 r 2017 1908 4858 I 213
1142016 0.5 = 1977 196. 332 1 368
1152016 D 5625 o 191 .8 194 1772 -2 3T
1/18/,2016 0_&25 10 187 a5 192 0224 i s e
1192016 D_H6ETS 11 182 O 189 8a7a Q032
172002016 Q.75 12 182 05 187 7129 -5 5483
1/ 202016 . 2125 13 18615 185 . 5581 S0
1222016 0875 14 19075 183 4033 T.347
1252016 0375 15 181 .85 181 2485 OG0l
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6.11. Time Domain
An investigation of the effect of the number of harmonics included in the model is shown
in Figure 6-27 to Figure 6-30.The results show a closer fit between the model and the

target, although with no significant difference, with the additional of more than three

harmonics.
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6.12. Power Distribution Frequencies

The investigation of the effect of the number of approximation frequencies starts at the

position at day 1 with a time series of 16 samples long.
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6.12.1 Model Performance per Frequency from 0 to 8

TABLE 6-8 MODEL PERFORMANCE PER FREQUENCY FROM 0 TO 8

Frequencies 0 1 2 3 5 6 7 8

R2 model 0.89609 0.90679 0.94271 0.95728 0.98835 0.9979 0.99978  0.99978
rmse_model 3.3825 3.2036 25115  2.1688  1.1326 0.48142 0.15551  0.15551
stdv_model 3.4934 33086 2.5939  2.2399  1.1697 0.49721 0.16061  0.16061

sem_model 1.7118  1.6212 1.271 1.0976  0.57318 0.24363  0.0787 0.0787

TABLE 6-9 FORECAST PERFORMANCE PER FREQUENCY FROM 0 TO 8

Frequencies 0 1 2 3 5 6 7 8

R2 forecast  0.87553  0.87989 0.88999 0.88908 0.89403 0.89522 0.89523 0.89668
rmse_forecast 6.2999 6.1887  5.9227  5.9471 5813 57803 57798  5.7398
stdv_forecast 5.6001 54707 5.1578  5.1867  5.0273 49882 49877  4.9398

sem_forecast 1.9403 1.8955 1.7871 1.7971 1.7419 17283  1.7281  1.7115

6.12.2 Model Performance with Varying Starting Date

A daily investigation into whether or not the harmonics at different consecutive days vary
with window size of 16 and 2 harmonics is shown in Table 6-10 to Table 6-14

TABLE 6-10 MODEL PERFORMANCE WITH DIFFERENT STARTING DATE AND TWO FREQUENCIES

Position/Date 1 2 3 5 6 7 8 9 10
R2 model 0.94271 0942 0924 0.862 0.869 0.844 0.781 0.746 0.729
rmse_model  2.5115 24268 2529 2884 2703 3.077 3.9415 3.864 3.678
stdv_model  2.5939 2.5064 2612 2978 2792 3.178 4.070 3.991 3.799

sem_model 2.542 24563 2.560 2919 2736 3.115 3.989 3911 3.723

TABLE 6-11 FORECAST PERFORMANCE WITH DIFFERENT STARTING DATE AND 2 FREQUENCIES

Position/Date 1 2 3 6 7 8 9 10
R2 forecast 0.88999 0.88595 0.90792 0.85394 0.86639 0.8104 0.7114 0.56217

rmse_forecast  5.9227 5.788 4.972 5.6241  5.2844 59519 6.831 7.8647
stdv_forecast  5.1578 5.1818 47808  5.4373  5.2892 5.951 6.9235 7.9896

sem_forecast ~ 1.787 1.795 1.656 1.8839 1.832 2.061 2.398 2.768
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TABLE 6-12 FORECAST PERFORMANCE WITH PERIOD 16

Periodl 16
Position/Date 1 2 3 6 7 8 9 10
Amplitudel 1.5353 1.915 1.8085 34161  3.0968  2.5319 1.7948 1.7069
Phasel -0.018623 0.10291 -0.05114 0.11293 0.62914 1.5819  2.2815  3.1266
TABLE 6-13 FORECAST PERFORMANCE WITH PERIOD 8
Period2 8
Position/Date 1 2 3 5 7 8 9 10
Amplitude2  2.8124 2.9585 24278 1.7869 1.4224 0.1959 0.83631 1.2349
Phase2 0.55791 1.2178 2.0417 -2.0949 -0.23716  -1.9307 -1.5891 -1.125
TABLE 6-14 FORECAST PERFORMANCE WITH PERIOD 4
Period3 4
Position/Date 1 2 3 6 7 8 9 10
Amplitude3  1.7911 1.7198 1.8521 1.6149  1.9693  3.3818 3.7404 3.584
Phase2 2352 008900 001777 2364 26409 17282  -0.68093 0.38325

The introduction of the frequency components reduces the error from 13.53 to 4.99 and

improves the fitness from 0.90 to 0.99. Generally, wider coverage of the time series

spectrum improves performance. Furthermore, including more harmonics improves the

model’s fitness, as shown in Table 6-14 and Figure 6-35.

Model with trend and combination of harmonics:

+no harmonics SQRT(err"2) = 13.53, R2 =0.90
+one harmonics SORT (err"2) = 8.32, R2 =0.96
+two harmonics SOQRT(err"2) = 6.39, R2 =0.98

+three harmonics SQRT(err*2) = 4.99, R2 =0.99
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TABLE 6-15 TREND - FREQUENCIES HARMONIC COMPONENT SQRT AND R2

trend +one +two +three frequencies
SQRT 13.53 8.32 6.39 4.99
R2 0.9 0.96 0.98 0.99
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FIGURE 6-35 RMSE VS. FREQUENCIES WITH 16 DAYS WINDOW

The performance (RMSE) deteriorates significantly with predictions over seven days, and

this confirms the hypothesis that shorter predictions in daily trading are the recommended

option.
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FIGURE 6-36 RMSE VS. NUMBER OF DAYS WITH 16 DAYS WINDOW

Harmonics parameters of both amplitude and phase vary with time (days),as shown in
Figure 6-37 and Figure 6-38, although still in reasonably close ranges to allow some

approximation.
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FIGURE 6-38 PHASES VS. DAYS WITH 16 DAYS WINDOW

The window size effect is that smaller windows tend to produce less RMSE error, as

shown in Figure 6-39 and Figure 6-40.
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6.13. Summary

Discrete Fourier Transform (DFT) time series analysis and decomposition proved to
provide significantly better performance, robustness and generalization than analysis in the

time domain.
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The results are obtained for a time series of three trading weeks of data investigating the
effect of various harmonics characteristics:

e Number of harmonics components in the model. The introduction of the frequency
components reduces the error and improves the fitness (likeliness) of the model.
Generally, wider coverage of the time series spectrum improves performance.

e The amplitudes and phases of the harmonics vary, although in a reasonable range
allowing some reasonable average model approximations.

e The window size effect, where smaller windows tend to produce less prediction

€1Tor.

The model’s harmonics set could be improved with the major contributing harmonics
instead of the first harmonics (low frequencies) in the DFT. Selection of the first harmonic
is still justified by the power distribution, and generally, the major harmonics are at the
beginning of the frequencies. These results are for share prices over a relatively quiet
period without large disturbances. If there are such fluctuations, a different approach

should be considered. Usually, however, significant changes and jumps in prices are rare.
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Chapter 7. Discrete Wavelet Transform

7.1.  Overview

Similar to the discrete Further transform, this chapter extends the financial time series
investigation using the discrete wavelet transformation .

The Discrete Wavelet Transform (DWT) has gained widespread acceptance in signal and
time series processing. Because of their inherent multi-resolution nature, wavelet-coding
schemes are especially suitable for applications where scalability and tolerable signal
degradation are important. Wavelet transforms have been successfully applied to financial
time series because of their powerful feature extraction capability (Hsieh, et al., 2011). A

wavelet transform simultaneously analyses the time and frequency domains.

This chapter covers the following areas:

e Mother wavelets examples

e MATLAB wavelets

e Forecasting with different wavelets

e Comparison of wavelet forecast performance

e Comparison of neural networks with wavelets

e Wavelet performance
7.2.  Introduction
Wavelet transforms decompose a signal into a set of “basis” functions called wavelets.
Wavelets are obtained from a single prototype wavelet 1, , (t), called a mother wavelet,

by dilation and shifting:

1, t-b
Yap () = ZP() (7-1)
where “a” is the scaling parameter and “b” is the shifting parameter. These parameters

enable the transform to give a space-frequency localization of the signal.
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7.3. Mother Wavelets Examples

Examples of mother wavelets are shown in Figure 7-1.

=
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P(t)

Biorthoganal 97 Maorlet

FIGURE 7-1 MOTHER WAVELET EXAMPLES

In wavelet analysis a mathematical model is built that allows the decomposition of a given
signal into many frequency bands (Mallat, 1989). The given input data is decomposed into
low frequency approximation coefficients (ACs) via a low-pass (LP) filter and detail
coefficients (DC) of high frequency via a high-pass (HP) filter. Approximation coefficients
characterize the coarse structure of the data and identify long-term trends, while detail
coefficients capture ruptures and discontinuities. Generally, these two types of coefficient
allow a better time series presentation than the original data. Wavelet analysis allows
important hidden information and significant temporal features of the original time series

data to be extracted (Chandar, et al., 2016).
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In financial time series forecasting, different types of wavelets can be used, such as

Daubechie’s, Haar, Morlet or Mexican Hat wavelets.
The main properties of the DWT are as follows:

o Completeness, as it is invertible.

e De-correlation, since its coefficients are not correlated.

e Energy compaction, where the energy of the time series is mostly grouped in low
frequencies in the DWT domain.

e Adjustability, because there is not just a single wavelet, and many wavelets can be
designed to fit individual applications.

e Time-frequency localization, allowing a more accurate local description of signal
characteristics.

e Robustness, as the DWT coefficients can be robust against many time series

processing operations.

7.4. Forecasting with Different Wavelets

Forecasting has been conducted using different wavelets for a sixteen sample dataset from
the day 1 starting point in the full time series, and the performance evaluated, including the
coefficient of determination (R2), root mean square error (rmse), standard deviation (stdv)

and standard error of the mean (sem).
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7.4.1 Forecast with Daubechie’s “db4” Wavelet

wavelet = db4 name of the wavelet

R2=0.96961 and 0.90046 coefficient of determination

rmse = 1.8293 and 5.6339 root mean square error

stdv = 1.8892 and 4.8396 standard deviation

sem = 0.92573 and 1.6768 standard error of the mean

210

200

120

180

share price

AT

1&0

150

A0

original & trend & model & forecast

FIGURE 7-3 DAUBECHIE’S DB4 WAVELET FORECAST 160 AND 35 DAYS DATASET

7.4.2 Forecast with Symlets “sym4” Wavelet

wavelet = sym4 name of the wavelet

R2=0.89189 and 0.90362 coefficient of determination

rmse = 3.4501 and 5.5436 root mean square error

stdv = 3.4934 and 4.9449 standard deviation

sem = 1.7118 and 1.7133 standard error of the mean
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FIGURE 7-4 SYMLETS SYM4 WAVELET FORECAST 160 AND 35 DAYS
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7.4.3 Forecast with Biorthogonal “bior4.4” Wavelet
wavelet = bior4.4 name of the wavelet
R2=10.97341 and 0.89619 coefficient of determination
rmse = 1.7112 and 5.7534 root mean square error
stdv =1.7658 and 5.1443 standard deviation

sem = 0.86525 and 1.7824 standard error of the mean
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FIGURE 7-5 FORECAST WITH BIORTHOGONAL BIOR4 .4 WAVELET

7.4.4 Forecast with Reverse Biorthogonal “rbio2.2” Wavelet
wavelet = tbio4.4 name of the wavelet

R2=0.9746 and 0.89556 coefficient of determination

rmse = 1.6722 and 5.7709 root mean square error

stdv =1.7268 and 5.1747 standard deviation

sem = 0.84615 and 1.793 standard error of the mean
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FIGURE 7-6 FORECAST WITH REVERSE BIORTHOGONAL RBIO2.2
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7.5. Comparison of Wavelet Forecast Performance
A comparison of the wavelets forecasting performance is shown in Table 7-1.

TABLE 7-1 COMPARISON OF DIFFERENT WAVELET FORECASTS

DFT db4 Sym4 bior2.2 rbio2.2

R2 0.88908 0.90046 0.90362 0.89619 0.89556
rmse 5.9471 5.6339 5.5436 5.7534 5.7709
stdv 5.1867 4.8396 4.9449 5.1443 5.1747
sem 1.7971 1.6768 1.7133 1.7824 1.793

The best performance is with the Symlets “sym4” wavelet and the worst is with the DFT.
Figure 7-7 shows the Symlets wavelet forecasting graph. There is a good likeliness fit

R2=0.9362 between the target and the model.
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FIGURE 7-7 BEST PERFORMANCE FORECAST WITH SYM4 WAVELET
The Locally Stationary Wavelet (LSW) may be better than Fourier extrapolation and is

commonly used in predicting time series.

7.6.  Comparison of Neural Networks with Wavelets

Chandar proposed a hybrid model combining the Discrete Wavelet Transform (DWT) and
an Artificial Neural Network (ANN) to forecast future stock prices (Chandar, et al., 2016).
The historical data series, for example of closing prices, are decomposed via DWT and the
coefficients form the feature vector (A and optionally D) of the ANN, for example using a
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back propagation neural network (BPNN). The proposed model was compared to the ANN
model with the original data feature vector, although the structure of the feature vector and
the forecast target are not clearly described. Others authors have used different ANN and
DWT combinations and approaches, such as a Recurrent Self-Organizing Map (RSOM)
neural network with multiple kernel regression succeeding lower forecasting RMSE
(Huang, et al., 2010); the DWT and Recurrent Neural Network (RNN) (Hsieh, et al.,
2011); the DFT with kernel Partial Least Square (PLS) regression, support vector machines
and GARCH models outperforming traditional NN (Huang, et al., 2011); an ANN at many
DFT decomposed levels (Wang, et al., 2011); the DWT with Support Vector Machines
(SVMs) with different kernels (Lahmiri, 2013); and the DWT with BPNN compared to the

time domain model (Lahmiri, 2014).

7.6.1 Conceptual Model

Generally, a time series of historical share prices, such as closing prices, is decomposed
with the DWT and the feature vector of the approximation (A) and sometimes detail (D)
coefficients is fed into the ANN. Three-layer feed-forward back propagation neural
networks (BPNNG5) as training algorithms are capable of approximating any continuous
function with the desired accuracy (Devadoss, et al., 2013) and are common in financial

forecasting.

The usual practice is that 75% of the dataset is used for training and 25% for testing.
Finally, the performance of the model is measured with statistics such as coefficient of
variation (CoV), mean absolute deviation (MAD), root mean square error(RMSE), and

mean absolute error (MAE).

From the empirical results, the assertion is that the models with DWT input outperform
those with original historical time data. The proposed model can be combined further with
other machine learning algorithms such as Particle Swarm Optimization (PSO) to improve

the accuracy of prediction.
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7.6.2 Experimental Set-up

An ANN with DWT has been empirically investigated for better forecast performance in
the banking UK sector for the period 2016-01-01 to 2016-08-05. Historic closing prices
were downloaded from uk.finance.yahoo.com for Barclays, HSBC, RBS Lloyds and
Virgin banks. The tuning of the Back Propagation Neural Network (BPNN) varied the
random seed from 0-100 with a threshold of 10% of the shares range. The performance
indicators used are square root power of two error (sgre) and maximum error (maxe) in
percentage of the share price range. The experiments are conducted for the closing price in
the time domain (without using the discrete wavelet transformation DWT) and in the
discrete wavelet domain using the Daubechies-db4, Biorthogonal-bior4.4, Symlets-sym4
and Reverse Biorthogonal-rbio2.2 algorithms. The time series window is 16 days. There
are two datasets, one for training of ninety days from the starting date and one for testing

of twenty days from day 110.

Neural Network

E
X
[

()

1
%@
)

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error (mse)
Derivative; Default (defaultderiv)

FIGURE 7-8 NEURAL NETWORK ARCHITECTURE WITH WAVELETS
7.6.3 Neural Networks with Wavelets Experiments
Experiments are conducted with different wavelets, db4, sym4, bio4.4 and rbio4.4, for
different share prices, HSBC, Barclays, RBS, Virgin and Lloyds. The random generator

seed is given as well to facilitate the eventual reproduction of the experiments.
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Price in pence
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TABLE 7-2 FORECASTING HSBC NEURAL NETWORKS WITH WAVELETS

|
160

HSBA.L no db4 sym4 | bior4.4 | rbio4.4
sqre | 6.8646 | 6.2146 | 4.216 | 6.4765 6.502
maxe | 12.4141 | 14.9278 | 10.647 | 16.4901 | 13.7189
seed 12 32 92 76 32
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TABLE 7-3 FORECASTING BARCLAYS NEURAL NETWORKS AND WAVELETS
BARC.L no db4 sym4 | biord.4 | rbio2.2
sqre | 5.0829 | 5.853 | 7.5832 | 7.8834 | 6.1368
maxe | 9.7337 | 10.7108 | 15.011 | 15.3157 | 12.4065
seed 54 53 82 58 27
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FIGURE 7-10 FORECAST BARC.L ANN WITHOUT AND WITH DB4
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TABLE 7-4 FORECAST RBS NEURAL NETWORKS WITH BIOR4 WAVELETS

RBS.L no db4 sym4 bior4.4 | rbio4.4

sqre | 15.4566 | 15.2195 | 15.4342 | 11.4388 | 17.4986

maxe | 29.9803 | 30.6334 | 30.3305 | 21.0302 | 29.7185

seed 98 29 82 22 67
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FIGURE 7-11 FORECAST RBS ANN WITHOUT AND WITH BIOR4
TABLE 7-5 FORECAST VIRGIN NEURAL NETWORK DB4 WAVELETS
VM.L no db4 sym4 bior4.4 rbio4.4
sqre | 19.4306 | 18.9692 | 22.4121 | 26.2529 | 27.2544
maxe | 27.1149 | 36.3175 | 45.5554 | 55.8468 | 42.2174
seed 25 19 29 12 85
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FIGURE 7-12 FORECAST VIRGIN ANN WITHOUT AND WITH DB4
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TABLE 7-6 FORECAST LLOYDS NEURAL NETWORKS WITH DB4 WAVELETS
LLOY.L no db4 sym4 | bior4.4 | rbio4.4

sqre | 11.019 | 5.9454 | 19.3016 | 14.7169 | 19.2868

maxe | 16.6179 | 15.8725 | 31.2209 | 31.4723 | 38.82

seed 34 88 24 48 48
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FIGURE 7-13 FORECAST LLOYDS ANN WITHOUT AND WITH DB4

The best performance achieved for RBS is with the Biorthogona wavelet, for HSBC it is
with the Symlets wavelet and for Virgin, Lloyds and Barclays it is with Daubechie’s
wavelet. The models deal reasonably well with the drop in price around sample 120 except

for the Virgin model which has poor performance bias following the drop.

