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Abstract 

Recent advances in machine intelligence, particularly Artificial Neural Networks (ANNs) 

and Particle Swarm Optimisation (PSO), have introduced conceptually advanced 

technologies that can be utilised for financial market share trading analysis.  

The primary goal of the present research is to model short-term daily trading in Financial 

Times Stock Exchange 100 Index (FTSE 100) shares to make forecasts with certain levels 

of confidence and associated risk. The hypothesis to be tested is that financial shares time 

series contain significant non-linearity and that ANN, either separately or in conjunction 

with PSO, could be utilised effectively. Validation of the proposed model shows that non-

linear models are likely to be better choices than traditional linear regression for short-term 

trading. Some periodicity and trend lines were apparent in short- and long-term trading. 

Experiments showed that a model using an ANN with the Discrete Fourier Transform 

(DFT) and Discrete Wavelet Transform (DWT) model features performed significantly 

better than analysis in the time domain.  

Mathematical analysis of the PSO algorithm from a systemic point of view along with 

stability analysis was performed to determine the choice of parameters, and a possible 

proportional, integral and derivative (PID) algorithm extension was recommended. The 

proposed extension was found to perform better than traditional PSO. Furthermore, a 

chaotic local search operator and exponentially varying inertia weight factor algorithm 

considering constraints were proposed that gave better ability to converge to a high quality 

solution without oscillations. A hybrid example combining an ANN with the PSO 

forecasting regression model significantly outperformed the original ANN and PSO 

approaches in accuracy and computational complexity.  

The evaluation of statistical confidence for the models gave good results, which is 

encouraging for further experimentation considering model cross-validation for 

generalisation to show how accurately the predictive models perform in practice.
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1. Chapter 1. Introduction 

1.1. Overview 

This chapter introduces material that is fundamental to understanding the nature of the 

financial shares and machine learning approach and processes. 

A stock market is a public market for securities where the organized issuance and trading 

of company stocks take place either through exchange or over the counter in physical or 

electronic forms. It is nowadays commonly known that huge amounts of capital are traded 

through stock markets across the world (Al Wadia, et al., 2011). However, the accurate 

prediction of stock market movements is highly challenging as well as being an important 

issue for investors, and it has received much attention from practitioners and experts in 

financial time series research (Chandar, et al., 2015).  

This chapter covers the following: 

 Financial shares and the stock market 

 Aims and objectives 

 Theoretical framework 

 Methodology including data analysis 

 Contribution to the research field 

1.2. Introduction 

Ordinary financial shares are issued by companies to raise share capital and entitle their 

holders to receive yearly profits called dividends (Lexicon.ft.com, 2017, Staff, 2017). They 

offer investors potential rewards for the risks they take. Furthermore, ordinary shareholders 

have voting rights in proportion to the number of shares they own.  Ordinary shares are the 

subject of this research. 

Major newspapers, television reports and various other information sources such as those 

on the Internet presently show data from the Financial Times Stock Exchange (FTSE) 100 
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in the UK, the Standard and Poor (S&P) 500 and Dow Jones 30 in the US and the Nikkei 

Dow in Japan. Such information is quoted frequently on national television and in other 

news reports and is now easily downloaded from web sources. Shares are traded daily from 

Monday to Friday (252 days per year) from 8:00am – 17:00pm on stock markets such as 

those in London, New York, and Tokyo. Most share and option pricing models are 

founded on one simple model for asset price movements involving parameters derived 

from historical or market data. 

Figure 1-1 (https://uk.finance.yahoo.com/quote/BARC.L?p=BARC.L) gives a snapshot of 

the Barclays PLC share data on Friday 16th November 2012 and includes the intraday 

graph of the share price.  

 

FIGURE 1-1 BARC.L 2012-11-16  

An alternative short-term trading timescale period of three months from August to 

November 2012 is given in Figure 1-2 

 

FIGURE 1-2 BARC.L AUGUST-NOVEMBER 2012  
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Figure 1-3 shows annual data from November 2011 to November 2012: 

 

FIGURE 1-3 BARC.L FROM NOVEMBER 2011 TO NOVEMBER 2012  

The stock share index is a time series representation of share prices for a certain period, 

such as a day, month or year, and contains a time dimension. Prediction applications with 

one or more time-dependent attributes are called time series problems. Time series analysis 

usually involves predicting numerical outcomes, such as the future price of an individual 

stock or the closing price of a share (Siraj, 2011). Most research into time-dependent data 

analysis has been statistical and limited to predicting the future value of a single variable. 

However, both statistical and non-statistical data mining techniques can be used for time 

series analysis. Typical data mining approaches use traditional linear regression and, more 

recently, neural networks.  

The first step toward time series modelling and prediction solutions is setting up the time 

series prediction problem. Essentially this uses data from the recent past to construct one or 

more indicators which can be used as inputs to a profitable trading system. An example of 

time series forecasting in econometrics is predicting the opening price of a stock based on 

its past performance. In such predictions, neural networks are used to construct a new class 

of indicators which have predictive power. Most technical indicators, such as moving 

averages (MAs), relative strength indicators (RSIs), and directional indicators (+DI, —DL 

ADX, ADXR), are elements of parametric models. They are included in formulae that have 

been developed to measure some effect which is believed to be present in the data. Various 
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parameters, such as a smoothing period, are adjusted to maximize profit when incorporated 

into a larger system. The output of these indicators is typically used in conjunction with 

other indicators as one component of a trading strategy. A time series model generally 

reflects the fact that observations close together in time will be more closely related than 

observations further apart. In addition, time series models often make use of the natural 

one-way ordering of time, so that values for a given period will be expressed as deriving in 

some way from past values. Methods for time series analysis may be divided into two 

classes: frequency-domain methods and time-domain methods. The former include auto-

correlation, cross-correlation analysis, spectral analysis, and recently, wavelet analysis. 

Time-domain auto-correlation and cross-correlation analyses are completed in the time 

domain as well (Jani, 2012). 

Technical analysis and fundamental analysis are the two main approaches to the analysis of 

financial markets. Technical analysis looks at the price movements of a security and uses 

this data to predict its future price movements. Fundamental analysis, on the other hand, 

looks at economic factors, known as fundamentals, examining earnings, dividends, new 

products, research conducted and the like. 

Investment theory usually states that it is impossible to "beat the market”, because stock 

market efficiency causes existing share prices always to incorporate and reflect all relevant 

information. According to the Efficient Market Hypothesis (EMH), or “no arbitrage” 

(Harper, 2012), stocks always trade at their fair values on stock exchanges, making it 

impossible for investors to either purchase undervalued stocks or sell stocks for inflated 

prices.  

As such, it should be impossible to outperform the overall market through expert stock 

selection or market timing, so that the only way an investor can possibly obtain higher 

returns is by purchasing riskier investments. In fact the EMH contradicts the basic tenets of 



 

5 
 

technical analysis by stating that past prices cannot be used to profitably predict future 

prices. Thus, it holds that technical analysis cannot be effective.  

Traditional linear methods fail to predict breaks in trends, stock market collapses and 

recessions, which brings into question the core assumption that financial markets follow a 

purely random walk and the EMH. However, due to the non-linear, non-stationary, highly 

noisy and chaotic characteristics of the stock market, forecasting is always considered to be 

a very difficult and challenging process (Atsalakis, 2009). Different kinds of technical, 

fundamental and statistical measures have been proposed and used in financial forecasting, 

such as the simple moving average, linear regression, the Support Vector Machine (SVM) 

(Huang, et al., 2011) and Back Propagation Neural Network (BPNN) (Devadoss, et al., 

2013). The current belief is that the market’s behaviour is a result of many non-linear 

processes and interactions. Hence, slight differences in initial conditions can cause the 

market to evolve in completely different ways (Baestaens, et al., 1994). This research 

advances these approaches by developing a methodology and deep learning techniques 

with hybrid ANN and PSO  models in both time and digital domains . Despite the 

complexity and uncertainty of the context, stock market traders continue to have an 

intuitive feeling that there are recurrent return and volatility patterns that can be isolated 

and used as the basis for trading and investments. These patterns may be observed both 

with individual shares and on a cross-sectional basis. The new presumption of chaos 

encourages investigations that might identify these patterns using improved and mainly 

stochastic and non-linear methods to analyse complex and dynamic economic and financial 

data. Common features of the analytic techniques required in this domain are pattern 

recognition and generalization capabilities.  

For regular stock exchange dealers, ‘short-term’ trading means buying in the morning and 

selling at a profit the same day and, if possible, to do that five days a week. More moderate 

trading uses a spread-betting approach. It is not often that a share price moves up 
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significantly within one day. It is more realistic to set a time limit for short-term trading 

which is more likely to be successful under normal market conditions, such as two-three 

weeks. 

1.3.  Aims and Objectives 

The hypothesis to be tested here is an educated guess about an outcome of some event; for 

example, that it is possible to predict in the short term (a day’s trading) the share price with 

a certain level of confidence. Typically, the outcome is stated in the form of a null 

hypothesis which takes a negative point of view in asserting that any relationship found is 

due purely to chance; for example, prediction based on past data. The null hypothesis 

declares that the outcome would show no significant difference between models based on 

the linear and non-linear nature of financial share prices. 

A plausible formulation of the null hypothesis for this research is that there is no 

significant difference in predictability between linear models such as linear regression and 

non-linear models like those using ANNs, and the confidence level of the predictions is not 

useful. The reason for pessimism rather than optimism is that there is no prior guarantee 

that assuming the non-linear stochastic nature of the shares is true and furthermore that 

using an ANN would be a successful approach. Experiments will be conducted to prove or 

disprove the hypothesis. 

A confusion matrix for the null hypothesis is given in Table 1-1 below 

TABLE 1-1 CONFUSION MATRIX 

 

Computed Accept Computed Reject 

Accept Null Hypothesis True Accept Type 1 Error 

Reject Null Hypothesis Type 2 Error True Reject 
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A type 1 error occurs when a true null hypothesis is rejected. A type 2 error is observed 

when a null hypothesis that should have been rejected is accepted.  

For the experiments in this research, a type 1 error would have one believe that prediction 

has significant evidential support. Likewise, a type 2 error would state that the prediction 

fails. 

An important requirement for this methodology is that an independent dataset is used. 

The primary objectives of the present research are the modelling of short-term (daily 

trading) changes in FTSE 100 shares (Aminian, et al., 2006, Amman, et al., 2010) by 

means of the use of Artificial Neural Networks (ANNs) to predict their performance with a 

certain confidence level (Rotundo, 2004) and associated risk levels. This research 

represents an advance in the use of present machine learning approaches with hybrid ANN 

and PSO models in both time and digital domains and  a suitable methodology is 

developed as follows to: 

1. Identify and model actual real-world trading processes. 

2. Identify financial share types and trading strategies. 

3. Research ANNs and time series analysis. 

4. Apply ANNs to financial share prediction. 

5. Investigate the ANN convergence and acceleration methods. 

6. Identify alternative approaches to evaluate the findings. 

7. Evaluate the results, including real share datasets.  

8. Simulate the model using computational simulation. 
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1.4.  Theoretical Framework 

The results gained from the use of neural networks are difficult to interpret, and so deriving 

corresponding formal mathematical models such as stochastic or autoregressive models 

could help with the understanding of the results. Secondly, it is interesting to compare the 

results of a stochastic model and those of machine learning (ANN and PSO) approaches.  

The theoretical framework is used to investigate the analytical mathematical modelling of 

financial shares via modelling through analysis and simulation. Numerous research studies 

that have been conducted with financial derivatives and particularly options are adopted. 

The assertion is that the models should not be very different. This is likely to be formulated 

as a null hypothesis for the methodological purposes of consistency. Furthermore, the 

outcomes of numerical solutions for partial differential equations are similar to those of 

regression and neural networks, and the parallels could be relevant. 

Knowledge of the characteristics of share probability distributions provides insight into 

how to model investment returns, future prices and their confidence intervals. Asset returns 

are usually considered to be normally distributed, as shown in Figure 1-4.  

 

FIGURE 1-4 NORMAL DISTRIBUTION (ZUCCHI, 2017) 
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The log normal distribution is specific to expected stock prices. Such a distribution is non-

zero and skewed to the right, although it has no theoretical upper limit but cannot fall 

below zero as shown in Figure 1-5. The expected price is the product of the current stock 

price and various rates of return which are assumed to be normally distributed. 

Compounding the returns creates a lognormal distribution (Zucchi, 2017). 

 

Figure 1-5 Lognormal distribution (Zucchi, 2017) 

The confidence level of a model associated with uncertainty could be determined with 

Bayesian reasoning, certainty factors and evidential reasoning and building a fuzzy system 

(Kodogiannis, et al., 2002) or the operation of sets, rules, and inferences (Roiger, et al., 

2003). 

The unified approach to financial equities modelling is conducted via partial differential 

equations (PDEs) of the diffusion type, which is considered to be the best approach to the 

modelling of financial subjects. A popular example of this is the Black-Scholes model 
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(Black, 1972). The simplest case of predicting a share would be sufficient for the 

hypothesis. The preference is for the engineering of the numerical solution of the model, 

rather than an explicit analytical solution, wherever possible and appropriate. Numerical 

analysis is faster than exact solutions which are rare as well. The mathematical basis 

emphasised is the derivation and use of deterministic differential equations and associated 

numerical methods. This is a more intuitive approach, rather than in the terms of stochastic 

processes. In this way the directness of the approach is improved. 

1.5.  Methodology Including Data Analysis 

The proposed methodology is the conceptual ANN methodology for learning and 

generalization. An artificial neural network is built from interconnected neurons, and two 

types of neural networks can be distinguished: static neural networks, which are often 

described as feed-forward networks; and dynamic neural (or recurrent) networks. Initially 

the focus is anticipated to be on static networks, for simplicity, but further investigation of 

dynamic networks is considered. Static feed-forward neural networks are composed of 

static neurons, and the output of the network is computed as soon as input values are 

presented and can be organised in several topologies. When not all neurons are output 

neurons, the network contains hidden neurons. The most general architecture is realised 

when the different neurons are fully connected (with no recurrent connections) to the 

others, and for most applications the different neurons are grouped in layers. A basic 

structure of a feed-forward neural network with one hidden layer is shown in Figure 1-6. 

 

FIGURE 1-6 FEED-FORWARD NEURAL NETWORK 
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Designing a neural network involves defining the architecture and values of weights. The 

first issue is the ANN architecture. Its design is not a trivial task, and requires the number 

of hidden layers to be defined, how many units are in each, how many connections there 

are and what learning parameters are to be used. The usual procedure relies on trying 

different architectures with different patterns of connectivity to find the 'best' or at any rate 

a satisfactory model.  

The second issue is finding the right values for the weights, which is often described as 

'learning' or 'training the network'. The learning phase is concerned with different ways to 

obtain a close fit between the mapping function and the training set. During the learning 

phase, synaptic coefficients are computed so that the network performs a task (such as 

classification or time series prediction) where the required performance is defined by a 

training set that consists of examples with their desired output values. The learning can be 

viewed as an optimisation problem with the goal of minimising an error measure with 

respect to the weights for a given set of training samples. Aspects of the learning phase to 

be considered are error criteria, back-propagation, convergence and acceleration methods 

(weight initialisation, avoiding local minima, data sequencing, batching, momentum, 

learning rate control, change in the sigmoid derivative, and so on). 

Nevertheless, the goal of forecasting is not to memorise the training set but to learn 

something about the past that can be generalised in the future when given a new example 

of the problem. The generalization phase is the ultimate estimation of network behaviour 

and its performance with the entire population of all possible examples (the universe of 

possible cases). In general, it is impossible to access this set, and there is a practical 

problem of trying to maximise performance relative to the universal dataset rather than 

encouraging the network to fit the 'noisy' training set too closely. Aspects of the 

generalization phase to be taken into account are issues of noise and over-fitting such as 

sample size, concurrent descent, cross-validation and regularization. 
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Particle Swarm Optimization (PSO) is a stochastic optimization technique. The algorithm 

is based on the behaviour of swarms, such as groups of birds. The PSO idea has expanded 

to become a common heuristic optimization algorithm with many interpretations of its 

concepts, issues, and applications. Despite the relative simplicity of individuals, swarm 

systems display complex behaviour. They are made up of numerous individuals and tend to 

be flexible and robust. Swarm intelligence thus provides a framework for the design and 

implementation of systems made up of many agents that are capable of cooperation for the 

solution of highly complex non-linear optimization problems and thus suitable to combine 

with the  neural network technique. One common feature of heuristic approaches is that 

they use probabilistic rules to find global optimal solutions and may prove to be very 

effective in solving problems without modifying the shape of their cost curves. A basic 

concept of a particle swarm optimization algorithm is shown in Figure 1-7 

 

FIGURE 1-7 PARTICLE SWARM OPTIMIZATION ALGORITHM 

The discrete Furrier transform and  discrete wavelets transformations of time series 

changes the representational space from the time domain to the digital domain. In 

analyzing financial shares trading, this provides another way to interpret and understand 

data patterns.  It is then possible to perform certain types of time series processing and 

measurement operations with much less computational effort compared to analysis in the 

time domain, reducing complexity and increasing the understanding of patterns in the data 
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and the selection of important features. A basic concept of a time-to-frequency 

transformation model is shown in Figure 1-8. 

 

FIGURE 1-8 TIME TO FREQUENCY TRANSFORMATION MODEL 

A mathematical analysis of the PSO algorithm is conducted from a system point of view in 

both continuous-time and discrete time settings along with a stability analysis for the 

choice of the parameters currently employed for the algorithm. A basic block diagram of 

the PSO algorithm is shown in Figure 1-9. 

 

FIGURE 1-9 CLOSED LOOP FEEDBACK SYSTEM 

Furthermore, a possible integral and differential extension is proposed. The analysis is 

carried out only in the scalar case in order to simplify the demonstration.  
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1.6.  Contribution to the Research Field 

The main contributions to the research field that have been  done in this thesis are: 

1. The related to the financial market modelling and trading problems and current 

approaches to them have been identified. Many people use different methods in this 

area but have not used recent machine learning (deep learning) investigations or 

considered the validity of these techniques. 

2. Different trading strategies with the focus on short-term one-day trading have been 

investigated and identified trading criteria: long term (investments) and short term 

(speculation) trading exploring the volatility (historic and implied) and risks taken.  

3. A comparison between different methods and algorithms has been done and has 

been proven that the approaches taken complement each other and gradually 

improve quality (optimum), generalization, robustness and performance. 

4. Real data in real time has been collected and applied: intraday, daily, weekly and 

monthly trading strategies with a sustainable success. 

5. A survey of the existing researched methods has been done, the literature has been 

researched and the most recent research trends have been selected. 

6. The trend/patterns in the modelling of the financial market have been investigated. 

7. Deep learning techniques have been applied to the financial domain model features 

to identify specific trends, periodicity, seasonal features and digital (DFT & DWT) 

presentations. 

8. Systemic improvements of the PSO for convergence/stability and response quality 

with the PID algorithm have been proposed based on control theory analysis and 

design. 

9. Hybrid PSO and ANN both technical implementation and methodology (how to 

apply them) have been integrated. 
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10. The stochastic and non-linear nature of financial shares has been proven and 

appropriate approaches to deal with them with ANN, PSO and control theory have 

been identified. 

In this work, new models based on neural networks and particle swarm optimization are 

derived that improve prediction performance. The focus is on improvements in both the 

convergence and confidence levels of the results.  

The poor prediction accuracy of linear regression analyses of typical financial shares daily 

closing prices time series, such as the shares listed in  FTSE 100, National Association of 

Securities Dealers Automated Quotations  (NASDAQ) and Dow Jones Industrial Average 

(DJIA), suggests that a non-linear model, such as one using multi-layer neural networks, is 

more likely to be a better choice. A prior assumption is that financial shares time series 

contain significant non-linearity and that artificial neural networks, either separately or in 

conjunction with other techniques such particle swarm optimization, can deal with them. 

The methodology used is time series analysis and forecasting in the financial domain. The 

research therefore makes contributions in the domain of computational geometry and 

statistical analysis. 

A new systematic methodology comprising both simulation and theoretical mathematical 

approaches from control theory is derived, providing a framework to study and evaluate 

the models developed. 

It could be seen that there is a similarity between artificial neural networks and statistical 

and numerical non-linear methods, implying possible convergence and mutual application 

to improve prediction and the computational convergence of both parametric and non-

parametric models. However, this would make the suggested hypothesis concerning 

artificial neural networks and parametric methods less obvious. 

The work considered in this thesis has been published in the following papers: 
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Turkedjiev, E., Busawon, K. and Angelova, M., 2013. Validation of artificial neural 

network model for share price. In: UKSim2013: 15th International Conference on 

Modelling and Simulation, Cambridge, UK. 

Rani, C., Petkov, E., Busawon, K. and Farrag, M., 2014, November. Chaotic adaptive 

particle swarm optimisation using logistics and Gauss map for solving cubic cost economic 

dispatch problem. In Environmental Friendly Energies and Applications (EFEA), 2014 3rd 

International Symposium on (pp. 1-5). IEEE. 

Rani, C., Petkov, E., Busawon, K. and Farrag, M., 2014, November. Particle swarm 

optimization with exponentially varying inertia weight factor for solving multi area 

economic dispatch. In Environmental Friendly Energies and Applications (EFEA), 2014 

3rd International Symposium on (pp. 402-407). IEEE. 

Busawon, K., Rani, R., Turkedjiev, E., and Binns, R. (submitted) Extension of particle 

swarm optimisation algorithm: application to economic dispatch. In Transaction on 

Evolutionary Computation  

1.7. Structure of the Thesis 

Chapter 1. Introduction 

Introduces material that is fundamental to understanding the nature of financial 

shares and machine learning approaches and processes. 

Chapter 2: Models, Methods and Performance Evaluation 

Formalizes data mining problems and details advanced modelling methods such as 

autoregressive moving average, artificial neural networks and particle swarm 

optimization.  

Chapter 3. Validation of ANN Model for Share Prices 

Applies formal statistical and non-statistical  methods for evaluating outcomes of  

linear regression, artificial neural networks and bi-linear regression models.    
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Chapter 4. Stochastic Share Price Model 

Models the behaviour of financial shares prices, deriving an analytical continuous-

time model considering stochastic calculus and Wiener processes and volatility. 

Chapter 5. Time Series 

Applies to the financial time series standard statistical analysis such as summary 

statistics, confidence intervals and particularly analysis of variance and correlation. 

Chapter 6. Discrete Fourier Transform 

Extends financial time series modelling in the time domain, specifically focusing 

on discrete Fourier transform analysis and forecasting including neural network 

utilization.  

Chapter 7. Discrete Wavelet Transform 

Similar to the discrete Fourier transform, this extends the financial time series 

investigation with the discrete wavelet transformation  

Chapter 8. Hybrid Particle Swarm Optimization and Artificial Neural Networks 

Introduces the particle swarm optimization (PSO) paradigm and using techniques 

and models drawn from the control theory analyzes its stability. A further 

proportional, derivative and integral (PID) extension of the basic algorithm is 

proposed. Integration with neural networks and methodology of application is 

proposed. 

Chapter 9. CAPM and Risk Analysis 

Explains the classical capital asset pricing model (CAPM) and the related risk 

concept.  

Chapter 10. Conclusions and Future Work  

Outlines the major conclusions of the study andrecommends future work. 
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1.8. Summary 

As the existing literature suggests, neural networks have not been extensively utilised and 

evaluated in the field of the modelling of short-term financial stock market shares 

exclusively in respect of the time interval (short-term trading) and confidence and risk 

levels (low, medium, high) in various day trading strategy models. 

The primary goal of the present research is to model short-term daily trading in FTSE 100 

shares to forecast with certain levels of confidence and associated risk. The hypothesis to 

be tested is that financial shares time series contain significant non-linearity and that ANN, 

either separately or in conjunction with PSO, could be utilised effectively.  

The combined application of artificial neural network modelling and optimization 

approaches such as particle swarm optimization can improve convergence and 

performance. Investigations with digital transforms such as Fourier and wavelets can 

produce superior results compared to time domain analysis.  
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2. Chapter 2: Models, Methods and  Performance Evaluation 

2.1. Overview 

This chapter formalizes data mining problem and details advanced modelling methods 

such as the autoregressive moving average, artificial neural networks and particle swarm 

optimization and their performance evaluation. 

Effective model development requires a train-test methodology. Depending on the 

objective of the application, the best model may be based on how well it interpolates (as 

measured by performance on the test dataset), or how well it performs in a deployed 

environment (using the validation dataset). To evaluate how well a model interpolates, the 

model training process should be periodically interrupted and the network tested and/or 

validated. Performance can be evaluated only in terms of the performance of the entire 

system. Standard technical measures such as root mean square (RMS) error and mean 

squared error (MSE) are common  indicators of system performance.  

This chapter covers the following subjects: 

 datasets and data collection 

 finding historical prices 

 retrieving Google finance quote live 

 evaluating performance 

 autoregressive moving average (ARMA)  

 artificial neural networks 

2.2. Datasets and Data Collection 

Stock index datasets are time series representations of Open, High, Low, Close, Volume 

and Adjusted Close prices. The data source is the Yahoo Finance website 

(http://finance.yahoo.com/) that gives prices of USA, European and Asian markets in 

downloadable Excel and “csv” spreadsheet formats. There are options for start and end 
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dates as well as whether the information is to be summarised by day, week or month. 

Examples that have been downloaded and ready for data mining are FTSE 100 (^FTSE) 

(from 2/04/1984 to 7/07/2011) and Barclays PLC (BARC.L) (from 01/01/2003 to 

07/07/2011).  

Attributes are Date represented in DD/MM/YYYY, Open, High, Low, Close and AdjClose 

in GBP and Volume in number integer.  

2.3.  Finding Historical Prices 

1. Go to http://uk.finance.yahoo.com/. 

2. Enter “BARC.L” in “Get Quotes” window shown in Figure 2-1. 

 

FIGURE 2-1 GET QUOTES 
3. Follow “Historical Prices” menu on the left shown in Figure 2-2. 

 

FIGURE 2-2 HISTORICAL PRICES 

4. Select “Set Date Range” shown in Figure 2-3. 

 

FIGURE 2-3 SET DATE RANGE 
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5. Follow “Download to Spread sheet” at the bottom of the page shown in Figure 2-4.  

 

FIGURE 2-4 DOWNLOAD TO SPREAD SHEET 

6. Sorting oldest to newest in Excel: select all columns; Sort & Filter tab (Sort Oldest 

to Newest). 

Barclays PLC long term share prices 22/09/2011 to 21/09/2012 are shown in Figure 2-5. 

 

FIGURE 2-5 BARC.L FROM 22/09/11 TO 21/09/12 

Long-term distribution 22/09/2011 to 21/09/2012 is shown in Figure 2-6. 
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FIGURE 2-6 DISTRIBUTION OF BARC.L SHARE PRICES FOR ONE YEAR 

The BARC.L share short term prices dataset from 27/08/2012 to 21/09/2012 is shown in 

Appendix C: Table 1 and BARC.L share closing prices dataset from 27/08/2012 to 

21/09/12 is shown in Appendix C: Table 2. 

A graph of BARC.L share closing prices from 27/08/12 to 21/09/12 is shown in Figure 

2-7. 

 

FIGURE 2-7 BARC.L SHARE CLOSING PRICES FROM 27/08/12 TO 21/09/12 

The distribution of BARC.L share closing prices from 27/08/12 to 21/09/12 is shown in 

Figure 2-8. 
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FIGURE 2-8 DISTRIBUTION BARC.L SHARE CLOSING PRICE FROM 27/08/12 TO 21/09/12 

2.4.  Retrieving Google Finance Quote Live 

Matlab script is used to retrieve a stock quote (last trade) from Yahoo! Finance. Yahoo’s 

quotes are delayed by 15 minutes, limiting their timeliness, where as there is no delay in 

Google Finance’s quotes and so it is better to retrieve data from the Google site instead. 

The method used to get a free real-time stock quote from Google Finance in Matlab code is 

described elsewhere (luminouslogic, 2015). 

Functions: periodic_prices_stop.m, timerCallback.m, get_last_trade_record_google.m, 

and periodic_prices_start.mwith default of 10secondsand‘BARC.L’. 

 Execution Sequence: 

(Symbol ‘BARC.L’ and 10sec period are hardcoded.) 

>>periodic_prices_start (Excel spreadsheet is created) 

stock_symbol  date_time  last_trade 

BARC.L   07/27/16 16:26:38  149.95 

BARC.L   07/27/16 16:26:48  149.57 

2.5. Evaluating Performance 

When building a system that uses neural network indicators, a trading strategy and an 

evaluation system to measure the performance of the combined system must also be 
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developed (Deboeck, 1992, Pardo, 1992). Performance is measured in terms of system 

objectives, such as profit, Sharpe ratio (Sharp, 1994), which is a measure for a risk-

adjusted return to variability, or maximum drawdown before a new peak for a specified 

period. If the current network scores higher than prior ones, it is saved as the best network. 

Training stops when the measured system performance is repeatedly less than the current 

best performance.  

Standard technical measures such as RMS error may be quite poor predictors of system 

performance. Defining the system objectives and then integrating them into the neural 

network development process is essential. 

Model performance is most often evaluated with some measure of test set error rate. For 

categorical outputs this is the ratio of test set errors to total test set instances. For numerical 

outputs it is the MSE or the RMS. The distribution of sample means taken from a set of 

independent samples of the same size is distributed normally, and so the test set error rate 

can be treated as a sample mean. Using the properties of the normal distribution, the error 

rate confidence intervals can be computed. Also, classical hypothesis testing can be used to 

compare test set error rates for different models. These techniques allow one to associate 

measures of confidence with the results. When a model fails to perform as expected, an 

appropriate strategy is to evaluate the effect which every component has had on model 

performance, such as training and test data, input attributes, learning technique, and user-

specified parameters (Roiger, et al., 2003). 

2.5.1 Evaluating Supervised Models with Numerical Output 

• Mean Squared Error (MSE) 

ܧܵܯ =  ∑൫݅ݔ − ൯ߤ 
ଶ
         (2-1) 

• Root Mean Squared Error (RMS), where applying the square root reduces the 

dimensionality of the MSE to that of the actual error computation. The value of t is 

used as a measure of convergence with the ANN: 
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ܵܯܴ =  ට∑൫݅ݔ − ൯ߤ 
ଶ
        (2-2) 

• Mean Absolute Error (MAE). This is less affected by large deviations 

ܧܣܯ = ݅ݔ|  −  (2-3)         |ߤ

2.5.2 Model for Significant Model Difference 

The classical model to test for a significant difference between the mean scores of a 

measured parameter is through the value of the ratio P of the absolute difference between 

the mean scores and the standard error for the distribution of mean differences. 

ܲ =
|ாଵതതതതି ாଶ|തതതതത

ට(ംభ
೙భ

ା 
ംమ
೙మ

) 
          (2-4) 

where: 

ܲ is the signiϐicant difference score, 

 ,തതതതare the sample means of the test dataset error 2ܧ 1തതതത andܧ

 are variance scores for the respective means 2ߛ and 1ߛ

the mean ߤ, or average value, is computed via ߤ =
∑ ௘

௡
, 

the variance ߪଶ measures the dispertion about the mean, ଶߪ = ∑(݁௜ −  ଶ, and(ߤ

the denominator ට(
ఊଵ

௡ଵ
+

ఊଶ

௡ଶ
)  is the standard error for the distribution of means 

differences 

This model is valid for independent test datasets because the distribution of differences 

between sample means is normal, like the distribution of means. As a result to be 95% 

confident that the means are different, the ratio P has to be greater than 2. 

2.5.3 Pair wise Comparison for Model Difference 

ଵଶߛ =
ଵ

௡ିଵ
∑ [(ܽ݁1௜ − ܽ݁2௜) − (݉ܽ݁1௜ − ݉ܽ݁2௜)]ଶ௡

ଵ         (2-5) 

ܲ =  
|௠௔௘ଵି௠௔௘ଶ|

ට
ംభమ

೙

        (2-6) 

where: 
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 ,ଵଶ is the joint varianceߛ

ܽ݁1௜ and ܽ݁2௜ are the absolute errors, and 

݉ܽ݁1௜ and ݉ܽ݁2௜ are the absolute error means. 

2.5.4 Confidence Interval for Numerical Output 

(݁ܽ݉)ߛ = ଵ

௡ିଵ
∑ (ܽ݁݅ − ݉ )ଶ௡

ଵ        (2-7) 

ܧܵ =  ටఊ(௠௔௘

௡
         (2-8) 

(ݎ݋ݎݎ݁)ݐ݅݉݅ܮݎ݁݌݌ܷ݂݁ܿ݊݁݀݅݊݋ܿ = ݉ܽ݁ +  ܧ2ܵ

(ݎ݋ݎݎ݁)ݐ݅݉݅ܮݎ݁ݓ݋ܮ݂݁ܿ݊݁݀݅݊݋ܿ = ݉ܽ݁ −  ܧ2ܵ 

ݐ݅݉݅ܮݎ݁݌݌ܷݕܿܽݎݑܿܿܽ = 100% −  ݐ݅݉݅ܮݎ݁ݓ݋ܮ݂݁ܿ݊ܽ݀݅݊݋ܿ 

ݐ݅݉݅ܮݎ݁ݓ݋ܮݕܿܽݎݑܿܿܽ 100% −  ݐ݅݉݅ܮݎ݁݌݌ܷ݂݁ܿ݊ܽ݀݅݊݋ܿ 

 ݐ݅݉݅ܮݎ݁݌݌ܷݕܿܽݎݑܿܿܽ

2.6. Autoregressive Models 

For generalization performance purposes, it is important to reduce attribute correlations. 

Correlation graphs between the normalized current value at  ti and previous values at  ti-1, ti-

2… ti-5 are illustrated in Figure 2-9. 

 

FIGURE 2-9 ATTRIBUTE CORRELATION 
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Correlation graphs show gradually less linear relations (correlations) between the current 

value at ti and the previous values at  ti-1, ti-2… ti-5. The relationship trends are declining as 

well, from one when there is one-to-one value equivalence without a time difference shift 

between the values ti vs. ti  to a slightly declining trend of approximately 0.6~0.8 at the 

furthest values at time ti vs. ti-5. 

2.6.1 Autoregressive Moving Average (ARMA) 

The most popular type of time-domain time–series modeling based on statistics and signal 

processing in econometrics are autoregressive moving average (ARMA) models, which are 

sometimes called Box-Jenkins models after the iterative Box-Jenkins methodology (Box, 

1970) usually used to estimate them. They assume auto-correlated time series data. Given a 

time series of data ܺ௧, the ARMA model is a tool for understanding and, perhaps, 

predicting future values in this series. The model consists of two parts, an autoregressive 

(AR) part and a moving average (MA) part. The model is usually then referred to as the 

ARMA (p, q) model where p is the order of the autoregressive part and q is the order of the 

moving average part, as in the equation below: 

ܺ௧ = ߤ + ௧ߝ + ∑ ߮௜ܺ௧ି௜ + ∑ ௧ି௜ߝ௜ߠ
௤
௜ୀଵ

௣
௜ୀଵ       (2-9) 

where: 

 is the mean ߤ

ܺ is the time series 

 are white noise terms ߝ

p is the order of the autoregressive part  

q is the order of the moving average part  

߮ are the autoregressive parameters 

 are moving average parameters ߠ

2.6.2 ARMA Methodology 

The original ARMA modeling methodology uses an iterative three-stage modeling 

approach (Brockwell, et al., 1987, Pankratz, 1983), which involves the following stages: 
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1. Model identification and selection, making sure that the variables are stationary, 

identifying seasonality in the dependent series (seasonally differencing it if 

necessary), and using plots of the autocorrelation and partial autocorrelation 

functions of the dependent time series to decide which (if any) autoregressive or 

moving average components should be used in the model. 

2. Parameter estimation, using computation algorithms to arrive at coefficients, which 

best fit the selected ARMA model. The most common methods use maximum 

likelihood estimation or non-linear least-squares estimation. 

3. Model checking, by testing whether or not the estimated model conforms to the 

specifications of a stationary univariate process. In particular, the residuals should 

be independent of each other and constant in mean and variance over time. The 

means and variances of residuals are plotted over time and a Ljung-Box test (Ljung, 

et al., 1978) is performed, or plotting the autocorrelations and partial 

autocorrelations of the residuals is helpful to identify misspecification. If the 

estimation is inadequate, we have to return to step one and attempt to build a better 

model. 