7.7.  Summary

Wavelet transform (DWT) time series analysis and decomposition has proven to provide
significantly better performance, robustness and generalization than analysis in the time
domain. Generally, the discrete wavelet transform improves forecasting performance, but
the comparison with different wavelets is indecisive because there is no common choice of
representative wavelet for the banking sector.. The broader range of wavelets could be
explored for a better fit, but overall it seems that Daubechie’s is suitable for the sector in

the first instance. The model is very sensitive to the neural network tuning.
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The data for the banking sector were obtained from the following websites
e Barclays PLC (BARC.L)

https://uk.finance.yahoo.com/q?s=+BARC.L&ql=1

e HSBC Holdings plc (HSBA.L)

https://uk.finance.yahoo.com/q?s=HSBA.L&ql=1

e The Royal Bank of Scotland Group plc (RBS.L)

https://uk.finance.yahoo.com/q?s=RBS.L&ql=0

e Virgin Money Holdings (UK) plc (VM.L)

https://uk.finance.yahoo.com/q?s=VM.L&ql=0

e LLOY.L Lloyds

https://uk.finance.yahoo.com/q/hp?s=LLOY.L

The following types of wavelets have been used:,
¢ Biorthogonal “bior4.4” wavelet
e Symlets “sym4” wavelet
e Daubechies “db4” wavelet

e Reverse Biorthogonal “rbio2.2” wavelet
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Chapter 8. Particle Swarm Optimization

8.1.  Overview

This chapter introduces the particle swarm optimization (PSO) paradigm and through the
control theory techniques, models and analyzes its stability. A further proportional,
derivative and integral (PID) extension of the basic algorithm is proposed. Integration with
neural networks and a methodology of application is proposed.

Particle Swarm Optimization (PSO) is a stochastic optimization technique originally
formulated by Edward and Kennedy in 1995. The algorithm is inspired by and based on the
behaviour of swarms, such as groups of birds or fish. Despite the relative simplicity of
individuals, swarm systems display complex behaviour. They are made up of numerous
individuals and tend to be flexible and robust. Swarm intelligence thus provides a
framework for the design and implementation of systems made up of many agents that are

capable of cooperation for the solution of complex problems.

This chapter covers the following:

e Mathematical analysis of the PSO algorithm

e Inertia and consolidated convergence canonical form
e Analysis in continuous time Laplace transform

e Analysis in the discrete domain

e Randomization investigations

e Boundary conditions

e PSO with exponentially varying inertia

e Chaotic adaptive PSO using logistics and Gauss map
e Particle swarm optimization PID extension

e PSO and neural networks
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8.2. Introduction

The PSO idea has expanded to become a common heuristic optimization algorithm with
many interpretations of its concepts, issues, and applications. One common feature of
heuristic approaches is that they use probabilistic rules to find the global optimal solution
and may prove to be very effective in solving problems without modifying the shape of
their cost curves. Olson (2011) has presented information on particle swarm optimisation
in a comparative study of different approaches in theory and practice. Subjects considered
include using mono-objective or multi-objective particle swarm optimisation for the tuning
of process control laws, convergence issues in particle swarm optimisation, and a study on
topology problems using enhanced particle swarm optimisation. Yang, et al. (2013) has
reviewed the latest developments in theory and applications concerning swarm intelligence
and bio-inspired computation and provided an overview of some of the most widely used
bio-inspired algorithms, especially those based on swarm intelligence (SI) such as the
cuckoo search, firefly algorithm, and particle swarm optimization. The essence of the
algorithms and their connections to self-organization are also analyzed. Furthermore, the
main challenging issues associated with these metaheuristic algorithms, for example the
tuning of algorithm dependent parameters, randomization techniques and convergence, are
considered along with significant applications and case studies such as structural
optimization and improvement using memory-based gradients. Various opportunities and
challenges regarding dimensionality and convergence are also discussed. Despite its
simplicity, the large numbers of variations of the algorithm give a wide variety of choices.
This variety makes it challenging to determine which version can be the most appropriate
for a particular problem. Bratton et al. (2007) addressed the need for an updated definition
and suggested extensions of the original algorithm that could improve performance. This
represents the evolution of the original algorithm designed to take advantage of subsequent

generally applicable improvements such as in topology, the number of particles, and
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inertia. It can be used as a baseline test for the performance of improvements to the

technique.

The advantage of PSO is that it can be used in cases with non-differentiable transfer
functions and when no gradient information is available. The disadvantages are that
performance is not necessarily competitive for some problems, and the representation of
weights is difficult and they have to be carefully selected or developed. Furthermore, the

potential advantages of the swarm intelligence approach are as follows (Dehuri, 2011):

e collective robustness, where the failure of individual components does not
significantly hinder performance;
e individual simplicity, in that cooperative behaviour makes it possible to reduce the
complexity of the individuals; and
e scalability, since the control mechanisms used are not dependent on the number of
agents in the swarm.
The system starts with a population of random solutions and searches for optima by
updating generations. The particles in the swarm are defined with their corresponding
parameters. All particles have fitness values which are evaluated by the fitness function to
be optimized, and have velocities which direct the flight of the particles. The particles float
through the solution space by following the current personal and global optimum particles.
The PSO algorithm begins with a random population, and random values of parameters.
Each particle moves around in the cost solution space. The particles update the change in
their position parameters, which are termed velocity (vel) and position (par) by referring to

the local (pBest) and global best common minima (gBest) of the cost function.

The pseudo-code of the procedure is as follows:
Initialize the swarm particles
While maximum iterations or minimum error criteria is not attained

For each particle
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Randomly change particle position (vel)
Calculate fitness value
Check and update the personal best pBest (p)
Check and update the global best gBest (g)
Calculate particle velocity
Update particle position
End
End
After finding the two best values, the particle updates its velocity and positions using the
following equation:
Vepr = WH U+ ¢ ek (p—x) + e xmp v (g —xp) (8-1)
X¢p1 = X¢ + Veyq, updates particle position (8-2)
where,
v is velocity
X is a parameter
11, 17 are independent uniform random numbers
c; is the cognitive parameter
c, is the social parameter
p is the local best
g is the global best
w is inertia
The PSO algorithm updates the velocity vector for each particle and then adds that velocity
to the particle position or values. Velocity updates are influenced by both the best global
solution associated with the lowest cost ever found by a particle and the best local solution
associated with the lowest cost in the present population (see Figure 8-1).
If the best local solution has a cost less than the cost of the current global solution, then the

best local solution replaces the best global solution. The particle velocity is a derivative of
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position. The constant ¢, is the cognitive parameter, and the constant ¢, is the social

parameter. The advantages of PSO are that it is easy to implement and there are few

parameters to adjust (Haupt, et al., 2004).

FIGURE 8-1 PSO SEARCH MODEL

The PSO is able to resolve cost functions with many local minima. Figure shows the initial

random swarm set moving in the parameter space. Particle swarming becomes evident as

the generations pass to reach the global minima.

The largest group of particles ends up close to the global minimum and the next largest

group is near to the next lowest minimum. A few other particles are roaming the cost

surface at some distance away from the two groups (see Figure 8-2).
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FIGURE 8-2 PSO SEARCH PATH

Figure 8-3 shows plots of the local and global best values as well as the population

average as a function of generation. The chaotic swarming process is illustrated by
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following the path of one of the particles until it reaches the global minimum. In this

implementation, the particles frequently bounce off the boundaries.
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FIGURE 8-3 PSO PERFORMANCE CHART BEST MIN, AVERAGE AND CURRENT MIN

Das and Dehuri (2011) presented a survey of PSO for single- and multi-objective
problems. A considerable number of algorithms have been and are being proposed for
these problems based on either tuning or introducing various PSO parameters. The authors
identified some application areas where PSO has clear advantages over other meta-

heuristic approaches for solving single and multi-objective optimization problems.

8.3. Mathematical Analysis of the PSO Algorithm

As stated previously, the general PSO algorithm in the scalar case can be written as:
Vepr = WH U+ ¢y x1y ok (pr — X)) + ¢ %13 % (g — %) (8-3)
Xer1 = X + Vpyr (8-4)

This can be seen as a discretization of the following continuous system:

d’;(f) =v(t) (8-5)
dz—(tt) =wv(t) + q)lrl(p — x(t)) + @,1(g — x(t)) (8-6)

where equations are discretised using the Euler method:
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dx(t) _ x(t+1)—x(t)

=T )
dl;(tt) _ v(t+1;—v(t) (8-8)
where 7 is the sampling interval.
Verr = (LA wDve + Toir(pe — x0) + To12(ge — %) (8-9)
Vigr = A +wDv + u; (8-10)
where uy = To11y (P — x0) + T212(gc — Xt) (8-11)
Xepr = Xp + TV (8-12)
where 1+ Tw) =w, Tp,=c¢; and T, =c,
Uy = ka(pe — x¢) + ko(ge — x¢) (8-13)

Where kl = C1T1 and ko = Corz

The latter is the equation of a closed-loop feedback system with a proportional control

term, as illustrated in Figure 8-4.
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FIGURE 8-4 CLOSED LOOP FEEDBACK SYSTEM PROPORTIONAL CONTROL

Furthermore, transformations for x; and p,signals are:

Uy = @1 %11 * (Pr — x¢) + 92 % 12 % (ge — Pe + Pe — X¢) (8-14)
ur = (@111 + @212) * (Pe = %) + @212(ge — pe) (8-15)
Uy = kp(pr — x¢) + ko(ge — pe) (8-16)
kp = (@111 + @2o1y) andky = @,1; (8-17)

This shows proportional control with a feed-forward term, as shown in Figure 8-5.
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FIGURE 8-5 PROPORTIONAL CONTROL WITH FEED-FORWARD TERM

8.4. Inertia and Consolidated Convergence Canonical Form

Bradford et al. (2011) have discussed convergence issues caused by the PSO structure, as a
population-based swarm moving together to the optimal point. They present heuristic
methods to address these issues in current practice and provide some optimization
solutions, and investigate how much convergence is required, when to stop by redefining
the search space, the local and multiple optima landscape and methods for resuming
exploration after an optimal success. Furthermore, topics such as the control of population
velocity and exploration are addressed. They also suggest some guidance for convergence
if the problem landscape is unknown, where different algorithms are tried first to determine
if the landscape is multimodal or unimodal. If the diversity is too great, then the search
space should be tightened. Campana et al. (2010) discussed a class of unconstrained
optimization problems where evaluation is costly and the exact algorithm is too large to
compute. They consider the evolutionary algorithm (Kennedy, et al., 1995) and introduced
some global convergent modifications following previous research (Lucidi, et al., 2002)
and convergence conditions that are useful for developing and analysing new derivative-
free algorithms with guaranteed global convergence. The sequences of stationary limit
points for the objective function, with suitable ranges of parameters, are identified to avoid

particle trajectory divergence. Under mild assumptions, at least a sub-sequence of the
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iterates produced by the modified PSO method, combining PSO with two derivative free

algorithms, converges to a stationary point which is possibly a minimum point.

The particle velocities are commonly clamped at a maximum velocity. If this is not done
the system is prone to enter an unstable state wherein the random weighting values cause
velocities and thus particle positions to accelerate rapidly (Bratton, et al., 2007). Shi et al.
(1998) proposed an inertia parameter setting to try to improve convergence by reducing the
velocity towards the end of the search, assuming that the solution is close to the optimum.

The inertia for each iteration ifer is a fraction of the maximum iterations maxiter:

W= maxiter—it (8—18)

maxiter

This would be a fraction of one and would slow down the search. Choosing a value of
inertia greater than one could cause non-convergence, and hence requires a check for

convergence.

With the control theory analysis, the core criteria for convergence can be identified.
The equation for velocity is:
Vepr =WV + e x 1y x (P — X)) + ¢ x 1o % (g — xt) (8-19)
Xey1 = Xp + Vegq (8-20)
This can be transformed into a canonical form:
Vppr =W VUp+ Cp %13 % Pp — CL ¥ T % X+ Cp %1y % gy — Ca ¥ 1 % X (8-21)
Vppn = WU+ Cpxyxpe+ Cpxmpx g —(Crxm e xm)xx (8-22)
C1*¥T1*Pe+ C2*T2*ge
Veg1 = WU+ (Cq*1y +Cp *T *[——x] 8-23
t+1 e+ (coxr+cpx1y) (Crsriteyiry) t (8-23)

Further substitutions are then made:

Q= (cr*xry+cy*1y) (8-24)

C1*T1*¥Pr+ Co*¥T2* gt

g = LR (8-25)
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So, the canonical form is now:
Vegr =WV + @ * (g — X¢) (8-26)
Xey1 = Xp + Vegq (8-27)

The usual values are ¢ = 4.1 and swarm size = 20 (Clerc, et al., 2002)

Furthermore, replacing e = q — x:
Vep1 S WV @ * e (8-28)
e =W+ (1—@)xe (8-29)

The matrix form is then:

Vty1] [ W % Vel . AVt

[eHl] - [—W 1-— <p] [et] =C [et] (8-30)
This is a dynamic system, whose behaviour is determined by the eigenvalues of the matrix
C. A condition of convergence is where the eigenvalues are two combined complex

numbers of modulus less than 1 or two real numbers with absolute values less than 1. They

are solutions to the following equation:

w— A1 1) o o _
w 1-g-2AT A+@-w-1D*x21+w=0 (8-31)
with the discriminant:
A=(p—-—w—-1%2—4xw (8-32)

Convergence means that the particle tends towards a stable position with velocity tending
towards zero although there are no guarantees that this is the optimum (Clerc, et al., 2002).
Furthermore, balancing of the global and local searches, known as constriction, is
proposed. Similar to the inertia weight method, this method introduces a new parameter 1y,
known as the constriction factor. The value ofy is derived from the existing constants in

the velocity update equation:

2
X oy PTG (8-33)
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It was found that, when @< 4, the swarm would slowly “spiral” toward and around the
best solution found in the search space with no guarantee of convergence, while for ¢> 4
convergence would be quick and guaranteed. Most implementations of constricted
particle swarms use equal values for both parameters. Using the constant ¢ = 4.1 to
ensure convergence, the values of y = 0.72984 and ¢/ = ¢2 = 2.05. This constriction
factor is applied to the entire velocity update equation:

Vigr = X(Wig1 + im0 — xp) + o132 (g — %)) (8-34)
Swarm behaviour is eventually limited to a small area of the feasible search space
containing the best known solution. A comparison study of constriction and inertia showed
that the former is in fact a special case of inertia in which the values for the parameters
have been determined analytically (Eberhart, et al., 2010). The parameter values above are

used in most cases due to their stability (Clerc, et al., 2002).

8.5.  Analysis in Continuous Time Laplace Transform

The open-loop system is described by the following equations:

L owrtu (8-35)

dx? dx

e oWt (8-36)
ur = kp(pr — x¢) + ko(g: — pt) (8-37)

The open-loop Laplace transform transfer function of the system is:

s2X(s) = wsX(s) + U(s) (8-38)
_Xs) _ 1 1
H(s) = U(s)  s2-ws  s(s-w) (8-39)
X(s) = H(s)U(s) (8-40)
U(s) = kp(P(s) = X(5)) + ko (G () — P(s)) (8-41)

The close system transfer function, replacing U(s), is:
X(s) = H()(ep(P(s) = X()) + ko (G(s) — P(s))) (8-42)

X(s) =kpH(s)P(s) —kpH(s)X(s) + koH(s)G(s) — koH(s)P(s) (8-43)
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X(s) =T(s)P(s) + Q(s)G(s) (8-44)

__ (kp=ko)H(s) _ (kp—kq)
F(S) - 1+kpH(S) - s2—ws+kp (8_45)
) = i = e (8-46)

1+kpH(s)  s2-ws+kp
For a system to be stable, it is sufficient that its transfer function has no poles on the right

semi-plane:

wt/—Jw2—4kp (8-47)

S12 = 2
To achieve this, w < 0, and for w = 0 it is a stable harmonic.

The simulation results prove that, for w < 0, the solution is stable.

wwwww

FIGURE 8-6 STEP FUNCTION RESPONSE FOR INERTIA W=-1 AND w=-0.5

For the case of w = 0, the simulation is a harmonic oscillation.
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FIGURE 8-7 STEP FUNCTION RESPONSE (HARMONIC) FOR INERTIA w=0 AND KP=1 AND 2.5
The simulation failed to find an initial stabilizing controller for the case of w > 0. For the

common practice inertia value of w = land four different values of Kp the step function

response is unstable, as shown in Figure 8-8.
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FIGURE 8-8 STEP FUNCTION RESPONSE INERTIA W=1 AND FOUR DIFFERENT VALUES OF KP
8.6.  Analysis in the Discrete Domain
The PSO algorithm is generally given in the discrete domain. Consequently, the analysis in

the discrete domain is more relevant in terms of practical implementation. For the k + 1

iteration:

k41 = X + Vi (8-48)

Vg1 = WU + Uy (8-49)

Uy = kp (D — x) + ko (g — Pi) (8-50)
The z-transform is:

zX(z) =X(2) + zV(2) (8-51)

zZV(z) =wV(2) + U(2) (8-52)
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V4

X(Z) = H(Z)U(Z) = mU(Z) (8-53)
z .
H(z) = e the z-transform of the open system (8-54)
U(z) = kP(P(Z) — X(Z)) + kO(G(z) — P(z)) (8-55)
_ (kptko)H(z) koH(2) )
X(2) = kP () P(z) + T HG G(2) (8-56)
X(2) =T(2)P(z) + Q(2)G(2) (8-57)
_ (kp+ko)H(z) _ (kp—ko)z
F(Z) - 1+kpH(z) - z2+(kp—-w-1)z+w (8_58)
_ koH(Z) _ koZ
Q(Z) - 1+kpH(z) z2%2+(kp—-w-1)z+w (8-59)
The poles of the closed loop system are:
-b §VD2—4ac
X1 = ——F—— (8-60)
~(kp-w—1) £ [(kp—w—1)2—4w
Z1p = — = (8-61)
For stability, if w=1 and poles are in the unit circle, the conditions are as follows:
2, = “"P‘”*VZ("P‘Z)Z“*, 1<z <1 (8-62)
7, = eIt g < <1 (8-63)

8.7. Test Functions

In order to determine how well an optimization algorithm works, a variety of test functions
have been used as a check. There are 16 test functions, as shown in Appendix E: Figure 1,
Appendix E: Figure 2, Appendix E: Figure 3 and Appendix E: Figure 4. In each case a
general form of the function is given, and its value plotted in one or two dimensions, where
the global optimum is given in one or two dimensions. Some of the functions are
generalizable to N dimensions. Some of the research into the development of test functions

has been published elsewhere (Haupt, et al., 2004).
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8.8. Randomization Investigations

On analysing bio-inspired algorithms in more detail, the type of randomness that a
particular algorithm is employing can be identified. For example, the simplest and yet
often very efficient method is to introduce a random starting point for a deterministic
algorithm. The well-known hill-climbing method with random re-start is a good example.
It attempts to maximize (or minimize) a target function, where the parameter is a vector of
continuous and/or discrete values. At each iteration, the hill-climbing method will adjust a
single parameter and determine if the change improves the value of the target function.
This differs from gradient descent methods, which adjust all of the values of parameters at
each iteration according to the gradient of the hill. With hill climbing, any change that
improves the target function is accepted, and the process continues until no change can be
found which will improve the value of the target function. Then the parameters are said to
be "locally optimal". This simple strategy is both efficient, in most cases, and easy to

implement.

A more elaborate way to introduce randomness into an algorithm is to use randomness
inside its different components, and various probability distributions such as uniform,
Gaussian, and Levy distributions can be used for randomization (Talbi, et al., 2009; Yang
et al, 2008; Yang, et al., 2010). In essence, randomization is an efficient component of

global search algorithms.

Obviously, which is the best way to provide sufficient randomness without slowing down
the convergence of an algorithm remains an open question,. In fact, the development of
meta-heuristic algorithms is a popular research topic, with new algorithms appearing
almost yearly, and many new techniques being explored (Yang, et al., 2008; Yang, et al.,

2010).

The common practice is to use the rand generator with populations of continuous values in

the range [0, 1]. This is a limitation from the random search point of view, eventually
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limiting the search proximities. Scaling the generator output in the range [-1, 1] gives
promising results for both convergence and proximity optimal value search, as shown in
Figure 8-9. The search in the test case converges four times faster. Furthermore, there is
more spread in the search, which eventually will help with the global optimum search. For

these reasons, it is recommended to use the [-1, 1] range, as shown in Figure 8-10.
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FIGURE 8-9 SEARCH DOMAIN WITH RAND [0,1] AND RAND[-1,1]
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8.9. Boundary Conditions

To avoid searching outside of the solution space of interest, various boundary conditions
can be used to limit the parameters. Performance varies considerably depending on the
location of the global optimum in the solution space as well. Whether or not the boundary
particles are relocated inside the allowable solution space, the approaches used may be
restricted or unrestricted. Furthermore, there could be different hybrid boundary
conditions. The performance of the boundary conditions can be evaluated based on both
mathematical benchmark functions and a real-world financial shares time series to evaluate
the efficiency and convergence of the algorithm. The general, current understanding is that
unrestricted boundary conditions are expected to be more efficient when the global
optimum is inside the boundary of the solution space, and the damping boundary condition
is more robust and consistent when the global optimum is close to the boundary (Xu, et al.,
2007). Thiem et al. (2011) investigated the effect of boundary conditions on algorithm
performance. They described three different possible boundary conditions as introduced by
Robinson et al. (2004): invisible, absorbing and reflecting boundaries. They compared the
performance of different variants for a set of continuous benchmark functions,
concentrating on the mean value and as small as possible a best-so-far value. Their
conclusions on the influence of heuristic and boundary conditions are for the Levy,
Rastrigin and Rosenbrock function. The invisible boundary is used as a base-line for the
experiments. The absorbing boundary sporadically and ambiguously improves
performance, so decisions about its use should be taken in connection with the particular
application. The reflecting boundary is most likely to lead to bad convergence due to re-
setting the velocity of the particle. Furthermore, an initial velocity restriction of 10% and
maximum velocity of one-eighth of the search space domain range and a minimum
velocity of 0.01 give a minor improvement in performance. These results have generally

been confirmed in financial time series forecasting.
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FIGURE 8-11 RESTRICTED AND UNRESTRICTED SEARCH (XU, ET AL., 2007)

The search process is illustrated in Figure 8-11. On the left, the restricted search is shown
and on the right unrestricted search. In restricted or absorbing search, when a particle goes
outside the allowable solution space in one of the dimensions, it is limited to the boundary
of the solution space in that dimension, and the velocity component in that dimension is
zeroed. It seems as if the energy of the particle trying to escape the solution space is
absorbed by a soft wall so that the particle is stuck to it, and that particle will eventually be

pulled back by its memory of best locations only.

Restricted search results are as shown in Figure 8-12:
iter global best par global cost

[30]  [x1=-14.7918, x2=-20.0000]  [-23.7849]

Figure 8-13 shows the performance of the unrestricted search algorithm. A particle is
allowed to stay outside the solution space; however, the fitness evaluation of that position
is skipped and a bad fitness value is assigned to it. Therefore, the attraction of personal and
global best locations will counteract the particle’s momentum and eventually drag it back

inside the solution space.
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Unrestricted search results are as shown in Figure 8-13:
Iter globalpar globalcost
[30] [xI=-31.1643, x2=10.4176] [-40.9512]
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FIGURE 8-13 UNRESTRICTED SEARCH ALGORITHM PERFORMANCE
8.10. PSO with Exponentially Varying Inertia
Among the population-based algorithms, PSO and its variants have been popular heuristic
algorithms and have great potential for solving highly complex non-linear optimization
problems. Compared to other optimization methods, PSO exhibits fast convergence
characteristics. Wang et al. (1992) proposed a decomposition approach to solve non-linear
scheduling problems using expert systems with constraints. Jayabarathi et al. (2000) used

evolutionary programming, and Manoharan et al. (2005) proposed an evolutionary

193



programming approach for multiple options. Recently, Lingfeng et al. (2009) proposed an
enhanced PSO approach with local search. Manisha et al. (2011) proposed differential
evolution enhanced with time-varying mutation with reserve constraints. One common
feature of all these methods is that they use probabilistic rules to find the global optimal
solution and may prove to be very effective algorithms in solving problems without

modifying the shape of their cost curves.

However, the performance of the traditional PSO depends greatly on its parameters and it
often suffers from the phenomenon of premature convergence, as well as lacking
mechanisms to deal with various constraints. In order to address these drawbacks, an
exponentially varying inertia weight factor (EVIWF) algorithm is introduced into the PSO
algorithm to improve its convergence and performance (Rani, et al., 2014). This choice is
encouraged by the overall good performance of this method as reported by several
researchers (Ting, et al., 2012).

8.10.1 Mathematical Formulation

The EVIWF method combines an exponentially varying inertia weight factor w with
traditional PSO to perform global exploration. The first part of the following equation
represents the influence of previous velocity, which provides the necessary momentum for
particles to roam across the search space:

vl = wol + oy (P — xT) + comy (G — X7 (8-64)
where v is the velocity, x is parameter,ry, r;are independent uniform random numbers, c; is
the cognitive parameter, ¢, is the social parameter, P is the local best, G is the global best
and w is inertia.

The inertia weight w is the modulus that controls the impact of the previous velocity on the
current velocity. So, the balance between exploration and exploitation in PSO is dictated
by the value of w. Thus, proper control of the inertia weight is very important in finding

the optimal solution accurately and efficiently (Al-Sumait, et al., 2008). A larger inertia
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weight causes a tendency towards global exploration, whereas a smaller inertia weight
leads toward the fine-tuning of the current search area. Shi et al (1999) significantly
improved the performance of PSO with a linearly varying inertia weight over the
generations, varying from 0.9 at the beginning of the search to 0.4 at the end. To achieve a
trade-off between exploration and exploitation, w varies exponentially in response to the
objective values of the particles. In particular, the EVIWF is determined as follows:

witer = Wmax — (Wmax - Wmin)(1 - K) (8-65)

iter

K=¢e T ermax (8-66)

where Wy, 4, and wy,;, are maximum and minimum inertia weight factors respectively, and
a, is the convergence factor.

8.10.2 Implementation of the Proposed Algorithm

The proposed algorithm is implemented as follows:

Step 1: Specify the lower and upper bounds of the parameter limits.

Step 2: Generate particles randomly between the maximum and minimum.

Step 3: Calculate w't®" with the EVIWF formula defined above.

Step 4: Generate particle velocity in the range [v*™", %],
v = (8-67)
vt = —p (8-68)

where R is percentage change for the population or 'step size'.

Step 5: Update the velocity for each particle
Step 6: After updating the velocity, an individual velocity may violate its velocity
maximum or minimum constraints. This violation is corrected as follows:

iter+1 > vl?nax’ then iter+ — Uimax (8-69)

Ul L

Uilter+1 < vl?nm’ then ilter+1 — vimm (8—70)

Step 7: Update the position.
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Step 8: Check the position and adjust to its maximum and minimum limits.

Step 9: Evaluate the fitness of each individual according to the cost function.

Step 10: If the evaluation of the value of the individual is better than the previous, the
current value is to be set to P best. If the best is better than the global best, it becomes the
value set to be the G best.

Step 11: If the criteria to stop are met, then go to step 12, otherwise go to step 3.

Step 12: The individual that generates the latest G best is the optimal final solution.
8.10.3 Conclusions

The effectiveness of the proposed algorithm has been compared with the results obtained
from conventional PSO and verified with conventional test bench functions, multi-area
economic dispatch and an banking sector financial share prices time series regression
model. Experiments and simulation results show that the PSO-EVIWF achieves high-
quality solutions and smooth convergence characteristics and it can be considered an

alternative method for solving optimization and forecasting problems.

8.11. Chaotic Adaptive PSO Using Logistics and Gauss Map

Many modern stochastic search algorithms such as evolutionary programming methods,
Particle Swarm Optimisation (PSO), genetic algorithms and firefly algorithms may prove
to be very effective optimisation techniques (Happ, 1997). One common feature of all
these methods is that they use probabilistic rules to update the particle positions and
velocity in the solution space. In the past decade, the cubic cost function has captured the
attention of several researchers. Kumaran et al (2001) solved the cost function problem by
using a genetic algorithm. Adhinarayanan et al (2006) proposed a non-iterative logic based
algorithm, and Al-Sumait et al. (2008) have implemented a pattern search algorithm.
Among the above population-based algorithms, PSO is one of the modern heuristic
algorithms and has great potential to solve highly complex non-linear optimisation

problems. Compared to other optimisation methods, PSO has fast convergence
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characteristics. However, the performance of the traditional PSO greatly depends on its
parameters and it often suffers from the phenomenon of premature convergence as well as
lacking a mechanism to deal with various constraints in various problems. In order to
address the above-mentioned drawbacks, the CAPSO algorithm is proposed, which
incorporates a chaotic local search (CLS) operator and adaptive inertia weight factor
(AIWF) to find an optimal solution and avoid premature convergence (Rani, et al., 2014).
The basic strategy is to combine PSO with AIWF and CLS, in which PSO with AIWF is
applied to perform global exploration and CLS is used to find the optimal solution
(exploitation). Logistics and Gauss mapping techniques are used in performing CLS. This
choice is encouraged by the good overall performance of this method reported by several
researchers (Chuanwen, et al., 2011). Moreover, the method has not been used before in

the context of solving financial share prices forecasting problems.

8.11.1 Mathematical Formulation
For the Adaptive Inertia Weight Factor (AIWF), the first part of the following equation for

iter+1
i

v represents the influence of previous velocity:

jter+ = initer + Clrl(Pbest - xiiter) t+ C1 (Gbest - xiiter) (8-71)

U

This provides the necessary momentum for particles to roam across the search space. The
inertia weight w is the modulus that controls the impact of the previous velocity on the
current velocity. So, the balance between exploration and exploitation in PSO is dictated
by the value of w. Thus, proper control of the inertia weight is very important to find the
optimum solution accurately and efficiently (Cai, et al., 2007).

It is clear that a larger inertia weight pursues towards global exploration, whereas a smaller
inertia weight pursues toward the fine-tuning of the current search area. Niknam (2010)
made a significant improvement in the performance of PSO with a linearly varying inertia
weight over the generations from 0.9 at the beginning of the search to 0.4 at the end. To

achieve a trade-off between exploration and exploitation, w'®"is varied adaptively in
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response to the objective values of the particles. In particular, the AIWF is determined as

follows:

witer = Winax = Wmax — Wnin) (1 — K) (8-72)

iter

K = e_(Gbest+ )

itermax

(8-73)
where, Wy, 4, and w,,;,, are maximum and minimum inertia weight factors respectively.

In Chaotic Local Search (CLS), in order to enrich the searching behaviour and to avoid
being trapped in local optima, chaotic dynamics are incorporated into the PSO with AIWF.
Many types of chaotic mapping exist with different dimensions, such as logistics,
Gaussian, tent and quadratic mapping. Here, the well-known logistic and Gaussian

equations are considered.

The logistic equation in the CAPSO-logistics method exhibits sensitive dependence on
initial conditions, and is introduced in the process of chaotic local search as defined by the
following equation:
cxltertt = gexiter (1 — cxlten) (8-74)
iter

Obviously, cx; " is distributed in the interval [0, 1]. Although this equation is

deterministic, it exhibits chaotic dynamics when o = 4.

The CAPSO-Gauss method is used to analyse the influence of the chaotic mapping
technique on the convergence of the algorithm. To make the comparison meaningful,

Gaussian mapping is used as defined by the following equation:

iter?

Cxiiter+1 = g~ c%; + .8 (8-75)

Here, cx; denotes the it" chaotic variable, iter represents the iteration number, o is the
control parameter and a and f are real parameters. Normally the value of a ranges from 4

to 6.5 and that of 8 from -1 to 1.
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8.11.2 Implementation Procedure for CLS
CLS is implemented as follows:

Step 1: Set iter =0 and mapping the decision variables xfter, i =1,2,3,..n among the

intervals (x{'”", x{”ax),i = 1,2,3,..n to the chaotic variables cx/*"**, located in

the interval [0, 1] using the following equation:

iter xlter_,min
. i
CX; — ,max_.,min (8'76)
xP Y —x]

Step 2: Determine the chaotic variable cxfte”r for the next iteration using the Logistics or

Gaussian equation according to cx}*¢".

Step 3: Convert chaotic cxl-ite variables into the decision variable using the following
equation:
xiiter+1 — ximin + Cxiiter+ (ximax _ ximin) (8-77)

Step 4: Evaluate the new solution with decision variables xl-iter+ fori =1,2,3,...,n.

Step 5: If the new solution is better than x/“*"** then the predicted maximum iteration is

reached, and output the new solution as the result of the CLS; otherwise let

iter = iter + 1 and go to Step 2. (8-78)

A chaotic local search operator is introduced in the proposed algorithm to avoid premature
convergence. The basic strategy of the proposed algorithm is to combine PSO with an
adaptive inertia weight factor and chaotic local search. Logistics and Gaussian mapping
techniques are used in performing chaotic local search and the results are compared. The
applicability and high feasibility of the proposed method is validated on a standard
function test bench and in financial share price forecasting. The numerical results show
that the proposed method can obtain quality solutions for an optimal cost function and
shows excellent convergence characteristics. Hence, the proposed algorithm is competitive

with other algorithms in terms of its overall performance.
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8.11.3 Conclusions

The applicability and high feasibility of the proposed method is validated with a cubic cost
function, in forecasting with a financial time series, and with test bench functions. The
numerical simulation results show that the proposed algorithm is capable of giving higher
quality solutions and shows excellent convergence characteristics. Hence, the proposed

algorithm is competitive with other algorithms in terms of its overall performance.

8.12. Particle Swarm Optimization PID Extension

The traditional PSO algorithm is a closed-loop second order system with a proportional
controller term calculating the velocity gain/change of the parameters using the
proportional "error" difference between the best local and best global values as shown in
Figure 8-14. It limits the search and, in principle, reaches a stable solution which is offset
from the eventual optima. A natural extension of PSO consists of implementing a
proportional, integral and derivative (PID) controller. Integration of the accumulated
previous errors and error derivatives could improve performance, and these can be utilized

with the integral and derivative gain parts of the PID controller.

f(x)

o
[Ae]
—
—+
—_—

b Q(s) [ YT

, Dtgt} —| T(s)

FIGURE 8-14 PSO PID MODEL

It is therefore not surprising that a numbers of research studies have attempted to improve
the performance of the algorithm as well as to find possible extensions. Most research
related to the improvement of PSO is generally concerned with the choice of parameters,

rapidity of convergence and stability of the extended algorithm. Indeed Van den Bergh et
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al (2006) described various methods of choosing parameters and presented a convergence
stability analysis for each particle. Kadirkamanathan et al. (2006) provided sufficient
conditions for asymptotic stability using tools developed from control theory; namely,
passivity and a Lyapunov-based approach. However, these conditions are conservative in

the sense that violation of the latter does not necessarily imply instability.