Estimating the parameters for Box–Jenkins models is a quite complicated non-linear 

estimation problem. The main approaches to fitting Box–Jenkins models are to use non-

linear least squares and maximum likelihood estimation. Maximum likelihood estimation 

is generally the preferred technique (Brockwell, et al., 1987). 

2.6.3 ARMA Investigations 

The results with the ARMA (5,3) model with p=5 and q=3 for time-lags of 5 days for 

BARC.L from 27/08/2012 to 21/09/2012 with dataset in Appendix C: Table 3 are shown in 

Figure 2-10 and Table 2-1 The models parameters are as follows: 

ܺ௧ =  0.056߮௧ିହ − 0.379߮௧ିସ + 0.416߮௧ିଷ − ௧ିଶ 1.291߮௧ିଵݔ0.45߮ +

 15.321 + ௧ߝ1.040 + ௧ିଵߝ1.091 +  ௧ିଶ                       2-10ߝ1.073 
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FIGURE 2-10ARMA FROM 27/08/2012 TO 21/09/2012GRAPH 

TABLE 2-1 ARMA FROM 27/08/2012 TO 21/09/2012 

Date Target ARMA(5,3) abs(err) 
8/27/2012 187.20 184.82 2.38 
8/28/2012 188.95 188.11 0.84 
8/29/2012 186.35 190.14 3.79 
8/30/2012 183.50 188.06 4.56 
8/31/2012 183.25 185.86 2.61 

9/3/2012 184.30 184.34 0.04 
9/4/2012 181.25 185.37 4.12 
9/5/2012 181.95 180.57 1.38 
9/6/2012 193.05 183.97 9.08 
9/7/2012 206.40 197.52 8.88 

9/10/2012 207.75 211.78 4.03 
9/11/2012 213.50 212.27 1.23 
9/12/2012 217.00 220.17 3.17 
9/13/2012 217.95 219.41 1.46 
9/14/2012 229.05 220.83 8.22 
9/17/2012 228.00 232.68 4.68 
9/18/2012 225.40 225.16 0.24 
9/19/2012 225.15 225.70 0.55 
9/20/2012 222.05 223.09 1.04 
9/21/2012 223.75 219.37 4.38 

 

The ARMA model fits well the target with the sum of absolute error errors for the last five 

days of 10.89 corresponding to a mean error of 2.18. The r2 value (the graphs similarity 

fit) for the whole data range is good at 0.94 but marginal for the last five days at 0.63, 

which is obvious from the graph where the last day in the model is in the opposite direction 

to the target original graph. The model is quite sensitive to the random autoregressive 

170.00

180.00

190.00

200.00

210.00

220.00

230.00

240.00

BARC.L

ARMA

Time in days 

Pr
ic

e 
in

 p
en

ce
 



 

30 
 

second part, though generally without significant differences in the performance sum of 

absolute errors less than 10%. The model is quite robust to the order p (the order of the 

average part) and q (the order of the autoregressive part) as well.   

2.6.4 Statistical Regression 

Statistical regression is a supervised technique that generalizes a set of numerical data by 

creating a mathematical equation relating one or more input attributes to a single output 

attribute. With linear regression, we attempt to model the variation in a dependent variable 

as a linear combination of one or more variables, for example see Table 2-2: 

,ଵݔ)݂ ଶݔ … (௡ݔ = ݕ = ݉ଵݔଵ + ݉ଶݔଶ + ⋯ ݉௡ݔ௡ + ܾ     (2-11) 

where:  

݉௜ are parameters, 

ܾ is a constant, and 

 .௜ are independent valuesݔ

Excel support is the LINEST function (LINEST.Support.office.com, 2017) 

TABLE 2-2 EXCEL LINEST FUNCTION 

 

where: 

m values are coefficients corresponding to each x-value 

se1,se2,...,sen are the standard error values for the coefficients m1,m2,...,mn. 

seb - is the standard error value for the constant b. 

r2 is the coefficient of determination, which compares estimated and actual y-values, and 

ranges in value from 0 to 1. If it is 1, there is a perfect correlation in the sample — there 

is no difference between the estimated y-value and the actual y-value. At the other 
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extreme, if the coefficient of determination is 0, the regression equation is not helpful in 

predicting a y-value. 

sey  is the standard error for the y estimate. 

F  is the F statistic, or the F-observed value used to determine whether the observed 

relationship between the dependent and independent variables occurs by chance. 

df  is the degrees of freedom used to find F-critical values in a statistical table. The values 

found in the table are compared to the F statistic returned by LINEST to determine a 

confidence level for the model.  

ssreg is the regression sum of squares. 

ssresid is the residual sum of squares 

2.6.5 Statistical Regression Investigations with LINEST 

The results with Excel LINEST function for time-lags of 3 and 5 days for BARC.L target 

data in Table 2-5 from 27/08/2012 to 21/09/2012 Appendix C: Table 1 and Appendix C: 

Table 2 are shown in Figure 2-11 graphs and Table 2-5. Model parameters specified in 

Table 2-2 are given in Table 2-3 and Table 2-4  

TABLE 2-3 LINEST 5 DAYS 

0.055974 -0.37928 0.416048 -0.4547 1.291492 15.32143 
0.281587 0.417605 0.440336 0.435629 0.262299 17.36956 
0.944012 5.090413 #N/A #N/A #N/A #N/A 
47.21082 14 #N/A #N/A #N/A #N/A 
6116.706 362.7723 #N/A #N/A #N/A #N/A 

#N/A #N/A #N/A #N/A #N/A #N/A 

TABLE 2-4 LINEST 3 DAYS 

-0.00017 -0.33294 1.288545 10.33216 #N/A #N/A 
0.259345 0.404207 0.246675 13.85784 #N/A #N/A 
0.938197 5.002824 #N/A #N/A #N/A #N/A 
80.96218 16 #N/A #N/A #N/A #N/A 
6079.026 400.452 #N/A #N/A #N/A #N/A 

#N/A #N/A #N/A #N/A #N/A #N/A 
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FIGURE 2-11 STATISTICAL REGRESSION CHART 
TABLE 2-5 STATISTICAL REGRESSION RESULTS 

 

The results show that there is no significant difference between the three and five day 

parameter models MSE3=67.01 and MSE5=65.11 and RMS3=8.19 and RMS5=8.06. There 

is an inertia (affinity) in following the trend of the time-series that is eventually 

compensated for at the end of the predication period which seems to be similar to the 

length of the model's input data; that is, three and five days in these cases. The r2 (the 

graphs' similarity, with maximum value of 1) values for three and five days are close and 

are good for the whole data range 0.94 but are marginal for the last five days at 0.68. 
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2.6.6 Non-linearity Regression 

One of the first types of non-linear approaches was proposed by Tong in 1983 and referred 

to as threshold auto regression (TAR) (Tong, 1983), which switches between different 

linear AR models according to pre-set thresholds. Subsequently STAR models were 

introduced, standing for `smooth' TAR models, where a continuous threshold indicates the 

proportions in which different models are used. 

2.7.  Artificial Neural Networks 

The artificial (computing) neural network (ANN) is a relatively new advanced non-linear 

approach method that has become popular in this field. ANNs are adaptive artificial 

intelligence software systems that are inspired by how biological neural networks work. 

The concept originated in the social sciences, physiology and economics and is now central 

to understanding the behaviour of financial markets. The benefits of ANNs are consistent 

with Simon’s ‘bounded rationality’ argument (Simon, 1997, Godoi, 2009), according to 

which market efficiency is expected to be subject to human limitations in processing 

information. ANNs offer an alternative for investors struggling in environments where pre-

existing knowledge about an evolving situation is scarce . A well-structured neural 

network allows data to be used to determine both the structure and parameters of a general 

framework for locating evolving relationships. The generic approach with ANNs is data-

driven as opposed to the traditional parameterized and/or rule-based expert systems 

generally used in practice.  

ANNs represent a class of techniques known as nonparametric models, in contrast to 

parametric models. A parametric model is a formula with a form derived from some 

external theory, which describes the dynamics of a market. For example, the Moving 

Average Convergence Divergence (MACD) method of trading analysis  (Staff MACD, 

2017) uses the difference between two moving averages as a trading signal. The length of 

the fast-moving average is the first parameter and the length of the slow-moving average is 
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the second parameter in this parametric function. Non-parametric models, however, use a 

very general formula. Typically, they are capable of approximating a wide variety of 

relationships between input and output variables. In particular, non-linear non-parametric 

models developed using the back-propagation neural network are capable of approximating 

almost any relationship between input and output variables. Building a neural network is 

equivalent to constructing a mathematical formula.  

2.7.1 ANN for Forecasting 

The focus of this study is to assess the suitability of neural nets for classification problems 

and time series analysis. Classification problems in this case are concerned with 

positioning shares into a number of categories (concerning confidence or risk levels) with 

categorical classification (low-, medium- and high-risk being the most appropriate); for 

example, discriminating between low-risk and high-risk investments or surviving and 

failing companies. The use of time series, on the other hand, is concerned to generate 

future values for a target variable based on information on current and past values for 

related and environmental factors.  

In the main, a neural network consists of a set of fully connected neuron nodes. The neuron 

itself comprises a single linear combiner with adjustable synaptic weights independent of 

the input values, where the output is passed further along to an activation function f(x).  

 

FIGURE 2-12 NEURON NODE 

The activation function output propagates activity, with output of a value close to 1 only 

when significantly excited (Roiger, et al., 2003). The perceptron is a type of neural 

network (Minsky, et al., 1990) that is a binary classifier mapping its real-valued input 
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vector w to a single binary output value across an input-output matrix. It comprises a linear 

combiner (neuron) with adjustable synaptic weights independent of the input value 

threshold b (that does not depend on any input value) and a hard limiter step activation 

function (Roiger, et al., 2003). 

ܺ = ∑ ݅௜ݓ௜
௡
௜ୀଵ = ݅ଵݓଵ + ݅ଶݓଶ + ⋯ + ݅௡ݓ௡      (2-12) 

(ݔ)݂ = ቄ1 ݂݅ ܺ > 0
 0 ݁ݏ݈݁

          (2-13) 

In multi-layered neural networks, the hidden or output layer node generally combines the 

input values into a single value and uses it as an input to an activation function. 

 

FIGURE 2-13 MULTI-LAYERED ANN 

Neural network input indicators attempt to predict market trends and turning points, such 

as relative strength indicators or directional movement indicators, to decide what the 

appropriate trading position should be: long, short, or out. These indicators together with 

the ideal trading signal are used to develop a neural network indicator. Much of the data 

selected for input to a network is time series data. The method used to capture time-varying 

information is by using a sliding window on each of the data inputs. Neural network 

indicators usually cannot deal with the wide ranges of values found in raw data. The data 

must be scaled into a usable range, usually [0, +1] or [-1, +1]. 

The generic learning-generalization methodology could be mapped to classification 

problems and time series analysis, which differ mainly in the presence or absence of a 

temporal order between the examples.  
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In a classification problem, it is required to assign static patterns to classes. Choosing the 

statistical representation of a given pattern is a key issue in any statistical pattern-

recognition problem. This is referred to as pre-processing the data, and extracting relevant 

and discriminant features of the pattern usually involves considerable problem-related 

expertise. Different choices of features lead to different patterns of the dispersion of 

distribution and convexity of clusters of examples in the input space, requiring boundaries 

of different complexity (from linear to highly non-linear). Better pre-processing simplifies 

the classification task.  

2.7.2 Neural Network Building Procedure 

In building a neural network classifier, the following stepwise procedure could be 

considered: 

1. Data: 

 Collect a database of representative examples of the classification task to be 

realised. 

 Split the data into a training set and a test set. 

2. Pre-processing: 

 Choose a pattern representation selecting a set of discriminant features and 

transform the data into appropriate inputs for the network (scaling, 

standardisation, etc.). 

 Choose a presentation format for the target value(s). 

3. Network design, learning and evaluation: 

 Choose a network topology: number of units and connectivity (input, layers, 

and output). 

 Choose the activation functions to be used. 

 Choose an appropriate learning algorithm for the network. 
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Estimate the performance of the network (on a validation set or with an information 

criterion) as a function of its complexity, and eventually try to optimise the architecture 

(weight decay, pruning by removing sections that provide little contribution, etc.). 

 Retain the 'best generalising' network and estimate its performance with the test 

set. 

4. Use and diagnostics: 

 Study the impact of different features on the decision (heuristics). 

 Study the marginality of misclassifications. 

 Revert as necessary to step 2 with other pattern representations or a cleaned 

database. 

 Develop the trained network for implementation. 

The design of a good classifier is highly dependent on the quality of the data available, and 

no classification paradigm, whether in pattern recognition, machine learning or 

multivariate statistics, will ever produce an adequate classifier unless the data sample 

available is large enough to be representative of the population with which the model will 

be used. 

In the time series literature, a time series is defined as a series of observations xk, and a set 

of real variables ordered and regularly spaced in time (t=1, 2,…,T). To investigate 

relationships with past values, the vector of lagged values (xt-1, xt-2... xt-n) lies in the n-

dimensional time delay space or lag space. The goal of time series analysis is to extract 

information from a given time series by building a mathematical model for the data. The 

aim is to describe the data in terms of, for example, randomness, trends, periodicity or 

stationarity in order to allow filtering such as smoothing, or the removal of outliers and so 

on, and finally to forecast future values. The model has to define an appropriate phase 

space (selecting a set of indicators or variables) from which forecasting or extrapolation 

results can be constructed. Since time series measurements typically exhibit stochastic 
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fluctuations and noise, the performance of the model depends on its ability to approximate 

the assumed underlying structure of the data while ignoring as much as possible of the 

noise. Neural networks can be seen as a generalisation of classical approaches to time 

series analysis. They bring an additional capability to model non-linear phenomena and to 

detect chaotic behaviour. Because of their adaptability, where they can realise a wide 

variety of mappings with the same topology, they are able of capturing a wide range of 

structures in the phase space. Interestingly all of the traditional AR models can be 

implemented using neural networks. A multi-layered network can be used to reproduce any 

relationship that is represented with a continuous non-linear function. 

2.7.3 Financial Forecasting Neural Network Set-up 

However, there is no statistically satisfying methodology available for time series 

modelling with connectionist networks. Usually, a rather heuristic framework is used since 

neural nets combine complex interactions among various factors. The set-up of a financial 

forecasting application with neural networks is usually conducted in the following way: 

1. Pre-processing 

 Data acquisition 

 Data archiving 

 Data filtering 

 Indicator selection 

2. Analysis and forecasting 

 Building the model 

 Learning optimization 

 Static and adaptive learning 

 Selection and testing of the model 

3. Trading 

 Post-processing 
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 Trading scenarios 

 Trading room 

Decisions in the pre-processing stage relate mainly to the problem of specifying the type 

and number of indicators assumed to contribute to the underlying process, including the lag 

structure. Next, a topology for the network needs to be chosen. If feed-forward networks 

are used, the number of hidden units has to be specified. In order to estimate model 

parameters, an error criterion has to be selected together with an optimisation (learning) 

algorithm. Then, diagnostics tools have to be used to check the different properties of the 

model. Finally, the output of the network has to be interpreted and may be used as input for 

yet another decision-supporting system. 

2.7.4 Experimental Three Layer ANN 

Experiments can be constructed for supervised learning; that is, induction-based supervised 

concept learning. The feed-forward ANN is a simple and popular supervised learning built 

with perceptron components (nodes) as shown in Figure 2-14. 

 

FIGURE 2-14 ANN PERCEPTRON 

Here: 

݉ݑݏ = ∑ ௜ܺݓ௜ + ܾ = ଵܺݓଵ + ܺଶݓଶ + ⋯ + ܾ      (2-14) 

ܻ =  (15-2)         (݉ݑݏ)ܨ

The sigmoid (squashing) function shown in Figure 2-15 produces a continuous Output in a 

limited range (0, 1). 

ܻ =
ଵ

ଵା௘షೞೠ೘          (2-16) 
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FIGURE 2-15 SIGMOID FUNCTION 

There are two asymptotes associated with the sigmoid function: 

 Output →1 as sum→∞  

 Output →0 as sum→-∞        (2-17) 

The variable xn is the target output and the inputs are xn, xn-1, xn-2, xn-3, xn-4 and xn-5. The 

configuration of the three-layers ANN is shown in Figure 2-16. 

 

FIGURE 2-16 ANN IMPLEMENTATION 

The training of a perceptron uses the following protocol: 

1. Start weights at random 

2. Present inputs and calculate outputs 

3. Find error compared with desired output 

4. Adjust weights 

5. Repeat steps 2-4 until: 

• Either you have the outputs you want 

• Or the results are not getting any better 

6. Then use the network to make predictions 
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The learning rule is as follows: 

• How to adjust the weights? 

– If input > 0: 

• If the answer is too big, reduce the weight. 

• If it is too small, increase it. 

– but if input < 0: 

• If the answer is too big, increase the weight. 

• If it is too small, reduce it. 

– Only increase or decrease the weight by a little at a time 

ݎ݋ݎݎ݁ = ݐݑ݌ݐݑ݋ −  ݐ݁݃ݎܽݐ

݁ݐܽݎ =  (݈݁݌݉ܽݔ݁ ݎ݋݂)0.2

௡௘௪ݓ = ௢௟ௗݓ − ݎ݋ݎݎ݁) ∗ ݐݑ݌݊݅ ∗  for analogue inputs (݁ݐܽݎ

௡௘௪ݓ = ௢௟ௗݓ − ݎ݋ݎݎ݁) ∗ (−1) ∗  for binary threshold inputs  (2-18)(݁ݐܽݎ

2.7.5 Three Layers ANN Results 

The ANN results are shown in Figure 2-17 for data in Table 2-6.  

TABLE 2-6 ANN RESULTS 
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FIGURE 2-17 ANN RESULTS GRAPH 

The ANN results are good for both MSE-= 6.39 (about 2.6% of the share price scale) and 

RMS= 2.52 (about 1% of the share price scale) errors and fitness. The r2 (graphs 

similarity, the max value is 1) values are good for the whole data range at 0.91 and are 

acceptable for the last five days at 0. 78. 

2.7.6 Comparison of Three Layers ANN vs. Statistical Linear Regression 

The performance of the ANN compared to linear regression is illustrated in Figure 2-18 

based on the data shown in Table 2-7.  

TABLE 2-7 ANN VS. REGRESSION 

 

Pr
ic

e 
in

 p
en

ce
 

Time in days 



 

43 

 

FIGURE 2-18 ANN VS. REGRESSION 

There is a significant improvement in performance between linear autoregressive and 

neural network models, changing from MSE5-AR=65.11 and RMS5-AR=8.06 for the 

autoregressive model to MSE5-ANN=6.39 and RMS5-ANN =2.52 for the later model 

predictions.  The ARMA model performance lies between that of the statistical linear and 

neural network models, though it is sensitive to the randomness of the autoregressive AR 

component. Furthermore there is a closer ANN fit with the predictions to the actual test 

data, so there is an improved robustness to variations in input data trend, which makes the 

neural network model's overall performance superior to that of the autoregressive models. 

The graph similarity r2 tests results are: 

  20-days    5-days 

ARMA  0.947165   0.636626651 

ANN   0.915519664    0.781246538 

LINST  0.944012112   0.688230109 

The r2 (graph similarity, max value is 1) ARMA value is the best for the whole data range 

at 0.947 and is acceptable for the last five days at 0. 78. 

2.8. Summary 

The generic learning-generalization methodology could be mapped to forecasting time 

series autoregressive and neural network regression  models.  
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Correlation between the input model parameters impacts on the generalization of the 

models and their future performance with unknown data. The correlation graphs between 

the current value at time the previous time values show a gradually less linear relationship 

(correlation). The relationship trends decline as well, from one to a slightly declining trend  

of  approximately 0.6~0.8 at the furthest time values. 

For models with numerical outputs, standard technical measures such as root mean square 

error and root mean squared error are the common  measures of system performance. 

Autoregressive models have a simple mathematical structure. The analysis with a sample 

model using three and five days input parameters does not give a significant difference in 

performance (errors values are similar): 

 mean  square error  67.01 and  65.11 

  root mean square error 8.19 and 8.06.  

 there is an affinity prediction graph to follow the trend of the input data which is 

eventually compensated for at the end of the prediction period. 

The next step in time series analysis is non-linear modelling such as non-linear 

autoregressive models or neural networks. The experiments with the neural network model 

have found that there is a significant improvement in performance compared to that of the 

linear autoregressive model: 

 mean square error from 65.11 to 6.39 

  root square error from 8.06 to 2.52 

  there is a closer fit between predictions and actual test data.  

Overall, the  non-linear models such as the neural network model are superior to the linear 

autoregressive models in performance and robustness. This supports the hypothesis that 

financial shares time series are non-linear as well.   
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3. Chapter 3. Validation of ANN Model for Share Prices 

3.1. Overview 

This chapter applies formal statistical and non-statistical  methods to evaluate the outcomes 

of the linear regression, artificial neural network and bi-linear regression models. 

The objective of the chapter is to justify the use of the ANN for the short-term prediction 

of share prices, particularly in the banking sector (Petkov, et al., 2012). The assumption is 

that time series data for financial shares contain significant non-linearity and that the ANN 

can be utilized effectively.  

This chapter covers the following subjects: 

 Introduction to short-term trading and long-term investment 

 Experiments with linear regression, neural network and bi-linear generalized scalar 

regression models  

 Comparison and evaluation of the experimental results 

3.2. Introduction 

Share values are represented by a time series of prices over a certain period, such as a day, 

month or year, and sampled accordingly, usually with a natural time ordering. Time series 

analysis normally tries to predict future numerical outcomes (such as the closing or opening 

prices of an individual share) based on past performance. The hypothesis tested is that data 

over a short period are expected to be more closely correlated than data over a longer 

period. This encourages the use of short-term range data.  

Figure 3-1 below gives a snapshot of the intraday chart of the BARC.L share price on 

Wednesday 27th June 2012.  
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FIGURE 3-1 BARC.L 2012-06-27 

Another short-term trading timescale, which justifies a one-two week trading strategy 

during the three months of July to September 2012, is given below in Figure 3-2. For 

example, prices in the period between September 5th at 181.95p and the 14th at 229.05p, 

prices are clearly non-linear with an eventual profit of 47.1p compared with the intraday 

prices of 193.05p and 196.8p, giving 3.75p profit for 27th June. 

 

FIGURE 3-2 BARC.L JULY-SEPTEMBER 2012 
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In contrast, the opposite share dealing strategy is known as long-term investment. Finally, 

for a long-term investment period from September 2011 to September 2012 as given below 

in Figure 3-3, it could be argued that both linear and non-linear models could have generally 

comparable performance considering monthly periods such as from January to March 2012. 

 

FIGURE 3-3 BARC.L SEPTEMBER 2011 TO SEPTEMBER 2011 

The distribution of the share price during the twelve months’ period from 22/09/2011 to 

21/09/2012 is given below in Figure 3-4. 

 

FIGURE 3-4 DISTRIBUTION BARC.L YEAR 

Time in months 

Pr
ic

e 
in

 p
en

ce
 

Price in pence 

D
is

tr
ib

ut
io

n 
in

 n
um

be
rs

 



 

48 
 

For regular dealers, ‘short-term’ usually means daily trading, involving buying in the 

morning and selling at a profit on the same day. In fact, under normal market conditions, 

share prices are not expected to change significantly within a day. It would make more 

sense to aim for successful trading within one to two weeks rather than daily, which would 

furthermore reduce trading costs.  

The underlying models commonly used by traders for analysis are known as technical or 

chart analysis and are based on linear regression. A novel perception is that share 

performance is affected by many small non-linear processes and interactions, and slightly 

different initial conditions could cause very diverse outcomes, hence being non-linear 

processes (Baestaens, et al., 1994). This encourages the investigation of stock market 

behaviour that might be explained by non-linear models with commonly expected features 

such as pattern recognition and generalization abilities. These features are genuine 

characteristics of artificial neural networks (ANN). Moreover, there is as yet limited , 

mainly for proprietary internal use, evidence that neural network models have been used or 

released for the general public and individual traders or available  from major providers 

such as Yahoo Finance.  

3.3.  Experiments 

3.3.1 Hypothesis 

The original proposition is that the outcome of experiments would show a significant 

difference between models based on the linear or non-linear nature of changes in financial 

share prices. The null hypothesis is that there is no difference between the models.  

3.3.2 Dataset 

The share datasets that have been used are time series representations of Open, High, Low, 

Close, Volume and Adjusted Close share prices. The source of data is the Yahoo Finance 

website (http://finance.yahoo.com/) which gives the prices of US, European and Asian 

markets in downloadable Excel and “csv” spreadsheet formats. There are options for start 
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and end dates as well as whether the information is to be summarized by day, week or 

month.  

Examples downloaded for data mining are of the Barclays PLC (BARC.L) share price. 

Attributes are that the date is represented in DD/MM/YYYY and Open, High, Low and 

Close values in pence number integers.  

The share price working dataset during the one-month period from 27/08/2012 to 

21/09/2012 is given in Appendix C: Table 1 and the working dataset of closing share 

prices used for the models with a time-lag of five days during the one-month period from 

27/08/12 to 21/09/12 is given in Appendix C: Table 2. All prices are given in GB pence. 

The share price chart during the one-month period from 27/08/12 to 21/09/12 is given 

below in FIGURE 3-5. 

 

Figure 3-5 BARC.L shares in pence 27/08/12 to 21/09/12 

Data from 27/08/2012 to 14/09/2012 is used to train the models, while data from 

17/09/2012 to 21/09/2012 is used for model evaluation. 
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3.3.3 Model Evaluation 

To evaluate the models’ performance (Roiger, et al., 2003), their results have to be 

examined by checking the error rate, which for numerical outputs is measured as the mean 

squared error (MSE): 

ܧܵܯ = ௜ݔ)∑  −  ଶ        (3-1)(ߤ 

where ݔ௜ is the share price value of the i-th  share price value of the share’s time series and 

µ is the mean. 

For the root mean squared error (RMS), applying the square root reduces the 

dimensionality of the MSE to that of the actual MSE error. It is generally used as a 

measure of convergence with the ANN: 

ܵܯܴ =  ට∑൫ݔ௜ − ൯ߤ 
ଶ
        (3-2) 

The mean absolute error (MAE) is less affected by large deviations, 

ܧܣܯ = ௜ݔ|  −  (3-3)         |ߤ

Furthermore, if the dataset has a normal bell-shaped distribution, then the confidence 

intervals can be computed as well (Roiger, et al., 2003), as follows: 

(ݔ)݂ = మ/ଶఙమ(௫ିఓ)ି݁(ߪߨ2√) /1
       (3-4) 

where µ is the mean and ߪଶ is the variance, given by: 

ߤ =
ଵ

௡
∑ ௜ݔ

௡
௜ୀଵ          (3-5) 

ଶߪ =
ଵ

௡
∑ ߤ) − ௜)ଶ௡ݔ

௜ୀଵ         (3-6) 

3.3.4 Model Validation 

The validation of model performance is conducted by using the significance score P value 

with instance-by-instance pair-wise comparison, given as: 
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ܲ =  
|ாభିாమ|

ට
ംభమ

೙

          (3-7) 

ଵଶߛ =
ଵ

௡ିଵ
∑ [(݁ଵ௜ − ݁ଶ௜) − ଵܧ) − ଶ)]ଶ௡ܧ

ଵ       (3-8) 

where ܧଵ is the overall error for the ANN model, ܧଶ is the overall error for the linear 

model, ݁ଵ௜ is the error for instance i for the ANN model, ݁ଶ௜   is the error for instance i for 

the linear model and ߛଵଶ is the joint variance. 

To have 95% confidence that the performance of the different models is statistically 

different, the significance score P has to be greater than or equal to 2 (Roiger, et al., 2003). 

3.3.5 Linear Regression Analysis 

Linear regression curve fitting generalizes a numerical dataset with an equation using one 

or more input data values (such as the daily close price) to a single output. It attempts to 

model the variation in a dependent variable ݕ as a linear combination of one or more input 

variables ݔ௜ , ݅ = 1, 2, . . , ݊ with coefficients ݉௜ , ݅ = 1,2, . . , ݊: 

ݕ = ,ଵݔ)݂ . . , (௡ݔ = ݉ଵݔଵ+. . +݉௡ݔ௡ + ܾ      (3-9) 

For a time-lag of five days the model is: 

ݕ = ,௡ିହݔ)݂ . . , (௡ିଵݔ = ݉ଵݔ௡ିଵ + ݉ଶݔ௡ିଶ + ݉ଷݔ௡ିଷ + ݉ସݔ௡ିସ + ݉ହݔ௡ିହ + ܾ  

         (3-10) 

where ݔ௡ିଵ the closing price at day n-1 is, ݔ௡ିଵ is the closing price at the day before day 

n-1, and so on. 

The learning algorithm that is used is the well-known learning gradient descent algorithm 

(Deboeck, 2003). For the coefficient ݉ଵ, for example, 

݉ଵ೔
= ݉ଵ೔షభ

− ௜ݎ݋ݎݎ݁) ∗ ݁ݐܽݎ ∗ ௡ିଵ೔ݔ
)      (3-11) 

The calculated model for a time-lag of five days is: 



 

52 
 

ݕ =  0.18 ∗ ௡ିଵݔ + 0.09 ∗ ௡ିଶݔ + 0.01 ∗ ௡ିଷݔ + (−0.09) ∗ ௡ିସݔ + 0.11 ∗ ௡ିହݔ +

(−0.14)          (3-12) 

The results of the linear regression for a time-lag of five days are given below in Table 3-1 

where the shaded area represents the testing. The performance up to the last five days is 

good but in the last five days there is a big bump although at the end both graphs match at 

the final day21/09/2012. Further generalization such as cross-validation would eventually 

help forecasting. These results are worse than the statistical linear regression as in Table 

2-5 due to the superior model tuning algorithm. 

TABLE 3-1 LINEAR REGRESSION RESULTS FOR BARCLAYS PLC 

Date Target Output Error 

27/08/2012 187.2 211.43 24.23 

28/08/2012 188.95 174.37 -14.58 

29/08/2012 186.35 200.00 13.65 

30/08/2012 183.5 184.75 1.25 

31/08/2012 183.25 182.87 -0.38 

03/09/2012 184.3 182.07 -2.23 

... ... ... ... 

11/09/2012 213.5 203.44 -10.06 

12/09/2012 217 217.76 0.76 

13/09/2012 217.95 204.40 -13.55 

14/09/2012 229.05 239.93 10.88 

17/09/2012 228 247.27 19.27 

18/09/2012 225.4 246.55 21.15 

19/09/2012 225.15 242.09 16.94 

20/09/2012 222.05 235.36 13.31 

21/09/2012 223.75 226.72 2.97 
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The linear regression charts for a time lag of five days are given below in Figure 3-6. 

 

FIGURE 3-6 LINEAR REGRESSION CHART FOR BARC.L 27/08/12 TO 21/09/12 

3.3.6 One Layer Artificial Neural Networks 

The linear regression model results suggest that an alternative model capable of dealing 

with implied time series non-linearity may perform better with financial shares forecasting. 

The  neural networks are capable of managing non-linear patterns and therefore  can be 

constructed for supervised forecast  learning. The feed-forward perceptron model is a 

simple and popular supervised learning model for the modelling of time series. A single 

layer perceptron with five inputs is shown below in Figure 3-7. 

 

FIGURE 3-7 ANN WITH A SINGLE LAYER PERCEPTRON 
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The output Y is: 

ࢅ = ૚

૚ା ࢋష(13-3)          ࡿ 

ࡿ = ∑ ࢏ି࢔࢞࢏࢝
૚ି࢔
૞ି࢔ +  (14-3)        ࢈

The ANN learning algorithm that is used in this study is the well-known learning gradient 

descent algorithm (Deboeck, 2003). It is intuitive iterative optimization algorithm to find a 

local minimum of a cost function using gradient descent by takings steps proportional to 

the negative of the gradient. For the coefficient ݓଵ, for example: 

ଵ೔ݓ
= ଵ೔షభݓ

− ݎݎ݁) ௜ ∗ ݁ݐܽݎ ∗ ௡ିଵ೔ݔ
)      (3-15) 

The calculated model for a time-lag of five days is: 

ܵ = ௡ିଵݔ0.91  + ௡ିଶݔ0.59 + ௡ିଷݔ0.23 + ௡ିସݔ(0.10−) + ௡ିହݔ0.33 + 2.85   (3-16) 

The results for the single one-layer ANN for a time lag of 5-days are given in Figure 3-8 

and Table 3-2, where the shaded area represents the testing. The graphs generally follow 

the same movement patterns with a closer match at the final five days, which is the 

opposite to the  linear regression. These results are worse than the results for a three-layer 

ANN as in Table 2-6. Target and ANN model output charts for 5-days are given below in 

Figure 3-8. 

 

FIGURE 3-8 ANN RESULT GRAPH FROM 12/08/27 TO 12/09/21 
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TABLE 3-2 ANN RESULTS FOR ONE MONTH BARCLAYS PLC 

Date Target Output Error 

27/08/2012 187.2 199.14 11.94 

28/08/2012 188.95 196.60 7.65 

29/08/2012 186.35 196.45 10.10 

30/08/2012 183.5 195.70 12.20 

31/08/2012 183.25 194.27 11.02 

... .... .... .... 

10/09/2012 207.75 199.16 -8.59 

11/09/2012 213.5 204.65 -8.85 

12/09/2012 217 209.50 -7.50 

13/09/2012 217.95 212.20 -5.75 

14/09/2012 229.05 214.10 -14.95 

17/09/2012 228 220.77 -7.23 

18/09/2012 225.4 223.27 -2.13 

19/09/2012 225.15 222.08 -3.07 

20/09/2012 222.05 219.65 -2.40 

21/09/2012 223.75 215.07 -8.68 

3.3.7 Bi-linear Regression Model 

It is of specific interest to compare the ANN with an alternative non-linear type of model 

such as a bi-linear scalar regression model for data fitting, such as: 

ݕ = ∑ ܽ௜ݔ௡ି௜
௡
ଵ + ∑ ∑ ܾ௜,௝ݔ௡ି௜ݔ௡ି௝

௡
௡ + ௡݁ݏ݅݋ܰ

௡      (3-17) 

The learning algorithm that is used is the well-known learning gradient descent algorithm 

(Deboeck, 2003). For the coefficient ܽଵ, for example: 

ܽଵ೔
= ܽଵ೔షభ

− ௜ݎ݋ݎݎ݁) ∗ ݁ݐܽݎ ∗ ௡೔షభݔ
).      (3-18) 
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For the joint coefficients, both inputs are used in the learning algorithm. For the 

coefficient ܾଵଶ, for example: 

ܾଵ೔
= ܾଵ೔షభ

− ௜ݎ݋ݎݎ݁) ∗ ݁ݐܽݎ ∗ ௡ିଵ೔ݔ
∗ ௡ିଶ೔ݔ

).     (3-19) 

The generic model includes noise as well but, for consistency with the use of the ANN 

model, this is omitted from the model used for the experiments. For a time lag of five days, 

the model is; 

ݕ = ܽଵݔ௡ିଵ + ܽଶݔ௡ିଶ + ܽଷݔ௡ିଷ + ܾଵଶݔ௡ିଵݔ௡ିଶ + ܾଵଷݔ௡ିଵݔ௡ିଷ +

ܾଶଷݔ௡ିଶݔ௡ିଷ          (3-20) 

The calculated model for a time lag of five days is: 

ݕ = ௡ିଵݔ0.18 + ௡ିଶݔ0.02 + ௡ିଷݔ(0.008−) + ௡ିଶݔ௡ିଵݔ0.017 + ௡ିଷݔ௡ିଵݔ0.01 +

 ௡ିଷ          (3-21)ݔ௡ିଶݔ(0.002−)

The results for a time lag of 5-days are given in Figure 3-9 and Table 3-3 where the shaded 

area represents the testing. Overall very good performance resulted in a close graphs match 

over the whole period and almost overlapping at the final five days. The results are 

encouraging although further cross-validation  generalization is recommended. So far it 

looks the best model fit to this dataset. The bi-linear charts are given below in Figure 3-9. 