Here, a mathematical control theory analysis of the PSO algorithm is used from a system
point of view in both a continuous-time and discrete-time setting to present a stability
analysis of the PSO algorithm (Busawon, et al., 2016). It is shown that the evolution of a
particle is governed by a closed-loop system subjected to a proportional control law
together with a feed-forward control term. This observation leads the proposal of a further
extension of the PSO algorithm by employing other control laws; namely, a PID
(proportional, integral and derivative) controller and methods to choose the parameters of
the algorithm. The analysis is carried out in the scalar case only in order to simplify the
demonstration. Methods for choosing the parameters of the proposed extended algorithm,
such as those presented by the Routh-Hurwitz theorem (Routh, 1877, Hurwitz, 1895), are
discussed. Finally, the results obtained are applied and compared to those of traditional

PSO via a typical financial share price time series forecast.

During the main loop of the algorithm, the velocities and positions of the particles are
iteratively updated until a stopping criterion is met. The updating rules are given as
follows:

xi(n+1)=x;n) +v;(n+1) (8-79)

vi(n+ 1) = wyi(n) + ¢y (pi(n) — x;(0)) + c212(g: (M) — x;(n)) (8-80)
where w is a parameter called the inertia weight, ¢; and ¢, are two parameters called
acceleration coefficients, and r; and r, are two N-dimensional diagonal matrices in which
the entries in the main diagonal are random numbers uniformly distributed in the interval

[0, 1]. At each iteration, these matrices are regenerated. The vector p; (n) is referred to as
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the local best. The vector g;(n) is referred to as the neighbourhood best or global best, and
this is the best position ever found by any particle in the neighbourhood of particle x;. If
the values of w, c¢; and c, are properly chosen, it is guaranteed that the particles’ velocities
will not increase to infinity. It should be noted that, to date, no clear procedure or method

has been proposed to choose such values appropriately.

The system can be rewritten as:

x(n+1) = x;(n) + v;(n + 1) (8-81)
vi(n + 1) = wyy(n) + uy(n + 1) (8-82)

with
u(n) = ey (pi(n) — x;(n)) + c2r2(gi(n) — x;(n)) (8-83)

One can easily show that:

w; = ko(gi(m) — pi(M) + kp(p;(n) — x;(n)) (8-84)
where

kp =cyry + a1y, and kg = cy1y (8-85)
The function u;(n) can be seen as a control input to the system. Therefore, from a control
point of view, the evolution of a particle, x;, is governed by the above closed loop system
where u;(n) is viewed as the feedback control. The control u;(n) is nothing more than a
proportional control component together with a feed-forward term, ky(g;(n) — p;(n))
with reference input p; (n). Consequently, it is possible to extend the above PSO algorithm
by employing other control terms in the algorithm; in effect, extending the traditional PSO
algorithm by replacing the proportional term kp(p;(n) — x;(n) in u;(n) by a PID
controller. This allows approaches to be proposed to choose the parameters of the
algorithm.
The PID controller is used in a closed-loop unity feedback system. The error denotes the
difference between the current particle parameter difference and the local best error, which

is sent to the PSO algorithm; that is, the PID controller. The velocity of the control signal
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from the controller to the regression system is equal to the proportional gain (Kp) times the
magnitude of the error plus the integral gain (K; ) times the integral of the error plus the
derivative gain (Kp) times the derivative of the error:
u=KP*e+K,*fe*dt+KD*% (8-86)
8.12.1 Mathematical Analysis
A mathematical analysis of the PSO algorithm is conducted from a system point of view in
both a continuous-time and discrete-time setting in order to provide a stability analysis of
the PSO and to justify the choice of the parameters currently employed for the algorithm.

The PID Laplace transfer function is:

Kp*s?+Kp*s+K|

PID(s) = Kp + -2+ Kp = (8-87)

S

The algorithm could be extended, including in u(t), with the integral and derivative terms:

d
u(®) = ko(Pe — ge) + kp (e — x2) + k; [ (pe = xe)dt + kp = (P — %) (8-88)

U(s) = ko(P(s) = G(s)) + (kp + ki 5 + kps) (P(s) — X(s)) (8-89)
X(s) = H(s)U(s) (8-90)
1
H(s) = P (8-91)
X(s) = 5 (ko(G(5) = P()) + (kp + ki 2+ keps ) (P() = X(5))  (8-92)
_ kpsP+(kp—ko)s+k; sko
X(S) - (s3+(kp-w)s?+kps+kp) P(S) + (s3+(kp-w)s2+kps+kp) G(S) (8-93)
X(s) =T(s)P(s) + Q(s)G(s) (8-94)
_ kps?+(kp—ko)s+k;
I(s) = (s3+(kp—w)s2+kps+kr) (8-95)
_ Sko
.Q(S) - (s3+(kp-w)s2+kps+kp) (8-96)
In the case of the P controller already derived:
_ kp—kqg -
X(s) = C—— P(s) (8-97)

In the case of the PI controller:
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(kp—ko)s+k;
(s3-wsZ+kps+kp)

X(s) = P(s) (8-98)

According to the Routh-Hurwitz criterion, the above transfer function is stable if k; > 0,

ki

kD—W ’

kp >wand kp >

Assuming that 7; = 1 then:

ko = cory = ¢ (8-99)
ki =1lkp+k;+kpl=ciry+cory+c3r3=c1+cy +¢3 (8-100)
ky, = [kp + 2kp] = c11p + c3153 = ¢1 + C3 (8-101)
ky; =kp =c3m3 =c3 (8-102)
c > C:TZW ,62 > 0andcz >w (8-103)

A more precise method of choosing the parameters would be to use the Kharitonov

theorem (Kharitonov, 1996) on an interval polynomial. Consider the characteristic

polynomial:
p(s) =s3+ (kp —w)s? + kps + k; (8-104)
p(s) = azs3 + ays? + a;s + aq (8-105)

The stability of p(s) is defined as follows:

p1(s) = (c3 —w)s? + 53 (8-106)
p2(s) = ¢, +¢15 + 57 (8-107)
p3(s) = c¢;s + (c3 — w)s? + s3 (8-108)
pa(s) = c; + 53 (8-109)

Thereforec, > 0,c3 > wandc, > % > 0, and this agrees with the results of Routh-

Hurwitz.
Another direct method to find the parameters c; is to fix the poles of the characteristic

polynomial and then to find the values of ¢; by identification.

Simulations confirming the analytical findings are shown below.
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For w < 0 with the PI controllers, the simulation solution is stable. For w = —0.5 the

result is shown in Figure 8-15.
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FIGURE 8-15 SIMULATION OF PI CONTROLLER AND W =-0.5

For w = 1 with the PI controller, the simulation failed to find a stable solution and is

shown in Figure 8-16.

uuuuu

Interactive tuning
Response time: 1.12 seconds
3]

bl

Stower

FIGURE 8-16 SIMULATION OF PI CONTROLLER AND w=1

With the addition of derivative components in the closed-loop second system controller
(PID) and for w = 1, the simulation found a stable system solution as shown in Figure

8-17 which confirms the Routh-Hurwitz criterion and the Kharitonov theorem stable

system solution conditions.

B PID Tuner
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FIGURE 8-17 SIMULATION PID CONTROLLER AND W =1
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With the PID controller and for w = 0, the simulation found a stable system solution as

shown in Figure 8-18.
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FIGURE 8-18 SIMULATION AND w=10.0

With the PID controller and for w = —0.5, the simulation found a stable system solution as

shown in Figure 8-19.
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FIGURE 8-19 SIMULATION PID CONTROLLER AND W= -0.5

To have a stable system for the P and PI controllers, the inertia w should be < 0.0.
Generally, finding a stable system solution and excellent system response characteristics
for the common case of w = 1.0 is straightforward, and an example of the performance

and robustness of PID for PSO is shown in Figure 8-20.

Performance and robustness

Tuned
Rise time {(seconds) 0.0607
Settling time (seconds) 0.517F
Owershoot (96) 26.7
Peak 127
Gain margin {rad/s) -226 @ 2.71
Phase margin {rad/s) 60 @ 20.2
Closed-loop stability Stable

FIGURE 8-20 PERFORMANCE AND ROBUSTNESS OF PID FOR PSO AND w< 0.0
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8.12.2 Tuning of the PID Controller

Dynamic system behaviour and convergence is examined next and is defined with the
system step input signal response. An initial set of the parameters of the PID controller

used for the PSO algorithm is derived using the Ziegler-Nichols method (Zhong, 2006).

The PID controller can be tuned without an extensive background in control theory. This is
not the case with many other modern controllers that are much more complex but often
provide only marginal improvements. In fact, most PID controllers are tuned per individual
case. However, the lengthy calculations for an initial guess at PID parameters can often be
bypassed by using a few tuning rules. This is especially useful when the system is
unknown. The four most important major characteristics of the closed-loop step response
are as follows:
1. Rise time: the time it takes for the system output y to rise beyond 90% of the
desired level for the first time.
2. Overshoot: how much the peak level is higher than the steady state, normalized
against the steady state.
3. Settling time: the time it takes for the system to converge to its steady state.
4. Steady-state error (SSE): the difference between the steady-state output and the
desired output.
The effects of increasing each of the PID controller parameters Kp, K;and Kj, are
summarized below in Table §-1.

TABLE 8-1 PID CONTROLLER PARAMETERS TUNING GUIDANCE

Response Rise time Overshoot  Settling time S-S error
Kp Decrease Increase - Decrease
K; Decrease Increase Increase Eliminate
Kp - Decrease Decrease -

Typical steps in designing a PID controller are as follows:
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1. Determine what characteristics of the system need to be improved.
2. Tune Kp to reduce the rise time.
3. Tune K; to reduce the overshoot and settling time.

4. Tune K, to eliminate steady-state error.

The initial parameters can be found by using the rules proposed by Ziegler and Nichols for
determining the values of Kp,K;, and Kp, based on the transient step response of the
system. The Ziegler-Nichols method applies to systems whose unit-step responses

resemble an S-shaped curve with no overshoot as shown in Figure 8-21.

Tangent line at inflection point

K ( /_,,—

FIGURE 8-21 ZIEGLER-NICHOLS PID TUNING RULES (ZHONG, 2006)

The S-shaped reaction curve can be characterized by two constants, the delay time L and
time constant 7, which are determined by drawing a tangent line at the inflection point of
the curve and finding the intersections of the tangent line with the time axis and the steady-
state level line. A response with an overshoot of about 25% and a good settling time can be
used for the initial controller settings Kp, K; and K, as presented below in Table 8-2.

TABLE 8-2 INITIAL PID CONTROLLER SETTINGS (ZHONG, 2006)

Controller Kp K; Kp
P T 0 0
L
PI T T 0
PID T T 06T
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8.12.3 Discrete Domain PID

The PSO algorithm is generally given in the discrete domain. Consequently, the analysis in

the discrete domain is more relevant in terms of practical implementation. For the k + 1

iteration:
X1 = Xk + Vi (8-110)
Vk+1 = WU + Uy (8-1 1 1)
Uy = ky (P — xi) + ko (gr — Pic) (8-112)

The z-transform is given by:

zX(z) = X(z) + zV (2) (8-113)
zZV(z) =wV(2) + U(2) (8-114)
X(2) =H@)U(2) = mU(z) (8-115)
The z-transform of the open system is:
H(z) =m (8-116)
U(z) = kp(P(2) — X(2)) + ko(G(2) — P(2)) (8-117)
X(2) :%P(zﬂ%(;(z) (8-118)
X(z) =T(2)P(z) + Q(2)G(2) (8-119)
r@) =Sty = e (8-120
Uz) = 1521:1(‘12()2)—22+(kpl—€3l12—1)2+w (8-121)
The poles of the closed loop system are:
X12 = @ (8-122)
71 = o DTk e (8-123)

If w=1 and poles are to be in the unit circle for stability then:
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2 G

1 2

,—1<z, <1 (8-124)

2, = —(kP—Z)—\ém’ 1<z <1 (8-125)

The PSO algorithm could be extended by including the integral and derivative terms in
u(t), the discrete time domain (Basdogan, 2016), and the discrete time derivative is given
by:

Ve =ft = ft-1 (8-126)
The discrete time integral (simple rectangular method) is given by:

ff_lf Odt =y = yi1 + f; (8-127)
The discrete transfer function z-transforms are derived as follows:

e discrete TF of derivative:

Ve =ft = ft-1 (8-128)
Y[z] = Fl[z] — z7 ' * F|Zz] (8-129)
Y[z] _ z-1

i (8-130)

e discrete TF of integral (simple rectangular method):

Ye=Ye-1t+ [t (8-131)
Y[z](1 —z™1) = F[z] (8-132)
Y[z] z

Flz2] ~ z-1 (8-133)

The discrete transfer function of the PID is then given by:

vizl

z z-1
5 = K+ K+ Ko~ (8-134)

Viz]l Kp(z® —2) + K;z> + Kp(2® — 2z + 1)
E[z] 7?2 —z

Viz] (Kp+ K +Kp)z? — (Kp + 2Kp)z + K
E[z] 72—z
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Viz] (Kp+K;+Kp)— (Kp +2Kp)z™" + Kpz™?

E[z] 1—-2z71

Viz] = z7W|z] + aE|z] + bz 1E[z] + cz72E|[z] (8-135)
Finally:

Ve =Viq+axe+brxe_1+cxey (8-136)

a= (K, +K +Kp) (8-137)

b=—(Kp+2=xKp) (8-138)

c=Kp (8-139)

In the traditional PSO algorithm, k; = 0 and kp = 0, thus:

ki =lkp + k; + kp] = c11y + co1p + €313 = 11y (8-140)
ky, = [kp + 2kp] = 1y + c313 = 41y, (8-141)
ks = kp = c3r3=0 (8-142)
p(@2)=z3+(cn—-w-2)22+QQw+cn+1)z—w (8-143)

In many studies (Shi, et al., 1998, Trelea, 2003, Engelbrecht, 2007) the values of ¢;= 1.496
and w = 0.729 can be chosen. For these values of ¢; and w there are two poles inside the
unit circle of the complex plane and one on the unit circle for the worst case scenario r;=

r,= 1. This justifies such a choice of parameters.

8.12.4 Simulations

Matlab simulation code:
% clear all; clc; close all;
% G = z/((z-w)(z-1))= z /((z"2-(w+1)z+tWw))

w=];
G=f([1 0], [1 -(w+1) w],1);
%%
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Kp=0.048752;
Ki=0.00023405;
Kd=0.24724;
C=pid(Kp,Ki,Kd,0,1);
H=I;
T=feedback(GC,H),
step(T)

P controller simulation results are shown in Figure 8-22.

w=1.0 ., w=1.1
FIGURE 8-22 DISCRETE PSO WITH P CONTROLLER AND #=[-0.5,-0.9, 1.0, 1.1]

PID tool pidtool code:
% G = z/((z-w)(z-1))= z /((z"2-(w+1)z+W))
w=1.0;
G=1f([1 0], [1-(w+1) w].1);
pidtool(G, 'pid’)

PI controller simulation results are shown in Figure 8-23.
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w=1.0

w=1.1

FIGURE 8-23 DISCRETE PI CONTROLLER AND #w=[-0.5,-0.9, 1.0, 1.1]

PID controller simulation results are shown in Figure 8-24.
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The traditional PSO algorithm with the common value of w=1 is stable harmonically.

Values of w<1 are stable but slow; for example, for w=-0.9 the response time is 32.9 sec.

The PI algorithm generally has similar performance to that of the P algorithm. The PID

algorithm is stable with various values of w with very good response times; for example,
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for w=1 the response time is 7.83 sec with very good performance and robustness, as

shown in Figure 8-25 and Table 8-3.

Performance and robustness

Tuned
Rise time (seconds) 4
\Settling time (seconds) 40
Overshoot (%) 26.2
Peak 1.26
Gain margin (rad/s) -3.1 @ 0.0279

FIGURE 8-25 PID EXTENSION ALGORITHM PERFORMANCE AND ROBUSTNESS

TABLE 8-3 PID PERFORMANCE AND ROBUSTNESS

w Response [s] Rise[s] Stable [s] Overshoot[%]
-0.9 17.1 11.0 85.0 24.8
-0.5 10.08 7.0 54.0 25.3
1.0 7.83 4.0 40.0 26.2
1.1 2.38 1 16.0 30.7

8.12.5 Application to Financial Time Series

Tests have been conducted with banking sector financial time series data to validate the
feasibility and effectiveness of the proposed algorithm. The results represent the average of
30 trials. The various parameters of the proposed method are set as follows: ¢y = ¢; = 2;
¢, = —2c3 = 1, w = 0.4. For this choice of parameters, one can check that the roots of the
characteristic equation p(z) all lie within the unit circle of the complex plane. The number
of iterations used was 300. Clearly, the proposed method converged to a better solution,

while the execution time was much lower.

8.12.6 Conclusions

The proposed extension of the PSO algorithm from a control system point of view has
shown that, in the scalar case, each sub-system of the traditional PSO can be viewed as a
closed-loop second order system controlled using a proportional controller. Consequently,

an extension of the PSO was made by including a PID controller in the sub-system.
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Various methods to choose the underlying tuning parameters were discussed. It was shown
that the performance of the proposed method is better than that of traditional PSO using an
PSO-PID with financial share price time series data. The performance of the proposed

extended algorithms has been tested for other benchmark functions.

8.13. Hybrid Model with PSO and Neural Networks
Research on the integration of Artificial Neural Networks (ANNs) and Swarm Intelligence

(SI) is promoting unified development in computational models for machine learning.
Recently swarm intelligence methods like PSO have been successfully applied for training
feed-forward and recurrent ANNs (Wang, et al., 2008, Kiranyaz, et al., 2009). Dehuri et al ,
2011) have reviewed recent theoretical and applied research on swarm intelligence (SI) and
artificial neural networks. The authors discuss recent developments in swarm intelligence
and neural networks, focusing on particle swarm optimization (PSO), ant colony
optimization (ACO) and bee colony optimization (BCO) techniques. Artificial neural
networks (ANNSs) have the ability to learn and adapt although it is very difficult to obtain
an optimal neural network architecture with, for example, the optimal numbers of hidden
layers and hidden neurons in each hidden layer. They argue that the use of swarm
intelligence will allow more robust and rapid solutions to be found. Furthermore, the
potential of higher order neural networks and their possible integration with swarm
intelligence is also discussed. Omkar and Senthilnath (2011) explore data mining utilizing
neural network and swarm intelligence algorithms. These techniques have an advantage
over conventional statistical techniques because they require no prior knowledge of the
distribution of data. The extraction of information from a dataset is possible in the form of
weights and rules using various neural network and swarm intelligence techniques.
Performance analysis is based on per class and overall accuracy. Furthermore, the
computational complexity of neural network and swarm intelligence techniques are
evaluated. Swarm intelligence meta-heuristic methods are mainly characterized by their

distributiveness, flexibility, capacity of interaction among simple agents, and robustness.
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They have been successfully applied to single-objective optimization problems and have
great potential to cope with multi-objective optimization problems, as addressed by
Leguizamon and Coello (2011). Here, a taxonomy of the types of swarm intelligence (i.e.
ant colony optimization) for multi-objective optimization is proposed that would be helpful
in multi-objective optimization problems. The wavelet transform (WT) is one of the most
frequently used signal processing techniques for the extraction of information in different
frequency sub-bands from non-stationary signals such as time series. WT-derived features
are used to identify the nature of the signals. Panigrahi et al. (2011) used the multi-layer
feed -forward neural network (FNN) with both back-propagation and evolved with an
integrated Adaptive Particle Swarm Optimization (APSO) neural network classifier and the
assessment of classification performance compares both back-propagation and APSO-
based learning. Misra et al. (2011) presented a classifier model using a Polynomial Neural
Network (PNN), which is a flexible neural network architecture. The number of layers in
the PNN is not fixed in advance but is developed on the fly. Each node of the PNN realizes
a polynomial mapping between input and output variables. An artificial neural network
(ANN) is incorporated with PNN in order to enhance performance. A comparison of the
performance of gradient descent and PSO training frameworks was conducted on
benchmark databases in different domains. The simulation results of the hybrid ANN-PNN
with PSO showed that its performance is much better in comparison to the conventional
and gradient descent PNN models. Majhi et al. (2011) developed an efficient adaptive
prediction model using the recently developed Differential Evolution (DE) technique. The
forecasting model employs adaptive linear combiner architecture, neural network alike,
and a DE-based learning rule to predict seasonally adjusted (SA) and non-seasonally
adjusted (NSA) sales data for short and long ranges. The prediction performance of the
proposed model was assessed through simulation and using real life data. For comparison
purposes, the corresponding results were also obtained based on a genetic algorithm (GA),

bacterial foraging optimization (BFO) and PSO-based forecasting models. It was observed
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that the new DE forecasting model offered the fastest training, best prediction and the
lowest least mean squares error after training compared to the three other evolutionary
computing-based models.

8.13.1 Evolutionary Neural Networks Algorithms

Evolutionary algorithms (EAs) (Back, et al., 1993) such as PSO have been used in studies
of optimization problem-solving, such as the optimal design of artificial neural networks
(ANNSs). As they are heuristic and stochastic based on populations made up of individuals
with specified behaviour, they are robust and efficient at exploring an entire optimization
space. There have been successful efforts to evolve the weights, structures, and learning
parameters of ANNs. Yao and Liu (1997) proposed an evolutionary ANN approach called
EPNet by using an evolutionary programming (EP) algorithm. Weights and structure are
evolved simultaneously by using partial training, the mutation of weights and the addition
or removal of connections or nodes. EPNet encourages smaller networks, as removals are
attempted before additions, and a behavioural link is maintained between parents and
offspring through partial training and node splitting. Castillo et al. (2000) proposed a
method that attempts to search for the initial weights and hidden-layer size of multilayer
perceptrons (MLPs). The application of the G-Prop algorithm to several real-world and
benchmark problems showed that the MLPs which evolved are smaller and achieve better
generalization than other perceptron training algorithms. Palmes et al. (2005) proposed a
mutation-based genetic ANN (MGNN) algorithm. The MGNN can evolve the structure
and weights of ANNs simultaneously. It implements a stopping criterion where
occurrences of over-fitness are monitored through sliding-windows to avoid premature
learning and over-learning. PSO is considered to be capable of reducing slow convergence
speeds in training, but it is easy to get stuck in a local minimum with the BP algorithm of
feed-forward ANNs because it does not require a gradient and differentiable information.
Salerno (1997) used PSO to evolve the weights and bias of neurons in ANNSs used to solve

XOR problem and for parsing natural language. The results demonstrated that a PSO-based
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ANN has better training performance and a faster convergence rate, as well as better
predictive ability than a BP-based ANN. Juang (2001) proposed a hybrid of GA and PSO
(HGAPSO) for training recurrent networks. The HGAPSO used PSO to enhance the elites
generated by GA in order to produce higher quality individuals. The performance of
HGAPSO was compared to both GA and PSO in recurrent network design problems and
its superiority was demonstrated. Da and Ge (2005) proposed an improved PSO-based
ANN with simulated annealing (SA) technique, and the results showed better training and
generalization performance than a PSO-based ANN. A hybrid of ACO and BP algorithms
was proposed by Shi and Li (2009) to evolve NNs. The ACO-BP algorithm firstly uses the
ACQ algorithm to search for the near-optimal solution and then adopts the BP algorithm to
find the accurate solution. It avoids being trapped in local optima and can rapidly find the
accurate solution to accelerate its speed of evolution. Through the selection of neural
network parameters, the solution expressed is as an adjustment of the updated neural
network parameters. When all the particles choose the same parameters or algorithm to a
predetermined number of cycles, then the algorithm is terminated. This approach has been
utilized with PSO and extended further with an additional post-PSO application in the
investigation in the present study. Karaboga et al. (2009) has introduced another technique
for training ANNSs, proposing an Artificial Bee Colony (ABC) algorithm, which has good
exploration and exploitation capabilities in searching for the optimal weight set for training

neural networks.

8.13.2 Numerical Experiments

Approaches using PSO to replace the back-propagation learning algorithm in ANNs have
been proposed in recent years. It has been shown that PSO is a promising method for use in
training ANNS. It is faster and gets better results in most cases. Furthermore, hybrid
models with PSO and BPNN combinations are very promising. The selection of a fitness
function for a regression problem such as time series financial share prices forecasting is

the minimum square root of the model fitness error.
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A hybrid example combining a Back Propagation Neural Network (BPNN) with PSO is
investigated here (see Figure 8-26). The problem to be solved is the forecasting of a
financial share price time series regression fitting function in a banking sector dataset.
Sixteen time series datasets of fifteen consecutive closing price values (over three trading
weeks) are the attributes (features) with a forecast target being the sixteenth day closing

price. A three-layer neural network is used to conduct the regression.
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FIGURE 8-26 HYBRID BPNN AND PSO MODEL

There are sixteen inputs and one output. The number of hidden neurons can be changed. If
the hidden layer has ten neurons defined with a group of weights, there will be 181
weights, and so the particle is defined with 181 real numbers.

The range of weights is set to [0, 1], absorbing boundaries. The algorithm is as follows:

overlimit=par<=1I,
underlimit=par>=0;

par=par. *overlimit+not(overlimit),
par=par. *underlimit;

The fitness function for the regression problem is the minimum square root of the sum of

squared error between the forecast output of the regression model and the target next day

219



Price in pence

closing price for the particle. First the PSO is used to calculate the initial neural network
weights. Next the time series are fed to the back propagation neural network. Finally PSO

is applied to train the ANN to get the lowest fitting error possible.

The experimental share price time series dataset is given in Appendix C: Table 26.
Running PSO for a population of 10 with 300 iterations with a neural network of one
hidden layer with 10 nodes, and 300 epochs gives very steady and promising results of
training on the banking sector data as shown in Table 8-4. The results for BARC.L are
shown in Figure 8-27, for HSBA.L are shown in Figure 8-28 and for LLOY.L are shown in
Figure 8-29 showing extraordinary target and model likeliness overleaping graphs.

TABLE 8-4 BPNN AND PSO FORECAST PERFORMANCE
bank=BARC.LL. ANN=0.0015246 ANN&PSO=0.00021352 improvement= 7.1402

bank=LLOY.L ANN=0.0010452 ANN&PSO =0.00011553 improvement= 9.0471

bank=RBS.L  ANN=0.0070449 ANN&PSO =0.0012869  improvement= 5.4744

bank=HSBA.L ANN=0.0096447 ANN&PSO =0.0017702 improvement= 5.4483

bank=VM.L  ANN=0.016416  ANN&PSO =0.0035544 improvement=4.6186
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8.13.3 PSO and Neural Network Conclusions

Recently there have been significant research efforts to apply evolutionary computation
techniques such as PSO for the purposes of developing one or more aspects of artificial
neural networks. Various approaches using PSO to replace the back-propagation learning
algorithm in ANNs have been proposed in recent years. These have shown that PSO is a
promising method in training ANNSs. It is faster and gets better results in most cases.
Further hybrid models with combinations of PSO and BPNN are very promising. These
techniques have been applied to three main attributes of neural networks: network
connection weights, the network topology and learning algorithms. Here the work was

conducted on the network weight parameters.
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The code, integrating the PSO and NN weights techniques is apparently very technically
complex. Both the NN and PSO are very sensitive to initial state randomness (Xiaohui,
2013). There are many parameters in PSO that need to be adjusted to get better results in
different trials, but the main ones are the number of hidden layers and the range of the
weights (Xiaohui, 2013). The typical number of particles is 20 — 40, but for most problems
such as time series forecasting 10 particles is large enough to get good results. The
dimensionality of particles is determined by the problem to be optimized, and in the case of
neural networks the number of weight parameters massively increases. In the experiment,
there are over 500, comprising the number of NN node weights times the number of time
series samples. The range of particles (NN weights) is also determined by the problem to

be optimized.
Other performance and convergence algorithm-dependent parameters are:

e Maximum change possible for one particle during one iteration.

Learning factors where usually c1 is equals to c2 and ranges from [0, 4].

Stop condition maximum number of iterations the PSO execute.
e Minimum square root error requirement; for example, for ANN training in share
price time series it is 1% of the price range.
8.14. Summary
The advantage of PSO is that it can be used in cases with non-differentiable transfer
functions and when no gradient information is available. The disadvantages are that its
performance is not necessarily competitive for some problems and the representation of the

weights is difficult and they have to be carefully selected or developed.

There are two key steps when applying PSO to optimization problems: the representation
of the solution, and the fitness function. One of the advantages of PSO is that it takes real
numbers as particles. Then a standard procedure can be used to find the optimum.

Searching is an iterative process, and the criteria for finishing the search are that the
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maximum iteration number is reached or the minimum error condition is satisfied. There
can be global and local versions. The global version considers only the global best, and is
faster but might converge to a local optimum. The local version considers both the local
and global best, and is slower but avoids local optima. Usually the global version gives an
approximate quick result and the local version is used for refining the search.

However, many parameters need to be tuned, such as the dimensionality of particles, which
is determined by the problem to be optimized. In the case of neural networks it is the
number of weights and the inertia weight with PSO is a significant factor in convergence.
PSO still has some limitations in mathematical analysis in terms of convergence.

It has been shown that, in the scalar case, each subsystem of the traditional PSO can be
viewed as a closed-loop second order system controlled using a proportional controller. A
mathematical analysis of the PSO algorithm from a systemic point of view along with
stability analysis was performed in continuous and discrete time domains to determine the
choice of parameters. Consequently, a possible proportional, integral and differential (PID)
algorithm extension was recommended including a PID controller in the subsystem. With
the PID controller the simulation easily found a stable system solution.

Conceptually, neural networks and PSO are different, ANN has a memory and is non-
linear while PSO can search for the global optimum and is linear. The interpretation of
PSO is natural to understand , while ANN is a black box, very difficult with complex
multilayer architectures. A hybrid example combining a neural network with PSO was
used to investigate the forecasting of a financial shares time series regression fitting

function with the banking sector dataset.

These approaches have been applied and tested by a new (unique) application methodology
developed for hybrid systems where neural network nodes are considered as particles and
layered swarm architecture and neural network optimization are integrated. The code

required to integrate the techniques is very technically complex. It was found that both
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algorithms are very sensitive to initial state randomness. In the end, the efficiency of an
algorithm may depend on its algorithm-dependent parameters, and the optimal parameter

setting of the PSO algorithm is itself an optimization problem.
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Chapter 9. CAPM and Risk Analysis

9.1. Overview

This chapter explains the classical capital asset pricing model (CAPM) and the related risk

concept.

The rate of return or change is expected to reflect and compensate for taking on risk. There
are two types of risks associated with a share: general market risk, which is systematic; and
specific share risk which is unsystematic. Systematic risks are those that cannot be
diversified away, for example because of interest rates and recessions. Specific risk
represents the component of a share's return that is not correlated with general market

changes.

This chapter covers the following subjects:

e CAPM model

e Beta as a measure of the risk

e Beta regression calculation

e Return on investment (ROI)
9.2. CAPM Model
The capital asset pricing model (CAPM) is a widely used financial theory in which a linear
relationship is established between the return required on an investment and risk. The
model is based on the relationship between an asset's beta, the risk-free rate (typically the
Treasury bill rate) and the equity risk premium, which is the expected return on the market

minus the risk-free rate.

The derivation of the CAPM requires the following assumptions to be made:
1. The returns from two assets are correlated with each other only because of their
correlation with the return from the market. This is equivalent to assuming that

there is only one factor driving return.
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2. Investors focus on returns over a single period and that period is the same for
all investors.
3. All investors make the same estimates of expected returns, standard deviations

of returns, and correlations between returns.
The CAPM model can be written as:
s = 17 + Bs(fin — 17) (9-1)
where 7y is the share return, 75 is the risk-free rate, typically of a 10-year government bond
yield, 7, is the expected market return as a whole such as for a well-diversified stock index

like the S&P 500 or FTSE-100, 250, (fm - rf) is the equity market premium for taking

risk, and fs is the beta value of the share.

9.3. Beta Measure of Risk

The beta is a measure of a share's risk and its relative volatility. It compares the fluctuation
of a particular share with that of the market as a whole. If a share price follows the market,
its beta is 1. A share with a beta of 1.5 would rise by 15% if the market rose by 10%, and
fall by 15% if the market fell by 10%. The value of beta indicates the amount of
compensation for the associated additional risk. Investors hold securities with betas greater
than 1 while the market is rising, and securities with betas of less than 1 when the market is

falling.

Generally, beta is a fundamental trade-off between minimizing risk and maximizing return.
Beta is a historical measure of a stock's volatility and past beta figures or historical

volatility does not necessarily guarantee future beta values or volatility.

Various types of beta are as follows:
e Negative beta. A beta less than 0, which would indicate an inverse relationship to
the market, is possible but highly unlikely. Gold and gold stocks should have

negative betas because they tend to do better when the stock market declines.
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e Beta of 0. Basically, cash has a beta of 0. In other words, regardless of which way
the market moves, the value of cash remains unchanged (given no inflation).

e Beta between 0 and 1. Companies with lower than that of the market have a beta of
less than 1 but more than 0. Many utilities fall in this range.

e Beta of 1. A beta of 1 represents the volatility of the given index used to represent
the overall market, against which other stocks and their betas are measured. The
S&P 500 is such an index. If a stock has a beta of one, it will move in the same
amount and direction as the index. So, an index fund that mirrors the S&P 500 will
have a beta close to 1.

e Beta greater than 1. This denotes a volatility that is greater than the broad-based
index. Many technology companies on the NASDAQ have a beta higher than 1. For

the most part, stocks of well-known companies rarely have a beta higher than 4.

The value of beta is found by statistical analysis of individual, daily share price returns in
comparison with the market's daily returns over the same period. The beta ($) of an asset is
a measure of the sensitivity of its returns to returns from the market. It can be estimated
from historical data as the slope obtained when the excess return on the asset over the risk-
free rate is regressed against the excess return on the market over the risk-free rate. When
=0, an asset’s returns are not sensitive to returns from the market. In this case, it has no

systematic risk and the equation shows that its expected return is the risk-free rate.

A beta's reliability can be calculated using the coefficient of determination, or the r-
squared, to determine how well it measures risk. The range of this statistic is zero to one,

and the closer it is to one, the more reliable the beta is.

The index used to calculate the beta should be that of the stock market where the share is
traded, such as in America the S&P 500 Index and in London the FTSE 100 (FTSE),

250(FTMC) or 350(FTLC).
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There are two ways to calculate the value of beta using either a regression technique or the
capital asset pricing model (CAPM). Regression, as used by investment practitioners,
allows for a better explanation of returns pertaining to the market and takes interest rates as
well as market returns into account. The CAPM is more academic and gives a theoretical

explanation of the overall return of an asset.