 

FIGURE 3-9 BI-LINEAR RESULT GRAPH FOR BARC.L 
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TABLE 3-3 BI-LINEAR RESULTS FOR BARCLAYS PLC 

Date Target Output Error 

27/08/2012 187.2 189.43 2.23 

28/08/2012 188.95 188.15 -0.80 

30/08/2012 183.5 187.50 4.00 

31/08/2012 183.25 184.24 0.99 

03/09/2012 184.3 183.43 -0.87 

05/09/2012 181.95 181.79 -0.16 

06/09/2012 193.05 181.87 -11.18 

07/09/2012 206.4 191.70 -14.70 

10/09/2012 207.75 208.31 0.56 

11/09/2012 213.5 213.05 -0.45 

12/09/2012 217 220.18 3.18 

13/09/2012 217.95 219.73 1.78 

14/09/2012 229.05 216.90 -12.15 

17/09/2012 228 226.79 -1.21 

18/09/2012 225.4 227.79 2.39 

19/09/2012 225.15 224.16 -0.99 

20/09/2012 222.05 223.57 1.52 

21/09/2012 223.75 220.96 -2.79 

 

3.4.  Comparison of the Experimental Results 

The evaluation of the results of the linear regression model for a time lag of five days 

shows that MSE=258.31and RMS=16.07. 

The evaluation of the results of the ANN regression model for a time lag of five days 

shows that  MSE=29.47 and RMS=5.42.  
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The evaluation of the results of the bi-linear regression model for a time lag of five shows 

that MSE=3.65 and RMS=1.91. 

These results are worse than the results for statistical linear regression (Table 2-5 

MSE=65.4 and RMS=8.06) and the three-layer ANN (Table 2-6 MSE=6.39 and 

RMS=2.52) due to superior statistical regression tuning and layer architecture for the 

ANN. The point of this validation is to justify the non-linear hypothesis and the models are 

simplified to facilitate the interpretation of the results. 

The results demonstrate significantly better performance of the ANN model compared to 

linear regression, as the values of MSE and RMS are respectively 9 times and 3 times 

better (lower). The best performance is achieved with the bi-linear model, as MSE and 

RMS values are 8 times and 3 times better respectively than the corresponding ANN errors 

and furthermore almost 70 times and 8 times better than the linear regression. 

The calculated significant difference ratio P  for the experimental results with instance-by-

instance pair-wise comparison between ANN and linear regression is P=6.58 with a joint 

variance ߛଵଶ= 34.88, which, therefore, gives 95% statistical confidence in the comparison 

of the models’ performance. The calculated ratio P for the experiments with instance-by-

instance pair-wise comparison between the ANN and bi-linear regression model is P=3.85, 

which, therefore, gives 95% statistical confidence in the comparison of these models’ 

performance. 

3.5.  Summary 

The performance of the ANN model is compared to that of a linear regression model. Non-

linearity is shown by deduction via a comparison of experimental results using the ANN 

and linear regression models. Furthermore, the ANN model is compared to another non-

linear type of model, the bi-linear model. Experiments are conducted based on real 

monthly (four-week) datasets, and the performance of the models is formally evaluated.  
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The non-linear models are likely to be a better choice than a traditional linear regression 

model for short-term trading, and furthermore the bi-linear model outperforms the ANN. 

Experiments have been conducted with a single-layer in order to clearly compare the ANN 

with linear regression models. The results for mean squared error (MSE) and root mean 

square (RMS) are shown below: 

• For the linear regression model, MSE=258.31and RMS=16.07. 

• For the ANN regression model, MSE=29.47 and RMS=5.42.  

• For the bi-linear regression model, MSE=3.65 and RMS=1.91. 

It is expected that a multilayer ANN would improve the results further. However, the 

interpretation of the ANN model results is more difficult and comparison with the linear 

model is less straightforward.  

The validation of the ANN model for share price investigations has found that non-linear 

models are likely to be a better choice than traditional linear regression for short-term 

trading.  The conclusions are positive with good statistical confidence, encouraging further 

experimentation such as considering further generalization with experiments using cross-

validation, inclusion of a noise component in the model, or other methods for choosing 

model parameters.  
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4. Chapter 4. Stochastic Share Price Model 

4.1. Overview 

This chapter models the behaviour of financial share prices, deriving an analytical 

continuous-time model considering stochastic calculus and Wiener processes and 

volatility. 

It is often stated that asset prices must move randomly, which is due to the efficient market 

hypothesis. There are several different forms of this hypothesis with different restrictive 

assumptions, but they all basically say two things (Wilmott, et al., 1996): 

 Past history is fully reflected in the present price, which does not hold any further 

information; 

 Markets respond immediately to any new information about an asset. 

Thus, the modelling of asset prices is really about modelling the arrival of new information 

which affects the price. Given the two assumptions above, a Markov process represents 

unanticipated changes in an asset price (Wilmott, et al., 1996). The movement of share 

prices is described as a random walk, which underlines the notion that future prices cannot 

be predicted with certainty. This implies that any model must include a degree of 

unpredictability. 

This chapter covers the following subjects: 

 Brownian motion and the Wiener process 

 Analytical modelling 

 Market and normal distributions 

 Stochastic model predictions summary 

 Volatility 

 Historic volatility 

 Online volatility indices 
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4.2. Introduction 

A random walk is defined as a process relating the value of a variable ܵ௡ at time n to 

its previous position according to the rule: 

ܵ௡ = ܵ௡ିଵ + ௡ܹ        (4-1) 

where ௜ܹ , ݅ = 1, 2, … , ݊,  are independent and identically distributed random 

variables. 

A risk-neutral valuation is one which values an investment solely via the present value of 

its return. Financial share models assume that geometric Brownian motion turns all 

investments involving buying and selling into fair bets (Wilmott, et al., 1996). For this 

reason, these valuations are called risk-neutral valuations. Brownian motion means that, if 

S(t) is the price of the security at a time t, then, for any price history up to time t, the ratio 

of the price at a specified future time (t + T) to the price at time t has a log-normal 

distribution. The mean and variance parameters will be normal random variables with 

mean tµ and variance tσ2. Black and Scholes (1973) showed, that given the assumption that 

price changes follow geometric Brownian motion, there is a single price that does not 

allow an idealized trader to follow a strategy that will result in a sure profit in all cases. 

There will be no certain profit (i.e., no arbitrage). Price volatility is a rate at which the 

price of a security increases or decreases for a given set of returns; that is, the degree of 

variation of a trading price series over time. In addition, the price depends only on the 

variance parameter σ of the geometric Brownian motion. Because parameter σ is a measure 

of the volatility of the security, it is often called the volatility parameter.  

Share prices move up and down throughout the working day and they are recorded 

and updated every 15 minutes. The latest price will either have moved up or down 

from, or stayed the same as, the previous price. If we record the price of a 

commodity over a long period of time we get a graph plot such as the one shown in 
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Figure 4-1. This graph refers to the closing price of Barclays bank shares over a 

period of about 11 months in 2014-15. 

 

FIGURE 4-1 BARCLAYS PLC SHARE PRICE 02/05/2014 TO 29/04/2015 

The jumps in its value are independent of each other and the share price moves 

irregularly with time with no evidence of a trend as the series progresses. A later 

realisation of the same share price is shown below in Figure 4-2. The graph has a 

similar appearance to the one above, illustrating this property of the process. 

 

FIGURE 4-2 BARCLAYS PLC SHARE PRICE 01/05/2015 TO 29/08/2016 
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We shall denote the value of the share price at time t as ܵ௧, ݐ ≥ 0, where the value 

of the share at t = 0 is zero, ܵ଴ = 0 . If the price moves up or down, it is equally 

likely, then, for each value of t, that the random variable ௧ܵ should have a 

symmetrical distribution with a mean of zero. Also, the change in its value from time s 

to s + t denoted by ܵ௦,௦ା௧is given by: 

ܵ௦,௦ା௧ =  ܵ௦ା௧ −  ܵ௦         (4-2) 

This should have the same distribution as ܵ଴,௧ =  ܵ௧ and be independent of 

historical values of ܵ௧ before time t. This means that ܵ௧ is a stationary process 

and is continuous. 

These three conditions of symmetry, stationarity and continuity lead to the random 

process called Brownian motion or the Wiener process. This is formally defined as 

follows. The Wiener process or Brownian motion is defined as a random 

process ܵ௧, ݐ ≥ 0, with ܵ଴ = 0 such that the following conditions hold: 

1. Every increment ܵ௦,௦ା௧ is normally distributed asܰ(0,  ଶ isߪ where ,(ݐଶߪ

constant. 

2. For every pair of disjoint intervals (ݐଵ, ,ଷݐ) ଶ) andݐ  ସ), the increments ܵଵ,ଶݐ

and ܵଷ,ସ are independent random variables following the above distribution. 

3. ܵ௧ is continuous. 

From property 1, it follows that ܵ௧~ܰ(0,  is called the ߪ The parameter .(ݐଶߪ

volatility parameter and is a measure of the standard deviation. 

We want to model the corresponding return on the asset. Suppose that at time t the 

asset price is S(t). Let us consider a small subsequent time interval dt, during 

which S changes to (S + dS).  
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The anticipated return is based on the return on money invested in a risk-free bank account. 

The most common model of share prices decomposes the return into: deterministic and 

random parts. The deterministic and predictable part gives a contribution µdt to the return 

dS/S, where the mean µ is a measure of the average rate of growth of the asset price, also 

known as drift. In simple models, µ is taken to be a constant. The deterministic part μSdt 

corresponds to the return on money invested in a risk-free bank where μ is the interest rate. 

In more complicated models µ can be a function of S and t. 

The second contribution to dS/S models the random change in the asset price in response to 

external effects. It is represented by a random sample drawn from a normal distribution 

with a mean of zero and it adds a term σdW to dS/S. The parameter σ is called volatility, 

which measures the standard deviation of the returns. The quantity dW is the sample from a 

normal distribution which contains the randomness that is certainly a feature of asset 

prices. The random part σSdW is the random change in the asset price in response to 

external effects such as unexpected news. This is known as a Wiener process. 

4.3.  Analytical Model 

Putting these contributions together, we obtain a stochastic differential equation as a 

mathematical representation of a simple asset price: 

ௗௌ

ௌ
= ݐ݀ߤ +  (4-3)         ܹ݀ߪ

where S is the asset price, µ is the average rate of growth, σ is the volatility which is 

measured by the standard deviation of the returns, and dW which contains the randomness 

known as a Wiener process. 

Normally, σ and µ are variable functions of time and can depend on other things as well. 

However, for a short period of time, σ, µ =const. Constant volatility means constant 

noisiness in the share price, while constant drift means a constant trend of an increase or 

decrease in the share price. 
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The stochastic differential equation is solved as follows: 

ௗௌ

ௌ
= ݐ݀ߤ +  (4-4)         ܹ݀ߪ

Despite uncertainty in share prices, a certain determinism can be derived in a small time 

period using Ito’s lemma (Wilmott, 1996) : 

݀(݈݊ܵ) =
ௗௌ

ௌ
−  

ଵ

ଶ
 (5-4)        ݐଶ݀ߪ

Replacing  
ௗௌ

ௌ
 gives: 

݀(݈݊ܵ) = ݐߤ + ܹ݀ߪ −
ଵ

ଶ
 (6-4)      ݐଶ݀ߪ

Then, integrating: 

׬ ݀(݈݊ܵ) = ׬ ݐߤ + ׬ ܹ݀ߪ −  
ଵ

ଶ
׬  (7-4)     ݐଶ݀ߪ

݈݊ܵ = ܹߪ + ቀߤ −
ଵ

ଶ
ଶቁߪ ݐ +  (8-4)       ܥ+

The initial conditions are ݐ = 0, ܵ଴ ≠ 0 and ଴ܹ = 0 which is giving ܥ = ݈݊ ଴. 

Consequently 

   ݈݊
ௌ

ௌబ
= ቀߤ −

ଵ

ଶ
ଶቁߪ ݐ +  (4-9)       ܹߪ

therefore,  

ܵ = ܵ଴݁ቀఓି
భ
మ

ఙమቁ௧ାఙௐ         (4-10) 

If we assume that volatility ߪ = 0, we can ignore the randomness of the asset. The 

accuracy of this assumption depends on the observation period and the relative percentage 

of variations. Usually in normal market conditions for one-two trading weeks daily trading, 

the variations are small compared to the price. When µ is constant, the equation above can 

be solved exactly to give: 

ܵ = ܵ଴݁ఓ௧          (4-11) 

where ܵ଴ is the value of the asset at ݐ = 0. Thus, if ߪ = 0, the asset price is totally 

deterministic and we can predict the future price of the asset with certainty. 
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This equation is a particular example of a random walk, with the probability density 

function represented by a skewed bell-shaped curve known as the log-normal distribution. 

This random walk is known as a log-normal random walk. 

4.4.  Methodology 

The results of this investigation can be summarized as follows: 

1. Datasets for share prices from 2015-06-01 to 2015-10-04:  

a. 2015-06-01 to 2015-10-04, the whole dataset. 

b. 2015-06-01 to 2015-08-31,the training dataset. 

c. 2015-08-31 to 2015-10-04, the testing dataset. 

d. Share prices for selected companies were analysed: in the financial sector: 

BARC.L, HSBA.L, RBS.L and  LLOY.L and in the retail sector: TSCO.L, 

MRW.L, MKS.L and SBRY.L 

e. Data is sorted from the oldest to the newest. 

2. The share price ratio ܴ௜ =
ௌ೔

ௌ೔షభ
 logarithm  ݈݊(ܴ௜) was calculated. 

3. A check for normality was performed (normal distribution) of the ݈݊(ܴ); that is, for 

a log-normal distribution. The Kolmogorov - Smirnof (Jistel, et al., 1997) test was 

performed. 

4. Descriptive statistics for the training dataset from 2015-06-01 to 2015-08-31 were 

calculated; namely mean ߤ and standard deviation ߪ. 

5. A normalization is performed for time units for a year replacing  

݉  where ݏ  with ߪ with ݉  and ߤ = ݏ and ߤ252 =  taking into account ,252√ߪ

the number of 252 trading days in the UK stock market, where 
ଵ

√ଶହଶ
 is the length of 

one trading day measured in years. The predicted price is: 

଼ܵ଴ = ܵ଴ ∗ ଼݁଴∗(௠ିೞమ

మ
)      (4-12) 

6. The results are plotted for volatility 
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7. Different distributions such as Brownian motion or binomial models are tested. 

4.5.  Datasets and Results 

Share prices and results  for selected retail and financial sector companies are shown for 

the financial sector: BARC.L Appendix C: Figure 1, HSBA.L Appendix C: Figure 3, 

RBS.L Appendix C: Figure 2 and  LLOY.L Appendix C: Figure 4.  

And for the retail sector: TSCO.L Appendix C: Figure 5, MRW.L Appendix C: Figure 7, 

MKS.L Appendix C: Figure 6 and SBRY.L Appendix C: Figure 8 

Stochastic model weekly and monthly predictions show not very good fits with the target 

and little variation, as shown for BARC.L in Figure 4-3 below

 

 

FIGURE 4-3 STOCHASTIC MODEL BARC.L WEEKLY AND MONTHLY PREDICTIONS 
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The stochastic model predictions are summarized in Table 4-1 and Table 4-2. 

TABLE 4-1 FINANCIAL SECTOR PREDICTIONS 

  HSBA.L 

(65 

samples) 

LLOY.L 

(65 

samples) 

 
BARC.L 

(65 samples) 

RBS.L 

(65 samples) 

Daily Mean m=AVERAGE -0.28% -0.2%  -0.03% -0.02% 

Annualised 

mean 

ߤ

= ݉݁ܽ݊ ∗ 252 
-71.78% -52.76% 

 
-7.22% -5.26 

Volatility s=STDEV 1.53% 1.2%  1.68% 1.64% 

Annualised 

volatility 
ߪ = ݏ ∗ √252 24.30% 19.19% 

 
26.66% 26.18 

error ට෍  ଶ 10.19% 7.36%ݎ݋ݎݎ݁
 

13.36% 17.45% 

TABLE 4-2 RETAIL SECTOR STOCHASTIC MODEL PREDICTIONS 

  MKS.L 

(65 

samples) 

TSCO.L 

(65 

samples) 

 
MRW.L 

(65 samples) 

SBRY.L 

(65 samples) 

Daily Mean m=AVERAGE -0.17% -0.14%  -0.01% -0.03% 

Annualised 

mean 

ߤ

= ݉݁ܽ݊ ∗ 252 
-42.55% -35.69% 

 
-2.07% -8.38% 

Volatility s=STDEV 1.55% 1.61%  1.50% 1.48% 

Annualised 

volatility 
ߪ = ݏ ∗ √252 24.61% 25.48% 

 
23.85% 23.47% 

error ට෍  ଶ 9.79% 10.36%ݎ݋ݎݎ݁
 

9.66% 9.45% 

The analysis of the results as shown in the summary tables shows consistent market 

annualized volatility in the range 19.19%-26.66%  and consequently the expected 

prediction error is similar in the range of 7.36% - 17.45% with better retail sector 

performance between 9.45% to 10.36%. 
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4.6. Market and Normal Distributions 

A comparison check for normal distribution is shown for BARC.L in Figure 4-4 and for 

the generated normal distribution in Figure 4-5, confirming the BARC.L normal 

distribution hypothesis. 

 

FIGURE 4-4 DISTRIBUTIONS HISTOGRAMS BARC.L 

 

FIGURE 4-5 DISTRIBUTIONS HISTOGRAMS NORMAL GENERATOR 

4.7.  Volatility 

Annual volatility (߬ =
ଵ

ଶହଶ
, 252 trading days) from historic data (Hull, 2008) for three 

months daily closing price data is calculated for AV.L (Aviva), BARC.L (Barclays), 

BNC.L (Banco Santander), BP.L (BP), HSBA.L (HSBC), LLOY.L (Lloyds) RBS.L (Royal 

Bank of Scotland), STAN.L (Standard Chartered), TSCO.L (Tesco) and VOD.L 

(Vodafone). The investigation is conducted mostly for BARC.L and the other shares 

considered are just for three months, equivalent to 66 days. The closing daily share prices 

are downloaded for the period 22/09/2011 to 22/09/2012. It is assumed that the length of 

Price in pence 

Normalized random number  
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time interval (τ) for the three months’ data is equivalent to 66 days, for two months 44 days 

and one month 22 days. 

(݅)ݑ = ݈݊ ௦(௜)

௦(௜ିଵ)
ቁ         (4-13) 

ߪ =  √252 ∗ (݅)ݑ] ܸܧܦܶܵ ∶ ݅)ݑ  − ߬)] ∗ 100 %     (4-14) 

The charts (axis x, time) are presented below backwards in time, where 1 corresponds to 

the most recent day 21-09-2012 and the 263-rd point to 22-09-2011, as shown in Figure 

4-6. 

 

FIGURE 4-6 VOLATILITY DATASET BARC.L 

The share trend chart for each day and the whole period is produced using the Excel 

SLOPE built-in function with a 14 days’ backward window as displayed in Figure 4-7. 

 

FIGURE 4-7 EXCEL SLOPE FOR 14 DAYS 
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4.8.  Historic Volatility 

The historic volatility of the Barclays share price on 22-09-2012 was 51.49%. The historic 

volatility chart is shown backwards for every day from 22-09-2012 to 03-01-2013 for 66 

days (three months) time lag in Figure 4-8. 

 

FIGURE 4-8 HISTORIC VOLATILITY BARC.L FOR 66 DAYS FROM 22-09-2012 

The historic volatility slope is shown in Figure 4-9. 

 

FIGURE 4-9 VOLATILITY SLOPE BARC.L FOR 66 DAYS 
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Volatility is calculated for each day with STDV windows of 12 days (two weeks), 22 days 

(one month), 44 days (two months) and 66 days (three months), as shown in Figure 4-10. 

 

FIGURE 4-10 VOLATILITY FOR 12, 22, 44 AND 66 DAYS 

The volatility trend-slopes for 44 days (two months) and 66 days (three months) with a 14 

days’ backward window are shown in Figure 4-11. 

 

FIGURE 4-11 VOLATILITY SLOPE FOR 44 AND 66 DAYS BARC.L 
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The volatility of the Barclays share price for 20 days, following the example given by Hull 

(Hull, 2008), is still quite high at 38.50%, as shown in Table 4-3. 

TABLE 4-3 VOLATILITY CALCULATIONS FOR 20 DAYS 

 

Retail and financial institution share price charts and volatility for 66 days are shown in 

Appendix C: Figure 9 for Aviva (AV.L) 

Appendix C: Figure 10 for Banco Santander (BNC.L) 

Appendix C: Figure 11 for BP.L (BP). 

Appendix C: Figure 12 for HSBA.L (HSBC) 

Appendix C: Figure 13 for  Lloyds (LLOY.L) 

Appendix C: Figure 14 for Royal Bank of Scotland (RBS.L) 

Appendix C: Figure 15 for  Standard Chartered (STAN.L) 

Appendix C: Figure 16 for Tesco (TSCO.L) 

Appendix C: Figure 17 for Vodafone (VOD.L) 

4.9.  Online Volatility Indices 

Volatility indices are available online from the Financial Times and are shown in Table 
4-4.  
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4.9.1 Financial Times, UK 

http://www.ft.com/home/uk 

 

FIGURE 4-12 FINANCIAL TIMES PORTAL 

Select from the “Markets” tab dropdown menu “Markets” / “Markets Data” 

 

FIGURE 4-13 FT MARKETS DATA 

Select “Data Archive” tab (http://markets.ft.com/research/Markets/Overview) 

 

FIGURE 4-14 FT PORTAL OVERVIEW 
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Select the data: “Select a category”, “Select a report” and “Select a date” and “Download 

data” (http://markets.ft.com/research/Markets/Data-Archive) 

 

FIGURE 4-15 FT PORTAL ARCHIVE 

Equities and UK Equity Volatility Indices 

 

FIGURE 4-16 FT PORTAL VOLATILITY INDICES 

TABLE 4-4 VOLATILITY INDICES 

 

4.9.2 VIX Chicago Board Exchange Market Volatility Index 

VIX (http://en.wikipedia.org/wiki/VIX) is a trademarked ticker symbol for the Chicago 

Board Exchange Market Volatility Index, which is a popular measure of the implied 

volatility in the S&P 500 index. It is often referred to as the fear index, representing one 

measure of implied stock market volatility over the next 30-day period. Figure 4-17 shows 

the value of the CBOE volatility index on 31st December from 1985 to 2012. 
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FIGURE 4-17 VIX VOLATILITY INDEX 

The VIX is quoted in percentage points and translates, roughly, to the expected movement 

in the S&P 500 index over the next 30-day period, which is then annualized. For example, 

if the VIX is 15, this represents an expected annualized change of 15% over the next 30 

days; thus it can be inferred that the index option markets expect the S&P 500 to move up 

or down 15%/√12 = 4.33% over the next 30-day period. The index is priced with the 

assumption of a 68% likelihood (one standard deviation) that the magnitude of the change 

in the S&P 500 in 30-days will be less than 4.33% (up or down). 

The VIX can be used to calculate implied volatility, because volatility is one of the factors 

used to calculate the value of these indices. Higher or lower volatility of the underlying 

security makes it more or less valuable, because there is a greater or smaller probability 

that the security will be above the market value. Thus, a higher index price implies greater 

volatility, all other things being equal. 

4.9.3 VXD 

The VXD (http://wiki.fool.com/VXD) is the CBOE DJIA volatility index (CBOE, 2015), 

meaning that it is an index established by the Chicago Board Options Exchange to measure 

investor sentiment about near-term volatility in the Dow Jones Industrial Average as 

shown in Table 4-5 and Figure 4-18. 
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TABLE 4-5 VXD DELAYED QUOTES 

 

 

FIGURE 4-18 CBOE DJIA VOLATILITY INDEX 

The CBOE DJIA volatility index (VXD) is based on the real-time prices of options on the 

Dow Jones Industrial Average SM (DJIA, with an options ticker of DJX), and is designed 

to reflect investors' consensus view of future (30-day) expected stock market volatility. 

The Fund Evaluation Group (FEG) (2007) issued a new study entitled "Evaluation of Buy 

Write and Volatility Indexes: Using the CBOE DJIA Buy Write Index (BXD) and the 

CBOE DJIA Volatility Index (VXD) for Asset Allocation and Diversification Purposes." 

This paper studied the 109-month period from October 1997 to November 2006, and 

presented several findings on the 9-year performance of the VXD Index: 

 The volatility index can reduce portfolio volatility. Including a small (10%) 

allocation to the CBOE DJIA Volatility Index (VXD) could have reduced the 
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volatility of an all-stock security by about 26%, without materially affecting 

returns. 

 Low correlation and diversification. The VXD and the DJIA were inversely 

correlated (-0.62). VXD increased more during market declines, reacting more to 

stock market declines than to stock market advances), indicating that the VXD has 

potential as a diversification tool. 

 Impact on risk-adjusted returns. The inclusion of a small (5%) allocation to the 

VXD Index boosted risk-adjusted returns for a stock-oriented portfolio, and 

lowered the risk-adjusted returns for a fixed-income-oriented security. 

4.10.  Summary 

Stochastic model weekly and monthly predictions show not very good fits (not following 

the target variations)  and not very good error performance. The results generally show a 

simple straight line trend across the target share prices chart, as shown for BARC.L in 

Figure 4-3.  

The analysis of the results as shown in the summary Table 4-1 and Table 4-2 shows 

consistent market annualized volatility in the range 19.19%-26.66%  and consequently the 

expected prediction error is similar in the range of 7.36% - 17.45% with better retail sector 

performance between 9.45% to 10.36%. 

Evaluation of the volatility indices shows that the volatility index can reduce portfolio 

volatility, that there is low correlation and diversification and lowered risk-adjusted returns 

for a fixed-income-oriented security. Furthermore, inclusion of the index  can increase the 

risk-adjusted returns for a stock-oriented portfolio, and lower the risk-adjusted returns for a 

fixed-income-oriented security. 
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5. Chapter 5. Time Series 

5.1. Overview 

This chapter applies standard statistical analysis such as summary statistics, confidence 

intervals and particularly analysis of the variance and correlation to financial time series. 

Visualising data is convenient for data analysis and provides insight into experimental or 

simulated data. Data for the 2013 yearly period is relatively flat, without drastic changes. A 

first look at the BARC.L share price graph indicates a slight polynomial hill and major 

monthly oscillations, as shown in Figure 5-1. A one-month dataset (January 2013) is 

shown in  Appendix C: Table 4 and the graph is shown in Figure 5-2 which  shows an 

exponential slope and some harmonics as well. Both the polynomial hill and exponential  

slope could be approximated with a linear gradient. These visual observation encourage 

curve-fitting and regression models explorations.  

This chapter covers the following areas: 

 Probability distribution 

 Statistical analysis 

 Analysis of variance (ANOVA) 

 Correlation analysis 

 Time Series analysis 

 Confidence intervals of trend coefficients 

 Components model 

 Curve fitting and regression  

 Time-share price curve regression (fitting) for one attribute 

 Multiple attribute regression with neural networks 
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FIGURE 5-1 BARCLAYS PLC SHARE PRICE IN PENCE FOR 13 MONTHS 

 

FIGURE 5-2 BARC.L SHARE PRICE IN PENCE FOR ONE MONTH 

5.2.  Probability Distribution 

In probability theory, a probability density function (pdf), or the density of a random 

variable, is a function that describes the relative likelihood of this random variable taking a 
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given value. The share price is suggested to have a normal distribution, as shown in Figure 

5-3 and Appendix C: Table 5.  

 

FIGURE 5-3 BARCLAYS PLC PROBABILITY DISTRIBUTION FUNCTION 

The pdf is derived from the BARC.L histogram with fifty and hundred bin ranges. Bin 

ranges define the data frequencies or the number of data samples within the sub-range 

(bin). For example, for a bin of 100, the entire data range from 249.0 to 333.85 is divided 

into 100 sub-ranges, with the first from 249.0 to 249.8485. 

The more precise the bin is in relation to the dataset size (in this case 284 samples), the 

closer the chart would be to the actual distribution (see Figure 5-3). Scaling is required for 

a bin of fifty sub-ranges, and the scaling coefficient is 0.5 which reflects the number of 

sub-ranges.  The probability is calculated by dividing the frequency by the size of the 
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dataset. The bin acts like a frequency filter, although it still generally shows the nature of 

the distribution.  

5.3.  Statistical Analysis 

Summary descriptive statistics help to understand the nature of a dataset, with measures 

such as central tendency and dispersion of the data.  

The purpose of taking a random sample from a population such as share prices and 

computing these statistics is to approximate the mean of the population. How well the 

sample statistics estimates the underlying population values is always an issue.  

A confidence interval provides a range of values, which is likely to contain the parameter 

of interest for the population. Confidence intervals are constructed at a confidence level, 

such as 95 %, selected by the user. This means that, if the same population is sampled on 

numerous occasions and interval estimates are made on each occasion, the resulting 

intervals would bracket the true population parameter in approximately 95 % of cases. 

Confidence stated at the 1−α level can be thought of as the inverse of a significance level, 

α. A confidence interval is a range of values that is likely to contain an unknown 

population parameter most frequently to bind the mean, with a range of values so defined 

that there is a specified probability that the value of a parameter lies within it. If a random 

sample is drawn many times, a certain percentage of the confidence intervals will contain 

the population mean. This percentage is the confidence level (95.%).  

The kurtosis characteristic represents the relative peakedness or flatness of a distribution 

compared with the normal distribution. Positive kurtosis indicates a relatively peaked 

distribution. Negative kurtosis indicates a relatively flat distribution. 

Skewness indicates the degree of asymmetry of a distribution around its mean. Positive 

skewness indicates a distribution with an asymmetric tail extending toward 
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 values that are more positive. Negative skewness indicates a distribution with an 

asymmetric tail extending toward values that are more negative. 

BARC.L descriptive statistics of the closing price over the long term from 01/01/2013 to 

31/01/2014 are shown in Table 5-1. 

TABLE 5-1 DESCRIPTIVE STATISTICS OF BARCLAYS PLC SHARE PRICE 

Mean 288.641 
 

Standard Error 1.160 Standard Deviation/Count 

Median 288.650 The number in the middle of a set of numbers. 

Mode 287.200 
The most frequently occurring, or repetitive, value in an 

array or range of data.  

Standard Deviation 19.550 SQRT(VAR) 

Sample Variance (VAR) 382.219 

 

Kurtosis -0.681 
 Characteristic representing the relative  flatness of a 

distribution compared with the normal distribution.  

Skewness -0.004 
Characteristic indicating the degree of asymmetry of a 

distribution around its mean.  

Range 84.850 Maximum minus Minimum 

Minimum 249.000 Minimum value 

Maximum 333.850 Maximum value 

Samples 284 Number of samples in the set 

Confidence Level (0.95, 

95%) 
2.274 

Value used to construct a confidence interval for a 

population mean. Confidence Level 

(90.0%) 
1.908 
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A kurtosis of -0.681 indicates a relatively flat distribution. As can be seen from the pdf, the 

maximum is 0.0317 and this is quite symmetrical with a skewness of -0.004 slightly to the 

negative (left side) of the mean of 288.650. Furthermore, the median and the mean are 

almost the same, with the mode close as well. All of these indicate a relatively 

deterministic process.  

The mean is in the centre of the range ± 2.274 (2.2% of the range); for example, the share 

price mean of 288.641 is at the centre of the range 288.641 ± 2.274, which is the range of 

population means. Before running any statistical test, the alpha level has to be determined 

first, which is also called the “significance level” or the probability of making a wrong 

decision. The traditionally common 95% confidence interval of 2.274 is not much different 

from 1.908, which is the 90% interval, which relaxes the experimental accuracy. 

Interestingly the 99% confidence interval of 2.988 is a significant accuracy expectation 

although quite close to the traditional and relaxed intervals. This all reassures us of the 

investigation's statistical providence.   

Short-term dataset analysis is used to determine if there are differences from the long-term 

dataset. Data from a period of three weeks (15 days) are analysed, as is intended for use in 

modelling a dataset time-window.  

Appendix C: Table 4 shows the BARC.L share price from 13/01/2014 to 31/01/2014 with 

the descriptive statistics in Appendix D: Table 1 

Appendix C: Table 7 shows the BARC.L share price from 23/12/2013 to 10/01/2014  with 

the descriptive statistics in Appendix D: Table 2. 

Both 15-day datasets are quite similar statistically but differ significantly from the long-

term standard deviation, particularly in the case of ~7.5 versus 19.5 and in the confidence 

level range of ~18% versus 2.7%. Short periods have a more deterministic nature with less 

wide distribution and confidence level/range percentage.  This gives a case for the 
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selection of the short- term time-window of 10-15 days for the modelling of short-term 

trading. Table 5-2 shows the comparative statistics for the BARC.L share prices over short 

and long periods.  

TABLE 5-2 BARCLAYS SHORT AND LONG PERIODS COMPARATIVE STATISTICS 

13/01/2014-

short 

23/12/2013-

short 

1/1/2013-

long 

Mean 273.29 281.12 288.641 

Standard Error 1.83 2.23 1.160 

Median 271.95 278.9 288.65 

Mode 265.45 #N/A 287.20 

Standard Deviation 7.09 8.65 19.50 

Sample Variance 50.37 74.90 382.219 

Kurtosis -1.17 -1.23 -0.681 

Skewness 0.43 0.41 -0.004 

Range 20.05 27.15 84.850 

Minimum 264.35 269.35 249.00 

Maximum 284.4 296.5 333.80 

Count 15 15 284 

Largest 284.4 296.5 333.85 

Smallest 264.35 269.35 249.00 

Confidence Level/Range 0.19 0.17 0.027 

Confidence Level(95.0%) 3.93 4.79 2.274 

5.4.  Analysis of Variance (ANOVA) 

In experiments, some differences are expected among the different samples for better 

model training. ANOVA is a simple analysis of variance on data for two or more samples. 

The analysis provides a test of the hypothesis that each sample is drawn from the same 
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underlying probability distribution against the alternative hypothesis that the underlying 

probability distributions are not the same for all samples. ANOVA compares the statistical 

differences among two datasets checking for the variation in the datasets via comparing the 

amount of variation between datasets with the amount of variation within datasets. It 

calculates the F-ratio, which is used to obtain the probability P-value. A significant P-

value (usually taken as P>0.05) suggests that datasets are significantly different, allowing 

the null hypothesis to be rejected. The null hypothesis is that the samples are statistically 

the same (for example, all population means are equal). 

The F ratio separates the variation in the datasets into two parts, between-datasets and 

within-dataset, called the sums of squares. The between-dataset variation  ܵܯ஻ (or between 

sums of squares BSS) is calculated by comparing the mean of each dataset with the overall 

mean of the data. The within-group variation ܵܯௐ (or within sums of squares WSS) is the 

variation of each observation from its dataset mean. The F ratio is:  

ܨ =
ெௌಳ

ெௌೈ
 .         (5-1) 

If the average difference between groups is similar to that within groups, the F ratio is 

approximately one. As the average difference between groups becomes greater than that 

within groups, the F ratio becomes larger than 1. To obtain a P-value, the F ratio can be 

tested against the F distribution of a random variable with the degrees of freedom 

associated with the numerator and denominator of the ratio. 

If the P-value is less than the supplied alpha and the obtained F-value is greater than the 

critical F value, this implies that the null hypothesis (of statistically the same samples 

datasets) should be rejected. 

Examples of BARC.L share prices for two fifteen days periods(13/1/2014 and 9/1/2014 are 

shown in Appendix C: Table 8. A summary of the ANOVA results is shown in Table 5-3.  
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TABLE 5-3 ANOVA RESULTS SUMMARY BETWEEN AND WITHIN GROUPS 
Groups Count Sum Average Variance 

  Column 1 15 4216.9 281.12 74.9003 

Column 2 15 4237.35 282.49 66.1579 

  
       ANOVA 

Source of Variation SS df MS F P-value F crit 

Between Groups 13.94 1 13.94 0.1976 0.6600 4.1959 

Within Groups 1974.81 28 70.52 

   Total 1988.75 29 

Since P(0.66)>alpha(0.05) and F(0.19)<F-critical, the null hypothesis that the datasets are 

statistically the same is accepted. 

Examples of BARC.L share prices for two fifteen days periods from 13/1/2014 and 

20/12/2013 are shown in  Appendix C: Table 9. A summary of the ANOVA results 

between and within the groups is shown in Appendix C: Table 11.  