9.4. Beta Regression Calculation

The closing price columns in order from newest to oldest for the index and share should be
copied into a new spreadsheet. To obtain the correct format for calculation, these prices
must be converted into return percentages for both the index and the stock price. To do
this, the price from yesterday is subtracted from the price from today and the answer is

divided by yesterday’s price. The result is the percentage change.
Beta £ is calculated on returns and not on prices, where “x” values are the market values
and “y” values are the stock values:

B = Covy,, /Var (9-2)

For the calculation of beta using the CAPM model:

to =17 + Bs(fim — 17) (9-3)
So that:
Bs =7 (9-4)

where 75 is the share return, 75 is the risk free rate typically of a 10-year government bond
yield, 7, is the expected market return as a whole such as from a well-diversified stock
index such as the S&P 500 or FTSE-100 or 250,(fm - rf) is the equity market premium
for taking risk and, and fs is the beta value of the share.

On the Yahoo!! Finance website beta values can be found by entering a company name,

then clicking on Key Statistics and looking under Stock Price History. The beta that is

228



calculated on Yahoo! compares the activity of the stock over the last five years and then

compares it to the S&P 500.

For a period of 15 days, BARC.L and FTSE-2500 are similar with a slight linear similarity
trend and BARC.L second order polynomial similarity R2 beta. The similarity between the
actual BARC.L price and the price calculated using the CAPM is relatively good at
R2=0.45. Beta is calculated for each point (date) and further modelling could improve the
forecasting capability. Due to the very small risk-free rate, the unsystematic risk is the
share risk with a linear beta dependency as shown in Figure 9-1.

9.5. Return on Investment (ROI)

The return on investment (ROI) is calculated as follows:

ROIs = 228 (9-5)
S

where 75 is the share return, P is the share price, d; is the rate of change (ROC), and beta
calculations are completed as shown in Table 9-1 and Table 9-2.

TABLE 9-1 BETA ROI CALCULATIONS PARAMETERS

S(BARC.L) BARC share price
FTSE 250 FTSE-250 index
BoE Bank of England (BoE) 10-y security
Rf(BoE) BOE rate of change
Rs (BARC) BARC.L rate of change
Rm (FTSE) Market FTSE-250 rate of change
R2(Rs,Rm) Similarity BARC and FTSE rate of change
Rs(CAPM) CAPM rate of change
S(CAPM) CAPM calculated share price BARC

R2(BARC,CAPM) Similarity between actual and CAPM prices
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TABLE 9-2 BETA ROI CALCULATION RESULTS BARC.L

Beta and R2

Date BARCLL  FTSE250 BoE Rf(BoE) Rs (BARC)  Rm ( FTSE) Beta  Rs(CAPM) CAPM
28/07/2016 146.5 172523 0.838 -0.071 -2.170 -0.079 1.27 -0.0808 149.63
27/07/2016 149.75 17265.9 0.902 -0.112 0.503 1.153 1.28 1.5052 151.24
26/07/2016 149 17069.1 1.016 0.041 -1.325 -0.128 1.34 -0.1859 150.72
25/07/2016 151 17091 0.976 -0.002 -0.527 0.633 1.46 0.9239 153.20
22/07/2016 151.8 16983.5 0.978 -0.018 -0.066 -0.375 1.08 -0.4016 151.29
21/07/2016 151.9 17047.4 0.996 0.005 0.629 0.167 1.10 0.1844 151.23
20/07/2016 150.95 17018.9 0.991 0.005 0.366 0.666 1.08 0.7218 151.49
19/07/2016 150.4 16906.3 0.986 0.008 -0.364 0.229 1.02 0.2334 151.30
18/07/2016 150.95 16867.7 0.978 0.008 0.768 0.839 1.09 0.9133 151.17
15/07/2016 149.8 16727.3 0.970 0.017 1.216 -0.362 1.03 -0.3715 147.45
14/07/2016 148 16788 0.954 0.023 1.999 0.221 1.70 0.3599 145.62
13/07/2016 145.1 16751 0.933 -0.069 -2.322 -0.334 1.86 -0.5608 147.72
12/07/2016 148.55 16807.1 1.001 0.077 2.166 0.603 1.86 1.0549 146.93
11/07/2016 145.4 16706.4 0.930 -0.008 4.417 3.267 1.86 6.0697 147.70
1.85
=—@=— Beta .
==@— R2(BARC,FTSE) .
Les Poly.(Beta) ~ J e
-------- Linear (Beta) o™
145 A inear (RABARGETSEN |
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FIGURE 9-1 BETA AND R2 RESULTS BARC.L AND FTSE
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Unsystematic or total risk for a company or industry is the specific risk that is inherent in

each investment. In Excel this is calculated using the standard deviation STDEV function

and is shown in Table 9-3

H7=STDEV(B2:B10)

(9-6)

TABLE 9-3 UNSYSTEMATIC RISK CALCULATIONS APPROACH
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The systematic and non-systematic associated risk calculations are as follows:
Risk_total = Risk_Systematic + Risk Non-systematic
Risk_Unsystematic = Beta(Risk_nmarket — Risk free)

Risk_total = STDEV(Rs)
Risk_Systematic = STDEV(Rf)

Risk market = STDEV(Rm)

STDEV(Rf) = 0.0486
STDEV(Rs) = 1.7828

STDEV(Rm) = 0.9377
Ten year bond yield historic data is shown in Appendix C: Table 27.

(Source: http://uk.investing.com/rates-bonds/uk-10-year-bond-yield-historical-data)

The CAPM relates the risk of investment to the expected return. Black et al. (1972)
confirmed a linear relationship between the financial returns of stock portfolios and their

betas values in a study of the price movements of stocks on the New York Stock Exchange

between 1931 and 1965 (see Figure 9-3).

FIGURE 9-3 CLASSIC TEST CAPM AVERAGE MONTHLY RETURNS VS. BETA

Eugene Fama and Kenneth French (1993) looked at share returns on the New Y ork Stock
Exchange, the American Stock Exchange and NASDAQ between 1963 and 1990, and
found that differences in betas over that lengthy period did not explain the performance of

different stocks. The linear relationship between beta and individual stock returns also

breaks down over shorter periods.
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9.6. Summary

Theoretically, risk can be eventually removed to a certain degree by buying more different
shares, although even a combination of all different shares in the stock market cannot

eliminate all systematic risk.

No matter how much investments are diversified, it is impossible to get rid of all risk.
There is always the possibility that a stock will lose some or all of its value, although by

making the right choices market volatility makes it possible to make a profit.

With beta as a measure of volatility, shares can be chosen that meet expected criteria for
risk. Low-risk shares have low betas such as utility stocks and treasury bills. High-risk

shares, which eventually may yield more profit, have higher betas.
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Chapter 10. Conclusions and Future Work

10.1. Overview

This chapter outlines the study's major conclusions and future work.

The primary goal of the present research is to model short-term daily trading in FTSE 100
shares to forecast with certain levels of confidence and associated risk. The hypothesis
tested is that financial shares time series contain significant non-linearity and that ANN,

either separately or in conjunction with PSO, could be utilised effectively.

Investigation of the periodicity and trend lines in short- and long-term trading and models
using an ANN with the discrete Fourier transform (DFT) and discrete Wavelet transform
(DWT) model features performed significantly better than analysis in the time domain.

A mathematical analysis of the PSO algorithm from a systemic point of view along with
stability analysis was performed to determine the choice of parameters, and a possible

proportional, integral and differential (PID) algorithm extension was recommended.

The evaluation of statistical confidence for the models gave good results, which is
encouraging for further experimentation considering model cross-validation for
generalisation with an independent dataset to show how accurately the predictive models

will perform in practice.
This chapter covers the following:

e Conclusions

e Future work

10.2. Conclusions
The conclusions of the research are positive, with good statistical confidence encouraging

further experimentation.

The validation of the ANN model for share price investigations has found that non-linear

models are likely to be a better choice than traditional linear regression for short-term
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trading, and furthermore the bi-linear model outperforms the ANN. The experiments have
been conducted with a single layer in order to compare clearly the ANN with linear
regression models. It is expected that a multi-layer ANN would improve the results further.
However, the interpretation of the results with the ANN model is more difficult and

comparison with the linear model is less straightforward.

A Particle Swarm Optimisation with an Exponentially Varying Inertia Weight Factor
(EVIWF) algorithm has been proposed, considering constraints. The effectiveness and
applicability of the proposed algorithm has been tested and the results are compared with
those in the literature. It is observed from the comparison that the proposed PSO-EVIWF
has the ability to converge to a good quality solution without any sudden oscillations, and

it is thus proven to be a better alternative method.

A chaotic adaptive particle swarm optimisation algorithm is proposed. A chaotic local
search operator is introduced in the proposed algorithm to avoid premature convergence.
The basic strategy of the proposed algorithm is to combine PSO with an adaptive inertia
weight factor and chaotic local search. Logistics and a Gauss mapping technique are used
in performing the chaotic local search and the results are compared. Numerical results
show that the proposed method can obtain quality solutions for optimal cost and that it
shows excellent convergence characteristics. Hence, the proposed algorithm is competitive

with other algorithms in terms of its overall performance.

An extension of the PSO algorithm from a system control point of view was also proposed.
It has been shown that, in the scalar case, each subsystem of the traditional PSO can be
viewed as a closed-loop second order system controlled using a proportional controller.
Consequently, an extension of the PSO was made by including a PID controller in the
subsystem. Various methods as to how to choose the underlying tuning parameters were

presented. It was shown that the performance of the proposed method is better than that of
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traditional PSO. In future work, the performance of the proposed extended algorithms will

be tested for other benchmark functions and applications.

Discrete Fourier Transform and Wavelet Transform time series analysis and decomposition
for the features of the ANN forecasting model proved to perform significantly better than
analysis in the time domain. Some periodicity was apparent in short-term and long-term

trading.

Decomposition of the share time series revealed trends, harmonics and seasonality in the
banking share sector, which helps with the generalization of the model. The ANN network
has been applied at all decomposition stages and demonstrated very good robustness and

prediction performance.

A hybrid example combining a Back Propagation Neural Network (BPNN) with PSO was
used to investigate the forecasting of a financial shares time series regression fitting
function with the banking sector dataset. Sixteen records of time series sets of fifteen
consecutive closing price values for three trading weeks are the attributes (features), with
the forecast target being the sixteenth day closing price. A three-layer neural network was
used to perform the regression. The code required to integrate the techniques is very
technically complex. Both NN and PSO are very sensitive to initial state randomness.
There are many parameters in PSO that need to be adjusted but the main ones are the
number of hidden layers and the range of the weights needed to get better results in
different trials. The typical number of particles is 20 — 40, but for a time series ten particles
is large enough to get good results. The dimensionality of particles is determined by the
problem to be optimized, where in the case of neural networks there is an explosion in the
number of weight parameters to over 500 in the experiments, comprising the number of
NN nodes times the number of the time series samples. The range of particles (NN
weights) is also determined by the problem to be optimized. The maximum change

possible for one particle during an iteration is typically given when the learning factor ¢/ is
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equal to ¢2 and ranges from [0, 4] and their sum for convergence reasons is about 4. For
the stop condition, the maximum number of iterations the PSO executed and the minimum
error requirement was found for ANN training in share time series to be 1% of the price
range. The code used to integrate the techniques is again very technically complex. Both
NN and PSO are very sensitive to initial state randomness. For parameter tuning, the
efficiency of an algorithm may depend on its algorithm-dependent parameters, and the
optimal parameter setting of the PSO algorithm is itself an optimization problem,

especially with an NN.

10.3. Future Work

This work could be advanced in general by using either engineering simulation or
mathematical abstract theoretical approaches, although the right balance is required to keep
the analysis appropriate. Likely approaches could be to use mathematical models to
improve the convergence of the simulation or for validation of the models developed. The
understanding at this point is to measure the associated risk, which would probably be
further explored with cautious statistical (Bayesian) methods. Furthermore, further
generalization could be achieved with experimental cross-validation, the inclusion of noise
or other methods used for the model’s parameters with assumptions made concerning the

input signal for data fitting and prediction or estimation.

Promising future investigations would consider the fitness (Kaastra, et al., 1995) of self-
organizing neural networks, the Hopfield network, bidirectional associative memory or
evolutionary computation genetic algorithms with concern for convergence ambiguity (Qi,
et al., 2001). Further possible investigations would involve combining inverse finite-
element modelling using the Galerkin residual integral method and multi-layer perceptron
(MLP) neural network models (Ondimu, et al., 2007). Also time-varying weights in neural
networks could be used in a semi-non-parametric technique to make approximations by

means of the Galerkin method (Barucci, et al., 2010, Barucci, et al., 1996) and a
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Galerkin/neural-network-based design initially applying the Galerkin method to the model
to derive an ordinary differential equation (ODE) system with unknown non linearity
subsequently parameterized by a multilayer neural network (MNN) with one hidden layer

(W, et al., 2008), whose relevance to the hypothesis could be checked.

10.4. Summary

The major conclusions are:

e The existing literature suggests that neural networks have not been extensively
utilised in the field of the modelling of short-term financial stock market shares.

e The systemic (control theory) analysis and control algorithm extension can
considerably improve convergence and the system's stability and robustness.

e The combined application of artificial neural networks and particle swarm
optimization modelling and acceleration approaches can improve quality,
robustness, convergence and performance.

e Deep machine learning with digital Fourier and wavelets transforms has produced
superior results in generalization, performance and robustness compared to time

domain analysis.

A comparison of the performance of the methods with the coefficient of determination or
likeliness (R)”and root mean square error (RMS) for BARC.L shows evolution of

performance with the gradual application and combination of concepts and techniques
* Analytical Stochastic Model RMS~16.07, R*~0.75
* ANN time domain RMS~5.42,  R’~0.85
*  PSO-PID (convergence quality) RMS~5.6, R*~0.82
*  ANN with DFT & DWT RMS~5.1,  R*~0.91

* Hybrid ANN and PSO RMS~1, R* ~0.95
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The most technically challenging contributions are as follows:

Experiments and simulations, there is a data explosion in the hybrid model

algorithms tuning over 500 variables in a relatively simple architecture/structure

The randomness in the algorithm calculations, the initial point and tuning of neural
network initial weights and PSO particle's position with social and learning factors

make the evaluation and comparison of the results challenging.

The contributions which most represent breakthroughs:

The deep learning with particle swarm optimization, neural network and digital
Fourier and wavelet transformations in the hybrid model is absolute sophistication
dealing with non-linearity (ANN), global optima (PSO) and robustness (digital

domain)

The real-time real-data sector model insight features and timescale classification

criteria, justifying fourteen days data analysis (trading vs. investment)

PSO control theory analysis and proportional derivative and integral extension
following the application of structured and knowledgeable tuning (existing
guidance and techniques for stability, convergence and response well developed in

control theory

Trading strategy references:

The short term trading sector has more volatility and hence more eventual profit /
loss risk, although it depends on the momentary state of the market. Eventually

fundamental market research could help to understand the state of the market.

Market analysis of two weeks historic data is suggested to be the most general

period for daily trading.

Trading strategy depends on the risk that one is prepared to take, with the portfolio

helping to hedge the risk.
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Future work could be advanced in general in following respects:

Using advanced mathematical analytical models to improve the convergence of the
simulation or for validation of the models developed. The understanding at this
point is to measure the associated risk, which would probably be further explored
with cautious statistical (Bayesian) methods.

Generalization of the models could be achieved with experimental cross-validation,
the inclusion of noise or other methods used for the model’s parameters selection
with assumptions made concerning the input signal for data fitting and prediction or

estimation.
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Appendix C: Datasets
APPENDIX C: TABLE 1 BARC.L WORKING DATASET FROM 27/08/2012 T0 21/09/2012

Date Open High Low Close
8/27/2012 187.2 187.2 187.2 187.2
8/28/2012 | 186.55 | 191.52 186.1 | 188.95
8/29/2012 188.7 188.7 | 184.85 | 186.35
8/30/2012 184.3 | 185.66 | 182.44 183.5
8/31/2012 182 186.4 180.4 | 183.25

9/3/2012 182.3 | 185.55 181.6 184.3
9/4/2012 | 183.45| 185.44 | 180.35 | 181.25
9/5/2012 180.6 | 183.83 178.8 | 181.95
9/6/2012 182.1 | 194.13 | 180.25| 193.05
9/7/2012 197.3 | 207.25| 194.05 206.4
9/10/2012 | 206.05 | 210.75| 205.23 | 207.75

9/11/2012 | 206.15 | 214.56 205 213.5
9/12/2012 214.9 219.8 | 214.15 217
9/13/2012 217 | 219.38 215 | 217.95
9/14/2012 | 225.55 237 2149 | 229.05
9/17/2012 227.4 | 230.34 | 221.63 228
9/18/2012 | 226.35 | 226.95| 218.15 225.4
9/19/2012 | 225.15| 227.15 219 | 225.15
9/20/2012 224 224.9 218.1 | 222.05

9/21/2012 223.5 | 235.55 219.6 | 223.75
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APPENDIX C: TABLE 2 BARC.L CLOSING PRICE DATASET 27/08/2012 -21/09/2012

Date T-target T-1 T-2 T-3 T-4 T-5
8/27/2012 187.2 187.2 191 194.15 197.05 190.9
8/28/2012 188.95 187.2 187.2 191 194.15 197.05
8/29/2012 186.35 188.95 187.2 187.2 191 194.15
8/30/2012 183.5 186.35 188.95 187.2 187.2 191

8/31/2012 | 183.25 183.5| 186.35| 188.95 187.2 187.2
9/3/2012 184.3 | 183.25 183.5| 186.35| 188.95 187.2
9/4/2012 | 181.25 184.3 | 183.25 183.5| 186.35| 188.95
9/5/2012 | 181.95| 181.25 184.3 | 183.25 183.5| 186.35
9/6/2012 | 193.05| 181.95| 181.25 184.3 | 183.25 183.5
9/7/2012 206.4 [ 193.05| 181.95( 181.25 184.3 | 183.25