TABLE 5-4 ANOVA SIXTEEN DAYS STARTING DATE SHIFT 13/01/2014 AND 20/12/2013 

ANOVA SUMMARY 

Groups            Count Sum Average Variance 

Column 1 15 4216.9 281.1267 74.90031 

Column 2 15 4075.55 271.7033 53.28088 

ANOVA 

Source of variation SS                df MS F P-value F crit 

Between Groups 665.9940833 1 665.9941 10.39145 0.003208 4.195971707 

Within Groups 1794.536667 28 64.0906 

Total 2460.53075 29         
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Since P(0.003)<alpha(0.05) and F(10.39)>F-critical, the null hypothesis that the datasets 

are statistically the same is rejected. 

Tests for datasets with different starting dates show that statistically independent samples 

must not overlap. To reject the null hypothesis that the datasets are statistically the same, 

there should be sixteen day's difference between the starting date of the two dataset 

samples; see row day=16. More similar results allow the hypothesis for the same datasets 

to be accepted. The results are summarized in Table 5-5 below. 

TABLE 5-5 TESTS FOR STATISTICAL INDEPENDENCE FOR DIFFERENT STARTING DATES 

Day Average-1 Average-2 VAR-1 VAR-2 P >alpha alpha F<F-critical F-critical Result 

0 281.13 281.13 74.9 74.9 0.99 0.05 1.20E-14 4.19 accept 

1 281.13 281.87 74.9 69.4 0.81 0.05 0.05 4.19 accept 

2 281.13 282.49 74.9 66.1 0.66 0.05 0.19 4.19 accept 

13 281.13 275.12 74.9 65.29 0.059 0.05 3.86 4.19 accept 

14 281.13 275.12 74.9 65.29 0.059 0.05 3.86 4.19 accept 

15 281.13 273.3 74.9 50.3 0.011 0.05 7.34 4.19 reject 

16 281.13 271.7 74.9 53.2 0.003 0.05 10.39 4.19 reject 

5.5.  Correlation Analysis 

Working with a multivariable problem requires an assessment of the correlation 

coefficients between variables before conducting any modelling. In the case of share 

prices, the variables considered are opening, highest, lowest and closing share prices. This 

reduces the dimensionality of the analysis and avoids using highly correlated (or linear) 

independent variables, which can produce poor results. A correlation coefficient such as 

the Pearson product-moment correlation coefficient is a measure of the extent to which two 

measurement variables "vary together". The correlation coefficient is scaled so that its 

value is independent of the units in which the two measurement variables are expressed. 

For example, if the two variables are opening and closing share prices, the value of the 
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correlation coefficient is unchanged if the closing price is converted from pence into 

pounds. Figure 5-4 shows the scatter plot for Open, High and Low ranks to Close. The 

value of any correlation coefficient must be between -1 and +1, and a correlation analysis 

can examine each pair of variables to determine whether they tend to move together, so 

that large values of one variable tend to be associated with large values of the other 

(positive correlation), or if small values of one variable tend to be associated with large 

values of the other (negative correlation), or if values of the two variables tend to be 

unrelated with a correlation near to zero. The BARC.L two trading weeks dataset from 

01/01/2013 to 14/01/2013 is shown in Appendix C: Table 10. 

The correlation coefficient between opening and closing prices shows a very high positive 

correlation of 0.976725 in the fourth row of the first column, which means that these 

variables move together. Overall, the high positive correlations of approximately 0.98 

between the Open, High, Low and Close share prices allows the number of independent 

variables to be reduced and to use just one, such as the closing share price. Open, High and 

Low share prices are positively correlated and in a regression analysis, for example, they 

should be excluded from the curve-fitting. The Pearson product-moment correlation matrix 

is shown in Table 5-6. 

TABLE 5-6 CORRELATION MATRIX PEARSON PRODUCT-MOMENT 

  Open High Low Close 

Open 1 

High 0.98455263 1 

Low 0.97800967 0.972681403 1 

Close 0.976725 0.986709797 0.980223731 1 

An alternative method is the Spearman rank correlation. The Spearman correlation 

coefficients between two variables will be high when observations have a similar rank, or 

identical for a correlation of 1. The ranks indicate relative positions of the observations 
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within the data for the strength of relationships between the two variables, and a 

correlation is low when observations have a dissimilar (or fully opposed for a correlation 

of -1) rank between the two variables. The Spearman coefficient is given by the following 

formula (Bourg, 2006): 

ݎ = 1 −
଺ ∑ ௗమ

ே(ேమିଵ)
         (5-2) 

where d is the difference between the ranks in corresponding values for both variables and 

N is the number of data points. 

TABLE 5-7 SPEARMAN RANK COEFFICIENTS 

 

For example, in Table 5-7 the rank of the first row Open 262.4 has the rank 256. 

TABLE 5-8 SPEARMAN RANK CORRELATION COEFFICIENTS 

Open High Low Close 

Open 1 0.98386 0.9751 0.975163 

High 0.98386 1 0.969012 0.984064 

Low 0.9751 0.969012 1 0.977824 

Close 0.975163 0.984064 0.977824 1 

The scatter plot for Open, High and Low ranks to Close is shown in Figure 5-4. 
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FIGURE 5-4 SCATTERED PLOT OPEN, HIGH AND LOW RANKS TO CLOSE 

The scatter plot and Spearman correlation coefficients for closing and opening prices show 

a linear relationship between the variables. For example, the coefficient for closing and 

opening prices is 0.975163, in row one, column four of Table 5-8. The conclusion from the 

Pearson and Spearman correlation results is to use one variable such as Close share price. 

Open, High and Low share prices as shown in Table 5-6 and Table 5-8 are correlated and 

in the regression analysis they should be excluded from curve fitting.  

To train the model, a dataset has to be constructed selecting datasets from the population 

where the columns are the datasets commencing from the date on the top in ascending 

order. For example in Appendix C: Table 11, the first column shows the dataset starting 

from 13/01/2014 to 31/01/2014 the bottom values. There is an overlap in the first six 

columns, which is highlighted. 
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A correlation matrix for 13th January is shown in Table 5-9. 

TABLE 5-9 CORRELATION MATRIX FOR 13 JANUARY 

 

10-Jan 9-Jan 8-Jan 26-Dec 24-Dec 20-Dec 18-Nov 

13-Jan 0.88 0.75 0.55 -0.82 -0.85 -0.80 -0.93 

This correlation matrix indicates positive correlations of 0.88, 0.75 and 0.55 between dates 

close to each other (10th, 9th and 8th January) and negative correlations with further away 

samples of -0.82, -0.85, -0.80 and -0.93 (26th, 24th, 20th December and 18th November). 

The scatter plot of the samples confirms that data for the dates closer to each other have a 

declining slope moving together and the further away dates have generally a positive slope. 

 

FIGURE 5-5 SHARE PRICE CHART OF THE CORRELATION DATASET SERIES 

It is constructive to generate uncorrelated samples for the model by random value selection 

from the whole dataset, as shown in Appendix C: Table 12. The randomly assembled 

dataset samples look uncorrelated in the scatter plot shown in Figure 5-6. Uncorrelated 
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samples add robustness and predictive capability to the derived model and could be further 

investigated with Monte Carlo, ANN, regression and curve-fitting.  

 

FIGURE 5-6 RANDOM SELECTION DATASET SHARES CHART 

5.6.  Time Series Analysis 

Time series analysis can be used to study applications for stock market prediction, and it 

includes the pre- and post-processing of data, visualizing results, and making forecasts. 

Fourier analysis allows time series data to be transformed into the frequency domain, and 

back again, for further analysis. 

The most common visualization of a time series display of continuous data over time is a 

line chart with markers, set against a timescale. This is ideal for showing trends in data at 

equal intervals. The data is distributed evenly along the horizontal axis (time), and all value 

data (share price) is distributed evenly along the vertical axis and displayed with markers 

to indicate individual data values as in Figure 5-7. Line charts are useful to show trends 
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over time or ordered categories, especially when there are many data points and the order 

in which they are presented is important. 

 

FIGURE 5-7 BARCLAYS PLC SHARES CLOSING PRICE IN PENCE 

There are many different trends in such data, although a common type of representation in 

financial analysis is a linear trend line. To add a trend to a chart, first the type of regression 

to be used should be chosen, such as linear, logarithmic, polynomial, power, exponential, 

or moving averages. The type of data determines the type of trend line to be used. 

A linear trend line usually shows that something is increasing or decreasing at a steady 

rate, and is used with simple linear datasets, as in: 

ݕ = ݔ݉ + ܾ          (5-3) 

where m is the slope and b is the intercept. 

A logarithmic trend line is a best‐fit-curved line that is most useful when the rate of change 

in the data increases or decreases quickly and then levels out, as in: 
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ݕ = ܿ ln(ݔ) + ܾ         (5-4) 

where c and b are constants, and ln is the natural logarithm function. 

A polynomial trend line is a curved line that is used when data fluctuates. It is useful, for 

example, for analysing gains and losses in a large dataset. The order of the polynomial can 

be determined by the number of fluctuations in the data or by how many bends hills and 

valleys appear in the curve. An order 2 polynomial trend line generally has only one hill or 

valley. An order 3 line generally has one or two hills or valleys, and order 4 generally has 

up to three: 

ݕ = ܾ + ܿଵݔ + ܿଶݔଶ + ܿଷݔଷ + ⋯ + ܿ଺ݔ଺      (5-5) 

where b and ܿ௜ are constants. 

A power trend line is a curved line that is best used with datasets that compare 

measurements that increase at a specific rate; 

ݕ =  ௕          (5-6)ݔܿ

where c and b are constants. 

An exponential trend line is a curved line that is most useful when data values rise or fall at 

increasingly higher rates.  

ݕ = ܿ݁௕௫          (5-7) 

where c and b are constants, and e is the base of the natural logarithm. 

A moving average trend line smoothes out fluctuations in data to show a pattern or trend 

more clearly. A specific number of data points is averaged, and the average value is used 

as a point in the trend line. If the period is set to 2, for example, then the average of the 

first two data points is used as the first point in the moving average trend line. The average 

of the second and third data points is used as the second point in the trend line, and so on: 

௧ܨ =
஺೟ା஺೟షభା⋯ା஺೟ష೙శభ

ே
        (5-8) 
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The moving average is thus a sequence of averages computed from parts of a data series. 

The number of points in a moving averages trend line equals the total number of points in 

the series less the number that is specified for the period.  

To give data closer to the forecast priority over that which is further away, weighted 

moving averages can be used: 

௡ܻାଵ =∝ ௡ܻ + (1−∝)ܵ௡        (5-9) 

where ௡ܻ is the smoothed value, ܵ௡ is the actual share value and,∝ is a damping 

(smoothing) factor. 

 

FIGURE 5-8 BARCLAYS PLC SHARE PRICE WITH SMOOTHING AND MOVING AVERAGES 

Some smoothing of data could be useful for removing randomness (noise) in a time 

series, and so some trade-offs have to be accepted to distinguish between information and 

noise, and to define the level of zooming in the data required.  

Figure 5-9 shows examples of share price time series data for 15-days commencing on 13-

Jan (Series 1), 17-Dec (Series 2), 15-Nov (Series 3), 22-Oct (Series 4), 5-Aug (Series 5), 
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and 27-Sep (Series 6). A common feature is a slope with about one or two hills or valleys 

indicating a polynomial of the second order.   

 

FIGURE 5-9 FIFTEEN DAYS TIME SERIES AT DIFFERENT STARTING DATES 

The coefficient of determination R2 measures how well the model fits the data; that is, how 

the observed outcomes are replicated by the model based on the proportion of total 

variation in outcomes explained by the model. In general, a model fits the data well if the 

differences between the observed values and the model's predicted values are small and 

unbiased. How well the model equation describes the data (the 'fit'), is expressed as a 

correlation coefficient, R2 (R-squared). The closer R2is to 1.00, the better is the fit. 

If μ is the mean of the observed data then: 

ߤ =
ଵ

௡
∑ ௜ݕ

௡
௜ୀଵ          (5-10) 

The total sum of squares is proportional to the variance of the data: 

ܵܵ௧௢௧ = ∑ ௜ݕ) − ଶ(ߤ
௜         (5-11) 

The sum of squares of residuals is also called the residual sum of squares: 

ܵܵ௥௘௦ = ∑ ௜ݕ) − ௜݂)ଶ = ∑ ݁௜
ଶ

௜௜        (5-12) 

ܴଶ = 1 − ௌௌೝ೐ೞ

ௌௌ೟೚೟
         (5-13) 

240

250

260

270

280

290

300

0 2 4 6 8 10 12 14 16

Series1

Series2

Series3

Series4

Series5

Series6

Pr
ic

e 
in

 p
en

ce
 

Time in days 



 

100 

where ݕ௜ is the observed data and ௜݂ is the model data. 

Usually, financial time series are complex combinations of trend lines, harmonics 

frequencies and random components. The first step in the discrimination of the 

components would be to identify trends in the time series. Trend lines are used to 

graphically display trends in data and to help analyse problems of prediction, and such 

analysis is named regression analysis. By using regression analysis, a trend line in a chart 

can be extended beyond the actual data to predict future values. Furthermore, removing it 

from the time series for further analysis is referred to as data centralization and is 

recommended before applying further stochastic analysis and eventual modelling such as 

with an ANN. 

 

FIGURE 5-10 MOVING AVERAGES, LINEAR TREND LINES 

TABLE 5-10 R2
 FOR DIFFERENT TYPE OF TREND LINES 

Linear Exp. Log Power Poly-2 Mov-2 

R2 0.8228 0.8234 0.7705 0.7689 0.8681 0.9496 

A special case is the trend with an ANN. A two-layered ANN is tried, as shown in Figure 

5-11, where S1 is the output of the first layer and S2 is the output of the second layer. The 

results are shown in Appendix C: Table 13.  

R² = 0.8228
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FIGURE 5-11 TWO-LAYER ANN 

The coefficients of the first (hidden) layer are K=-0.1 and b=0.25. The output layer 

coefficients are k2=4 and b=-2, which were obtained via manual tuning. 

  k1 -0.1 k2 4 

  b1 0.25 b2 -2 

The graphs shown in Figure 5-12 indicates almost linear trends for both the first and 

second ANN layers with fitness values of R2=0.832361 and 0832393 respectively, which 

are close to the exponential (0.8234) and linear (0.8228) trends.  

 

FIGURE 5-12 ANN FIRST AND SECOND LAYERS 

Removing the bias or trend from a time series is generally required before processing the 

data using forecasting methods. The standard approach is to subtract the trend of the data 
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from each data item. Examples are shown in Appendix C: Table 14 for the BARC.L share 

prices from 13/01/2014 to 31/01/2014 and in Figure 5-13 and Figure 5-14. 

 

FIGURE 5-13 BARCLAYS LINEAR AND POLY-2 TREND 2014-01-31 

 

FIGURE 5-14 BARCLAYS PLC CENTRED SHARE PRICES 

S = -1.7554x + 295.17
R² = 0.8228

S = 0.1073x2 - 3.4721x + 300.03
R² = 0.8681
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5.7.  Confidence Intervals of Trend Coefficients 

Confidence intervals for trend coefficients can be used to estimate the robustness of a 

model by calculating the boundary range of the trend approximation function coefficients 

and calculating the percentage of the range of the last value. Generally, the longer the 

range then the distribution and eventual forecasting error are wider. 

The algorithm’s operation can be summarized as follows, 

1. Find the coefficients of the modelling function Y=f(X), such as a polynomial 

Y=p(X) of degree n that fits the data. 

2. (nlinfit) Estimate coefficients for the non-linear regression of the responses in Y on 

the predictors in X using the model specified by a modelling function Y=f(X). 

3. (nlparci ) Calculate the 95% confidence intervals (ci) for the non-linear least 

squares parameter estimates beta. Before calling nlparci, use nlinfitto to fit a non-

linear regression model and get the coefficient estimates beta, residuals resid, and 

estimated coefficient covariance matrix (sigma). 

The algorithm functions are defined as follows. 

polyfit 

p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the data, 

p(x(i)) to y(i), in a least squares sense. The result, p, is a row vector of length n+1 

containing the polynomial coefficients in descending powers: 

(ݔ)݌ = ௡ݔଵ݌ + ௡ିଵݔଶ݌ + ⋯ + ݔ௡݌ +  ௡ାଵ      (5-14)݌

nlinfit 

beta = nlinfit(X,Y,modelfun,beta0) returns a vector of estimated coefficients for the non-

linear regression of the responses in Y on the predictors in X using the model specified by 

the modelling function. The coefficients are estimated using iterative least squares 

estimation, with initial values specified by beta0. 

nlparci 
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ci = nlparci(beta,resid,'covar',sigma) returns the 95% confidence intervals ci for the non-

linear least squares parameter estimates (beta). Before calling nlparci, nlinfitis is used to fit 

a non-linear regression model and to derive the coefficient estimates (beta), residuals 

(resid), and estimated coefficient covariance matrix (sigma). 

The following examples illustrate the action of the algorithm: 

5.7.1 The last (most recent) 15 samples trend with coefficients confidence level 

The trend function is Price=At+B 

A=-1.50 is in the range of [-2.03 to -0.97] at the 95% confidence level. 

B=292.53 is in the range of [287.88 to 297.19] at the 95% confidence level. 

The last trend price of 270.03 confidence level in the range [257.45 to 282.61] is 9.32%. 

The last trend residual is 2.47 (0.91%). 

5.7.2 All samples trend with coefficients confidence level 

The trend function is Price=At+B 

A=-0.15 is in the range of [-0.17 to -0.13] at the 95% confidence level 

B=310.24 is in the range of [306.70 to 313.77] at the 95% confidence level 

The last trend price 267.20 confidence level range [257.55 276.84] is 7.22% 

The last trend residual is 5.30 (1.95%). 

 

FIGURE 5-15 MINIMUM AND MAXIMUM LINEAR TREND BOUNDARIES OF THE 284 SAMPLES 
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FIGURE 5-16 MINIMUM AND MAXIMUM BOUNDARIES OF THE MOST RECENT 15 SAMPLES 

5.8.  Components Model 

A time series could be composed of several components: long term trend (LTT), short-term 

trend (STT), cyclical (CYCL) and irregular (IRR) components (Bourg, 2006) . There is a 

seasonal (SEA) component that could be considered as well, although in the banking sector 

this is not very obvious and generally could be covered by a cyclical component: 

ܵ = ܶܶܮ + ܵܶܶ + ܮܥܻܥ + ܴܴܫ +  (15-5)      ܣܧܵ

The first step would be to find the long-term trend (LTT), such as a linear trend over a 

period one-year long. The "Linear" column is the linear trend calculated for this point and 

"Centred" is the difference between the actual share price and the linear trend values. The 

fitness R²=0.4053 is not very high, as is apparent from the plot. This value of " Centred" 

will be the input to the second level of de-trending in a short period of fifteen days or three 

weeks. 

Linear= -0.1516t + 310.24 

R² = 0.4053  

An example of a centred (Centered = Close-Linear) long term BARC.L share prices dataset 

is shown in Appendix C: Table 15 for one year from 01/01/2013 to 31/01/2014 and  the 

original and centred graphs are shown in Figure 5-17 and Figure 5-18. 
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FIGURE 5-17 SHARE PRICES LONG-TERM TIME SERIES WITH TREND LINE 

 

FIGURE 5-18 CENTRED SHARE PRICES LONG-TERM TIME SERIES 

The second component, short term trend (STT), for fifteen days is de-trending the output of 

the long-term trending (LTT), and there is a much better fitness, of R² = 0.6813 

Linear = -1.3485t + 23.073        (5-16) 

R² = 0.6813         (5-17) 

An example of a centred (Centered= Scntr  - Linear) ) short- term BARC.L share price 

dataset is shown in Appendix C: Table 15 for two weeks from 10/01/2014 to 29/01/2014, 

and  the original and centred graphs in Figure 5-19 and  Figure 5-20. 
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FIGURE 5-19 SHORT TERM 15 DAYS SHARE PRICE WITH LINEAR TREND 

 

FIGURE 5-20 CENTRED SHORT TERM 15 DAYS SHARE PRICES 

The third component, cyclic (CYCL), is assumed to be the sum of the frequencies F1, F2 

and F3 and is used to approximate the S-centred short-term time series. Three sinusoidal 

frequencies are considered. To find the amplitude (A), period (T) and phase (P) of each 

frequency, the centred series is manually analysed. For example, the period of the first 

frequency F1 is about 10 days long, its amplitude is 7 and shift (phase) is about -1. The 

values are found manually by changing variables and checking the error. 
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An example of a centred cyclic short term BARC.L share prices dataset is shown in 

Appendix C: Table 17 for two weeks from 10/01/2014 to 31/01/2014 and  the original and 

centred graphs are shown in Figure 5-23 and  Figure 5-21, Figure 5-22 and Figure 5-24. 

The three harmonics parameters using the EXCEL solver tool and further manual tuning 

(amplitude, period and phase) are shown in Table 5-11.  

TABLE 5-11 HARMONICS PARAMETERS: AMPLITUDE (A), PERIOD (T) AND PHASE (P) 

F1 F2 F3 

A 7 6 4 

T 10 12 6 

P -1 -8 -1 

 

FIGURE 5-21 CENTRED WITH THE FIRST AND THE SECOND HARMONICS 

 

FIGURE 5-22 CENTRED WITH THE THIRD HARMONIC AND CYCL (ALL HARMONICS) 
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The composite approximation combining long and short linear trend and all three cyclic 

CYCL harmonics is quite good, with a value of R2=0.93 which is particularly close to the 

forecasting point at the end of the period.  

 

FIGURE 5-23 COMPOSITE APPROXIMATION AND ACTUAL SHARE TIME SERIES CHART 

 

FIGURE 5-24 CENTRED WITH COMPOSITE CYCL APPROXIMATION 

There is a commonly accepted belief that prices on Monday and Friday are low with a peak 

on Wednesday. To check this hypothesis for weekly variation in the time series, as to 

whether or not there is a weekly pattern in Monday, Tuesday, Wednesday, Thursday and 

Friday between weeks, the weekly (seasonal) indices should be computed. Finding the  

average-percentage is a commonly used method. The testing dataset consists of weekly 
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time series for weeks beginning on 06/01/2014, 13/01/2014, 20/01/2014, 27/01/2014 as 

shown in Table 5-12 and Figure 5-25. 

TABLE 5-12 DATASET FOR FOUR WEEKLY PATTERN TIME SERIES 

 

06/01/2014 13/01/2014 20/01/2014 27/01/2014 

Mon 277.5 291.7 282.8 269.35 

Tue 280.95 291.75 280.6 273.3 

Wed 283.7 296.5 278.2 274.95 

Thu 284.4 290.45 278.9 275.05 

Fri 283.6 288.6 272.25 272.5 

Weekly Average 282.03 291.8 278.55 273.03 

 

FIGURE 5-25 WEEKLY PATTERN TIME SERIES CHARTS 

The horizontal axis shows weekdays 1-Mon, 2-Tue, 3-Wed, 4-Thu and 5-Fri. and there is 

no obvious pattern.  

In the seasonal average-percentage method, for weekdays, the average percentage indices 

are calculated by dividing the day value by the average for the week, as shown in Table 

5-13, and the value for Monday 6/01/2014 is 277.5. The index is 277.5/282.03 = 0.9839. 

The weekly seasonal indices for the five week days are shown in Table 5-14 and the graphs 

in Figure 5-26. 
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TABLE 5-13 AVERAGE-PERCENTAGE INDEXES 

 

06/01/2014 13/01/2014 20/01/2014 27/01/2014 

Mon 0.9839 0.9997 1.0153 0.9865 

Tue 0.9962 0.9998 1.0074 1.0010 

Wed 1.0059 1.0161 0.9987 1.0070 

Thu 1.0084 0.9954 1.0013 1.0074 

Fri 1.0056 0.9890 0.9774 0.9981 

The diagram of the weekday indices shows some weekly patterns confirming the 

suggestion that there is a peak in midweek, the so-called “hump day”. 

 

FIGURE 5-26 WEEKDAY INDICES 

TABLE 5-14 WEEKLY SEASONAL INDICES 

06/01/2014 13/01/2014 20/01/2014 27/01/2014 Index-2 Index-3 Index-4 

Mon 0.9839 0.9997 1.0153 0.9865 1.0009 1.0005 0.9963 

Tue 0.9962 0.9998 1.0074 1.0010 1.0042 1.0027 1.0011 

Wed 1.0059 1.0161 0.9987 1.0070 1.0029 1.0073 1.0070 

Thu 1.0084 0.9954 1.0013 1.0074 1.0043 1.0013 1.0031 

Fri 1.0056 0.9890 0.9774 0.9981 0.9877 0.9882 0.9925 
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The seasonal weekday’s index is the average of the corresponding weekdays indices for 

one, two, three and four weeks. For example, Index-3 for Mondays is the average of 

Monday indices for the weeks 13/01/2014, 20/01/2014, 27/01/2014. The average index is 

the generalized average of these indices. In conclusion, there is some pattern in the weekly 

prices but this in fact is negligible and can be ignored. 

5.9.  Curve Fitting and Regression 

A common approach when analysing data is to fit a curve through the data. This is the 

process of trying to find a curve which represents a model equation best representing the 

sample of data; or, more specifically, the relationship between independent and dependent 

variables in the dataset. When the results of the curve-fitting are to be used for making new 

predictions of values of a dependent variable, this process is called regression, which can 

be used to fit the curve to interpolate a set of data. Curve-fitting can be used to predict 

parameters of some known model (formula) given a set of observed data. The fitting could 

be linear or non-linear. To measure the degree of fit, R2 is used as the coefficient of 

determination, which is a number that indicates the proportion of the variance in the 

dependent variable that could be predicted by the independent variable. The value of R-

squared is a measure of the goodness of fit of the trend line to the data and a value of 1 is a 

perfect fit. Linear curve-fitting generally superimposes a trend line over the dataset. 

Multiple regression is used when the dependent variable is affected by more than one 

independent variable. 

Neural networks include a large class of different architectures. In many cases, the issue is 

to approximate a static non-linear, mapping f (x) with a neural network ANN(x). The most 

common neural network used in function approximation is the Multilayer Layer Perceptron 

(MLP). An MLP consists of an input layer, several hidden layers, and an output layer. A 

node i, also called a neuron, in an MLP network includes a summer and a non-linear 

activation function. 
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FIGURE 5-27 MLP ARCHITECTURE 

The inputs ‘x’ to the neuron are multiplied by weights ‘w’ and summed together with the 

constant ‘bias’ term. The result is the input to the activation function ‘g’. The activation 

function as a sigmoid function (or tanh) is most commonly used in simulating human brain 

neuron activation.  

(ݔ)ℎ݊ܽݐ =
ଵି௘షೣ

ଵା௘ೣ ௜ݕ = ݃௜ = ݃(∑ ௝ݔ௝ݓ
௞
௝ୀଵ +  ௜)     (5-18)ߠ

An MLP network is formed by connecting several nodes in parallel and series. A 

multilayer perceptron network with one hidden layer is shown in Figure 5-28. The same 

activation function g is used in both layers.  

 

FIGURE 5-28 MLP ONE HIDDEN LAYER ARCHITECTURE 

The output of the MLP network is: 

௜ݕ = ݃(∑ ௝௜ݓ
ଶ݃൫ ௝݊

ଵ൯ + ௝ߠ
ଶ) = ݃(∑ ௝௜ݓ

ଶ݃(∑ ௞௝ݓ
ଵ ௞ݔ + ௝ߠ

ଵ)௄
௞ୀଵ + ௝ߠ

ଶ)ଷ
௝ୀଵ

ଷ
௝ୀଵ    (5-19) 

It can be concluded that an MLP network is a non-linear parameterized map from input to 

output spaces. The parameters are the weights and the biases. Activation functions are 
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usually assumed to be the same in each layer and are known in advance. In the example in 

Figure 5-28 the same activation function is used in all layers. Given input-output data, 

finding the best MLP network is formulated as a data-fitting problem, where the 

parameters to be determined are the weights and biases. 

First, the designer has to determine the structure of the MLP network architecture in terms 

of the number of hidden layers and neurons (nodes) in each layer. The activation functions 

for each layer are also chosen at this stage; that is, they are assumed to be known. The 

unknown parameters to be estimated are the weights and biases. 

Many algorithms exist for determining network parameters. In the neural network 

literature, these algorithms are called learning or teaching algorithms, whereas in system 

identification studies they are termed parameter estimation algorithms. The most well-

known are the back-propagation and Levenberg-Marquardt algorithms. Back-propagation 

is a gradient-based algorithm, which has many variants.  

The procedure for teaching algorithms for multilayer perceptron networks can be 

summarized as follows: 

a. The structure of the network is first defined. In the network, activation functions 

are chosen and the network parameters, weights and biases, are initialized. 

b. The parameters associated with the training algorithm such as error goal, and 

maximum number of epochs (iterations), are defined. 

c. The training algorithm is called. 

d. After the neural network has been determined, the results are first tested by 

simulating the output of the neural network with the measured input data. The 

outcomes are compared with the measured outputs. Final validation must be carried 

out with independent data. 

The MATLAB commands used in the procedure are newff, train and sim. The MATLAB 

command newff generates an MLPN neural network, which is called the net. The default 
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algorithm for the command newff is Levenberg-Marquardt (More, 1978), trainlm. Default 

parameter values for the algorithms are assumed and hidden from the user. They need not 

be adjusted in the first trials. Initial values of the parameters are automatically generated by 

the command. It should be noted that their generation is random, and therefore the answer 

might be different if the algorithm is repeated. After initializing the network, network 

training is initiated using the train command. To test how well the resulting trained MLP 

net approximates the data, the sim command is applied. The trained model is then used on 

a new test dataset with the sim. 

5.10.  One Attribute Regression with Neural Networks 

The ANN for time-share price curve-fitting models the relationship between time and 

price; that is, the dependent variable of price and the independent variable of time. The 

ANN models fits time-price data to the training curve and then applies it to new samples. 

First the model is trained with a dataset of fourteen consecutive samples from day 265 

(06/01/2014) to day 278 (23/01/2014) of price and time data and it is then tested with a 

dataset from day 270 (13/01/2014) to day 283 (30/01/2014). There is an overlap between 

the datasets from day 270 (11/01/2014) to day 278 (23/01/2014) and the actual forecasting 

of five new samples to the model from day 279 (24/01/2014) to day 283 (30/01/2014). The 

new forecast values are compared with the actual values in the period outside the training 

dataset. 

5.10.1 Perceptron 

The perceptron model architecture with one attribute and one hidden layer is shown in 

Figure 5-29 and the perceptron algorithm in Figure 5-30. The working dataset with training 

and testing subsets is given in Appendix C: Table 18. The graphs for the training and 

testing in Figure 5-31.   
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FIGURE 5-29 PERCEPTRON ARCHITECTURE ONE ATTRIBUTE AND ONE HIDDEN LAYER 

 

FIGURE 5-30 PERCEPTRON ALGORITHMS 

The following code is used: 

net = newff(input_training_set,output_training_set,[1]);  

net.layers{1}.transferFcn='logsig';  % transfer function for the neurons in the 1st 

hidden layer is log sigmoid. 

net.layers{2}.transferFcn='purelin';  % transfer function for the neurons in the 

output layer is linear 

net = train(net,input_training_set,output_training_set); % train the network with 

the training samples. 

Y_testing = sim(net,input_testing_set);  % compute the output of the trained 

network 

The MATLAB command for the ANN training is 

 net = train(net,input_training_set,output_training_set); % train the network with the 

training samples. 
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The MATLAB comand for the testing is  

Y_testing = sim(net,input_testing_set);  % compute the testing output of the trained 

network 

 

FIGURE 5-31 TRAINING AND TESTING WITH PERCEPTRON 

The performance graph for the training of the model are shown in Figure 5-32.

 

FIGURE 5-32 PERFORMANCE GRAPH PERCEPTRON 
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The testing and training performance (R2) with the perceptron model are not very good at 

0.41 and 0.68 respectively in terms of graphs matching. 

5.10.2 MLPN 

For an MLPN model with one attribute and 10 neurons in the first hidden layer and 5 in the 

second layer, as shown in Figure 5-33. The working dataset with training and testing 

subsets is given in Appendix C: Table 19.  

 

FIGURE 5-33 MLPN ONE ATTRIBUTE WITH TWO LAYERS [10, 5] 

 

FIGURE 5-34 MLPN ALGORITHMS 
The following code is used: 

net = newff(input_training_set,output_training_set,[10 5]);  

net.layers{1}.transferFcn='logsig';  % transfer function for the neurons in first 

hidden layer is log sigmoid. 

net.layers{2}.transferFcn='logsig';  % transfer function for the neurons in second 

hidden layer is log sigmoid. 

net.layers{3}.transferFcn='purelin';  % transfer function for the neurons in the 

output layer is linear. 

net.trainParam.epochs = 40;  % set to 40 the number of times the training samples 

will be used to train the network 
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net = train(net,input_training_set,output_training_set); % train the network with 

the training samples. 

% once the training is performed the network can be used to forecast 

Y_training = sim(net,input_training_set);  % compute the output of the trained 

Y_testing = sim(net,input_testing_set);  % compute the testing output of the trained 

network 

The training and testing charts are shown in Figure 5-35. 

The MATLAB command for the ANN training is: 

 net = train(net,input_training_set,output_training_set); % train the network with the 

training samples. 

 

The MATLAB comand for the testing is:  

Y_testing = sim(net,input_testing_set);  % compute the testing output of the trained 

network 

 

FIGURE 5-35 MLPN TRAINING AND TESTING CHARTS 
The performance graph for the training of the model are shown in Figure 5-36. 
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FIGURE 5-36 MLPN PERFORMANCE TRAINING 

There is a significant improvement in performance (R2) with the perceptron model with 

values of 0.41 and 0.68 to MLPN values of 0.87 and 0.89. 

5.11. Multiple Attribute Regression with Neural Networks 

The ANN for multiple attribute regression models the time series share price data by 

transforming a one-dimensional time series of price and time into an m-dimensional model 

where ݁ܿ݅ݎ݌௜ = ,௜ିଵ݁ܿ݅ݎ݌)݂ ,௜ିଶ݁ܿ݅ݎ݌ . . ,  is the ݓ ௜ି௪). Here the index is time and݁ܿ݅ݎ݌

number of attributes, and the composed input dataset has [݉, ݉] dimension ݎ݌ଓܿ݁തതതതതതത =

,ଓܿ݁పିଵതതതതതതതതതതതݎ݌)ଓܿ݁ധധധധധധധݎ݌ ,ଓܿ݁పିଶതതതതതതതതതതതݎ݌ …  ଓܿ݁పି௪തതതതതതതതതതത) and uses vector curve-fitting to modelݎ݌

,௜ିଵ݁ܿ݅ݎ݌݉݋ݎ௜݂݁ܿ݅ݎ݌ ,௜ିଶ݁ܿ݅ݎ݌ . . ,  .௜ି௪݁ܿ݅ݎ݌

An illustrative simple example of how to compile a dataset with four multiple is shown in 

Table 5-15, Table 5-16 and Table 5-17.   
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TABLE 5-15 SHARE PRICE TIME SERIES FROM 01/01/2013 TO 10/01/2013 

Time Date Close 

1 01/01/2013 262.4 

2 02/01/2013 275.6 

3 03/01/2013 276 

4 04/01/2013 276.7 

5 07/01/2013 287.2 

6 08/01/2013 287.2 

7 09/01/2013 294.75 

8 10/01/2013 294.6 

The multiple attributes dataset with a window-lag of four is shown in Table 5-16. 

TABLE 5-16 FOUR ATTRIBUTES MODEL 
Attr. 1 Attr. 2 Attr. 3 Attr. 4 target 
P(t-4) P(t-3) P(t-2) P(t-1) P(t) 

P1 P2 P3 P4 P5 

P2 P3 P4 P5 P6 

P3 P4 P5 P6 P7 

P4 P5 P6 P7 P8 

The actual values are shown in Table 5-17. 