9/10/2012 | 207.75 206.4  193.05| 181.95( 181.25 184.3

9/11/2012 213.5 | 207.75 206.4 [ 193.05| 181.95( 181.25

9/12/2012 217 213.5 | 207.75 206.4 [ 193.05| 181.95
9/13/2012 | 217.95 217 213.5 | 207.75 206.4 | 193.05
9/14/2012 | 229.05 | 217.95 217 213.5 | 207.75 206.4
9/17/2012 228 | 229.05| 217.95 217 213.5 | 207.75
9/18/2012 225.4 228 | 229.05| 217.95 217 213.5
9/19/2012 | 225.15 225.4 228 | 229.05| 217.95 217
9/20/2012 | 222.05| 225.15 225.4 228 | 229.05| 217.95
9/21/2012 | 223.75 | 222.05| 225.15 225.4 228 | 229.05
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APPENDIX C: TABLE 3 BARC.L ARMA DATASET

Date
8/27/2012
8/28/2012
8/29/2012
8/30/2012
8/31/2012

9/3/2012
9/4/2012
9/5/2012
9/6/2012
9/7/2012
9/10/2012
9/11/2012
9/12/2012
9/13/2012
9/14/2012
9/17/2012
9/18/2012
9/19/2012
9/20/2012
9/21/2012

Target
187.20
188.95
186.35
183.50
183.25
184.30
181.25
181.95
193.05
206.40
207.75
213.50
217.00
217.95
229.05
228.00
225.40
225.15
222.05
223.75

Close-1
187.20
187.20
188.95
186.35
183.50
183.25
184.30
181.25
181.95
193.05
206.40
207.75
213.50
217.00
217.95
229.05
228.00
225.40
225.15
222.05

Close-2
191.00
187.20
187.20
188.95
186.35
183.50
183.25
184.30
181.25
181.95
193.05
206.40
207.75
213.50
217.00
217.95
229.05
228.00
225.40
225.15

Close-3
194.15
191.00
187.20
187.20
188.95
186.35
183.50
183.25
184.30
181.25
181.95
193.05
206.40
207.75
213.50
217.00
217.95
229.05
228.00
225.40

Close-4
197.05
194.15
191.00
187.20
187.20
188.95
186.35
183.50
183.25
184.30
181.25
181.95
193.05
206.40
207.75
213.50
217.00
217.95
229.05
228.00

Close-5
190.90
197.05
194.15
191.00
187.20
187.20
188.95
186.35
183.50
183.25
184.30
181.25
181.95
193.05
206.40
207.75
213.50
217.00
217.95
229.05

rand
-0.64
0.45
0.26
0.08
0.25
-0.47
-0.25
-0.91
0.27
0.98
-0.46
0.93
0.76
0.65
0.12
-0.61
0.25
-0.89
0.48
0.53

rand-

-0.06
-0.64
0.45
0.26
0.08
0.25
-0.47
-0.25
-0.91
0.27
0.98
-0.46
0.93
0.76
0.65
0.12
-0.61
0.25
-0.89
0.48

rand-

-0.90
-0.06
-0.64
0.45
0.26
0.08
0.25
-0.47
-0.25
-0.91
0.27
0.98
-0.46
0.93
0.76
0.65
0.12
-0.61
0.25
-0.89

ARMA(5,3)
184.82
188.11
190.14
188.06
185.86
184.34
185.37
180.57
183.97
197.52
211.78
212.27
220.17
219.41
220.83
232.68
225.16
225.70
223.09
219.37

abs(err)
2.38
0.84
3.79
4.56
2.61
0.04
4.12
1.38
9.08
8.88
4.03
1.23
3.17
1.46
8.22
4.68
0.24
0.55
1.04
4.38

279




APPENDIX C: TABLE 4 BARC.L SHARE PRICE IN PENCE FOR ONE MONTH JANUARY 2013

10

11

12

13

14

15

16

17

18

19

20

21

Date

1/1/2013

1/2/2013

1/3/2013

1/4/2013

1/7/2013

1/8/2013

1/9/2013

1/10/2013

1/11/2013

1/14/2013

1/15/2013

1/16/2013

1/17/2013

1/18/2013

1/21/2013

1/22/2013

1/23/2013

1/24/2013

1/25/2013

1/28/2013

1/29/2013

Open

262.4

272.85

274.65

275.15

281

285.6

289

293.8

295.9

299.55

298

293.95

291.95

296.15

298.7

298

296.2

295

299.15

300.5

305

262.4

277.08

278.89

278.56

288.46

295.48

298.15

298.79

301.75

301.3

298.69

296

298.97

299.9

299.37

300.05

299.9

300.05

303.9

307.66

306.65

Low

262.4

269.6

272.83

273.5

276.04

282.5

288.8

291.65

295.54

297.9

292

287.25

289.05

294.93

294.32

293.94

295.75

294.25

298.05

297.47

297.1

Close

262.4

275.6

276

276.7

287.2

287.2

294.75

294.6

299.65

298.9

295.4

293.4

296.05

297

297.4

296.05

296

300

300.7

305.85

300.9

“Close

0.15792575

0.3134944

0.3182086

0.32645846

0.45020625

0.45020625

0.5391868

0.53741897

0.59693577

0.58809664

0.54684738

0.52327637

0.55450796

0.56570418

0.57041839

0.55450796

0.55391868

0.6010607

0.60931055

0.67000589

0.61166765

280




APPENDIX C: TABLE 5 BARC.L PROBABILITY FREQUENCY

Bin Frequency Probability =~ Normdist
249 1 0.0035 0.0026
249.8485 2 0.0070 0.0028
250.697 1 0.0035 0.0031
251.5455 4 0.0141 0.0034
252.394 1 0.0035 0.0037
253.2425 2 0.0070 0.0040
254.091 1 0.0035 0.0043
254.9395 1 0.0035 0.0046
255.788 3 0.0106 0.0050
256.6365 1 0.0035 0.0053
257.485 4 0.0141 0.0057
258.3335 1 0.0035 0.0061
259.182 1 0.0035 0.0066
260.0305 2 0.0070 0.0070
260.879 1 0.0035 0.0074
261.7275 0 0.0000 0.0079
262.576 3 0.0106 0.0084
263.4245 2 0.0070 0.0089
264.273 2 0.0070 0.0094
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APPENDIX C: TABLE 6 BARC.L SHARE PRICES 13/01/2014 -31/01/2014

Date

1/13/2014

1/14/2014

1/15/2014

1/16/2014

1/17/2014

1/20/2014

1/21/2014

1/22/2014

1/23/2014

1/24/2014

1/27/2014

1/28/2014

1/29/2014

1/30/2014

1/31/2014

Open
286.5
287.6
293.3
297.4
291.4
284.5
283
281.6
278
2793
272
271.95
281.95
275

274.35

High
294.25
293.15
298.03
298.13

293
286.38
285.62

283.8
284.55
280.89
275.73
274.64
284.8
275.9

274.4

Low

286.5

286.15

292.35

287.4

286.5

282.2

279.93

277.49

277.21

270.84

268.04

270.08

268.8

271.6

267.55

Close

291.7

291.75

296.5

290.45

288.6

282.8

280.6

278.2

278.9

272.25

269.35

273.3

274.95

275.05

272.5

“Close

0.50324101

0.50383029

0.55981143

0.48850913

0.46670595

0.39835003

0.37242192

0.34413671

0.35238656

0.27401296

0.239835

0.28638774

0.30583382

0.30701237

0.27695934
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APPENDIX C: TABLE 7 BARC.L SHARE PRICE 23/12/2013 - 10/01/2014

Date

12/23/2013

12/24/2013

12/25/2013

12/26/2013

12/27/2013

12/30/2013

12/31/2013

1/1/2014

1/2/2014

1/3/2014

1/6/2014

1/7/2014

1/8/2014

1/9/2014

1/10/2014

Open
259.35
268.55
265.45
265.45

268.9

272.5
271.55
271.95

273
271.25
271.55
276.95
282.35

283.9

286

High
265.07
268.55
265.45
265.45
271.12
273.86

274.3
271.95
274.65
273.91
278.67
282.78

285.9
289.71

287.14

Low

259.35

262.92

265.45

265.45

268.02

269.55

271.05

271.95

268.35

270.4

271.2

275

281.25

282.48

282.2

Close

264.35

265.45

265.45

265.45

269.7

271.1

271.95

271.95

271.05

272.85

277.5

280.95

283.7

284.4

283.6

“Close

0.18090748

0.19387154

0.19387154

0.19387154

0.24395993

0.26045963

0.27047731

0.27047731

0.25987036

0.28108427

0.33588686

0.37654685

0.40895698

0.41720684

0.40777843

283




APPENDIX C: TABLE 8 BARC.L FOR 15-DAYS FROM 09/01/2014 AND 13/01/2014

Date Price Price Date
1/13/2014 291.7 284.4 1/9/2014
1/14/2014 291.75 283.6 1/10/2014
1/15/2014 296.5 291.7 1/13/2014
1/16/2014 290.45 291.75 1/14/2014
1/17/2014 288.6 296.5 1/15/2014
1/20/2014 282.8 290.45 1/16/2014
1/21/2014 280.6 288.6 1/17/2014
1/22/2014 278.2 282.8 1/20/2014
1/23/2014 278.9 280.6 1/21/2014
1/24/2014 272.25 278.2 1/22/2014
1/27/2014 269.35 278.9 1/23/2014
1/28/2014 273.3 272.25 1/24/2014
1/29/2014 274.95 269.35 1/27/2014
1/30/2014 275.05 273.3 1/28/2014
1/31/2014 272.5 274.95 1/29/2014

284



APPENDIX C: TABLE 9 BARC.L FOR 15-DAYS FROM 20/12/2013 AND 13/01/2014

Date Price Price Date
1/13/2014 291.7 259.7 12/20/2013
1/14/2014 291.75 264.35 12/23/2013
1/15/2014 296.5 265.45 12/24/2013
1/16/2014 290.45 265.45 12/25/2013
1/17/2014 288.6 265.45 12/26/2013
1/20/2014 282.8 269.7 12/27/2013
1/21/2014 280.6 271.1 12/30/2013
1/22/2014 278.2 271.95 12/31/2013
1/23/2014 278.9 271.95 1/1/2014
1/24/2014 272.25 271.05 1/2/2014
1/27/2014 269.35 272.85 1/3/2014
1/28/2014 2733 277.5 1/6/2014
1/29/2014 274.95 280.95 1/7/2014
1/30/2014 275.05 283.7 1/8/2014
1/31/2014 272.5 284.4 1/9/2014

285



APPENDIX C: TABLE 10 BARC.L PRICE 01/01/2013 - 14/01/2013

10

Date

1/1/2013

1/2/2013

1/3/2013

1/4/2013

1/7/2013

1/8/2013

1/9/2013

1/10/2013

1/11/2013

1/14/2013

Open
262.4
272.85
274.65
275.15
281
285.6
289
293.8
295.9

299.55

High

262.4
277.08
278.89
278.56
288.46
295.48
298.15
298.79
301.75

301.3

Low

262.4

269.6

272.83

273.5

276.04

282.5

288.8

291.65

295.54

297.9

Close

262.4

275.6

276

276.7

287.2

287.2

294.75

294.6

299.65

298.9

286




APPENDIX C: TABLE 11 BARC.L DATASETS SHARE PRICES FOR DIFFERENT OVERLAP

STARTING DATE

13-Jan  10-Jan 9-Jan 8-Jan 26-Dec 24-Dec  20-Dec 18-Nov
1 291.7  283.6 2844  283.7 265.45 26545  259.7 2514
2 29175 291.7 283.6 2844  269.7 265.45 26435  250.8
3 296.5 291.75 291.7  283.6  271.1 265.45 265.45 252.6
4 29045  296.5 291.75  291.7 271.95 269.7 265.45 257.1
5 288.6  290.45 296.5 291.75 27195 271.1 26545 256.95
6 2828 288.6 29045 296.5 271.05 271.95 269.7  259.1
7  280.6  282.8 288.6  290.45 272.85 271.95 271.1 260.8
8 2782  280.6 282.8  288.6 2775 271.05 27195  262.5
9 2789 2782  280.6  282.8 280.95 272.85 27195  265.6
10 27225 2789 2782  280.6  283.7 2775 271.05  271.7
11 269.35 27225 2789 2782 2844 280.95 272.85 270.25
12 2733 269.35 27225 2789  283.6 283.7 2775  266.2
13 27495 2733 26935 272.25 291.7 284.4  280.95 262.8
14 275.05 274.95 2733  269.35 291.75 283.6  283.7 262.35
15 272.5 275.05 27495 2733 296.5 291.7 2844 265.65

287




APPENDIX C: TABLE 12 RANDOM SELECTED CORRELATION DATASET

10

11

12

13

14

15

13-Jan

Series

1

291.7

291.75

296.5

290.45

288.6

282.8

280.6

278.2

278.9

272.25

269.35

273.3

274.95

275.05

272.5

17-Dec

Series

2

251.3

252.05

257.45

259.7

264.35

265.45

265.45

265.45

269.7

271.1

271.95

271.95

271.05

272.85

277.5

15-Nov

Series

3

249.45

251.4

250.8

252.6

257.1

256.95

259.1

260.8

262.5

265.6

271.7

270.25

266.2

262.8

262.35

22-Oct

Series

4

272.6

268.2

266.45

267.9

263.25

266.05

268.45

263.6

256.3

255.15

249

254.65

252.7

255.3

257.65

5-Aug
Series
5
285.5
284.5
282.15
286.95
287.1
285
283.65
285.45
284.3
288.05
288.7
286.75
283
284.7

286.85

27-Sep
Series
6
265.8
265.5
269.8
272.55
273
271.35
272.55
268.2
267.8
274.5
278
276.85
279.85
283.65

278.3

288




10

11

12

13

14

15

APPENDIX C: TABLE 13 TREND LINE ANN FIRST AND SECOND LAYERS

S

291.7

291.75

296.5

290.45

288.6

282.8

280.6

278.2

278.9

272.25

269.35

273.3

274.95

275.05

272.5

Mean 281.1267

ANN-1

0.54

0.51

0.49

0.46

0.44

0.41

0.39

0.37

0.34

0.32

0.30

0.28

0.26

0.24

0.22

S1
294.60
292.49
290.36
288.25
286.15
284.08
282.04
280.04
278.10
276.22
274.41
272.66
271.00
269.41
267.90

sumle|

RZ

SQRT(e"2)
2.90
0.74
6.14
2.20
2.45
1.28
1.44
1.84
0.80
3.97
5.06
0.64
3.95
5.64
4.60

43.65

0.832361

289

ANN-2

0.54

0.51

0.49

0.46

0.44

0.41

0.39

0.37

0.35

0.33

0.31

0.29

0.28

0.26

0.25

S2
294.60
292.49
290.36
288.25
286.18
284.15
282.19
280.31
278.52
276.84
275.26
273.80
272.44
271.19
270.04

sumle|

R2

SQRT(e2)
2.90
0.74
6.14
2.20
2.42
1.35
1.59
2.11
0.38
4.59
5.91
0.50
2.51
3.86
2.46

39.63

0.832393



APPENDIX C: TABLE 14 CENTRED LINEAR TREND AND POLY-2 TIME SERIES

10

11

12

13

14

15

Date

1/13/2014

1/14/2014

1/15/2014

1/16/2014

1/17/2014

1/20/2014

1/21/2014

1/22/2014

1/23/2014

1/24/2014

1/27/2014

1/28/2014

1/29/2014

1/30/2014

1/31/2014

S

291.7

291.75

296.5

290.45

288.6

282.8

280.6

278.2

278.9

272.25

269.35

273.3

274.95

275.05

272.5

Linear

293.4146

291.6592

289.9038

288.1484

286.393

284.6376

282.8822

281.1268

279.3714

277.616

275.8606

274.1052

272.3498

270.5944

268.839

290

Centred

-1.7146

0.0908

6.5962

2.3016

2.207

-1.8376

-2.2822

-2.9268

-0.4714

-5.366

-6.5106

-0.8052

2.6002

4.4556

3.661

Poly-2
296.6652
293.515
290.5794
287.8584
285.352
283.0602
280.983
279.1204
277.4724
276.039
274.8202
273.816
273.0264
272.4514

272.091

Centred

-4.9652

-1.765

5.9206

2.5916

3.248

-0.2602

-0.383

-0.9204

1.4276

-3.789

-5.4702

-0.516

1.9236

2.5986

0.409



APPENDIX C: TABLE 15 CENTRED LONG TERM SHARE PRICES TIME SERIES

Date Close Linear  Centered
1 1/1/2013 262.4 310.0884 -47.6884
2 1/2/2013 275.6 309.9368 -34.3368
3 1/3/2013 276 309.7852 -33.7852

281 1/28/2014 273.3 267.6404  5.6596

282 1/29/2014 274.95 267.4888  7.4612

283 1/30/2014 275.05 267.3372  7.7128

284 1/31/2014 272.5 267.1856  5.3144
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APPENDIX C: TABLE 16 CENTRED SHORT-TERM SHARE PRICES TIME SERIES

Date Scntr Linear Centred

0 1/10/2014 14.1404 23.073 -8.9326

1 1/13/2014 22392 21.7245 0.6675

2 1/14/2014 22.5936 20376 2.2176

3 1/15/2014 27.4952 19.0275 8.4677

4 1/16/2014 21.5968 17.679 3.9178

5 1/17/2014 19.8984 16.3305 3.5679

6 1/20/2014 14.25 14982 -0.732

7 1/21/2014 12.2016 13.6335 -1.4319

8 1/22/2014 99532 12.285 -2.3318

9 1/23/2014 10.8048 10.9365 -0.1317

10 1/24/2014  4.3064 9.588 -5.2816

11 1/27/2014 1.558 8.2395 -6.6815

12 1/28/2014  5.6596 6.891 -1.2314

13 1/29/2014  7.4612 5.5425 19187

14 1/30/2014  7.7128 4.194 3.5188

15 1/31/2014 53144 2.8455 2.4689
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APPENDIX C: TABLE 17 CYCLIC COMPONENT WITH THREE HARMONIC COMPONENTS