TABLE 5-17 SHARE PRICES WITH FOUR ATTRIBUTES 
Attr. 1 Attr. 2 Attr. 3 Attr. 4 target 

P(t-4) P(t-3) P(t-2) P(t-1) P(t) 

262.4 275.6 276.0 276.7 287.2 

275.6 276.0 276.7 287.2 287.2 

276.0 276.7 287.2 287.2 294.75 

276.7 287.2 287.2 294.75 294.6 

The experimental dataset is for training from 23rd December 2013 to 24th January 2014 

and testing from 30th December 2013 to 31st January 2014 as shown in Appendix C: 
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Table 20.  The transformed multiple attributes training dataset is shown Appendix C: Table 

21 and the testing set is shown in Appendix C: Table 22. 

5.11.1 Perceptron Model 

Experiments are conducted with a perceptron model with multiple attributes, and with one 

hidden layer only, as shown in Figure 5-37. The algorithm used in the perceptron is shown 

in Figure 5-38. 

 

FIGURE 5-37 PERCEPTRON MODEL MULTIPLE ATTRIBUTES 

 

FIGURE 5-38 ALGORITHMS FOR PERCEPTRON MODEL MULTIPLE ATTRIBUTES 

The following code is used: 

net = newff(input_training_set,output_training_set,[1]);  

net.layers{1}.transferFcn='logsig';  % transfer function for the neurons in the 1st 

hidden layer is log sigmoid. 

net.layers{2}.transferFcn='purelin';  % transfer function for the neurons in the 

output layer is linear 

net = train(net,input_training_set,output_training_set); % train the network with 

the training samples. 
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Y_testing = sim(net,input_testing_set);  % compute the output of the trained 

network 

The target and model training and testing graphs are shown in Figure 5-39. The 

performance graphs are shown in Figure 5-40. 

 

FIGURE 5-39 TRAINING AND TESTING PERCEPTRON WITH MULTIPLE ATTRIBUTES 

 

FIGURE 5-40 PERCEPTRON PERFORMANCE WITH MULTIPLE ATTRIBUTES 

The results for training and testing performance are 0.92816 and 0.89035 respectively and 

these are better than with one attribute at 0.41 and 0.68. A disadvantage is that the 

forecasting requires the previous day’s values and so only one day could be predicted, 

although it could be used to produce a forecast with one attribute and to validate it with 

multiple attributes. 
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5.11.2 MLPN Model 

An MLPN model with multiple attributes and two hidden layers (10 neurons in the first 

hidden layer and 5 in the second layer), is shown in Figure 5-41. The algorithm used in the 

perceptron is shown in Figure 5-42 . 

 

FIGURE 5-41 MULTIPLE ATTRIBUTES MULTIPLE NEURONS LAYERS [10, 5] 

 

FIGURE 5-42 ANN ALGORITHMS 

The following code is used: 

net = newff(input_training_set,output_training_set,[10 5]);  

net.layers{1}.transferFcn='logsig';  % transfer function for the neurons in first 

hidden layer is log sigmoid. 

net.layers{2}.transferFcn='logsig';  % transfer function for the neurons in second 

hidden layer is log sigmoid. 

net.layers{3}.transferFcn='purelin';  % transfer function for the neurons in the 

output layer is linear. 

net.trainParam.epochs = 40;  % set to 40 the number of times the training samples 

will be used to train the network 

net = train(net,input_training_set,output_training_set); % train the network with 

the training samples. 
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Y_training = sim(net,input_training_set);  % compute the output of the trained 

network 

% once the training is performed the network can be used to forecast  

Y_testing = sim(net,input_testing_set);  % compute the output of the trained 

network 

The target and model training and testing graphs are shown in Figure 5-43. The 

performance graphs are shown in Figure 5-44. 

 

 

 

FIGURE 5-43 TRAINING AND TESTING MULTIPLE ATTRIBUTES AND LAYERS 

Pr
ic

e 
in

 p
en

ce
 

Pr
ic

e 
in

 p
en

ce
 

Time in days 

Time in days 



 

126 
 

 

FIGURE 5-44 PERFORMANCE  MULTIPLE ATTRIBUTES AND MULTIPLE LAYERS 

The training and testing performance values are 0.9444 and 0.9124 respectively and these 

are better than with one hidden layer, whose performance values are 0.92816 and 0.89035.  

5.12. Summary 

Some periodicity was apparent in short-term and long-term trading. Decomposition of the 

share time series revealed trends, harmonics and seasonality in the banking share sector, 

which helps with generalization and improving the performance of the model.  

Statistical probability analysis of the share prices for various time intervals suggests that 

price time series generally have a normal distribution. Furthermore, short-term datasets  

have a more deterministic nature than long-term, which justifies stochastic model 

assumptions  and gives a case for the selection of short-term trading.  

Statistical independence tests of the datasets with different starting dates show that to have 

fully statistically independent samples, there should be a shift about two trading weeks 

between their starting date which is confirmed by the correlation analysis as well. The 

correlation analysis also show that share open price, close price and the rest of the 

available daily data move together, which allows the number of independent variables to 

be reduced and just one, such as the closing share price, can be used. 

The results of the experiments with neural networks with multiple attribute models show 

notably better performance than common practice regression models. 
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6. Chapter 6. Discrete Fourier Transform 

6.1. Overview 

This chapter extends the financial time series modelling in the time domain, specifically 

focusing on the discrete Fourier transform (DFT) analysis, forecasting and validation. This 

includes a contribution to knowledge with multiple DFT features composition for  neural 

network utilization for the short-term trading. Furthermore a novel fitting methodology is 

proposed for its application as well. 

Spectral analysis, also known as frequency domain analysis, decomposes a time series into 

a spectrum of cycles of different lengths and it can be used for the analysis of a time series, 

filtering and forecasting.  

This chapter covers the following: 

 Experimental definition 

 Experimental definition of the algorithm in Excel 

 Experimental definition in MATLAB 

 Forecasting exploration 

 DFT and ANN for regression dataset 

 Standard error of the Mean (SEM) calculations 

 Coefficient of determination (R-square) calculations 

 Fast and inverse Fourier transforms 

 DFT investigations 

 Time domain 

 Power distribution frequencies 

6.2. Introduction 

The Discrete Fourier Transform (DFT) decomposes a time series into sine and cosine 

components. The DFT of f(t) denoted by F(u), is given by: 
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(ݑ)ܨ = ∑ ௜ ଶగ ௨ ೟ି݁(ݐ)݂
ಿேିଵ

௧ୀ଴           (6-1) 

The frequency domain is simply the coordinate system spanned by F(u),with u as the 

frequency variable. This is analogous to the time domain, which is the coordinate system 

spanned by f(t). The transform is complex. If R(u) and I(u) represent the real and imaginary 

components of F(u), the frequency spectrum is defined as: 

|(ݑ)ܨ| = ඥܴଶ(ݑ)  (2-6)        (ݑ)ଶܫ +

The phase angle of the transform is defined as: 

(ݑ)߮ = tanିଵ(
ூ(௨)

ோ(௨)
)         (6-3) 

The discrete Fourier transform allows us to manipulate time series data either in the 

frequency or time domains. DFT components represent the input dataset as the sum of the 

trigonometric sine‐cosine functions. The main motivation for its use is to extrapolate and 

forecast beyond the input dataset. A Fourier transform produces the same number of 

frequency bins, or bands, as in the time series samples. The time series has to be centred in 

order to be de-trended and its FFT algorithm is simplest by far if N is an integral power of 

2 (2, 4, 8, 16, ...). The latter is the only requirement of the most popular implementation of 

this algorithm (Radix-2 Cooley-Tukey) (Cooley, 1965) where the number of points in the 

series should be a power of 2. 

The Fourier transform produces complex numbers, where DFT z = x + yi. The power 

spectrum represents the distribution of the frequency content of the time series. The power 

p of a frequency band is the absolute value (modulus) of the corresponding complex 

number ݌ =
|௭|మ

௡మ . The series amplitude is symmetrical around the  
ே

ଶ
 component. From the 

power plot, the major contributing frequencies (maximum plot peaks) can be identified. 

The corresponding periods are ܶ =
௜

௡
, where ݅ is the frequency bin on the plot peak and ݊ 

is the size of the time series. For example, if there are 32 samples in the time series and the 

plot peak is at frequency bin (sample number) four, then the period will be 8 (8=32/4).  
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The example in Figure 6-1 displays an example of the magnitude and phase plots of the 

DFT for an example of a time series.  

 

 

 

FIGURE 6-1 DFT PRICE, MAGNITUDE AND PHASE 

The further away from the start of the time series period a share is, the higher its 

corresponding frequency will be, such as for sample number 4 of 32 samples time series it  

is 4/32 (period 8) and for sample number 16 it is 16/32 (period 2). The magnitude variable 
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measures the change in values between neighbouring prices; for example, the change from 

240.53 to 250.13 is 9.6. The phase measures the shift from the origin at the corresponding 

frequency, such as 2 sample periods.  

The results show that the magnitude spectrum plot contains components of all frequencies, 

but that their magnitudes become smaller for higher frequencies. Hence, low frequencies 

contain more time series information than higher ones. Share price time series are low-

frequency signals. The display of the phase plot does not yield much new information 

about the structure of the share price time series in the time domain; however, the phase in 

formation is needed to reconstruct the original time series.  

The main properties of the DFT are as follows: 

 Completeness (it is invertible). 

 De-correlation (DFT coefficients are not correlated). 

 Energy compaction (the energy in financial share price time series is mostly 

grouped in low frequencies in the DFT domain). 

 Invariance (the spectrum is invariant to shifting). 

 Robustness (DFT coefficients could be robust against many time series processing 

operations such as noise). 

The main disadvantage of Fourier extrapolation is that it merely repeats the series with a 

period N, where N is the length of the original time series. 

The Discrete Cosine Transform (DCT) is an alternative digital transformation. It represents 

a time series as a sum of cosine functions of varying magnitudes and frequencies, as 

follows: 

(ݑ)ܨ =
ଶ

ே
(ݑ)ܥ ∑ (ݐ)݂ cos (

గ௧

ே
ேିଵ
௧ୀ଴ ݐ) +

ଵ

ଶ
))       (6-4) 

ܿ(0) =
ଵ

√ଶ
(ݐ)ܥ = 1, ݐ݂݅ ≠ 0         (6-5) 
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The values of the DCT are real (negative and positive). The DCT has the property that, for 

a typical time series, most of the significant information about it is concentrated in just a 

few coefficients of the DCT. The example in Figure 6-2 displays an example of the 

magnitude and phase plots of the DFT for the time series example. 

 

 

 

FIGURE 6-2 DCT PRICE, MAGNITUDE AND PHASE 

The main properties of the DCT are as follows: 

 Completeness (the DCT is invertible). 
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 De-correlation (it removes redundancy between neighbouring time domain points). 

 Energy compaction (the energy of the image is concentrated in the low frequency 

region. 

 Robustness, the DCT coefficients can be robust against many processing operations 

such as noise. 

6.3.  Experimental Definition 

The following time series samples are taken every day for the closing price of a share for a 

total of  N=16 samples. The data making up this time series is shown in Appendix C: Table 

23 and the share price graphs in the original Figure 6-3 and centred Figure 6-4. These are a 

portion of a bigger time series of 153 samples as shown in Figure 6-5. 

 

FIGURE 6-3 TRADING SHARE PRICES 16 SAMPLES 

 

FIGURE 6-4 TRADING SHARES CENTRED 16 SAMPLES DATASET 
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FIGURE 6-5 TRADING SHARES FULL 153 SAMPLES TIME SERIES 

The first column in Appendix C: Table 23, labelled “Date” contains the date at which each 

sample was taken. The second column, labelled “Frequency cycle”, contains the 

frequencies in standard units of the sample per cycle - index/cycle.  This information will 

be used in the model as a time parameter. The third column, labelled “n”, contains an index 

identifying the sample number. The fourth column, labelled “Frequency trading”, contains 

the frequencies in normalised yearly cycle - index/252, where the trading day is the time 

span for which a particular stock exchange is open and it is accepted that there are 252 

trading days in one year. Finally, the fifth column, labelled “Y”, contains the sampled 

vertical ordinate. If the time series exhibits a significant trend, it is recommended to de-

trend it first. 

A Fourier transform produces the same number of frequency bins, or bands, as time series 

samples, and so there are 16 frequency bins in this time series.  The size of the range of the 

time series should be a power of 2 (for example, 2ଵ,  2ଶ, 2ଷ, 2ସ, and so on). If the time 

series data is not a power of 2, then the end of the series should be padded to the next 

power of 2. Time series data is often padded on one end before being transformed, due to 

the so-called wraparound effect that can distort results when convolving data. The padded 

values of the time series should be 0 if the original time series is centred or de-trended. If 

the time series is not centred, then the average value of the time series ordinates can be 

used as the pad value.  
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The column DFT(Y) in Appendix C: Table 24 contains the discrete Fourier transform of 

the time series generated with the Fourier analysis tool in MS Excel. These are complex 

numbers, and looking, for example, at 05/01/2016, the second sample in the time series, it 

appears like this: 12.2802009957215-0.228725990422478i. At this point, this is the 

frequency domain version of the original time series. It can be manipulated in many 

different ways to suit the type of analysis being conducted. 

To generate a power spectrum of the time series, which is used to analyse its frequency 

content, the power contained in each frequency band has to be calculated. To compute the 

power contained in each frequency band ݌௜, the absolute value of a complex number ܨܦ ௜ܶ 

(modulus |ܨܦ ௜ܶ| Excel function IMABS) to the power of two is divided by the size N of 

the time series to the power of two, ݌௜ =
஽ி்೔

మ

ேమ . For example, the power of the second 

frequency band of 0.0625 sample/cycles is 0.589279891. The use of a factor of 2 for all 

intermediate frequency power calculations is due to the periodicity of the Fourier 

transform. The power is calculated for each frequency band up to the highest frequency, 

the Nyquist frequency (0.5 sample/cycles). The calculations are shown in Appendix C: 

Table 24. The column “power(Y)” contains the power spectrum for this time series.  The 

plot of the power spectrum is shown in Figure 6-6. 

 

FIGURE 6-6 POWER FREQUENCY DISTRIBUTION (PFD) OF THE CENTRED PLOT 

There is a strong component of 1.977 at a frequency of about 0.125. Furthermore, there is a 

clear contribution of 0.993 at a frequency of 0.250, although this is not as strong as the one 
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at 0.125, which should be considered in an eventual frequency approximation model for 

this share price time series example.  

To conduct further analysis, a frequency filter can filter the data in the frequency domain to 

isolate the 0.125 component of the original series. Firstly, an appropriate filter has to be 

constructed and applied and then an inverse Fourier transform is performed to show the 

resulting filtered series in the time domain. A suitable filter for this example would be a 

band-pass filter centred at a frequency of 0.125 samples per cycle. This is a standard 

Gaussian band-pass filter with ଴݂=0.125 and ߮ = 0.07 as shown in Figure ૟‐ૠ. PFD of 

the centred and Gaussian filtered time series is shown in Figure 6-8. Finally, the filtered  

and the original share     price are shown  in Figure 6-9.   

 

FIGURE 6-7 PFD OF THE CENTRED AND GAUSSIAN FILTERED TIME SERIES 

 

FIGURE 6-8 CENTRED AND FILTERED TIME SERIES CHART 
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FIGURE 6-9 THE FILTERED ORIGINAL TIME SERIES CHART 

The graph shows that the filter removes the high frequencies from the original signal and is 

a low band-pass filter. The resulting time series have less small changes in the amplitude as 

the original signal is smoothed. 

6.4.  Experimental Definition of the Algorithm in Excel 

The discrete Fourier transform may be used to identify periodic structures in time series 

data. Suppose that a physical process is represented by the function of time, h(t). The 

function is sampled at N times, h(k). From these measurements, complex amplitudes are 

determined, which satisfy the following equation: 

௡ܪ = ∑ ℎ௞݁௜௞
మഏ೙

ಿேିଵ
௞ୀ଴          (6-6) 

The sampled function then has the discrete Fourier expansion 

ℎ௞ = ଵ

ே
∑ ௡݁ି௜ܪ మഏೖ

ಿேିଵ
௡ୀ଴         (6-7) 

This equation can be cast in a familiar form with  
ଶగ

ே
= ଶగ

బ்
݇ బ்

ே
= ߱଴݇∆ݐ = ߱଴ݐ௞: 

ℎ௞ = ଵ

ே
∑ ௡݁ି௜௡௪బ௧ೖேିଵܪ

௡ୀ଴         (6-8) 

The right-hand side is the discrete analogue to the complex form of the Fourier expansion: 

ℎ(ݐ) = ∑ ܿ௡݁௜௡ బ௧ೖஶ
௡ୀିஶ         (6-9) 

where the complex coefficients are given by: 
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ܿ௡ =
ଵ

బ்
׬ ℎ(ݐ)݁ି௜௡ఠబ௧బ்

଴  (10-6)        ݐ݀

The Excel data analysis package has a Fourier analysis routine, which calculates complex 

coefficients from time series data. The routine requires that the number of samples in the 

time series data be of a power of 2. 

To select Fourier analysis, click on Data in the Excel menu bar, and select Data Analysis. 

In Data Analysis, select Fourier Analysis, and a simple dialog box appears. Make sure that 

the “Inverse” box is not checked (selected). 

 

FIGURE 6-10 EXCEL DATA ANALYSIS, FOURIER ANALYSIS MENU 

For Input Range, enter the location of the time series data, and for output range enter a 

convenient place on the worksheet. After selecting the OK button, Excel returns the 

complex coefficients in the selected output column.  

The power in each frequency bin is proportional to the square of the magnitude of the 

complex coefficient normalized with (divided by) the square of the size of the time series, 

݌ =
|௭|మ

ேమ . The absolute value of a complex number |ݖ| is accomplished with the function 

IMABS(z). Applying the IMABS (z) function to the complex coefficients z and dividing 

by ܰ produces the magnitude of the Fourier coefficients, where ݉ܽ݃݊݅݁݀ݑݐ =
|௭|

ே
. The 

power at each frequency (except for zero frequency) is the square of the magnitude. 
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To select Inverse Fourier Analysis, click on Data in the Excel menu bar, and select Data 

Analysis. In Data Analysis, select Fourier Analysis, and a simple dialog box appears. Make 

sure that the “Inverse” box is checked (selected). 

 

FIGURE 6-11 EXCEL DATA ANALYSIS INVERSE FOURIER 

For Input Range, enter the location of the complex coefficient, and for output range enter a 

convenient place on the worksheet. After selecting the OK button, Excel returns the 

Inverse Fourier Transform in the selected output column. The results of the inverse 

transform are real numbers; however, Excel formats them as text (that its, as the real part 

of an imaginary number). The IMREAL function is used to convert these imaginary 

numbers into values which can be used. 

The multiplication of two complex numbers is accomplished with the function 

IMPRODUCT(z1, z2). This is used when applying a Gaussian filter to the complex 

coefficient in order to isolate a specific frequency. 

6.5.  Experimental Definition in MATLAB 

A common use of Fourier transforms is to find the frequency components of a signal 

buried in a noisy time domain signal, such as is the case with share price data. 

The DFT takes a discrete signal in the time domain and transforms that signal into the 

discrete frequency domain. The DFT is only defined in the region between 0 and the 

sampling frequency ௦݂. When the range [0, ௦݂] is examined, it can be seen that there is an 

even symmetry around the centre point, 0.5 ௦݂, which is the Nyquist frequency. This 

symmetry adds redundant information. 
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The DFT of a vector x of length n is another vector y of length n: 

௞ାଵݕ = ∑ ߱ே
ି௞ேିଵ

௡ୀ଴  ௡ାଵ        (6-11)ݔ

where ω is a complex nth root of unity: 

߱ = ݁ିଶగ௝/ே          (6-12) 

This notation uses j for the imaginary unit. Data in the vector x are assumed to be separated 

by a constant interval in time or space, ݀ݐ =
ଵ

௙ೞ
, where ௦݂ is the sampling frequency. The 

DFT y is complex-valued. The absolute value of y at index p+1 measures the amount of 

the frequency present in the data. 

 

FIGURE 6-12 TIME TO FREQUENCY DOMAIN TRANSFORMATION MODEL 

The first element of y, corresponding to zero frequency, is the sum of the data in x. This 

data component is often removed from y so that it does not obscure the positive frequency 

content of the data. 

When using FFT algorithms, a distinction is made between window length and transform 

length. The window length is the length of the input data vector. The transform length is 

the length of the output, which is the computed DFT. An FFT algorithm pads or chops the 

input to achieve the desired transform length.  
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FIGURE 6-13 FFT ALGORITHM DIAGRAM 

The FFT is a faster version of the Discrete Fourier Transform (DFT).  

The MATLAB fft function returns the DFT y of an input vector x using a fast Fourier 

transform algorithm: 

y = fft(x);          (6-13) 

In this call to fft, the window length m = length(x) and the transform length n = length(y) 

are the same. 

The transform length is specified by an optional second argument: 

y = fft(x,n);          (6-14) 

If the length of x is less than n, x is padded with trailing zeroes to increase its length to n 

before computing the DFT. If the length of x is greater than n, only the first n elements of x 

are used to compute the transform. 

The basic spectral analysis using FFT allows the component frequencies in data to be 

efficiently estimated from a discrete set of values sampled at a fixed rate. Relevant 

quantities in a spectral analysis are listed in Table 6-1. 
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TABLE 6-1 RELEVANT SPECTRAL ANALYSIS QUANTITIES 

 

Consider the following ‘Close’ price data in Appendix C: Table 25 and with a graph as 

shown in Figure 6-14. 

 

FIGURE 6-14 ORIGINAL AND TREND LINE SHARES TIME SERIES 

The DFT, dft of y (‘Close’ price) is computed using fft with dft=fft(y).The power of the 

DFT y and its Power are then computed Power=abs(dft) as shown in Appendix C: Table 

24 and the graph as shown in Figure 6-15. 

 

FIGURE 6-15PDF PLOT OF THE SHARE TIME SERIES 
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6.6. Forecasting Exploration 

For a time series that is known to have seasonal or daily patterns, Fourier analysis could be 

used for forecasting. After running a discrete Fourier transformation fft on time series data 

and obtaining coefficients, these could be used to make predictions. 

The FFT assumes that all data it receives constitute one period and then, if the coefficient 

data are simply expanded appropriately, it also regenerates the continuation of the time 

series, and so using ifft these values can be used for prediction. Simply put, fft is run for 

t=0, 1, 2, ... 10 then ifft is used on the coefficients to regenerate the time series for t = 11, 

12, …  20. 

Generally, the process involves finding "patterns" in the time series, finding the dominant 

frequency components in the observed time series, taking the Fourier transform and 

preserving the most important, for example the largest coefficients, and eliminating the 

rest.  Preserving the most important coefficients has a "smoothing”, “blurring”, or "de-

noising" effect on the signal as well. Then, to expand time series Fourier coefficients Y to 

twice the size of the most important coefficients, Z are repeated in every second element in 

the expanded Y;  to be exact, Y(1,1)= Z(1,1), Y(1,2) = 0, Y(1,3)= Z(1,2). Then a following 

ifft(Y) regenerates the expanded time series y. The new series will be twice as long as the 

original. Note that the amplitude has to be multiplied by 2 if x is expanded twice. The 

algorithm is illustrated with code below. 

window_expand=2*window; 

X = fft(x) % DFT original signal x 

Y = zeros (1, window_expand) % expanded  

% an algorithm for finding important frequencies in X, to be defined 

% Z [important frequencies] = X [important frequencies] % to be defined 

Z=X; % original frequencies (until the “important” frequencies are defined) 
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Y(1:2:end) = Z % every second element in Y is equal to next Z (or the original X) 

y=2*real(ifft(Y)); % it has to be multiplied by 2 because of twice period 

figure; hold on; 

plot(x); 

plot(y,'-r'); % 

Alternatively, adding up all the harmonics k corresponding to the coefficient indices y = 

sum(y(k)) will essentially expand the original time series, where y(k)= 

Amplitude(k)cos(Period(k)+Phase(k)), and Amplitude(k), Period(k) and Phase(k) are the 

Amplitude(k), period and the phase of the kth harmonic respectively. The algorithm is 

illustrated with code below, 

y=zeros(1, window_expand); 

for i=1:max_frequency, 

    period=i; 

    phase=angle(Z(period+1)); 

    amplitude=abs(Z(period+1))/window*2; 

    d1=amplitude*cos(period*((0:window_expand-1)/window*2*pi)+phase); 

    y=y+d1; 

end 

plot(y,'-k'); % 

The main disadvantage of Fourier extrapolation is that it merely repeats the original time 

series with the period N, where N is the length of the original time series as shown in 

Figure 6-16 which repeats the graph 1-15 to 16-31 days. 
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FIGURE 6-16 DFT REPETITION FORECASTING EXAMPLE 

The visual example in Figure 6-16 demonstrates the weakness of the method. The 

frequency domain, by its nature, produces fixed cycles in the time domain. The red line 

(from day 17 to day 32) in the extrapolation above is simply a copy of the beginning 

segment of the blue (observed) line (from day 1 to day 16), although de-noised slightly. 

Therefore, to perform any meaningful short-term prediction over h time units in the future, 

where h<the number of historical observations, only the most significant high frequency 

coefficients should be used in the prediction. A "high" frequency threshold can be 

arbitrarily defined in relation to h. 

To further clarify this, the extrapolated hump at time ~ day32 in Figure 6-16 is just a copy 

of the blue hump at ~ day15. If the historical period had instead been initiated right before 

the hump at 15, then the very first predicted units would have that copy of the hump, which 

seems pointless and arbitrary. Thus, by either eliminating or down-weighting the high 

frequency components, the arbitrariness induced by the starting point in the historical data 

can be reduced. 

Usually, modelling assumes that the future will behave as the model suggests. Models 

depend on parameters, which are estimated using present or past observations, and so 

"predicting" is actually merely fitting a model. Usually in a signal, there are some 

frequencies that have significantly higher amplitudes than others, and so selecting these 

frequencies allows the periodic nature of the time series to be identified. 
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6.7.  DFT and ANN for Regression Dataset 

Using a dataset of about ten time series 8 or 16 days long, the DFT is calculated for each of 

the time series and is the target of the neural network. Time series values are the features. 

The output DFT of the most recent (the last) training model is used for forecasting. In the 

example in Table 6-2, ݈݁݌݉ܽݏହ is with the most recent data, and soݔଵଶ is the latest data 

and the neural network model output  ݉ܨܦ݈݁݀݋ ହܶ would be used for forecasting. 

TABLE 6-2 NEURAL NETWORK FOR REGRESSION 

ݎ଼ݐݐܽ ଻ݎݐݐܽ ଺ݎݐݐܽ ହݎݐݐܽ ସݎݐݐܽ ଷݎݐݐܽ ଶݎݐݐܽ ଵݎݐݐܽ   Target Model 

ܨܦ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଵݔ ଵ݈݁݌݉ܽݏ ଵܶ ݉ܨܦ݈݁݀݋ ଵܶ

ܨܦ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଶݔ ଶ݈݁݌݉ܽݏ ଶܶ ݉ܨܦ݈݁݀݋ ଶܶ

ܨܦ ଵ଴ݔ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ଷݔ ଷ݈݁݌݉ܽݏ ଷܶ ݉ܨܦ݈݁݀݋ ଷܶ

ܨܦ ଵଵݔ ଵ଴ݔ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ସݔ ସ݈݁݌݉ܽݏ ସܶ ݉ܨܦ݈݁݀݋ ସܶ

ܨܦ ଵଶݔ ଵଵݔ ଵ଴ݔ ଽݔ ଼ݔ ଻ݔ ଺ݔ ହݔ ହ݈݁݌݉ܽݏ ହܶ ݉ܨܦ݈݁݀݋ ହܶ

6.8.  Standard Error of the Mean and Coefficient of Determination 

The standard error of the mean (SEM) describes the certainty of the mean in the 

underlying population based on its sample. The SEM is the theoretical standard deviation 

of the sample-mean's estimate of a population mean. The SEM is more informative when 

converted into a confidence interval. With a confidence interval, assuming normality, there 

is an X% chance that the underlying population mean falls within certain limits. The limits 

can be calculated for any certainty level. A 95% confidence interval means that there is a 

95% chance that the underlying population mean falls within that certain range of values. 

To calculate it, the SEM is simply scaled by the appropriate quantile from the normal 

distribution. For example, 95% of the data will fall within 1.96 standard deviations of a 

normal distribution. So the 95% confidence limits are as follows: 
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sem=std(data)/sqrt(length(data)); % standard error of the mean   (6-15) 

sem = sem * 1.96 % 95% confidence interval     (6-16) 

Generally, the coefficient of determination (R-square) measures the variability of the 

estimation errors against the variability of the original values: 

2ݎ = 1 −
∑(௬ି௙)మ

∑(௬ି௬ത)మ         (6-17) 

6.9.  Fast and Inverse Fourier Transforms 

6.9.1 fft - Fast Fourier Transform 

Y = fft(x)          (6-18) 

Y = fft(X,n)          (6-19) 

The functions Y = fft(x) and x = ifft(Y) implement the transform and inverse transform pair 

which for vectors of length N is given by: 

ܺ(݇) = ∑ ே߱(݆)ݔ
(௝ିଵ)(௞ିଵ)ே

௝ୀଵ        (6-20) 

(݆)ݔ = (1/ܰ) ∑ ܺ(݇)߱ே
ି(௝ିଵ)(௞ିଵ)ே

௞ୀଵ       (6-21) 

where߱ே = ݁(ିଶగ௜)/ே 

Y = fft(x) returns the discrete Fourier transform (DFT) of vector x, computed with a fast 

Fourier transform (FFT) algorithm. 

Y = fft(X,n) returns the n-point DFT. fft(X) is equivalent to fft(X,n), where n is the size of X. 

If the length of X is less than n, X is padded with trailing zeroes to length n. If the length of 

X is greater than n, the sequence X is truncated. 

6.9.2  ifft - Inverse Fast Fourier Transform 

y = ifft(X)          (6-22) 

y = ifft(X,n)          (6-23) 

y = ifft(X) returns the inverse discrete Fourier transform (DFT) of vector X, computed with 

a fast Fourier transform (FFT) algorithm. 
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It should be noted that the sinusoid's frequency is k/N cycles per sample. 

It can be concluded that the DFT fully describes the discrete-time Fourier transform 

(DTFT) of an N-periodic sequence, which comprises only discrete frequency components. 

Further improvements of the discrete Fourier transform approach would involve using 

wavelets.  

6.10.  DFT Investigations 

To investigate further the method of forecasting with the DFT, sixteen training sample time 

series are used to forecast the subsequent sixteen share prices from the full dataset. The 

model with three cyclical trends is shown in Figure 6-17. Experiments are conducted only 

with sixteen sample time series, and not the long term full dataset, so as to focus on the 

purpose of this thesis which is short-term forecasting. 

 

 

FIGURE 6-17 FORECAST WITH THREE HARMONICS MODEL 
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The parameters of the model are as follows: 

R2 = 0.95728 and 0.88908 coefficient of determination, 

rmse = 2.1688 and 5.9471 root mean square error, 

stdv = 2.2399 and 5.1867 standard deviation, 

sem = 1.0976 and 1.7971 standard error of the mean. 

6.10.1 Model with Trend and Zero Frequency Component 

௠ݔ
(଴) =  ଴          (6-24)ܣ

Trend y=mx+b          (6-25) 

where m = -2.15, b = 213.57, SQRT(err^2) = 13.53, R2 = 0.90 

TABLE 6-3 TREND WITH ZERO FREQUENCY HARMONICS COMPONENT 

 

 

 

FIGURE 6-18 TREND WITH NO TREND LINE HARMONICS 
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FIGURE 6-19 PDF TREND WITH NO FREQUENCY COMPONENT 

6.10.2 Model with Trend and One Frequency Component 

Using the first frequency component (k=1): 

௠ݔ
(଴) =  ଴          (6-26)ܣ

௠ݔ
(ଵ) = ଴ܣ + ଵܣ cos(߶ଵ + ߱ ) = ௠ݔ

(଴) + ଵcos (߶ଵܣ + ߱݉)   (6-27) 

where A_t-s= 3.74, T_t-s= 6.49, F_t-s = 0.66, SQRT(err^2)= 8.32, R2= 0.96. 

TABLE 6-4 TREND WITH ONE FREQUENCY HARMONIC COMPONENT 
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FIGURE 6-20 PDF TREND WITH ONE FREQUENCY HARMONIC COMPONENT 

 

 

FIGURE 6-21 TREND WITH ONE FREQUENCY HARMONIC COMPONENT 

6.10.3 Model with Trend and Two Frequency Components 

Using the first and second frequency components (k=2): 

௠ݔ
(଴) =  ଴          (6-28)ܣ

௠ݔ
(ଵ) = ௠ݔ

(଴) + ଵcos (߶ଵܣ + ߱݉)       (6-29) 

௠ݔ
(ଶ) = ௠ݔ

(ଵ) + ଶcos (߶ଶܣ + 2߱݉        (6-30) 

where A_t-s =  3.72 1.95, T_t-s =  6.51 3.99, F_t-s = 0.84 -1.33, SQRT(err^2) = 6.39, R2 = 

0.98. 
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TABLE 6-5 TREND WITH TWO FREQUENCY HARMONIC COMPONENTS 

 

 

FIGURE 6-22 TREND WITH TWO FREQUENCY HARMONIC COMPONENTS 

 

FIGURE 6-23 PDF TREND WITH TWO FREQUENCY HARMONICS COMPONENT 
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6.10.4 Model with Trend and Three Frequency Components 

Using the first three frequency components (k=3): 

௠ݔ
(଴) =  ଴          (6-31)ܣ

௠ݔ
(ଵ) = ௠ݔ

(଴) + ଵcos (߶ଵܣ + ߱݉)       (6-32) 

௠ݔ
(ଶ) = ௠ݔ

(ଵ) + ଶcos (߶ଶܣ + 2߱݉)       (6-33) 

௠ݔ
(ଷ) = ௠ݔ

(ଶ) + ଷcos (߶ଷܣ + 3߱݉        (6-34) 

whereA_t-s = 3.70 1.93 1.43, T_t-s = 6.60 4.02 2.56, F_t-s = 0.94 -1.33 -

0.21, SQRT(err^2) = 4.99, R2 = 0.99 

TABLE 6-6 TREND WITH THREE FREQUENCY HARMONICS COMPONENTS 

 

 

FIGURE 6-24 TREND WITH THREE FREQUENCY HARMONIC COMPONENTS 
Time in days 

Pr
ic

e 
in

 p
en

ce
 



 

153 

 

FIGURE 6-25 PDF TREND WITH THREE FREQUENCY HARMONIC COMPONENTS 

6.10.5 Model with Trend and Frequency Components in MATLAB 

De-trending of the time series is done with a linear trend as follows:  

y=mx+b          (6-35) 

where m = -2.15, b = 213.57 

An example of the use of the first frequency components k= 3 is: 

௠ݔ
(଴) =  ଴          (6-36)ܣ

௠ݔ
(ଵ) = ௠ݔ

(଴) + ଵcos (߶ଵܣ + ߱݉)       (6-37) 

௠ݔ
(ଶ) = ௠ݔ

(ଵ) + ଶcos (߶ଶܣ + 2߱݉)       (6-38) 

௠ݔ
(ଷ) = ௠ݔ

(ଶ) + ଷcos (߶ଷܣ + 3߱݉)       (6-39) 

TABLE 6-7 BARCLAYS SHARE PRICES TIME SERIES FROM 2016-01-04 TO 2016-01-25 
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FIGURE 6-26 BARC.L SHARE PRICES TIME SERIES FROM 16-01-04 TO 16-01-25 

6.11. Time Domain 

An investigation of the effect of the number of harmonics included in the model is shown 

in Figure 6-27 to Figure 6-30.The results show a closer fit between the model and the 

target, although with no significant difference, with the additional of more than three  

harmonics.  

 

FIGURE 6-27 TRENDS WITH NO AND ONE HARMONIC COMPONENT 

  

FIGURE 6-28 TRENDS WITH 2 AND 3 FREQUENCY HARMONICS COMPONENTS 
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FIGURE 6-29 TRENDS WITH 4 AND 5 FREQUENCY HARMONICS COMPONENTS 

 

FIGURE 6-30 TRENDS WITH 6 AND 7 FREQUENCY HARMONICS COMPONENTS 

6.12. Power Distribution Frequencies 

The investigation of the effect of the number of approximation frequencies starts at the 

position at day 1 with a time series of 16 samples long. 

 

FIGURE 6-31 PDF WITH NO AND ONE FREQUENCY HARMONIC COMPONENT 
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FIGURE 6-32 PDF WITH 2 AND 3 FREQUENCY HARMONICS COMPONENTS 

 

FIGURE 6-33 PDF WITH 4 AND 5 FREQUENCY HARMONICS COMPONENTS 

 

FIGURE 6-34 PDF WITH 6 AND 7 FREQUENCY HARMONIC COMPONENT 
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6.12.1 Model Performance per Frequency from 0 to 8 

TABLE 6-8 MODEL PERFORMANCE PER FREQUENCY FROM 0 TO 8 

Frequencies 0 1 2 3 5 6 7 8 

R2_model 0.89609 0.90679 0.94271 0.95728 0.98835 0.9979 0.99978 0.99978 

rmse_model 3.3825 3.2036 2.5115 2.1688 1.1326 0.48142 0.15551 0.15551 

stdv_model 3.4934 3.3086 2.5939 2.2399 1.1697 0.49721 0.16061 0.16061 

sem_model 1.7118 1.6212 1.271 1.0976 0.57318 0.24363 0.0787 0.0787 

TABLE 6-9 FORECAST PERFORMANCE PER FREQUENCY FROM 0 TO 8 

Frequencies 0 1 2 3 5 6 7 8 

R2_forecast 0.87553 0.87989 0.88999 0.88908 0.89403 0.89522 0.89523 0.89668 

rmse_forecast 6.2999 6.1887 5.9227 5.9471 5.813 5.7803 5.7798 5.7398 

stdv_forecast 5.6001 5.4707 5.1578 5.1867 5.0273 4.9882 4.9877 4.9398 

sem_forecast 1.9403 1.8955 1.7871 1.7971 1.7419 1.7283 1.7281 1.7115 

6.12.2 Model Performance with Varying Starting Date 

A daily investigation into whether or not the harmonics at different consecutive days vary 

with window size of 16 and 2 harmonics is shown in Table 6-10 to Table 6-14 

TABLE 6-10 MODEL PERFORMANCE WITH DIFFERENT STARTING DATE AND TWO FREQUENCIES 

Position/Date 1 2 3 5 6 7 8 9 10 

R2_model 0.94271 0.942 0.924 0.862 0.869 0.844 0.781 0.746 0.729 

rmse_model 2.5115 2.4268 2.529 2.884 2.703 3.077 3.9415 3.864 3.678 

stdv_model 2.5939 2.5064 2.612 2.978 2.792 3.178 4.070 3.991 3.799 

sem_model 2.542 2.4563 2.560 2.919 2.736 3.115 3.989 3.911 3.723 

TABLE 6-11 FORECAST PERFORMANCE WITH DIFFERENT STARTING DATE AND 2 FREQUENCIES 

Position/Date 1 2 3 6 7 8 9 10 

R2_forecast 0.88999 0.88595 0.90792 0.85394 0.86639 0.8104 0.7114 0.56217 

rmse_forecast 5.9227 5.788 4.972 5.6241 5.2844 5.9519 6.831 7.8647 

stdv_forecast 5.1578 5.1818 4.7808 5.4373 5.2892 5.951 6.9235 7.9896 

sem_forecast 1.787 1.795 1.656 1.8839 1.832 2.061 2.398 2.768 
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TABLE 6-12 FORECAST PERFORMANCE WITH PERIOD 16 

TABLE 6-13 FORECAST PERFORMANCE WITH PERIOD 8 

Period2 8 

Position/Date 1 2 3 5 7 8 9 10 

Amplitude2 2.8124 2.9585 2.4278 1.7869 1.4224 0.1959 0.83631 1.2349 

Phase2 0.55791 1.2178 2.0417 -2.0949 -0.23716 -1.9307 -1.5891 -1.125 

TABLE 6-14 FORECAST PERFORMANCE WITH PERIOD 4 

Period3 4 

Position/Date 1 2 3 6 7 8 9 10 

Amplitude3 1.7911 1.7198 1.8521 1.6149 1.9693 3.3818 3.7404 3.584 

Phase2 -2.352 -0.98566 -0.01777 2.364 -2.6409 -1.7282 -0.68093 0.38325 

The introduction of the frequency components reduces the error from 13.53 to 4.99 and 

improves the fitness from 0.90 to 0.99. Generally, wider coverage of the time series 

spectrum improves performance. Furthermore, including more harmonics improves the 

model’s fitness, as shown in Table 6-14 and Figure 6-35. 

Model with trend and combination of harmonics: 

 +no harmonics SQRT(err^2) = 13.53, R2 = 0.90 

 +one harmonics SQRT(err^2) = 8.32, R2 = 0.96 

 +two harmonics SQRT(err^2) = 6.39, R2 = 0.98 

 +three harmonics SQRT(err^2) = 4.99, R2 = 0.99 

Period1 16 

Position/Date 1 2 3 6 7 8 9 10 

Amplitude1 1.5353 1.915 1.8085 3.4161 3.0968 2.5319 1.7948 1.7069 

Phase1 -0.018623 0.10291 -0.05114 0.11293 0.62914 1.5819 2.2815 3.1266 
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TABLE 6-15 TREND - FREQUENCIES HARMONIC COMPONENT SQRT AND R2 

 trend +one  +two  +three frequencies 

SQRT 13.53 8.32 6.39 4.99 

R2 0.9 0.96 0.98 0.99 

 

FIGURE 6-35 RMSE VS. FREQUENCIES WITH 16 DAYS WINDOW 

The performance (RMSE) deteriorates significantly with predictions over seven days, and 

this confirms the hypothesis that shorter predictions in daily trading are the recommended 

option. 

 

FIGURE 6-36 RMSE VS. NUMBER OF DAYS WITH 16 DAYS WINDOW 

Harmonics parameters of both amplitude and phase vary with time (days),as shown in 

Figure 6-37 and Figure 6-38, although still in reasonably close ranges to allow some 

approximation. 
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FIGURE 6-37 AMPLITUDES VS. NUMBER OF DAYS WITH 16 DAYS WINDOW 

 

FIGURE 6-38 PHASES VS. DAYS WITH 16 DAYS WINDOW 

The window size effect is that smaller windows tend to produce less RMSE error, as 

shown in Figure 6-39 and Figure 6-40. 
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FIGURE 6-39 FORECAST RMSE VS. WINDOW SIZE EIGHT 

 

FIGURE 6-40 FORECAST RMSE VS. WINDOW SIZE SIXTEEN 

6.13. Summary 

Discrete Fourier Transform (DFT) time series analysis and decomposition proved to 

provide significantly better performance, robustness and generalization than analysis in the 

time domain.  
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The results are obtained for a time series of three trading weeks of data investigating the 

effect of various harmonics characteristics:  

 Number of harmonics components in the model. The introduction of the frequency 

components reduces the error and improves the fitness (likeliness) of the model. 

Generally, wider coverage of the time series spectrum improves performance.  

 The amplitudes and phases of the harmonics vary, although in a reasonable range 

allowing some reasonable average model approximations. 

 The window size effect, where smaller windows tend to produce less prediction 

error.  

The model’s harmonics set could be improved with the major contributing harmonics 

instead of the first harmonics (low frequencies) in the DFT. Selection of the first harmonic 

is still justified by the power distribution, and generally, the major harmonics are at the 

beginning of the frequencies. These results are for share prices over a relatively quiet 

period without large disturbances. If there are such fluctuations, a different approach 

should be considered. Usually, however, significant changes and jumps in prices are rare. 
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7. Chapter 7. Discrete Wavelet Transform 

7.1. Overview 

Similar to the discrete Further transform, this chapter extends the financial time series 

investigation using the discrete wavelet transformation . 

The Discrete Wavelet Transform (DWT) has gained widespread acceptance in signal and 

time series processing. Because of their inherent multi-resolution nature, wavelet-coding 

schemes are especially suitable for applications where scalability and tolerable signal 

degradation are important. Wavelet transforms have been successfully applied to financial 

time series because of their powerful feature extraction capability (Hsieh, et al., 2011). A 

wavelet transform simultaneously analyses the time and frequency domains. 

This chapter covers the following areas: 

 Mother wavelets examples 

 MATLAB wavelets 

 Forecasting with different wavelets 

 Comparison of wavelet forecast performance 

 Comparison of neural networks with wavelets 

 Wavelet performance 

7.2. Introduction 

Wavelet transforms decompose a signal into a set of “basis” functions called wavelets. 

Wavelets are obtained from a single prototype wavelet ߰௔,௕(ݐ), called a mother wavelet, 

by dilation and shifting: 

߰௔,௕(ݐ) =
ଵ

√௔
߰(

௧ି௕

௔
)         (7-1) 

where “a” is the scaling parameter and “b” is the shifting parameter. These parameters 

enable the transform to give a space-frequency localization of the signal.  
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7.3.  Mother Wavelets Examples 

Examples of mother wavelets are shown in Figure 7-1. 

 

 

FIGURE 7-1 MOTHER WAVELET EXAMPLES 

In wavelet analysis a mathematical model is built that allows the decomposition of a given 

signal into many frequency bands (Mallat, 1989). The given input data is decomposed into 

low frequency approximation coefficients (ACs) via a low-pass (LP) filter and detail 

coefficients (DC) of high frequency via a high-pass (HP) filter. Approximation coefficients 

characterize the coarse structure of the data and identify long-term trends, while detail 

coefficients capture ruptures and discontinuities. Generally, these two types of coefficient 

allow a better time series presentation than the original data. Wavelet analysis allows 

important hidden information and significant temporal features of the original time series 

data to be extracted (Chandar, et al., 2016). 
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FIGURE 7-2 WAVELET DECOMPOSITION MODEL 

In financial time series forecasting, different types of wavelets can be used, such as 

Daubechie’s, Haar, Morlet or Mexican Hat wavelets. 

The main properties of the DWT are as follows: 

 Completeness, as it is invertible. 

 De-correlation, since its coefficients are not correlated. 

 Energy compaction, where the energy of the time series is mostly grouped in low 

frequencies in the DWT domain.  

 Adjustability, because there is not just a single wavelet, and many wavelets can be 

designed to fit individual applications. 

 Time-frequency localization, allowing a more accurate local description of signal 

characteristics. 

 Robustness, as the DWT coefficients can be robust against many time series 

processing operations. 

7.4. Forecasting with Different Wavelets 

Forecasting has been conducted using different wavelets for a sixteen sample dataset from 

the day 1 starting point in the full time series, and the performance evaluated, including the 

coefficient of determination (R2), root mean square error (rmse), standard deviation (stdv) 

and standard error of the mean (sem). 
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7.4.1 Forecast with Daubechie’s “db4” Wavelet 

wavelet = db4 name of the wavelet 

R2 = 0.96961 and 0.90046 coefficient of determination 

rmse = 1.8293 and 5.6339 root mean square error 

stdv = 1.8892 and 4.8396 standard deviation 

sem = 0.92573 and 1.6768 standard error of the mean 

 

FIGURE 7-3 DAUBECHIE’S DB4 WAVELET FORECAST 160 AND 35 DAYS DATASET 

7.4.2 Forecast with Symlets “sym4” Wavelet 

wavelet = sym4 name of the wavelet 

R2 = 0.89189 and 0.90362 coefficient of determination 

rmse = 3.4501 and 5.5436 root mean square error 

stdv = 3.4934 and 4.9449 standard deviation 

sem = 1.7118 and 1.7133 standard error of the mean 

 

FIGURE 7-4 SYMLETS SYM4 WAVELET FORECAST 160 AND 35 DAYS 



 

167 
 

7.4.3 Forecast with Biorthogonal “bior4.4” Wavelet 

wavelet = bior4.4 name of the wavelet 

R2 = 0.97341 and 0.89619 coefficient of determination 

rmse = 1.7112 and 5.7534 root mean square error 

stdv = 1.7658 and 5.1443 standard deviation 

sem = 0.86525 and 1.7824 standard error of the mean

 

FIGURE 7-5 FORECAST WITH BIORTHOGONAL BIOR4 .4 WAVELET 

7.4.4 Forecast with Reverse Biorthogonal “rbio2.2” Wavelet 

wavelet = rbio4.4 name of the wavelet 

R2 = 0.9746 and 0.89556 coefficient of determination 

rmse = 1.6722 and 5.7709 root mean square error 

stdv = 1.7268 and 5.1747 standard deviation 

sem = 0.84615 and 1.793 standard error of the mean 

 

FIGURE 7-6 FORECAST WITH REVERSE BIORTHOGONAL RBIO2.2 WAVELET 
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7.5. Comparison of Wavelet Forecast Performance 

A comparison of the wavelets forecasting performance is shown in Table 7-1.  

TABLE 7-1 COMPARISON OF DIFFERENT WAVELET FORECASTS 

 DFT                db4 Sym4 bior2.2 rbio2.2 

R2 0.88908 0.90046 0.90362 0.89619 0.89556 

rmse 5.9471 5.6339 5.5436 5.7534 5.7709 

stdv 5.1867 4.8396 4.9449 5.1443 5.1747 

sem 1.7971 1.6768 1.7133 1.7824 1.793 

The best performance is with the Symlets “sym4” wavelet and the worst is with the DFT. 

Figure 7-7 shows the Symlets wavelet forecasting graph. There is a good likeliness fit 

R2=0.9362  between the target and the model. 

 

FIGURE 7-7 BEST PERFORMANCE FORECAST WITH SYM4 WAVELET 

The Locally Stationary Wavelet (LSW) may be better than Fourier extrapolation and is 

commonly used in predicting time series.  

7.6.  Comparison of Neural Networks with Wavelets 

Chandar proposed a hybrid model combining the Discrete Wavelet Transform (DWT) and 

an Artificial Neural Network (ANN) to forecast future stock prices (Chandar, et al., 2016). 

The historical data series, for example of closing prices, are decomposed via DWT and the 

coefficients form the feature vector (A and optionally D) of the ANN, for example using a 
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back propagation neural network (BPNN). The proposed model was compared to the ANN 

model with the original data feature vector, although the structure of the feature vector and 

the forecast target are not clearly described. Others authors have used different ANN and 

DWT combinations and approaches, such as a Recurrent Self-Organizing Map (RSOM) 

neural network with multiple kernel regression succeeding lower forecasting RMSE 

(Huang, et al., 2010); the DWT and Recurrent Neural Network (RNN) (Hsieh, et al., 

2011); the DFT with kernel Partial Least Square (PLS) regression, support vector machines 

and GARCH models outperforming traditional NN (Huang, et al., 2011); an ANN at many 

DFT decomposed levels (Wang, et al., 2011); the DWT with Support Vector Machines 

(SVMs) with different kernels (Lahmiri, 2013); and the DWT with BPNN compared to the 

time domain model (Lahmiri, 2014).  

7.6.1 Conceptual Model 

Generally, a time series of historical share prices, such as closing prices, is decomposed 

with the DWT and the feature vector of the approximation (A) and sometimes detail (D) 

coefficients is fed into the ANN. Three-layer feed-forward back propagation neural 

networks (BPNNs) as training algorithms are capable of approximating any continuous 

function with the desired accuracy (Devadoss, et al., 2013) and are common in financial 

forecasting.  

The usual practice is that 75% of the dataset is used for training and 25% for testing. 

Finally, the performance of the model is measured with statistics such as coefficient of 

variation (CoV), mean absolute deviation (MAD), root mean square error(RMSE), and 

mean absolute error (MAE). 

From the empirical results, the assertion is that the models with DWT input outperform 

those with original historical time data. The proposed model can be combined further with 

other machine learning algorithms such as Particle Swarm Optimization (PSO) to improve 

the accuracy of prediction. 
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7.6.2 Experimental Set-up 

An ANN with DWT has been empirically investigated for better forecast performance in 

the banking UK sector for the period 2016-01-01 to 2016-08-05. Historic closing prices 

were downloaded from uk.finance.yahoo.com for Barclays, HSBC, RBS Lloyds and 

Virgin banks. The tuning of the Back Propagation Neural Network (BPNN) varied the 

random seed from 0-100 with a threshold of 10% of the shares range. The performance 

indicators used are square root power of two error (sqre) and maximum error (maxe) in 

percentage of the share price range. The experiments are conducted for the closing price in 

the time domain (without using the discrete wavelet transformation DWT) and in the 

discrete wavelet domain using the Daubechies-db4, Biorthogonal-bior4.4, Symlets-sym4 

and Reverse Biorthogonal-rbio2.2 algorithms. The time series window is 16 days. There 

are two datasets, one for training of ninety days from the starting date and one for testing 

of twenty days from day 110.  

 

FIGURE 7-8 NEURAL NETWORK ARCHITECTURE WITH WAVELETS 

7.6.3 Neural Networks with Wavelets Experiments 

Experiments are conducted with different wavelets, db4, sym4, bio4.4 and rbio4.4, for 

different share prices, HSBC, Barclays, RBS, Virgin and Lloyds. The random generator 

seed is given as well to facilitate the eventual reproduction of the experiments. 
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TABLE 7-2 FORECASTING HSBC NEURAL NETWORKS WITH WAVELETS 

HSBA.L no db4 sym4 bior4.4 rbio4.4 

sqre 6.8646 6.2146 4.216 6.4765 6.502 

maxe 12.4141 14.9278 10.647 16.4901 13.7189 

seed 12 32 92 76 32 

  

FIGURE 7-9 FORECAST HSBC ANN WITHOUT AND WITH SYM4 

TABLE 7-3 FORECASTING BARCLAYS NEURAL NETWORKS AND WAVELETS 

BARC.L no db4 sym4 bior4.4 rbio2.2 

sqre 5.0829 5.853 7.5832 7.8834 6.1368 

maxe 9.7337 10.7108 15.011 15.3157 12.4065 

seed 54 53 82 58 27 

 

FIGURE 7-10 FORECAST BARC.L ANN WITHOUT AND WITH DB4 
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TABLE 7-4 FORECAST RBS NEURAL NETWORKS WITH BIOR4 WAVELETS 

RBS.L no db4 sym4 bior4.4 rbio4.4 

sqre 15.4566 15.2195 15.4342 11.4388 17.4986 

maxe 29.9803 30.6334 30.3305 21.0302 29.7185 

seed 98 29 82 22 67 

 

FIGURE 7-11 FORECAST RBS ANN WITHOUT AND WITH BIOR4 

TABLE 7-5 FORECAST VIRGIN NEURAL NETWORK DB4 WAVELETS 

VM.L no db4 sym4 bior4.4 rbio4.4 

sqre 19.4306 18.9692 22.4121 26.2529 27.2544 

maxe 27.1149 36.3175 45.5554 55.8468 42.2174 

seed 25 19 29 12 85 

 

FIGURE 7-12 FORECAST VIRGIN ANN WITHOUT AND WITH DB4 
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TABLE 7-6 FORECAST LLOYDS NEURAL NETWORKS WITH DB4 WAVELETS 

LLOY.L no db4 sym4 bior4.4 rbio4.4 

sqre 11.019 5.9454 19.3016 14.7169 19.2868 

maxe 16.6179 15.8725 31.2209 31.4723 38.82 

seed 34 88 24 48 48 

 

FIGURE 7-13 FORECAST LLOYDS ANN WITHOUT AND WITH DB4 

The best performance achieved for RBS is with the Biorthogona wavelet, for HSBC it is 

with the Symlets wavelet and for Virgin, Lloyds and Barclays it is with Daubechie’s 

wavelet. The models deal reasonably well with the drop in price around sample 120 except 

for the Virgin model which has poor performance bias following the drop. 

7.7.  Summary 

Wavelet transform (DWT) time series analysis and decomposition has proven to provide 

significantly better performance, robustness and generalization than analysis in the time 

domain. Generally, the discrete wavelet transform improves forecasting performance, but 

the comparison with different wavelets is indecisive because there is no common choice of 

representative wavelet for the banking sector.. The broader range of wavelets could be 

explored for a better fit, but overall it seems that Daubechie’s is suitable for the sector in 

the first instance. The model is very sensitive to the neural network tuning. 
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The data for the banking sector were obtained from the following websites 

 Barclays PLC (BARC.L) 

https://uk.finance.yahoo.com/q?s=+BARC.L&ql=1 

 HSBC Holdings plc (HSBA.L) 

https://uk.finance.yahoo.com/q?s=HSBA.L&ql=1 

 The Royal Bank of Scotland Group plc (RBS.L) 

https://uk.finance.yahoo.com/q?s=RBS.L&ql=0 

 Virgin Money Holdings (UK) plc (VM.L) 

https://uk.finance.yahoo.com/q?s=VM.L&ql=0 

 LLOY.L Lloyds 

https://uk.finance.yahoo.com/q/hp?s=LLOY.L 

The following types of wavelets have been used:,  

 Biorthogonal “bior4.4” wavelet 

 Symlets “sym4” wavelet 

 Daubechies “db4” wavelet 

 Reverse Biorthogonal “rbio2.2” wavelet 
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8. Chapter 8. Particle Swarm Optimization 

8.1. Overview 

This chapter introduces the particle swarm optimization (PSO) paradigm and through the 

control theory techniques, models and analyzes its stability. A further proportional, 

derivative and integral (PID) extension of the basic algorithm is proposed. Integration with 

neural networks and a methodology of application  is proposed. 

Particle Swarm Optimization (PSO) is a stochastic optimization technique originally 

formulated by Edward and Kennedy in 1995. The algorithm is inspired by and based on the 

behaviour of swarms, such as groups of birds or fish. Despite the relative simplicity of 

individuals, swarm systems display complex behaviour. They are made up of numerous 

individuals and tend to be flexible and robust. Swarm intelligence thus provides a 

framework for the design and implementation of systems made up of many agents that are 

capable of cooperation for the solution of complex problems.  

This chapter covers the following: 

 Mathematical analysis of the PSO algorithm 

 Inertia and consolidated convergence canonical form 

 Analysis in continuous time Laplace transform 

 Analysis in the discrete domain 

 Randomization investigations  

 Boundary conditions  

 PSO with exponentially varying inertia 

 Chaotic adaptive PSO using logistics and Gauss map 

 Particle swarm optimization PID extension  

 PSO and neural networks 
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8.2. Introduction 

The PSO idea has expanded to become a common heuristic optimization algorithm with 

many interpretations of its concepts, issues, and applications. One common feature of 

heuristic approaches is that they use probabilistic rules to find the global optimal solution 

and may prove to be very effective in solving problems without modifying the shape of 

their cost curves. Olson (2011) has presented information on particle swarm optimisation 

in a comparative study of different approaches in theory and practice. Subjects considered 

include using mono-objective or multi-objective particle swarm optimisation for the tuning 

of process control laws, convergence issues in particle swarm optimisation, and a study on 

topology problems using enhanced particle swarm optimisation. Yang, et al.  (2013) has 

reviewed the latest developments in theory and applications concerning swarm intelligence 

and bio-inspired computation and provided an overview of some of the most widely used 

bio-inspired algorithms, especially those based on swarm intelligence (SI) such as the 

cuckoo search, firefly algorithm, and particle swarm optimization. The essence of the 

algorithms and their connections to self-organization are also analyzed. Furthermore, the 

main challenging issues associated with these metaheuristic algorithms, for example the 

tuning of algorithm dependent parameters, randomization techniques and convergence, are 

considered along with significant applications and case studies such as structural 

optimization and improvement using memory-based gradients. Various opportunities and 

challenges regarding dimensionality and convergence are also discussed. Despite its 

simplicity, the large numbers of variations of the algorithm give a wide variety of choices. 

This variety makes it challenging to determine which version can be the most appropriate 

for a particular problem. Bratton et al. (2007) addressed the need for an updated definition 

and suggested extensions of the original algorithm that could improve performance. This 

represents the evolution of the original algorithm designed to take advantage of subsequent 

generally applicable improvements such as in topology, the number of particles, and 
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inertia. It can be used as a baseline test for the performance of improvements to the 

technique. 

The advantage of PSO is that it can be used in cases with non-differentiable transfer 

functions and when no gradient information is available. The disadvantages are that 

performance is not necessarily competitive for some problems, and the representation of 

weights is difficult and they have to be carefully selected or developed. Furthermore, the 

potential advantages of the swarm intelligence approach are as follows (Dehuri, 2011): 

 collective robustness, where the failure of individual components does not 

significantly hinder performance; 

 individual simplicity, in that cooperative behaviour makes it possible to reduce the 

complexity of the individuals; and  

 scalability, since the control mechanisms used are not dependent on the number of 

agents in the swarm.  

The system starts with a population of random solutions and searches for optima by 

updating generations. The particles in the swarm are defined with their corresponding 

parameters. All particles have fitness values which are evaluated by the fitness function to 

be optimized, and have velocities which direct the flight of the particles. The particles float 

through the solution space by following the current personal and global optimum particles. 

The PSO algorithm begins with a random population, and random values of parameters. 

Each particle moves around in the cost solution space. The particles update the change in 

their position parameters, which are termed velocity (vel) and position (par) by referring to 

the local (pBest) and global best common minima (gBest) of the cost function.  

The pseudo-code of the procedure is as follows: 

Initialize the swarm particles 

While maximum iterations or minimum error criteria is not attained 

For each particle 
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Randomly change particle position (vel) 

Calculate fitness value 

Check and update the personal best pBest (p) 

Check and update the global best gBest (g) 

Calculate particle velocity 

Update particle position 

End 

End 

After finding the two best values, the particle updates its velocity and positions using the 

following equation: 

௧ାଵݒ = ݓ  ∗ ௧ݒ +  ܿଵ ∗ ଵݎ ∗ ݌) − (௧ݔ + ܿଶ ∗ ଶݎ ∗ (݃ −  ௧)         (8-1)ݔ

௧ାଵݔ = ௧ݔ +  ௧ାଵ, updates particle position      (8-2)ݒ

where, 

v is velocity 

x is a parameter 

 ଵ are independent uniform random numbersݎ ,ଵݎ

ܿଵ is the cognitive parameter 

ܿଶ is the social parameter 

p is the local best 

g is the global best 

w is inertia 

The PSO algorithm updates the velocity vector for each particle and then adds that velocity 

to the particle position or values. Velocity updates are influenced by both the best global 

solution associated with the lowest cost ever found by a particle and the best local solution 

associated with the lowest cost in the present population (see Figure 8-1).  

If the best local solution has a cost less than the cost of the current global solution, then the 

best local solution replaces the best global solution. The particle velocity is a derivative of 
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position. The constant ܿଵ is the cognitive parameter, and the constant ܿଶ is the social 

parameter. The advantages of PSO are that it is easy to implement and there are few 

parameters to adjust (Haupt, et al., 2004). 

 

FIGURE 8-1 PSO SEARCH MODEL 

The PSO is able to resolve cost functions with many local minima. Figure shows the initial 

random swarm set moving in the parameter space. Particle swarming becomes evident as 

the generations pass to reach the global minima.  

The largest group of particles ends up close to the global minimum and the next largest 

group is near to the next lowest minimum. A few other particles are roaming the cost 

surface at some distance away from the two groups (see Figure 8-2).  

 

FIGURE 8-2 PSO SEARCH PATH 

Figure 8-3 shows plots of the local and global best values as well as the population 

average as a function of generation. The chaotic swarming process is illustrated by 
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following the path of one of the particles until it reaches the global minimum. In this 

implementation, the particles frequently bounce off the boundaries. 

 

FIGURE 8-3 PSO PERFORMANCE CHART BEST MIN, AVERAGE AND CURRENT MIN 

Das and Dehuri (2011) presented a survey of PSO for single- and multi-objective 

problems. A considerable number of algorithms have been and are being proposed for 

these problems based on either tuning or introducing various PSO parameters. The authors 

identified some application areas where PSO has clear advantages over other meta-

heuristic approaches for solving single and multi-objective optimization problems.  

8.3.  Mathematical Analysis of the PSO Algorithm 

As stated previously, the general PSO algorithm in the scalar case can be written as: 

௧ାଵݒ = ݓ  ∗ ௧ݒ +  ܿଵ ∗ ଵݎ ∗ ௧݌) − (௧ݔ + ܿଶ ∗ ଶݎ ∗ (݃௧ −  ௧)         (8-3)ݔ

௧ାଵݔ = ௧ݔ +  ௧ାଵ                    (8-4)ݒ

This can be seen as a discretization of the following continuous system: 

ௗ௫(௧)

ௗ௧
=  (5-8)          (ݐ)ݒ

ௗ௩(௧)

ௗ௧
= (ݐ)ݒݓ + ߮ଵݎଵ൫݌ − ൯(ݐ)ݔ + ߮ଶݎଶ(݃ −  (6-8)    ((ݐ)ݔ

where equations are discretised using the Euler method: 
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ௗ௫(௧)

ௗ௧
=

௫(௧ାଵ)ି௫(௧)

்
             (8-7) 

ௗ௩(௧)

ௗ௧
=

௩(௧ାଵ)ି௩(௧)

்
             (8-8) 

where T is the sampling interval. 

௧ାଵݒ = (1 + ௧ݒ(ܶݓ +  ܶ߮ଵݎଵ(݌௧ − (௧ݔ + ܶ߮ଶݎଶ(݃௧ −  ௧)    (8-9)ݔ

௧ାଵݒ = (1 + ௧ݒ(ܶݓ +  ௧        (8-10)ݑ 

where ݑ௧ = ܶ߮ଵݎଵ(݌௧ − (௧ݔ + ܶ߮ଶݎଶ(݃௧ −  ௧)         (8-11)ݔ

௧ାଵݔ = ௧ݔ +  ௧ାଵ           (8-12)ݒܶ

where (1 + (ݓܶ = ଵ߮ܶ    ,ݓ = ܿଵ     and     ܶ߮ଶ = ܿଶ 

௧ݑ = ݇ଵ(݌௧ − (௧ݔ + ݇଴(݃௧ −  ௧)          (8-13)ݔ

where ݇ଵ = ܿଵݎଵ   and  ݇଴ = ܿ଴ݎଶ 

The latter is the equation of a closed-loop feedback system with a proportional control 

term, as illustrated in Figure 8-4. 

 

FIGURE 8-4 CLOSED LOOP FEEDBACK SYSTEM PROPORTIONAL CONTROL 

Furthermore, transformations for ݔ௧ and ݌௧signals are: 

௧ݑ = ߮ଵ ∗ ଵݎ ∗ ௧݌) − (௧ݔ + ߮ଶ ∗ ଶݎ ∗ (݃௧ − ࢚࢖ + ࢚࢖ −  ௧)    (8-14)ݔ

௧ݑ = (߮ଵݎଵ + ߮ଶݎଶ) ∗ ௧݌) − (௧ݔ + ߮ଶݎଶ(݃௧ −  ௧)     (8-15)݌

௧ݑ = ݇௉(݌௧ − (௧ݔ + ݇଴(݃௧ −  ௧)       (8-16)݌

݇௉ = (߮ଵݎଵ + ߮ଶݎଶ) ܽ݊݀݇଴ = ߮ଶݎଶ       (8-17) 

This shows proportional control with a feed-forward term, as shown in Figure 8-5. 
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FIGURE 8-5 PROPORTIONAL CONTROL WITH FEED-FORWARD TERM 

8.4.  Inertia and Consolidated Convergence Canonical Form 

Bradford et al. (2011) have discussed convergence issues caused by the PSO structure, as a 

population-based swarm moving together to the optimal point. They present heuristic 

methods to address these issues in current practice and provide some optimization 

solutions, and investigate how much convergence is required, when to stop by redefining 

the search space, the local and multiple optima landscape and methods for resuming 

exploration after an optimal success. Furthermore, topics such as the control of population 

velocity and exploration are addressed. They also suggest some guidance for convergence 

if the problem landscape is unknown, where different algorithms are tried first to determine 

if the landscape is multimodal or unimodal. If the diversity is too great, then the search 

space should be tightened. Campana et al. (2010) discussed a class of unconstrained 

optimization problems where evaluation is costly and the exact algorithm is too large to 

compute. They consider the evolutionary algorithm (Kennedy, et al., 1995) and introduced 

some global convergent modifications following previous research (Lucidi, et al., 2002) 

and convergence conditions that are useful for developing and analysing new derivative-

free algorithms with guaranteed global convergence. The sequences of stationary limit 

points for the objective function, with suitable ranges of parameters, are identified to avoid 

particle trajectory divergence. Under mild assumptions, at least a sub-sequence of the 
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iterates produced by the modified PSO method, combining PSO with two derivative free 

algorithms, converges to a stationary point which is possibly a minimum point.  

The particle velocities are commonly clamped at a maximum velocity. If this is not done 

the system is prone to enter an unstable state wherein the random weighting values cause 

velocities and thus particle positions to accelerate rapidly (Bratton, et al., 2007). Shi et al. 

(1998) proposed an inertia parameter setting to try to improve convergence by reducing the 

velocity towards the end of the search, assuming that the solution is close to the optimum. 

The inertia for each iteration iter is a fraction of the maximum iterations maxiter: 

ݓ =
௠௔௫௜௧௘௥ି௜௧

௠௔௫௜௧௘௥
         (8-18) 

This would be a fraction of one and would slow down the search. Choosing a value of 

inertia greater than one could cause non-convergence, and hence requires a check for 

convergence.   

With the control theory analysis, the core criteria for convergence can be identified.  

The equation for velocity is: 

௧ାଵݒ = ݓ ∗ ௧ݒ +  ܿଵ ∗ ଵݎ ∗ ௧݌) − (௧ݔ + ܿଶ ∗ ଶݎ ∗ (݃௧ −  ௧)    (8-19)ݔ

௧ାଵݔ = ௧ݔ +  ௧ାଵ         (8-20)ݒ

This can be transformed into a canonical form: 

௧ାଵݒ = ݓ ∗ ௧ݒ +  ܿଵ ∗ ଵݎ ∗ ௧݌ − ܿଵ ∗ ଵݎ ∗ ௧ݔ  +  ܿଶ ∗ ଶݎ ∗ ݃௧ − ܿଶ ∗ ଶݎ ∗  ௧  (8-21)ݔ 

௧ାଵݒ = ݓ ∗ ௧ݒ +  ܿଵ ∗ ଵݎ ∗ ௧݌ +  ܿଶ ∗ ଶݎ ∗ ݃௧ − ( ܿଵ ∗ ଵݎ + ܿଶ ∗ (ଶݎ ∗  ௧  (8-22)ݔ

௧ାଵݒ = ݓ  ∗ ௧ݒ + ( ܿଵ ∗ ଵݎ + ܿଶ ∗ (ଶݎ ∗ ቂ
௖భ∗௥భ∗௣೟ା ௖మ∗௥మ∗௚೟

 (௖భ∗௥భା௖మ∗௥మ)
−  ௧ቃ   (8-23)ݔ 

Further substitutions are then made: 

߮ =  (ܿଵ ∗ ଵݎ + ܿଶ ∗  ଶ)          (8-24)ݎ

௧ݍ =
௖భ∗௥భ∗௣೟ା ௖మ∗௥మ∗௚೟

ఝ
        (8-25) 
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So, the canonical form is now: 

௧ାଵݒ = ݓ ∗ ௧ݒ + ߮ ∗ ௧ݍ)  ௧)       (8-26)ݔ −

௧ାଵݔ = ௧ݔ +  ௧ାଵ         (8-27)ݒ

The usual values are ߮ =  4.1 and swarm size = 20 (Clerc, et al., 2002) 

Furthermore, replacing ݁ = ݍ −  :ݔ

௧ାଵݒ = ݓ ∗ ௧ݒ + ߮ ∗ ݁௧        (8-28) 

݁௧ାଵ = ݓ− ∗ ௧ݒ + (1 − ߮) ∗ ݁௧       (8-29) 

The matrix form is then: 

ቂ
௧ାଵݒ
݁௧ାଵ

ቃ = ቂ
ݓ ߮

ݓ− 1 − ߮ቃ ቂ
௧ݒ
݁௧

ቃ = ܥ ቂ
௧ݒ
݁௧

ቃ      (8-30) 

This is a dynamic system, whose behaviour is determined by the eigenvalues of the matrix 

C. A condition of convergence is where the eigenvalues are two combined complex 

numbers of modulus less than 1 or two real numbers with absolute values less than 1. They 

are solutions to the following equation: 

ฬ
ݓ − ߣ  ߮

ݓ− 1 − ߮ − ฬߣ  = ଶߣ    + (߮ − ݓ − 1) ∗ ߣ + ݓ = 0    (8-31) 

with the discriminant: 

∆= ( ߮ − ݓ − 1)ଶ − 4 ∗  (32-8)        ݓ

Convergence means that the particle tends towards a stable position with velocity tending 

towards zero although there are no guarantees that this is the optimum (Clerc, et al., 2002). 