Date

1/10/2014

1/13/2014

1/14/2014

1/15/2014

1/16/2014

1/27/2014

1/28/2014

1/29/2014

1/30/2014

1/31/2014

S

283.6

291.7

291.75

296.5

290.45

269.35

273.3

274.95

275.05

272.5

Long
269.4596
269.308
269.1564
269.0048

268.8532

267.792
267.6404
267.4888
267.3372

267.1856

Short

23.07

21.72

20.38

19.03

17.68

8.24

6.89

5.54

4.19

2.85

Centred

-8.93

0.67

2.22

8.47

3.92

-6.68

-1.23

1.92

3.52

2.47

F1

-2.16

2.16

5.66

7.00

5.66

2.16

5.66

7.00

5.66

2.16

F2

-5.20

-6.00

-5.20

-3.00

0.00

-3.00

-5.20

-6.00

-5.20

-3.00

F3

-2.00

2.00

4.00

2.00

-2.00

-4.00

-2.00

2.00

4.00

2.00

CYCL COMP
-9.36  283.17
-1.84  289.20
4.47  294.00
6.00  294.03
3.66 290.20
-4.84  271.19
-1.53  273.00
3.00 276.03
4.47  276.00
1.16  271.19

ERR

0.43

2.50

-2.25

2.47

0.25

-1.84

0.30

-1.08

-0.95

1.31

293




APPENDIX C: TABLE 18 SHARE PRICES DATASET WITH TRAINING AND TESTING SUBSETS

Time  Price Train Test
1 2624
2 2756
3 276
263 271.05
264 272.85

265 2775 284.9258

267 283.7 284.0129

268 284.4 283.4979

269 283.6  282.952

270 291.7 282.3842 282

271 291.75 281.8051 281

272 296.5 281.2259 281

273 290.45 280.6582 280

274 288.6 280.1123 280

275 282.8 279.5972 279

276 280.6 279.1198 279

277 2782 278.6844 278

278 2789 2782932 278

279 27225 277
280 269.35 277
281 2733 277
282 27495 277
283 275.05 276
284 2725

294



APPENDIX C: TABLE 19 TRAINING AND TESTING DATASET WITH MLPN

Time  Price Train Test

265  277.5 283.03

266 28095  283.40

267 283.7 283.70

268 284.4 284.44

269  283.6 286.66

270  291.7 291.09 291.0

271 291.75  294.11 294.0

272 296.5 29429  294.0

273 29045 29095  290.0

274 288.6  288.50  288.0

275  282.8  282.82  282.0

276  280.6 280.58 280.0

277 278.2 278.21 278.0

278 2789 274763  274.0

279 27225 272253  272.0

280 269.35 270.0
281 2733 270.0
282 27495 270.0
283 275.05 270.0
284 2725 270.0

295



APPENDIX C: TABLE 20 MULTIPLE ATTRIBUTES TRAINING AND TESTING DATASET

Date Close Training Testing
1 01/01/2013 262.4
2 02/01/2013 275.6
253 19/12/2013 257.45
254 20/12/2013 259.7
255 23/12/2013 264.35  264.35
256 24/12/2013 265.45 26545
258 26/12/2013 265.45 26545
259  27/12/2013 269.7 269.7
260 30/12/2013 271.1 271.1 2711
261 31/12/2013 27195 27195 27195
262 01/01/2014 27195 27195 271.95
263 02/01/2014 271.05  271.05 271.05
264 03/01/2014 272.85  272.85 272.85
265 06/01/2014 277.5 2775 2715
266 07/01/2014 280.95  280.95 280.95
277 22/01/2014 278.2 2782 2782
278 23/01/2014 278.9 2789  278.9
279 24/01/2014 27225 27225 272.25
280 27/01/2014 269.35 269.35
281 28/01/2014 2733 2733
282 29/01/2014 274.95 274.95
283 30/01/2014 275.05 275.05
284 31/01/2014 272.5 272.5

296



APPENDIX C: TABLE 21 MULTIPLE ATTRIBUTES TRANSFORMED TRAINING DATASET

Attl At At3 Attd Att7 A8 A9 A0 Aull  Attl2  target Y  Day
P(t-12) P(t-11) Pt-10)  P(t9)  P(t6)  P(t5)  P(t4)  P(t-3)  P(t2)  P(t-1) P(t) P(t)
264.4 265.5 2655  265.5 272 272 2711 2729 2775 281 2837 282.5 267
265.5 265.5 2655 2697 272 2711 2729 2715 281 2837 284.4 280.7 268
265.5 265.5 2697 2711 2711 2729 2775 281 2837 2844 283.6 283.6 269
265.5 269.7 271.1 272 2729 2775 281 2837 2844 2836 2917 2889
269.7 271.1 272 272 2715 281 2837 2844 2836 2917 2918 2917
271.1 272 272 2711 281 2837 2844 2836 2917 2918 296.5 296.5 272
272 272 2711 2729 2837 2844 2836 2917 2918  296.5 290.5 290.4
272 271.1 2729 2775 2844 2836 2917 2918 2965  290.5 288.6 288.6
271.1 2729 2715 281 2836 2917 2918 2965  290.5  288.6 2828 282.8
2729 2715 281 2837 2917 2918 2965 2905  288.6 2828 280.6 280.6
2775 281 2837 2844 2918 2965 2905 2886 2828  280.6 2782 2782 277
281 2837 2844 2836 2965  290.5  288.6 2828  280.6 2782 278.9 27679 278
APPENDIX C: TABLE 22 MULTIPLE ATTRIBUTES TRANSFORMED TESTING DATASET
Attl At2 A3 Attd Att7 Al8 A9 Atl0  Atll  Atl2  target Y Day
P(t-12)  P(t-11) P(t-10)  P(t9)  P(t6)  P(t5)  P(t4)  P(t3)  P(t2)  P(tl) P(t) P(t)
271.1 272 272 2711 281 2837 2844 2836 2917 2918 2965 2962 272
272 272 2711 2729 2837 2844 2836 2917 2918 2965 2905  290.1 273
272 271.1 2729 2775 2844 2836 2917 2918 2965  290.5  288.6 2883 274
271.1 2729 2715 281 2836 2917 2918 2965  290.5  288.6 2828 2826
2729 2715 281 2837 2917 2918 2965  290.5  288.6 2828  280.6  280.5
2775 281 2837 2844 2918 2965  290.5  288.6 2828 2806 2782 2781 277
281 2837 2844 2836 2965  290.5  288.6 2828 2806 2782 2789  276.1
2837 2844 2836 2917  290.5  288.6 2828  280.6 2782 2789 2723  276.1
284.4 283.6 2917 2918  288.6 2828  280.6 2782 2789 2723 2694  276.1
2836 291.7 2918 2965 2828  280.6 2782 2789 2723 2694 2733 2761 281
2917 2918 2965 2905  280.6 2782 2789 2723 2694 2733 275 276.1
291.8 296.5 2905  288.6 2782 2789 2723 2694 2733 275 2751 277 283
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APPENDIX C: TABLE 23 FREQUENCY ANALYSIS SHARES TRADING DATASET

Date

04/01/2016

05/01/2016

06/01/2016

08/01/2016

11/01/2016

13/01/2016

14/01/2016

15/01/2016

19/01/2016

20/01/2016

21/01/2016

22/01/2016

25/01/2016

Frequency
t/N
0
0.0625
0.125
0.25
0.3125
0.4375
-0.5
-0.4375
-0.3125
-0.25
-0.1875
-0.125

-0.0625

n

11

12

13

14

15

Frequency
trading
0.000
0.004
0.008
0.016
0.020
0.028
0.032
0.036
0.044
0.048
0.052
0.056

0.060

Y

214.25

215.25

211.75

200.15

199.7

201.7

197.7

191.8

189.9

182.05

186.15

190.75

181.85
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APPENDIX C: TABLE 24 DFT, INVERSE DFT AND REAL VALUES OF 16 SAMPLES TIME SERIES

Frequency Y centred DFT(Y) power(Y) invDFT(Y) Real
0.000 21425  0.68 0 0.000 0.679 0.68
0.063 21525  3.83 12.280-0.228i 0.589 3.834 3.83
0.125 211.75  2.49 19.087+11.911i 1.977 2.489 2.49
0.250 200.15  -4.80 -15.588+3.338i 0.993 -4.801 -4.80
0.313 199.7  -3.10 -8.964-10.167i 0.718 -3.096 -3.10
0.375 202.35 1.71 5.935-9.964i 0.526 1.708 1.71
0.438 201.7 3.21 4.020+3.2251 0.104 3.213 3.21
-0.438 191.8  -2.38 4.020-3.2251 0.104 -2.377 -2.38
-0.375 187.65  -4.37 5.935+9.9641 0.526 -4.372 -4.37
-0.313 189.9 0.03 -8.964+10.1671 0.718 3.235E-02  0.03
-0.188  186.15  0.59 -10.089+10.1741 0.802 0.591 0.59
-0.125 190.75  7.35 19.087-11.911i 1.977 7.346 7.35
-0.063 181.85  0.60 12.280+0.2289i 0.589 0.601 0.60
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APPENDIX C: TABLE 25 CLOSE PRICE DATASET

Date
1/4/2016
1/5/2016
1/6/2016
1/7/2016
1/8/2016

1/11/2016
1/12/2016
1/13/2016
1/14/2016
1/15/2016
1/18/2016
1/19/2016
1/20/2016
1/21/2016
1/22/2016
1/25/2016

Open
216.35
214.85

214.9

206.6

206
200
201
204.35
198.25
196.45
191.3
190
185.9
182
190.95
191.95

High
217
217.6
214.9
208.85
208.65
203.35
204.95
205.8
200.15
198.85
198
193.6
186
186.6
192.95
192.25

Low
212.65
212.05
209.85

201.6
200.15
199.4
199.77
200.336
192.52
190.97
185.85
187.925
179.902
179.987
188.2
181.35

Close
214.25
215.25
211.75
205.55
200.15

199.7
202.35

201.7

197.7

191.8
187.65

189.9
182.05
186.15
190.75
181.85

Volume
28332200
20472900
26042700
41970400
42733200
45116200
31436200
41349200
57104700
49774600
37826600
35139300
52318600
65099400
50097300
48650600

Adj Close
206.72
207.685
204.308
198.325
193.115
192.681
195.238
194.611
190.751
185.059
181.055
183.225
175.651
179.607
184.046
175.458
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APPENDIX C: TABLE 26 NEURAL NETWORK AND PSO EXPERIMENTS DATASET

Date

1/4/2016

1/5/2016

1/6/2016

1/7/2016

1/8/2016

1/11/2016

1/12/2016

1/13/2016

1/14/2016

1/15/2016

1/18/2016

1/19/2016

1/20/2016

1/21/2016

1/22/2016

1/25/2016

Open
216.35
214.85

214.9
206.6
206
200
201
204.35
198.25
196.45
191.3
190
185.9
182
190.95

191.95

High

217
217.6
214.9
208.85
208.65
203.35
204.95
205.8
200.15
198.85
198
193.6
186
186.6
192.95

192.25

Low

212.65

212.05

209.85

201.6

200.15

199.4

199.77

200.336

192.52

190.97

185.85

187.925

179.902

179.987

188.2

181.35

Close

214.25

215.25

211.75

205.55

200.15

199.7

202.35

201.7

197.7

191.8

187.65

189.9

182.05

186.15

190.75

181.85

Volume

28332200

20472900

26042700

41970400

42733200

45116200

31436200

41349200

57104700

49774600

37826600

35139300

52318600

65099400

50097300

48650600

Adj.Close
208.51
209.483
206.077
200.043
194.788
194.35
196.929
196.296
192.404
186.662
182.623
184.813
177.173
181.163
185.64

176.978
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APPENDIX C: TABLE 27 UK 10 YEAR BOND YIELD HISTORICAL DATA

Date  Price Open High Low Change %
Jul 29,2016 0.686 0.756 0.758 0.686 -3.92%
Jul 28,2016 0.714 0.721 0.741 0.698 -3.38%
Jul 27,2016  0.739 0.826 0.826 0.733 -10.21%
Jul 26,2016 0.823 0.776 0.839 0.764 1.48%
Jul 25,2016 0.811 0.824 0.840 0.806 1.50%
Jul 22,2016 0.799 0.821 0.844 0.797 -4.31%
Jul 21,2016 0.835 0.853 0.885 0.830 -0.12%
Jul 20,2016 0.836 0.803 0.853 0.791 4.50%

Jul 19,2016 0.800 0.783 0.821 0.771 -3.15%
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Price in pence& normalised

Price in pence and normalised

Share prices are shown for selected retail and financial sector companies.
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APPENDIX C: FIGURE 2 STOCHASTIC MODEL DATASET RBS.L
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Price in pence and normalised

Price in pence and normalised

Price in pence and normalised
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APPENDIX C: FIGURE 5 STOCHASTIC MODEL DATASET TSCO.L
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Price in pence and normalised

Price in pence and normalised

Price in pence and normalised
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APPENDIX C: FIGURE 8 STOCHASTIC MODEL DATASET SBRY.L
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Share chart 66 days (three months)

Volatility 66 days (three months)
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APPENDIX C: FIGURE 9 AVIVA CHART AND VOLATILITY 66 DAYS
Share chart 66 days (three months) Volatility 66 days (three months)
600 70.00%
o
)\mv £0.00% uca
Q 500 f“ A
g \V'\‘ 50.00% M
Qg n b iR o V‘\.\_\ r.m-r
o YV’ £
- 40.00% L
8 = Seriesl é w
1 m— G g — m—Geriesl
5: i 30.00% E
(o]
20.00% >
100 10.00%
0 0.00%
e e e e e N m YR B EE IR RS R e R B
" Timeindays Time in days
APPENDIX C: FIGURE 10 SANTANDER CHART AND VOLATILITY 66 DAYS
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APPENDIX C: FIGURE 11 BP CHART AND VOLATILITY 66 DAYS
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Price in pence

Price in pence

Share chart 66 days (three months)

Volatility 66 days (three months)
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APPENDIX C: FIGURE 12 HSBA CHART AND VOLATILITY 66 DAYS
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APPENDIX C: FIGURE 13 LLOYDS CHART AND VOLATILITY 66 DAYS
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Price in pence

Share chart 66 days (three months) Volatility 66 days (three months)
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APPENDIX C: FIGURE 15 STANDARD CHARTERED CHART AND VOLATILITY 66 DAYS
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APPENDIX C: FIGURE 16 TESCO CHART AND VOLATILITY 66 DAYS
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APPENDIX C: FIGURE 17 VODAFONE CHART AND VOLATILITY 66 DAYS
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Appendix D: Descriptive Statistics
APPENDIX D: TABLE 1 DESCRIPTIVE STATISTICS 13/01/2013-31/01/2013

13/01/2014/01/13 to 31/01/2014

Close price

Mean 281.1266667
Standard Error 2.234581385
Median 278.9

Mode #N/A
Standard Deviation 8.654496492
Sample Variance 74.90030952
Kurtosis  -1.23404476

Skewness 0.419105607

Range 27.15
Minimum 269.35
Maximum 296.5
Sum 4216.9
Count 15
Largest 296.5
Smallest 269.35

Confidence Level/Range 0.176526718

Confidence Level(95.0%) 4.792700394
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APPENDIX D: TABLE 2 BARC.L DESCRIPTIVE STATISTICS 23/12/2013 - 10/01/2014
23/12/2013 t010/01/ 2014

Close price

Mean 273.2967

Standard Error 1.832644
Median 271.95

Mode 265.45

Standard Deviation 7.097798
Sample Variance 50.37874
Kurtosis -1.17451
Skewness 0.431526

Range 20.05

Minimum 264.35
Maximum 284.4

Sum  4099.45

Count 15

Largest 284.4

Smallest 264.35
Confidence Level/Range 0.196041

Confidence Level(95.0%)  3.93063
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Appendix E: Test Functions
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APPENDIX E: FIGURE 1 TEST FUNCTION 1-4
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APPENDIX E: FIGURE 2 TEST FUNCTIONS 5-8

312



Fo F11

= : G _H‘ &
[Er:u::]+h_|:|:l.],'| I+§l’|:m—ﬂ|:-:ﬁ[:,:|
minimum: vares minimuam:  F{0,00=0

for — e rsee for —ea =, Sae

S
1

IIIIIIIII-III

-10 -50 [Ib'

Fi0 Fi2
~ 0.5+ sinyx+p —05
mﬁ+§|ﬁ— 10 cosl 2, )| : 1+ 0.1 + )

minimum: {1807, 1.006) =—0.523]

minimum:  {0.0)=0
fOor— o=z vy

for— <, S

APPENDIX E: FIGURE 3 TEST FUNCTIONS 9-12
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APPENDIX E: FIGURE 4 TEST FUNCTIONS 13-16
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List of Symbols

w: mean or drift

m: annualised p

o: standard deviation or volatility
o variance

t: current time

ti: sampling time i

T: specified period of time

T length of time interval in years
N: number of observations

P: significance score value

S: price of asset refers to financial share price

S;: share price at the end of i th interval (i = 0,1,2..,n)

R?:  coefficient of determination

A: small change in x for any variable x
o significance level

B: measure of risk

u: control signal

v: velocity of change

w;j:  neural network input weights

W;: independent and identically distributed random variables

315



316



List of Abbreviations

ANN - Artificial Neural Network

BPNN - Back Propagation Neural Network

DFT — Digital Fourier Transform

FTSE — Financial Times Stock Exchange

FFT — Fast Fourier Transform

MLP — Multi Layer Perceptron

NN — Neural Network

PSO — Particle Swarm Optimization

IDFT — Inverse Digital Fourier Transform

PID — Proportional Integral Derivative controller

WDT — Wavelet Digital Transform

BARC.L — Barclays PLC stock exchange symbol

HSBC.L — HSBC stock exchange symbol

LLOY.L — Lloyds stock exchange symbol

MKS.L — Marks and Spencer stock exchange symbol

RBS.L — Royal Bank of Scotland symbol
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