Furthermore, balancing of the global and local searches, known as constriction, is 

proposed. Similar to the inertia weight method, this method introduces a new parameter χ, 

known as the constriction factor. The value of߯ is derived from the existing constants in 

the velocity update equation:  

߯ =
ଶ

|ିఝିඥఝమିସఝ
, ߮ = ܿଵ + ܿଶ       (8-33) 
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It was found that, when ߮< 4, the swarm would slowly “spiral” toward and around the 

best solution found in the search space with no guarantee of convergence, while for ߮> 4 

convergence would be quick and guaranteed. Most implementations of constricted 

particle swarms use equal values for both parameters. Using the constant ߮ = 4.1 to 

ensure convergence, the values of χ ≈ 0.72984 and c1 = c2 = 2.05. This constriction 

factor is applied to the entire velocity update equation: 

௜ାଵݒ = ௜ାଵݒ)߯ + ܿଵݎଵ(݌௜ − (௜ݔ + ܿଶݎଶ(݃௜ −  ௜))     (8-34)ݔ

Swarm behaviour is eventually limited to a small area of the feasible search space 

containing the best known solution. A comparison study of constriction and inertia showed 

that the former is in fact a special case of inertia in which the values for the parameters 

have been determined analytically (Eberhart, et al., 2010). The parameter values above are 

used in most cases due to their stability (Clerc, et al., 2002). 

8.5.  Analysis in Continuous Time Laplace Transform 

The open-loop system is described by the following equations: 

ௗ௩

ௗ௧
= ݒݓ +  (35-8)          ݑ

ௗ௫మ

ௗ௧
= ݓ

ௗ௫

ௗ௧
+  (36-8)         ݑ

௧ݑ = ݇௉(݌௧ − (௧ݔ + ݇଴(݃௧ −  ௧)       (8-37)݌

The open-loop Laplace transform transfer function of the system is: 

(ݏ)ଶܺݏ = (ݏ)ܺݏݓ +  (38-8)        (ݏ)ܷ

(ݏ)ܪ =
௑(௦)

௎(௦)
=

ଵ

௦మି௪௦
=

ଵ

௦(௦ି௪)
       (8-39) 

(ݏ)ܺ =  (40-8)         (ݏ)ܷ(ݏ)ܪ

(ݏ)ܷ = ݇௉൫ܲ(ݏ) − ൯(ݏ)ܺ + ݇଴((ݏ)ܩ −  (41-8)     ((ݏ)ܲ

The close system transfer function, replacing U(s), is: 

(ݏ)ܺ = (ݏ)௉൫ܲ݇)(ݏ)ܪ − ൯(ݏ)ܺ + ݇଴((ݏ)ܩ −  (42-8)    (((ݏ)ܲ

(ݏ)ܺ = ݇௉(ݏ)ܲ(ݏ)ܪ − ݇௉(ݏ)ܺ(ݏ)ܪ + ݇଴(ݏ)ܩ(ݏ)ܪ − ݇଴(43-8)  (ݏ)ܲ(ݏ)ܪ 
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(ݏ)ܺ = Γ(ݏ)ܲ(ݏ) + Ω(ݏ)(44-8)       (ݏ)ܩ 

Γ(ݏ) =
(௞ುି௞బ)ு(௦)

ଵା௞ುு(௦)
=

(௞ುି௞బ)

௦మି௪௦ା௞ು
       (8-45) 

Ω(ݏ) =
௞బு(௦)

ଵା௞ುு(௦)
=

௞బ

௦మି௪௦ା௞ು
        (8-46) 

For a system to be stable, it is sufficient that its transfer function has no poles on the right 

semi-plane: 

ଵ,ଶݏ =
௪ା⁄ି ඥ௪మିସ௞ು

ଶ
          (8-47) 

To achieve this, ݓ ≤ 0, and for ݓ = 0 it is a stable harmonic. 

The simulation results prove that, for ݓ < 0, the solution is stable. 

 

FIGURE 8-6 STEP FUNCTION RESPONSE FOR INERTIA W=-1 AND W=-0.5 

For the case of ݓ = 0, the simulation is a harmonic oscillation. 

  

FIGURE 8-7 STEP FUNCTION RESPONSE (HARMONIC) FOR INERTIA W=0 AND KP=1 AND 2.5 

The simulation failed to find an initial stabilizing controller for the case of ݓ > 0. For the 

common practice inertia value of ݓ = 1and four different values of Kp the step function 

response is unstable, as shown in Figure 8-8. 



 

187 
 

 

 

FIGURE 8-8 STEP FUNCTION RESPONSE INERTIA W=1 AND FOUR DIFFERENT VALUES OF KP 

8.6.  Analysis in the Discrete Domain 

The PSO algorithm is generally given in the discrete domain. Consequently, the analysis in 

the discrete domain is more relevant in terms of practical implementation. For the  ݇ + 1  

iteration: 

௞ାଵݔ = ௞ݔ +  ௞ାଵ         (8-48)ݒ

௞ାଵݒ = ௞ݒݓ +  ௞         (8-49)ݑ

௞ݑ = ݇௣(݌௞ − (௞ݔ + ݇௢(݃௞ −  ௞)       (8-50)݌

The z-transform is: 

(ݖ)ܺݖ = (ݖ)ܺ +  (51-8)        (ݖ)ܸݖ

(ݖ)ܸݖ = (ݖ)ܸݓ +  (52-8)        (ݖ)ܷ
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(ݖ)ܺ = (ݖ)ܷ(ݖ)ܪ =
௭

(௭ି௪)(௭ିଵ)
 (53-8)      (ݖ)ܷ

(ݖ)ܪ =
௭

(௭ି௪)(௭ିଵ)
 is the z-transform of the open system    (8-54) 

(ݖ)ܷ = ݇௉൫ܲ(ݖ) − ൯(ݖ)ܺ + ݇଴൫(ݖ)ܩ −  ൯     (8-55)(ݖ)ܲ

(ݖ)ܺ =
(௞ುା௞బ)ு(௭)

ଵା௞ುு(௭)
(ݖ)ܲ +

௞బு(௭)

ଵା௞ುு(௭)
 (56-8)      (ݖ)ܩ

(ݖ)ܺ = Γ(ݖ)ܲ(ݖ) + Ω(ݖ)(57-8)       (ݖ)ܩ 

Γ(ݖ) =
(௞ುା௞బ)ு(௭)

ଵା௞ುு(௭)
=

(௞ುି௞బ)௭

௭మା(௞ುି௪ିଵ)௭ା௪
      (8-58) 

Ω(ݖ) =
௞బு(௭)

ଵା௞ುு(௭)
=

௞బ௭

௭మା(௞ುି௪ିଵ)௭ା௪
       (8-59) 

The poles of the closed loop system are: 

ଵ,ଶݔ =
ି௕ 

శ
ష

 √௕మିସ௔௖

ଶ௔
         (8-60) 

ଵ,ଶݖ =
ି(௞ುି௪ିଵ) 

శ
ష

 ඥ(௞ುି௪ିଵ)మିସ௪

ଶ
       (8-61) 

For stability, if w=1 and poles are in the unit circle, the conditions are as follows: 

ଵݖ =
ି(௞ುିଶ)ାඥ(௞ುିଶ)మିସ

ଶ
, −1 < ଵݖ < 1      (8-62) 

ଶݖ =
ି(௞ುିଶ)ିඥ(௞ುିଶ)మିସ

ଶ
, −1 < ଶݖ < 1      (8-63) 

8.7.  Test Functions 

In order to determine how well an optimization algorithm works, a variety of test functions 

have been used as a check. There are 16 test functions, as shown in Appendix E: Figure 1, 

Appendix E: Figure 2, Appendix E: Figure 3 and Appendix E: Figure 4. In each case a 

general form of the function is given, and its value plotted in one or two dimensions, where 

the global optimum is given in one or two dimensions. Some of the functions are 

generalizable to N dimensions. Some of the research into the development of test functions 

has been published elsewhere (Haupt, et al., 2004). 
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8.8. Randomization Investigations 

On analysing bio-inspired algorithms in more detail, the type of randomness that a 

particular algorithm is employing can be identified. For example, the simplest and yet 

often very efficient method is to introduce a random starting point for a deterministic 

algorithm. The well-known hill-climbing method with random re-start is a good example. 

It attempts to maximize (or minimize) a target function, where the parameter is a vector of 

continuous and/or discrete values. At each iteration, the hill-climbing method will adjust a 

single parameter and determine if the change improves the value of the target function. 

This differs from gradient descent methods, which adjust all of the values of parameters at 

each iteration according to the gradient of the hill. With hill climbing, any change that 

improves the target function is accepted, and the process continues until no change can be 

found which will improve the value of the target function. Then the parameters are said to 

be "locally optimal". This simple strategy is both efficient, in most cases, and easy to 

implement. 

A more elaborate way to introduce randomness into an algorithm is to use randomness 

inside its different components, and various probability distributions such as uniform, 

Gaussian, and Levy distributions can be used for randomization (Talbi, et al., 2009; Yang 

et al, 2008; Yang, et al., 2010). In essence, randomization is an efficient component of 

global search algorithms. 

Obviously, which is the best way to provide sufficient randomness without slowing down 

the convergence of an algorithm remains an open question,. In fact, the development of 

meta-heuristic algorithms is a popular research topic, with new algorithms appearing 

almost yearly, and many new techniques being explored (Yang, et al., 2008; Yang, et al., 

2010). 

The common practice is to use the rand generator with populations of continuous values in 

the range [0, 1]. This is a limitation from the random search point of view, eventually 
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limiting the search proximities. Scaling the generator output in the range [-1, 1] gives 

promising results for both convergence and proximity optimal value search, as shown in 

Figure 8-9. The search in the test case converges four times faster. Furthermore, there is 

more spread in the search, which eventually will help with the global optimum search.  For 

these reasons, it is recommended to use the [-1, 1] range, as shown in Figure 8-10. 

 

FIGURE 8-9 SEARCH DOMAIN WITH RAND [0,1] AND RAND[-1,1] 

 

FIGURE 8-10 CONVERGENCE DOMAIN RAND [0, 1] RAND [-1, 1] 



 

191 
 

8.9.  Boundary Conditions 

To avoid searching outside of the solution space of interest, various boundary conditions 

can be used to limit the parameters. Performance varies considerably depending on the 

location of the global optimum in the solution space as well. Whether or not the boundary 

particles are relocated inside the allowable solution space, the approaches used may be 

restricted or unrestricted. Furthermore, there could be different hybrid boundary 

conditions. The performance of the boundary conditions can be evaluated based on both 

mathematical benchmark functions and a real-world financial shares time series to evaluate 

the efficiency and convergence of the algorithm. The general, current understanding is that 

unrestricted boundary conditions are expected to be more efficient when the global 

optimum is inside the boundary of the solution space, and the damping boundary condition 

is more robust and consistent when the global optimum is close to the boundary (Xu, et al., 

2007). Thiem et al. (2011) investigated the effect of boundary conditions on algorithm 

performance. They described three different possible boundary conditions as introduced by 

Robinson et al. (2004): invisible, absorbing and reflecting boundaries. They compared the 

performance of different variants for a set of continuous benchmark functions, 

concentrating on the mean value and as small as possible a best-so-far value. Their 

conclusions on the influence of heuristic and boundary conditions are for the Levy, 

Rastrigin and Rosenbrock function. The invisible boundary is used as a base-line for the 

experiments. The absorbing boundary sporadically and ambiguously improves 

performance, so decisions about its use should be taken in connection with the particular 

application. The reflecting boundary is most likely to lead to bad convergence due to re-

setting the velocity of the particle. Furthermore, an initial velocity restriction of 10% and 

maximum velocity of one-eighth of the search space domain range and a minimum 

velocity of 0.01 give a minor improvement in performance. These results have generally 

been confirmed in financial time series forecasting. 
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FIGURE 8-11 RESTRICTED AND UNRESTRICTED SEARCH (XU, ET AL., 2007) 

The search process is illustrated in Figure 8-11. On the left, the restricted search is shown 

and on the right unrestricted search. In restricted or absorbing search, when a particle goes 

outside the allowable solution space in one of the dimensions, it is limited to the boundary 

of the solution space in that dimension, and the velocity component in that dimension is 

zeroed. It seems as if the energy of the particle trying to escape the solution space is 

absorbed by a soft wall so that the particle is stuck to it, and that particle will eventually be 

pulled back by its memory of best locations only. 

Restricted search results are as shown in Figure 8-12: 

iter                     global best par                   global cost 

[30]         [ x1=-14.7918, x2=-20.0000]       [-23.7849] 

Figure 8-13 shows the performance of the unrestricted search algorithm. A particle is 

allowed to stay outside the solution space; however, the fitness evaluation of that position 

is skipped and a bad fitness value is assigned to it. Therefore, the attraction of personal and 

global best locations will counteract the particle’s momentum and eventually drag it back 

inside the solution space. 
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FIGURE 8-12 RESTRICTED SEARCH ALGORITHM PERFORMANCE 

Unrestricted search results are as shown in Figure 8-13: 

Iter  globalpar globalcost 

[30]  [ x1=-31.1643,   x2=10.4176]    [ -40.9512] 

 

FIGURE 8-13 UNRESTRICTED SEARCH ALGORITHM PERFORMANCE 

8.10.  PSO with Exponentially Varying Inertia 

Among the population-based algorithms, PSO and its variants have been popular heuristic 

algorithms and have great potential for solving highly complex non-linear optimization 

problems. Compared to other optimization methods, PSO exhibits fast convergence 

characteristics. Wang et al. (1992) proposed a decomposition approach to solve non-linear 

scheduling problems using expert systems with constraints. Jayabarathi et al. (2000) used 

evolutionary programming, and Manoharan et al. (2005) proposed an evolutionary 
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programming approach for multiple options. Recently, Lingfeng et al. (2009) proposed an 

enhanced PSO approach with local search. Manisha et al. (2011) proposed differential 

evolution enhanced with time-varying mutation with reserve constraints. One common 

feature of all these methods is that they use probabilistic rules to find the global optimal 

solution and may prove to be very effective algorithms in solving problems without 

modifying the shape of their cost curves.  

However, the performance of the traditional PSO depends greatly on its parameters and it 

often suffers from the phenomenon of premature convergence, as well as lacking 

mechanisms to deal with various constraints. In order to address these drawbacks, an 

exponentially varying inertia weight factor (EVIWF) algorithm is introduced into the PSO 

algorithm to improve its convergence and performance (Rani, et al., 2014). This choice is 

encouraged by the overall good performance of this method as reported by several 

researchers (Ting, et al., 2012). 

8.10.1 Mathematical Formulation 

The EVIWF method combines an exponentially varying inertia weight factor w with 

traditional PSO to perform global exploration. The first part of the following equation 

represents the influence of previous velocity, which provides the necessary momentum for 

particles to roam across the search space:  

௜ݒ
௜௧௘௥ = ௜ݒݓ

௜௧௘௥ + ܿଵݎଵ൫ ௜ܲ − ௜ݔ
௜௧௘௥൯ + ܿଶݎଶ(ܩ௜ − ௜ݔ

௜௧௘௥)    (8-64) 

where v is the velocity, x is parameter,ݎଵ, ݎଵare independent uniform random numbers, ܿଵ is 

the cognitive parameter, ܿଶ is the social parameter, P is the local best, G is the global best 

and w is inertia. 

The inertia weight w is the modulus that controls the impact of the previous velocity on the 

current velocity. So, the balance between exploration and exploitation in PSO is dictated 

by the value of w. Thus, proper control of the inertia weight is very important in finding 

the optimal solution accurately and efficiently (Al-Sumait, et al., 2008). A larger inertia 
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weight causes a tendency towards global exploration, whereas a smaller inertia weight 

leads toward the fine-tuning of the current search area. Shi et al  (1999) significantly 

improved the performance of PSO with a linearly varying inertia weight over the 

generations, varying from 0.9 at the beginning of the search to 0.4 at the end. To achieve a 

trade-off between exploration and exploitation, ݓ varies exponentially in response to the 

objective values of the particles. In particular, the EVIWF is determined as follows: 

௜௧௘௥ݓ = ௠௔௫ݓ − ௠௔௫ݓ) − ௠௜௡)(1ݓ −  (65-8)      (ܭ

ܭ = ݁
ି௔బ∗

೔೟೐ೝ
೔೟೐ೝ೘ೌೣ         (8-66) 

where ݓ௠௔௫ and ݓ௠௜௡ are maximum and minimum inertia weight factors respectively, and 

ܽ଴ is the convergence factor. 

8.10.2 Implementation of the Proposed Algorithm 

The proposed algorithm is implemented as follows: 

Step 1: Specify the lower and upper bounds of the parameter limits. 

Step 2: Generate particles randomly between the maximum and minimum. 

Step 3: Calculate ݓ௜௧௘௥ with the EVIWF formula defined above. 

Step 4: Generate particle velocity in the range [ݒ௜
௠௜௡ , ௜ݒ

௠௔௫]. 

௜ݒ
௠௔௫ =

௫೔
೘೔೙ି௫೔

೘ೌೣ

ோ
         (8-67) 

௜ݒ
௠௜௡ = ௜ݒ−

௠௔௫         (8-68) 

where R is percentage change for the population or 'step size'. 

Step 5: Update the velocity for each particle 

Step 6: After updating the velocity, an individual velocity may violate its velocity 

maximum or minimum constraints. This violation is corrected as follows: 

௜ݒ
௜௧௘௥ାଵ > ௜ݒ

௠௔௫ , ℎ݁݊ݐ ௜
௜௧௘௥ା = ௜ݒ

௠௔௫      (8-69) 

௜ݒ
௜௧௘௥ାଵ < ௜ݒ

௠௜௡ , ℎ݁݊ݐ ௜
௜௧௘௥ାଵ = ௜ݒ

௠௜௡      (8-70) 

Step 7: Update the position. 
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Step 8: Check the position and adjust to its maximum and minimum limits. 

Step 9: Evaluate the fitness of each individual according to the cost function.  

Step 10: If the evaluation of the value of the individual is better than the previous, the 

current value is to be set to P best. If the best is better than the global best, it becomes the 

value set to be the G best. 

Step 11: If the criteria to stop are met, then go to step 12, otherwise go to step 3. 

Step 12: The individual that generates the latest G best is the optimal final solution. 

8.10.3 Conclusions 

The effectiveness of the proposed algorithm has been compared with the results obtained 

from conventional PSO and verified with conventional test bench functions, multi-area 

economic dispatch and an banking sector financial share prices time series regression 

model. Experiments and simulation results show that the PSO-EVIWF achieves high-

quality solutions and smooth convergence characteristics and it can be considered an 

alternative method for solving optimization and forecasting problems. 

8.11.  Chaotic Adaptive PSO Using Logistics and Gauss Map 

Many modern stochastic search algorithms such as evolutionary programming methods, 

Particle Swarm Optimisation (PSO), genetic algorithms and firefly algorithms may prove 

to be very effective optimisation techniques (Happ, 1997). One common feature of all 

these methods is that they use probabilistic rules to update the particle positions and 

velocity in the solution space. In the past decade, the cubic cost function has captured the 

attention of several researchers. Kumaran et al  (2001) solved the cost function problem by 

using a genetic algorithm. Adhinarayanan et al  (2006) proposed a non-iterative logic based 

algorithm, and Al-Sumait et al. (2008) have implemented a pattern search algorithm. 

Among the above population-based algorithms, PSO is one of the modern heuristic 

algorithms and has great potential to solve highly complex non-linear optimisation 

problems. Compared to other optimisation methods, PSO has fast convergence 
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characteristics. However, the performance of the traditional PSO greatly depends on its 

parameters and it often suffers from the phenomenon of premature convergence as well as 

lacking a mechanism to deal with various constraints in various problems. In order to 

address the above-mentioned drawbacks, the CAPSO algorithm is proposed, which 

incorporates a chaotic local search (CLS) operator and adaptive inertia weight factor 

(AIWF) to find an optimal solution and avoid premature convergence (Rani, et al., 2014). 

The basic strategy is to combine PSO with AIWF and CLS, in which PSO with AIWF is 

applied to perform global exploration and CLS is used to find the optimal solution 

(exploitation). Logistics and Gauss mapping techniques are used in performing CLS. This 

choice is encouraged by the good overall performance of this method reported by several 

researchers (Chuanwen, et al., 2011). Moreover, the method has not been used before in 

the context of solving financial share prices forecasting problems. 

8.11.1 Mathematical Formulation 

For the Adaptive Inertia Weight Factor (AIWF), the first part of the following equation for 

௜ݒ
௜௧௘௥ାଵ represents the influence of previous velocity: 

௜ݒ
௜௧௘௥ା = ௜ݒݓ

௜௧௘௥ + ܿଵݎଵ൫ ௕ܲ௘௦௧ − ௜ݔ
௜௧௘௥൯ + ܿଶݎଶ(ܩ௕௘௦௧ − ௜ݔ

௜௧௘௥)   (8-71) 

This provides the necessary momentum for particles to roam across the search space. The 

inertia weight w is the modulus that controls the impact of the previous velocity on the 

current velocity. So, the balance between exploration and exploitation in PSO is dictated 

by the value of w. Thus, proper control of the inertia weight is very important to find the 

optimum solution accurately and efficiently (Cai, et al., 2007). 

It is clear that a larger inertia weight pursues towards global exploration, whereas a smaller 

inertia weight pursues toward the fine-tuning of the current search area. Niknam  (2010) 

made a significant improvement in the performance of PSO with a linearly varying inertia 

weight over the generations from 0.9 at the beginning of the search to 0.4 at the end. To 

achieve a trade-off between exploration and exploitation, ݓ௜௧௘௥is varied adaptively in 
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response to the objective values of the particles. In particular, the AIWF is determined as 

follows: 

௜௧௘௥ݓ = ௠௔௫ݓ − ௠௔௫ݓ) − ௠௜௡)(1ݓ −  (72-8)      (ܭ

ܭ = ݁
ି(ீ್೐ೞ೟ା ೔೟೐ೝ

೔೟೐ೝ೘ೌೣ
)
         (8-73) 

where, ݓ௠௔௫ and ݓ௠௜௡ are maximum and minimum inertia weight factors respectively. 

In Chaotic Local Search (CLS), in order to enrich the searching behaviour and to avoid 

being trapped in local optima, chaotic dynamics are incorporated into the PSO with AIWF. 

Many types of chaotic mapping exist with different dimensions, such as logistics, 

Gaussian, tent and quadratic mapping. Here, the well-known logistic and Gaussian 

equations are considered. 

The logistic equation in the CAPSO-logistics method exhibits sensitive dependence on 

initial conditions, and is introduced in the process of chaotic local search as defined by the 

following equation: 

௜ݔܿ
௜௧௘௥ାଵ = ௜ݔܿߪ

௜௧௘௥(1 − ௜ݔܿ
௜௧௘௥)       (8-74) 

Obviously, ܿݔ௜
௜௧௘௥  is distributed in the interval [0, 1]. Although this equation is 

deterministic, it exhibits chaotic dynamics when ߪ = 4.  

The CAPSO-Gauss method is used to analyse the influence of the chaotic mapping 

technique on the convergence of the algorithm. To make the comparison meaningful, 

Gaussian mapping is used as defined by the following equation: 

௜ݔܿ
௜௧௘௥ାଵ = ݁ିఈ௖௫೔

೔೟೐ೝమ

+  (8-75)        ߚ

Here, ܿݔ௜ denotes the ݅௧௛ chaotic variable, iter represents the iteration number, ߪ is the 

control parameter and ߙ and ߚ are real parameters. Normally the value of ߙ ranges from 4 

to 6.5 and that of ߚ from -1 to 1. 
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8.11.2 Implementation Procedure for CLS 

CLS is implemented as follows: 

Step 1: Set iter =0 and mapping the decision variables ݔ௜
௜௧௘௥, ݅ = 1,2,3, . . ݊ among the 

intervals ൫ݔ௜
௠௜௡ , ௜ݔ

௠௔௫൯, ݅ = 1,2,3, . . ݊ to the chaotic variables  ܿݔ௜
௜௧௘௥ାଵ, located in 

the interval [0, 1] using the following equation: 

௜ݔܿ
௜௧௘௥ =

௫೔
೔೟೐ೝି௫೔

೘೔೙

௫೔
೘ೌೣି௫೔

೘೔೙         (8-76) 

Step 2: Determine the chaotic variable ܿݔ௜
௜௧௘௥ା  for the next iteration using the Logistics or 

Gaussian equation according to ܿݔ௜
௜௧௘௥.  

Step 3: Convert chaotic ܿݔ௜
௜௧௘  variables into the decision variable using the following 

equation: 

௜ݔ
௜௧௘௥ାଵ = ௜ݔ

௠௜௡ + ௜ݔܿ
௜௧௘௥ା ௜ݔ)

௠௔௫ − ௜ݔ
௠௜௡)      (8-77) 

Step 4: Evaluate the new solution with decision variables ݔ௜
௜௧௘௥ା  for ݅ = 1,2,3, … , ݊. 

Step 5: If the new solution is better than ݔ௜
௜௧௘௥ାଵ then the predicted maximum iteration is 

reached, and output the new solution as the result of the CLS; otherwise let 

ݎ݁ݐ݅ = ݎ݁ݐ݅ + 1 and go to Step 2.       (8-78) 

A chaotic local search operator is introduced in the proposed algorithm to avoid premature 

convergence. The basic strategy of the proposed algorithm is to combine PSO with an 

adaptive inertia weight factor and chaotic local search. Logistics and Gaussian mapping 

techniques are used in performing chaotic local search and the results are compared. The 

applicability and high feasibility of the proposed method is validated on a standard 

function test bench and in financial share price forecasting. The numerical results show 

that the proposed method can obtain quality solutions for an optimal cost function and 

shows excellent convergence characteristics. Hence, the proposed algorithm is competitive 

with other algorithms in terms of its overall performance. 
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8.11.3 Conclusions 

The applicability and high feasibility of the proposed method is validated with a cubic cost 

function, in forecasting with a financial time series, and with test bench functions. The 

numerical simulation results show that the proposed algorithm is capable of giving higher 

quality solutions and shows excellent convergence characteristics. Hence, the proposed 

algorithm is competitive with other algorithms in terms of its overall performance.  

8.12.  Particle Swarm Optimization PID Extension 

The traditional PSO algorithm is a closed-loop second order system with a proportional 

controller term calculating the velocity gain/change of the parameters using the 

proportional "error" difference between the best local and best global values as shown in 

Figure 8-14. It limits the search and, in principle, reaches a stable solution which is offset 

from the eventual optima. A natural extension of PSO consists of implementing a 

proportional, integral and derivative (PID) controller. Integration of the accumulated 

previous errors and error derivatives could improve performance, and these can be utilized 

with the integral and derivative gain parts of the PID controller.  

 

FIGURE 8-14 PSO PID MODEL 

It is therefore not surprising that a numbers of research studies have attempted to improve 

the performance of the algorithm as well as to find possible extensions. Most research 

related to the improvement of PSO is generally concerned with the choice of parameters, 

rapidity of convergence and stability of the extended algorithm. Indeed Van den Bergh et 
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al  (2006) described various methods of choosing parameters and presented a convergence 

stability analysis for each particle. Kadirkamanathan et al. (2006) provided sufficient 

conditions for asymptotic stability using tools developed from control theory; namely, 

passivity and a Lyapunov-based approach. However, these conditions are conservative in 

the sense that violation of the latter does not necessarily imply instability.  

Here, a mathematical control theory analysis of the PSO algorithm is used from a system 

point of view in both a continuous-time and discrete-time setting to present a stability 

analysis of the PSO algorithm (Busawon, et al., 2016). It is shown that the evolution of a 

particle is governed by a closed-loop system subjected to a proportional control law 

together with a feed-forward control term. This observation leads the proposal of a further 

extension of the PSO algorithm by employing other control laws; namely, a PID 

(proportional, integral and derivative) controller and methods to choose the parameters of 

the algorithm. The analysis is carried out in the scalar case only in order to simplify the 

demonstration. Methods for choosing the parameters of the proposed extended algorithm, 

such as those presented by the Routh-Hurwitz theorem (Routh, 1877, Hurwitz, 1895), are 

discussed. Finally, the results obtained are applied and compared to those of traditional 

PSO via a typical financial share price time series forecast. 

During the main loop of the algorithm, the velocities and positions of the particles are 

iteratively updated until a stopping criterion is met. The updating rules are given as 

follows: 

݊)௜ݔ + 1) = (݊)௜ݔ + ݊)௜ݒ + 1)       (8-79) 

݊)௜ݒ + 1) = (݊)௜ݒݓ + ܿଵݎଵ(݌௜(݊) − ((݊)௜ݔ + ܿଶݎଶ(݃௜(݊) −  ௜(݊))  (8-80)ݔ

where ݓ is a parameter called the inertia weight, ܿଵ and ܿଶ are two parameters called 

acceleration coefficients, and ݎଵ and ݎଶ are two N-dimensional diagonal matrices in which 

the entries in the main diagonal are random numbers uniformly distributed in the interval 

[0, 1]. At each iteration, these matrices are regenerated. The vector ݌௜(݊) is referred to as 
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the local best. The vector ݃௜(݊) is referred to as the neighbourhood best or global best, and 

this is the best position ever found by any particle in the neighbourhood of particle ݔ௜. If 

the values of ݓ, ܿଵ and ܿଶ are properly chosen, it is guaranteed that the particles’ velocities 

will not increase to infinity. It should be noted that, to date, no clear procedure or method 

has been proposed to choose such values appropriately. 

The system can be rewritten as: 

݊)௜ݔ + 1) = (݊)௜ݔ + ݊)௜ݒ + 1)       (8-81) 

݊)௜ݒ + 1) = (݊)௜ݒݓ + ݊)௜ݑ + 1)       (8-82) 

with  

(݊)௜ݑ = ܿଵݎଵ(݌௜(݊) − ((݊)௜ݔ + ܿଶݎଶ(݃௜(݊) −  ௜(݊))    (8-83)ݔ

One can easily show that: 

௜ݑ = ݇଴(݃௜(݊) − ((݊)௜݌ + ݇௉(݌௜(݊) −  ௜(݊))     (8-84)ݔ

where 

݇௉ = ܿଵݎଵ + ܿଶݎଶ, and ݇଴ = ܿଶݎଶ       (8-85) 

The function ݑ௜(݊) can be seen as a control input to the system. Therefore, from a control 

point of view, the evolution of a particle, ݔ௜, is governed by the above closed loop system 

where ݑ௜(݊)  is viewed as the feedback control. The control ݑ௜(݊)  is nothing more than a 

proportional control component together with a feed-forward term, ݇଴(݃௜(݊) −  ((݊)௜݌

with reference input ݌௜(݊). Consequently, it is possible to extend the above PSO algorithm 

by employing other control terms in the algorithm; in effect, extending the traditional PSO 

algorithm by replacing the proportional term ݇௉(݌௜(݊) −  ௜(݊)  by a PIDݑ ௜(݊) inݔ

controller. This allows approaches to be proposed to choose the parameters of the 

algorithm. 

The PID controller is used in a closed-loop unity feedback system. The error denotes the 

difference between the current particle parameter difference and the local best error, which 

is sent to the PSO algorithm; that is, the PID controller. The velocity of the control signal 
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from the controller to the regression system is equal to the proportional gain (ܭ௉) times the 

magnitude of the error plus the integral gain (ܭூ ) times the integral of the error plus the 

derivative gain (ܭ஽) times the derivative of the error: 

ݑ = ௉ܭ ∗ ݁ + ூܭ ∗ ׬ ݁ ∗ ݐ݀ + ஽ܭ ∗
ௗ௘

ௗ௧
      (8-86) 

8.12.1 Mathematical Analysis 

A mathematical analysis of the PSO algorithm is conducted from a system point of view in 

both a continuous-time and discrete-time setting in order to provide a stability analysis of 

the PSO and to justify the choice of the parameters currently employed for the algorithm. 

The PID Laplace transfer function is: 

(ݏ)ܦܫܲ = ௉ܭ +
௄಺

௦
஽ܭ + =

௄ವ∗௦మା௄೛∗௦ା௄಺

௦
      (8-87) 

The algorithm could be extended, including in (ݐ)ݑ, with the integral and derivative terms: 

(ݐ)ݑ = ݇଴(݌௧ − ݃௧) + ݇௉(݌௧ − (௧ݔ + ݇ூ ׬ ௧݌) − ݐ݀(௧ݔ
௧

଴ + ݇஽
ௗ

ௗ௧
௧݌) −  ௧)  (8-88)ݔ

(ݏ)ܷ = ݇଴൫ܲ(ݏ) − ൯(ݏ)ܩ + ቀ݇௣ + ݇ூ
ଵ

௦
+ ݇஽ݏቁ ൫ܲ(ݏ) −  ൯   (8-89)(ݏ)ܺ

(ݏ)ܺ =  (90-8)         (ݏ)ܷ(ݏ)ܪ

(ݏ)ܪ =
ଵ

௦(௦ି௪)
          (8-91) 

(ݏ)ܺ =
ଵ

௦(௦ି௪)
∗ (݇଴൫(ݏ)ܩ − ൯(ݏ)ܲ + ቀ݇௣ + ݇ூ

ଵ

௦
+ ݇஽ݏቁ ൫ܲ(ݏ) −  ൯    (8-92)(ݏ)ܺ

(ݏ)ܺ =
௞ವ௦మା൫௞೛ି௞బ൯௦ା௞಺

(௦యା(௞ವି௪)௦మା௞೛௦ା௞಺)
(ݏ)ܲ +

௦௞బ

(௦యା(௞ವି௪)௦మା௞೛௦ା௞಺)
 (93-8)   (ݏ)ܩ

(ݏ)ܺ = Γ(ݏ)ܲ(ݏ) + Ω(ݏ)(94-8)       (ݏ)ܩ 

Γ(ݏ) =
௞ವ௦మା൫௞೛ି௞బ൯௦ା௞಺

(௦యା(௞ವି௪)௦మା௞೛௦ା௞಺)
        (8-95) 

Ω(ݏ) =
௦௞బ

(௦యା(௞ವି௪)௦మା௞೛௦ା௞಺)
        (8-96) 

In the case of the P controller already derived: 

(ݏ)ܺ =
௞ುି௞బ

௦మି௪௦ା௞ು
 (97-8)        (ݏ)ܲ

In the case of the PI controller: 
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(ݏ)ܺ =
൫௞೛ି௞బ൯௦ା௞಺

(௦యି௪௦మା௞೛௦ା௞಺)
 (98-8)        (ݏ)ܲ

According to the Routh-Hurwitz criterion, the above transfer function is stable if ݇ூ > 0, 

݇஽ > and ݇௉ ݓ >
௞಺

௞ವି௪
 .  

Assuming that ݎ௜ = 1 then: 

݇଴ = ܿ଴ݎ଴ = ܿ଴         (8-99) 

݇ଵ = [݇௉ + ݇ூ + ݇஽] = ܿଵݎଵ + ܿଶݎଶ + ܿଷݎଷ = ܿଵ + ܿଶ + ܿଷ    (8-100) 

݇ଶ = [݇௉ + 2݇஽] = ܿଵݎଵ + ܿଷݎଷ = ܿଵ + ܿଷ      (8-101) 

݇ଷ = ݇஽ = ܿଷݎଷ = ܿଷ         (8-102) 

ܿଵ >
௖మ

௖యି௪
 , ܿଶ > 0 ܽ݊݀ܿଷ >  (103-8)       ݓ

A more precise method of choosing the parameters would be to use the Kharitonov 

theorem (Kharitonov, 1996) on an interval polynomial. Consider the characteristic 

polynomial: 

(ݏ)݌ = ଷݏ + (݇஽ − ଶݏ(ݓ + ݇௉ݏ + ݇ூ      (8-104) 

(ݏ)݌ = ܽଷݏଷ + ܽଶݏଶ + ܽଵݏ + ܽ଴       (8-105) 

The stability of (ݏ)݌ is defined as follows: 

(ݏ)ଵ݌ = (ܿଷ − ଶݏ(ݓ +  ଷ        (8-106)ݏ

(ݏ)ଶ݌ = ܿଶ + ܿଵݏ +  ଶ        (8-107)ݏ

(ݏ)ଷ݌ = ܿଵݏ + (ܿଷ − ଶݏ(ݓ +  ଷ       (8-108)ݏ

(ݏ)ସ݌ = ܿଶ +  ଷ         (8-109)ݏ

Thereforeܿଶ > 0, ܿଷ > ଵܿ݀݊ܽݓ >
௖మ

ఌ
> 0, and this agrees with the results of Routh-

Hurwitz. 

Another direct method to find the parameters ܿ௜ is to fix the poles of the characteristic 

polynomial and then to find the values of ܿ௜ by identification. 

Simulations confirming the analytical findings are shown below. 
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For ݓ < 0 with the PI controllers, the simulation solution is stable. For ݓ = −0.5 the 

result is shown in Figure 8-15. 

 

FIGURE 8-15 SIMULATION OF PI CONTROLLER AND W = -0.5 

For ݓ = 1  with the PI controller, the simulation failed to find a stable solution and is 

shown in Figure 8-16. 

 

FIGURE 8-16 SIMULATION OF PI CONTROLLER AND W=1 

With the addition of  derivative components in the closed-loop second system controller 

(PID) and for ݓ = 1, the simulation found a stable system solution as shown in Figure 

8-17 which confirms the Routh-Hurwitz criterion and the Kharitonov theorem stable 

system solution conditions. 

 

FIGURE 8-17 SIMULATION PID CONTROLLER AND W = 1 
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With the PID controller and for ݓ = 0, the simulation found a stable system solution as 

shown in Figure 8-18. 

 

FIGURE 8-18 SIMULATION AND W = 0.0 

With the PID controller and for ݓ = −0.5, the simulation found a stable system solution as 

shown in Figure 8-19. 

 

FIGURE 8-19 SIMULATION PID CONTROLLER AND W = -0.5 

To have a stable system for the P and PI controllers, the inertia ݓ should be < 0.0. 

Generally, finding a stable system solution and excellent system response characteristics 

for the common case of ݓ = 1.0 is straightforward, and an example of the performance 

and robustness of PID for PSO is shown in Figure 8-20. 

 

FIGURE 8-20 PERFORMANCE AND ROBUSTNESS OF PID FOR PSO AND W< 0.0 
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8.12.2 Tuning of the PID Controller 

Dynamic system behaviour and convergence is examined next and is defined with the 

system step input signal response. An initial set of the parameters of the PID controller 

used for the PSO algorithm is derived using the Ziegler-Nichols method (Zhong, 2006). 

The PID controller can be tuned without an extensive background in control theory. This is 

not the case with  many other modern controllers that are much more complex but often 

provide only marginal improvements. In fact, most PID controllers are tuned per individual 

case. However, the lengthy calculations for an initial guess at PID parameters can often be 

bypassed by using a few tuning rules. This is especially useful when the system is 

unknown. The four most important major characteristics of the closed-loop step response 

are as follows: 

1. Rise time: the time it takes for the system output y to rise beyond 90% of the 

desired level for the first time. 

2. Overshoot: how much the peak level is higher than the steady state, normalized 

against the steady state. 

3. Settling time: the time it takes for the system to converge to its steady state. 

4. Steady-state error (SSE): the difference between the steady-state output and the 

desired output. 

The effects of increasing each of the PID controller parameters ܭ௉, ܭூand ܭ஽ are 

summarized below in Table 8-1. 

TABLE 8-1 PID CONTROLLER PARAMETERS TUNING GUIDANCE 

Response Rise time Overshoot Settling time S-S error 

 ௉ Decrease Increase - Decreaseܭ

 ூ Decrease Increase Increase Eliminateܭ

 - ஽ - Decrease Decreaseܭ

Typical steps in designing a PID controller are as follows: 
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1. Determine what characteristics of the system need to be improved. 

2. Tune ܭ௉ to reduce the rise time. 

3. Tune ܭூ to reduce the overshoot and settling time. 

4. Tune ܭ஽ to eliminate steady-state error. 

The initial parameters can be found by using the rules proposed by Ziegler and Nichols for 

determining the values of ܭ௉,ܭூ, and ܭ஽, based on the transient step response of the 

system. The Ziegler-Nichols method applies to systems whose unit-step responses 

resemble an S-shaped curve with no overshoot as shown in Figure 8-21. 

 

FIGURE 8-21 ZIEGLER-NICHOLS PID TUNING RULES (ZHONG, 2006) 

The S-shaped reaction curve can be characterized by two constants, the delay time L and 

time constant T, which are determined by drawing a tangent line at the inflection point of 

the curve and finding the intersections of the tangent line with the time axis and the steady-

state level line. A response with an overshoot of about 25% and a good settling time can be 

used for the initial controller settings ܭ௉, ܭூ and ܭ஽ as presented below in Table 8-2. 

TABLE 8-2 INITIAL PID CONTROLLER SETTINGS (ZHONG, 2006) 

Controller ܭ௉ ܭூ ܭ஽ 

P ܶ
ܮ

 
0 0 

PI 
0.9 ∗

ܶ
ܮ

 0.27 ∗
ܶ
 ଶܮ

0 

PID 
1.2 ∗

ܶ
ܮ

 0.6 ∗
ܶ
 ଶܮ

0.6 ∗ ܶ 
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8.12.3 Discrete Domain PID 

The PSO algorithm is generally given in the discrete domain. Consequently, the analysis in 

the discrete domain is more relevant in terms of practical implementation. For the  ݇ + 1  

iteration: 

௞ାଵݔ = ௞ݔ +  ௞ାଵ         (8-110)ݒ

௞ାଵݒ = ௞ݒݓ +  ௞         (8-111)ݑ

௞ݑ = ݇௣(݌௞ − (௞ݔ + ݇௢(݃௞ −  ௞)       (8-112)݌

The z-transform is given by: 

(ݖ)ܺݖ = (ݖ)ܺ +  (113-8)        (ݖ)ܸݖ

(ݖ)ܸݖ = (ݖ)ܸݓ +  (114-8)        (ݖ)ܷ

(ݖ)ܺ = (ݖ)ܷ(ݖ)ܪ =
௭

(௭ି௪)(௭ିଵ)
 (115-8)      (ݖ)ܷ

The z-transform of the open system is: 

(ݖ)ܪ =
௭

(௭ି௪)(௭ିଵ)
         (8-116) 

(ݖ)ܷ = ݇௉൫ܲ(ݖ) − ൯(ݖ)ܺ + ݇଴൫(ݖ)ܩ −  ൯     (8-117)(ݖ)ܲ

(ݖ)ܺ =
(௞ುା௞బ)ு(௭)

ଵା௞ುு(௭)
(ݖ)ܲ +

௞బு(௭)

ଵା௞ುு(௭)
 (118-8)      (ݖ)ܩ

(ݖ)ܺ = Γ(ݖ)ܲ(ݖ) + Ω(ݖ)(119-8)       (ݖ)ܩ 

Γ(ݖ) =
(௞ುା௞బ)ு(௭)

ଵା௞ುு(௭)
=

(௞ುି௞బ)௭

௭మା(௞ುି௪ିଵ)௭ା௪
      (8-120) 

Ω(ݖ) =
௞బு(௭)

ଵା௞ುு(௭)
=

௞బ௭

௭మା(௞ುି௪ିଵ)௭ା௪
       (8-121) 

The poles of the closed loop system are: 

ଵ,ଶݔ =
ି௕ା⁄ି √௕మିସ௔௖

ଶ௔
         (8-122) 

ଵ,ଶݖ =
ି(௞ುି௪ିଵ)ା⁄ି ඥ(௞ುି௪ିଵ)మିସ௪

ଶ
       (8-123) 

If w=1 and poles are to be in the unit circle for stability then: 
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ଵݖ =
ି(௞ುିଶ)ାඥ(௞ುିଶ)మିସ

ଶ
, −1 < ଵݖ < 1      (8-124) 

ଶݖ =
ି(௞ುିଶ)ିඥ(௞ುିଶ)మିସ

ଶ
, −1 < ଶݖ < 1      (8-125) 

The PSO algorithm could be extended by including the integral and derivative terms in 

 the discrete time domain (Basdogan, 2016), and the discrete time derivative is given ,(ݐ)ݑ

by: 

௧ݕ = ௧݂ − ௧݂ିଵ         (8-126) 

The discrete time integral (simple rectangular method) is given by: 

׬ ݐ݀(ݐ)݂ = ௧ݕ
௧

௧ିଵ ≈ ௧ିଵݕ + ௧݂       (8-127) 

The discrete transfer function z-transforms are derived as follows: 

 discrete TF of derivative: 

௧ݕ = ௧݂ − ௧݂ିଵ         (8-128) 

[ݖ]ܻ = [ݖ]ܨ − ଵିݖ ∗  (129-8)        [ݖ]ܨ

௒[௭]

ி[௭]
=

௭ିଵ

௭
          (8-130) 

 discrete TF of integral (simple rectangular method): 

௧ݕ = ௧ିଵݕ + ௧݂          (8-131) 

1)[ݖ]ܻ − (ଵିݖ =  (132-8)         [ݖ]ܨ

௒[௭]

ி[௭]
=

௭

௭ିଵ
           (8-133) 

The discrete transfer function of the PID is then given by: 

௏[௭]

ா[௭]
= ௉ܭ + ூܭ

௭

௭ିଵ
+ ஽ܭ

௭ିଵ

௭
        (8-134) 

[ݖ]ܸ
[ݖ]ܧ

=
ଶݖ)௉ܭ − (ݖ + ଶݖூܭ + ଶݖ)஽ܭ − ݖ2 + 1)

ଶݖ − ݖ
 

[ݖ]ܸ
[ݖ]ܧ

=
௉ܭ) + ூܭ + ଶݖ(஽ܭ − ௉ܭ) + ݖ(஽ܭ2 + ஽ܭ

ଶݖ − ݖ
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[ݖ]ܸ
[ݖ]ܧ

=
௉ܭ) + ூܭ + (஽ܭ − ௉ܭ) + ଵିݖ(஽ܭ2 + ଶିݖ஽ܭ

1 − ଵିݖ  

[ݖ]ܸ = [ݖ]ଵܸିݖ + [ݖ]ܧܽ + [ݖ]ܧଵିݖܾ +  (135-8)     [ݖ]ܧଶିݖܿ

Finally: 

௧ݒ = ௧ିଵݒ + ܽ ∗ ݁௧ + ܾ ∗ ݁௧ିଵ + ܿ ∗ ݁௧ିଶ      (8-136) 

ܽ = ௣ܭ) + ூܭ +  ஽)         (8-137)ܭ

ܾ = ௉ܭ)− + 2 ∗  ஽)         (8-138)ܭ

ܿ =  ஽          (8-139)ܭ

In the traditional PSO algorithm, ݇ூ = 0 and ݇஽ = 0, thus: 

݇ଵ = [݇௉ + ݇ூ + ݇஽] = ܿଵݎଵ + ܿଶݎଶ + ܿଷݎଷ = ܿଵݎଵ     (8-140) 

݇ଶ = [݇௉ + 2݇஽] = ܿଵݎଵ + ܿଷݎଷ = ܿଵݎଵ      (8-141) 

݇ଷ = ݇஽ = ܿଷݎଷ=0         (8-142) 

(ݖ)݌ = ଷݖ + (ܿଵݎଵ − ݓ − ଶݖ(2 + ݓ2) + ܿଵݎଵ + ݖ(1 −  (143-8)    ݓ

In many studies (Shi, et al., 1998, Trelea, 2003, Engelbrecht, 2007) the values of ܿଵ= 1.496 

and 0.729 = ݓ can be chosen. For these values of ܿଵ and ݓ there are two poles inside the 

unit circle of the complex plane and one on the unit circle for the worst case scenario ݎଵ= 

 .ଶ= 1. This justifies such a choice of parametersݎ

8.12.4 Simulations 

Matlab simulation code: 

% clear all; clc; close all; 

% G = z/((z-w)(z-1))= z /((z^2-(w+1)z+w)) 

w=1; 

G=tf([1 0], [1 -(w+1) w],1); 

%% 

w=1; 
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Kp=0.048752; 

Ki=0.00023405; 

Kd=0.24724; 

C=pid(Kp,Ki,Kd,0,1); 

H=1; 

T=feedback(GC,H); 

step(T) 

P controller simulation results are shown in Figure 8-22. 

  

  

FIGURE 8-22 DISCRETE PSO WITH P CONTROLLER AND W = [-0.5, -0.9, 1.0, 1.1] 

PID tool pidtool code: 

% G = z/((z-w)(z-1))= z /((z^2-(w+1)z+w)) 

w=1.0; 

G=tf([1 0], [1 -(w+1) w],1); 

pidtool(G,'pid') 

PI controller simulation results are shown in Figure 8-23. 

w=-0.5 w=-0.9 

w=1.0 w=1.1 
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FIGURE 8-23 DISCRETE PI CONTROLLER AND W = [-0.5, -0.9, 1.0, 1.1] 

PID controller simulation results are shown in Figure 8-24.

  

  

FIGURE 8-24 DISCRETE PID CONTROLLER AND W = [-0.9, -0.5,1.0, 1.1] 

The traditional PSO algorithm with the common value of w=1 is stable harmonically. 

Values of w<1 are stable but slow; for example, for w=-0.9 the response time is 32.9 sec. 

The PI algorithm generally has similar performance to that of the P algorithm. The PID 

algorithm is stable with various values of w with very good response times; for example, 

w=1.1 w=1.0 

w=-0.9 w=-0.5 

w=-0.9 w=-0.5 

w=1.0 w=1.1 
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for w=1 the response time is 7.83 sec with very good performance and robustness, as 

shown in Figure 8-25 and Table 8-3. 

 

FIGURE 8-25 PID EXTENSION ALGORITHM PERFORMANCE AND ROBUSTNESS 

TABLE 8-3 PID PERFORMANCE AND ROBUSTNESS 

w Response [s] Rise[s] Stable [s] Overshoot[%] 

-0.9 17.1 11.0 85.0 24.8 
-0.5 10.08 7.0 54.0 25.3 
1.0 7.83 4.0 40.0 26.2 
1.1 2.38 1 16.0 30.7 

 

8.12.5 Application to Financial Time Series 

Tests have been conducted with banking sector financial time series data to validate the 

feasibility and effectiveness of the proposed algorithm. The results represent the average of 

30 trials. The various parameters of the proposed method are set as follows: ܿ଴ = ܿଵ = 2;  

ܿଶ = −2ܿଷ = ݓ ,1 = 0.4. For this choice of parameters, one can check that the roots of the 

characteristic equation (ݖ)݌ all lie within the unit circle of the complex plane. The number 

of iterations used was 300. Clearly, the proposed method converged to a better solution, 

while the execution time was much lower. 

8.12.6 Conclusions 

The proposed extension of the PSO algorithm from a control system point of view has 

shown that, in the scalar case, each sub-system of the traditional PSO can be viewed as a 

closed-loop second order system controlled using a proportional controller. Consequently, 

an extension of the PSO was made by including a PID controller in the sub-system. 
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Various methods to choose the underlying tuning parameters were discussed. It was shown 

that the performance of the proposed method is better than that of traditional PSO using an 

PSO-PID with financial share price time series data. The performance of the proposed 

extended algorithms has been tested for other benchmark functions. 

8.13. Hybrid Model with PSO and Neural Networks 

Research on the integration of Artificial Neural Networks (ANNs) and Swarm Intelligence 

(SI) is promoting unified development in computational models for machine learning. 

Recently swarm intelligence methods like PSO have been successfully applied for training 

feed-forward and recurrent ANNs (Wang, et al., 2008, Kiranyaz, et al., 2009). Dehuri et al , 

2011) have reviewed recent theoretical and applied research on swarm intelligence (SI) and 

artificial neural networks. The authors discuss recent developments in swarm intelligence 

and neural networks, focusing on particle swarm optimization (PSO), ant colony 

optimization (ACO) and bee colony optimization (BCO) techniques. Artificial neural 

networks (ANNs) have the ability to learn and adapt although it is very difficult to obtain 

an optimal neural network architecture with, for example, the optimal numbers of hidden 

layers and hidden neurons in each hidden layer. They argue that the use of swarm 

intelligence will allow more robust and rapid solutions to be found. Furthermore, the 

potential of higher order neural networks and their possible integration with swarm 

intelligence is also discussed. Omkar and Senthilnath (2011) explore data mining utilizing 

neural network and swarm intelligence algorithms. These techniques have an advantage 

over conventional statistical techniques because they require no prior knowledge of the 

distribution of data. The extraction of information from a dataset is possible in the form of 

weights and rules using various neural network and swarm intelligence techniques. 

Performance analysis is based on per class and overall accuracy. Furthermore, the 

computational complexity of neural network and swarm intelligence techniques are 

evaluated. Swarm intelligence meta-heuristic methods are mainly characterized by their 

distributiveness, flexibility, capacity of interaction among simple agents, and robustness. 
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They have been successfully applied to single-objective optimization problems and have 

great potential to cope with multi-objective optimization problems, as addressed by 

Leguizamon and Coello (2011). Here, a taxonomy of the types of swarm intelligence (i.e. 

ant colony optimization) for multi-objective optimization is proposed that would be helpful 

in multi-objective optimization problems. The wavelet transform (WT) is one of the most 

frequently used signal processing techniques for the extraction of information in different 

frequency sub-bands from non-stationary signals such as time series. WT-derived features 

are used to identify the nature of the signals. Panigrahi et al. (2011) used the multi-layer 

feed -forward neural network (FNN) with both back-propagation and evolved with an 

integrated Adaptive Particle Swarm Optimization (APSO) neural network classifier and the 

assessment of classification performance compares both back-propagation and APSO-

based learning. Misra et al. (2011) presented a classifier model using a Polynomial Neural 

Network (PNN), which is a flexible neural network architecture. The number of layers in 

the PNN is not fixed in advance but is developed on the fly. Each node of the PNN realizes 

a polynomial mapping between input and output variables. An artificial neural network 

(ANN) is incorporated with PNN in order to enhance performance. A comparison of the 

performance of gradient descent and PSO training frameworks was conducted on 

benchmark databases in different domains. The simulation results of the hybrid ANN-PNN 

with PSO showed that its performance is much better in comparison to the conventional 

and gradient descent PNN models. Majhi et al. (2011) developed an efficient adaptive 

prediction model using the recently developed Differential Evolution (DE) technique. The 

forecasting model employs adaptive linear combiner architecture, neural network alike, 

and a DE-based learning rule to predict seasonally adjusted (SA) and non-seasonally 

adjusted (NSA) sales data for short and long ranges. The prediction performance of the 

proposed model was assessed through simulation and using real life data. For comparison 

purposes, the corresponding results were also obtained based on a genetic algorithm (GA), 

bacterial foraging optimization (BFO) and PSO-based forecasting models. It was observed 
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that the new DE forecasting model offered the fastest training, best prediction and the 

lowest least mean squares error after training compared to the three other evolutionary 

computing-based models.  

8.13.1 Evolutionary Neural Networks Algorithms 

Evolutionary algorithms (EAs) (Back, et al., 1993) such as PSO have been used in studies 

of optimization problem-solving, such as the optimal design of artificial neural networks 

(ANNs). As they are heuristic and stochastic based on populations made up of individuals 

with specified behaviour, they are robust and efficient at exploring an entire optimization 

space. There have been successful efforts to evolve the weights, structures, and learning 

parameters of ANNs. Yao and Liu (1997) proposed an evolutionary ANN approach called 

EPNet by using an evolutionary programming (EP) algorithm. Weights and structure are 

evolved simultaneously by using partial training, the mutation of weights and the addition 

or removal of connections or nodes. EPNet encourages smaller networks, as removals are 

attempted before additions, and a behavioural link is maintained between parents and 

offspring through partial training and node splitting. Castillo et al. (2000) proposed a 

method that attempts to search for the initial weights and hidden-layer size of multilayer 

perceptrons (MLPs). The application of the G-Prop algorithm to several real-world and 

benchmark problems showed that the MLPs which evolved are smaller and achieve better 

generalization than other perceptron training algorithms. Palmes et al. (2005) proposed a 

mutation-based genetic ANN (MGNN) algorithm. The MGNN can evolve the structure 

and weights of ANNs simultaneously. It implements a stopping criterion where 

occurrences of over-fitness are monitored through sliding-windows to avoid premature 

learning and over-learning. PSO is considered to be capable of reducing slow convergence 

speeds in training, but it is easy to get stuck in a local minimum with the BP algorithm of 

feed-forward ANNs because it does not require a gradient and differentiable information. 

Salerno (1997) used PSO to evolve the weights and bias of neurons in ANNs used to solve 

XOR problem and for parsing natural language. The results demonstrated that a PSO-based 
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ANN has better training performance and a faster convergence rate, as well as better 

predictive ability than a BP-based ANN. Juang  (2001) proposed a hybrid of GA and PSO 

(HGAPSO) for training recurrent networks. The HGAPSO used PSO to enhance the elites 

generated by GA in order to produce higher quality individuals. The performance of 

HGAPSO was compared to both GA and PSO in recurrent network design problems and 

its superiority was demonstrated. Da and Ge (2005) proposed an improved PSO-based 

ANN with simulated annealing (SA) technique, and the results showed better training and 

generalization performance than a PSO-based ANN. A hybrid of ACO and BP algorithms 

was proposed by Shi and Li (2009) to evolve NNs. The ACO-BP algorithm firstly uses the 

ACO algorithm to search for the near-optimal solution and then adopts the BP algorithm to 

find the accurate solution. It avoids being trapped in local optima and can rapidly find the 

accurate solution to accelerate its speed of evolution. Through the selection of neural 

network parameters, the solution expressed is as an adjustment of the updated neural 

network parameters. When all the particles choose the same parameters or algorithm to a 

predetermined number of cycles, then the algorithm is terminated. This approach has been 

utilized with PSO and extended further with an additional post-PSO application in the 

investigation in the present study. Karaboga et al. (2009) has introduced another technique 

for training ANNs, proposing an Artificial Bee Colony (ABC) algorithm, which has good 

exploration and exploitation capabilities in searching for the optimal weight set for training 

neural networks.  

8.13.2 Numerical Experiments 

Approaches using PSO to replace the back-propagation learning algorithm in ANNs have 

been proposed in recent years. It has been shown that PSO is a promising method for use in 

training ANNs. It is faster and gets better results in most cases. Furthermore, hybrid 

models with PSO and BPNN combinations are very promising. The selection of a fitness 

function for a regression problem such as time series financial share prices forecasting is 

the minimum square root of the model fitness error. 
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A hybrid example combining a Back Propagation Neural Network (BPNN) with PSO is 

investigated here (see Figure 8-26). The problem to be solved is the forecasting of a 

financial share price time series regression fitting function in a banking sector dataset. 

Sixteen time series datasets of fifteen consecutive closing price values (over three trading 

weeks) are the attributes (features) with a forecast target being the sixteenth day closing 

price.  A three-layer neural network is used to conduct the regression. 

 

FIGURE 8-26 HYBRID BPNN AND PSO MODEL 

There are sixteen inputs and one output. The number of hidden neurons can be changed. If 

the hidden layer has ten neurons defined with a group of weights, there will be 181 

weights, and so the particle is defined with 181 real numbers.  

The range of weights is set to [0, 1], absorbing boundaries. The algorithm is as follows: 

overlimit=par<=1; 

underlimit=par>=0; 

par=par.*overlimit+not(overlimit); 

par=par.*underlimit; 

The fitness function for the regression problem is the minimum square root of the sum of 

squared error between the forecast output of the regression model and the target next day 
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closing price for the particle. First the PSO is used to calculate the initial neural network 

weights. Next the time series are fed to the back propagation neural network. Finally PSO 

is applied to train the ANN to get the lowest fitting error possible.  

The experimental share price time series dataset is given in Appendix C: Table 26. 

Running PSO for a population of 10 with 300 iterations with a neural network of one 

hidden layer with 10 nodes, and 300 epochs gives very steady and promising results of 

training on the banking sector data as shown in Table 8-4. The results for BARC.L are 

shown in Figure 8-27, for HSBA.L are shown in Figure 8-28 and for LLOY.L are shown in 

Figure 8-29 showing extraordinary target and model likeliness overleaping graphs. 

TABLE 8-4 BPNN AND PSO FORECAST PERFORMANCE 

bank= BARC.L    ANN= 0.0015246   ANN&PSO= 0.00021352      improvement= 7.1402 

bank= LLOY.L    ANN= 0.0010452   ANN&PSO = 0.00011553     improvement= 9.0471 

bank= RBS.L       ANN = 0.0070449   ANN&PSO = 0.0012869       improvement= 5.4744 

bank= HSBA.L     ANN= 0.0096447    ANN&PSO = 0.0017702      improvement= 5.4483 

bank= VM. L       ANN = 0.016416       ANN&PSO = 0.0035544     improvement= 4.6186 

 

FIGURE 8-27 HYBRID BPNN AND PSO BARC.L FORECAST 

Pr
ic

e 
in

 p
en

ce
 

Time in days 



 

221 

 

FIGURE 8-28 HYBRID BPNN AND PSO FORECAST HSBA.L AND VM.L 

 

FIGURE 8-29 HYBRID BPNN AND PSO FORECAST LLOY.L AND RBS.L 

8.13.3 PSO and Neural Network Conclusions 

Recently there have been significant research efforts to apply evolutionary computation 

techniques such as PSO for the purposes of developing one or more aspects of artificial 

neural networks. Various approaches using PSO to replace the back-propagation learning 

algorithm in ANNs have been proposed in recent years. These have shown that PSO is a 

promising method in training ANNs. It is faster and gets better results in most cases. 

Further hybrid models with combinations of PSO and BPNN are very promising. These 

techniques have been applied to three main attributes of neural networks: network 

connection weights, the network topology and learning algorithms. Here the work was 

conducted on the network weight parameters.  
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The code, integrating the PSO and NN weights techniques is apparently very technically 

complex. Both the NN and PSO are very sensitive to initial state randomness (Xiaohui, 

2013). There are many parameters in PSO that need to be adjusted to get better results in 

different trials, but the main ones are the number of hidden layers and the range of the 

weights (Xiaohui, 2013). The typical number of particles is 20 – 40, but for most problems 

such as time series forecasting 10 particles is large enough to get good results. The 

dimensionality of particles is determined by the problem to be optimized, and in the case of 

neural networks the number of weight parameters massively increases. In the experiment, 

there are over 500, comprising the number of NN node weights times the number of time 

series samples. The range of particles (NN weights) is also determined by the problem to 

be optimized.  

Other performance and convergence algorithm-dependent parameters are:  

 Maximum change possible for one particle during one iteration.  

 Learning factors where usually c1 is equals to c2 and ranges from [0, 4].  

 Stop condition maximum number of iterations the PSO execute. 

 Minimum square root error requirement; for example, for ANN training in share 

price time series it is 1% of the price range. 

8.14. Summary 

The advantage of PSO is that it can be used in cases with non-differentiable transfer 

functions and when no gradient information is available. The disadvantages are that its 

performance is not necessarily competitive for some problems and the representation of the 

weights is difficult and they have to be carefully selected or developed. 

There are two key steps when applying PSO to optimization problems: the representation 

of the solution, and the fitness function. One of the advantages of PSO is that it takes real 

numbers as particles. Then a standard procedure can be used to find the optimum. 

Searching is an iterative process, and the criteria for finishing the search are that the 
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maximum iteration number is reached or the minimum error condition is satisfied. There 

can be global and local versions. The global version considers only the global best, and is 

faster but might converge to a local optimum. The local version considers both the local 

and global best, and is slower but avoids local optima. Usually the global version gives an 

approximate quick result and the local version is used for refining the search.  

However, many parameters need to be tuned, such as the dimensionality of particles, which 

is determined by the problem to be optimized. In the case of neural networks it is the 

number of weights and the inertia weight with PSO is a significant factor in convergence. 

PSO still has some limitations in mathematical analysis in terms of convergence. 

It has been shown that, in the scalar case, each subsystem of the traditional PSO can be 

viewed as a closed-loop second order system controlled using a proportional controller. A 

mathematical analysis of the PSO algorithm from a systemic point of view along with 

stability analysis was performed in continuous and discrete time domains to determine the 

choice of parameters. Consequently, a possible proportional, integral and differential (PID) 

algorithm extension was recommended including a PID controller in the subsystem. With 

the PID controller the simulation easily found a stable system solution. 

Conceptually, neural networks and PSO are different,  ANN has a memory and is  non-

linear while PSO can search for the global optimum and is linear. The interpretation of 

PSO is natural to understand , while ANN is a black box, very difficult with complex 

multilayer architectures. A hybrid example combining a neural network with PSO was 

used to investigate the forecasting of a financial shares time series regression fitting 

function with the banking sector dataset.  

These approaches have been applied and tested by a new (unique) application methodology 

developed for hybrid systems where neural network nodes are considered as particles and 

layered swarm architecture and neural network optimization are integrated. The code 

required to integrate the techniques is very technically complex. It was found that both 
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algorithms are very sensitive to initial state randomness. In the end, the efficiency of an 

algorithm may depend on its algorithm-dependent parameters, and the optimal parameter 

setting of the PSO algorithm is itself an optimization problem. 
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9. Chapter 9. CAPM and Risk Analysis 

9.1. Overview 

This chapter explains the classical capital asset pricing model (CAPM) and the related risk 

concept. 

The rate of return or change is expected to reflect and compensate for taking on risk. There 

are two types of risks associated with a share: general market risk, which is systematic; and 

specific share risk which is unsystematic. Systematic risks are those that cannot be 

diversified away, for example because of interest rates and recessions. Specific risk 

represents the component of a share's return that is not correlated with general market 

changes.  

This chapter covers the following subjects: 

 CAPM model  

 Beta as a measure of the risk  

 Beta regression calculation 

 Return on investment (ROI) 

9.2. CAPM Model 

The capital asset pricing model (CAPM) is a widely used financial theory in which a linear 

relationship is established between the return required on an investment and risk. The 

model is based on the relationship between an asset's beta, the risk-free rate (typically the 

Treasury bill rate) and the equity risk premium, which is the expected return on the market 

minus the risk-free rate. 

The derivation of the CAPM requires the following assumptions to be made: 

1. The returns from two assets are correlated with each other only because of their 

correlation with the return from the market. This is equivalent to assuming that 

there is only one factor driving return. 
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2. Investors focus on returns over a single period and that period is the same for 

all investors. 

3. All investors make the same estimates of expected returns, standard deviations 

of returns, and correlations between returns. 

The CAPM model can be written as: 

ௌݎ̅ = ௙ݎ + ௠ݎௌ൫̅ߚ −  ௙൯        (9-1)ݎ

where ̅ݎௌ is the share return, ݎ௙ is the risk-free rate, typically of a 10-year government bond 

yield, ̅ݎ௠ is the expected market return as a whole such as for a well-diversified stock index 

like the S&P 500 or FTSE-100, 250, ൫̅ݎ௠ −  ௙൯ is the equity market premium for takingݎ

risk, and ߚௌ is the beta value of the share. 

9.3. Beta Measure of Risk 

The beta is a measure of a share's risk and its relative volatility. It compares the fluctuation 

of a particular share with that of the market as a whole. If a share price follows the market, 

its beta is 1. A share with a beta of 1.5 would rise by 15% if the market rose by 10%, and 

fall by 15% if the market fell by 10%. The value of beta indicates the amount of 

compensation for the associated additional risk. Investors hold securities with betas greater 

than 1 while the market is rising, and securities with betas of less than 1 when the market is 

falling.  

Generally, beta is a fundamental trade-off between minimizing risk and maximizing return. 

Beta is a historical measure of a stock's volatility and past beta figures or historical 

volatility does not necessarily guarantee future beta values or volatility.  

Various types of beta are as follows: 

 Negative beta. A beta less than 0, which would indicate an inverse relationship to 

the market, is possible but highly unlikely. Gold and gold stocks should have 

negative betas because they tend to do better when the stock market declines. 
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 Beta of 0. Basically, cash has a beta of 0. In other words, regardless of which way 

the market moves, the value of cash remains unchanged (given no inflation).  

 Beta between 0 and 1. Companies with lower than that of the market have a beta of 

less than 1 but more than 0. Many utilities fall in this range. 

 Beta of 1. A beta of 1 represents the volatility of the given index used to represent 

the overall market, against which other stocks and their betas are measured. The 

S&P 500 is such an index. If a stock has a beta of one, it will move in the same 

amount and direction as the index. So, an index fund that mirrors the S&P 500 will 

have a beta close to 1. 

 Beta greater than 1. This denotes a volatility that is greater than the broad-based 

index. Many technology companies on the NASDAQ have a beta higher than 1. For 

the most part, stocks of well-known companies rarely have a beta higher than 4. 

The value of beta is found by statistical analysis of individual, daily share price returns in 

comparison with the market's daily returns over the same period. The beta (β) of an asset is 

a measure of the sensitivity of its returns to returns from the market. It can be estimated 

from historical data as the slope obtained when the excess return on the asset over the risk-

free rate is regressed against the excess return on the market over the risk-free rate. When 

β=0, an asset’s returns are not sensitive to returns from the market. In this case, it has no 

systematic risk and the equation shows that its expected return is the risk-free rate. 

A beta's reliability can be calculated using the coefficient of determination, or the r-

squared, to determine how well it measures risk. The range of this statistic is zero to one, 

and the closer it is to one, the more reliable the beta is. 

The index used to calculate the beta should be that of the stock market where the share is 

traded, such as in America the S&P 500 Index and in London the FTSE 100 (FTSE), 

250(FTMC) or 350(FTLC). 
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There are two ways to calculate the value of beta using either a regression technique or the 

capital asset pricing model (CAPM). Regression, as used by investment practitioners, 

allows for a better explanation of returns pertaining to the market and takes interest rates as 

well as market returns into account. The CAPM is more academic and gives a theoretical 

explanation of the overall return of an asset. 

9.4. Beta Regression Calculation 

The closing price columns in order from newest to oldest for the index and share should be 

copied into a new spreadsheet. To obtain the correct format for calculation, these prices 

must be converted into return percentages for both the index and the stock price. To do 

this, the price from yesterday is subtracted from the price from today and the answer is 

divided by yesterday’s price. The result is the percentage change. 

Beta ߚ is calculated on returns and not on prices, where “x” values are the market values 

and “y” values are the stock values: 

ߚ =  ௫         (9-2)ݎܸܽ/௫௬ݒ݋ܥ

For the calculation of beta using the CAPM model: 

ௌݎ̅ = ௙ݎ + ௠ݎௌ൫̅ߚ −  ௙൯         (9-3)ݎ

So that: 

ௌߚ =
௥̅ೄି௥೑

௥̅೘ି௥೑
          (9-4) 

where ̅ݎௌ is the share return, ݎ௙ is the risk free rate typically of a 10-year government bond 

yield, ̅ݎ௠ is the expected market return as a whole such as from a well-diversified stock 

index such as the S&P 500 or FTSE-100 or 250,൫̅ݎ௠ −  ௙൯ is the equity market premiumݎ

for taking risk and, and ߚௌ is the beta value of the share. 

On the Yahoo!! Finance website beta values can be found by entering a company name, 

then clicking on Key Statistics and looking under Stock Price History. The beta that is 
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calculated on Yahoo! compares the activity of the stock over the last five years and then 

compares it to the S&P 500. 

For a period of 15 days, BARC.L and FTSE-2500 are similar with a slight linear similarity 

trend and BARC.L second order polynomial similarity R2 beta. The similarity between the 

actual BARC.L price and the price calculated using the CAPM is relatively good at 

R2=0.45. Beta is calculated for each point (date) and further modelling could improve the 

forecasting capability. Due to the very small risk-free rate, the unsystematic risk is the 

share risk with a linear beta dependency as shown in Figure 9-1.  

9.5. Return on Investment (ROI) 

The return on investment (ROI) is calculated as follows: 

ௌܫܱܴ =  
(௥̅ೄା௉ೄ)

௉ೄ
         (9-5) 

where ̅ݎௌ is the share return, ௌܲ is the share price, ߜௌ is the rate of change (ROC), and beta 

calculations are completed as shown in  Table 9-1 and Table 9-2. 

TABLE 9-1 BETA ROI CALCULATIONS PARAMETERS 

S(BARC.L) BARC share price 

 

FTSE 250 FTSE-250 index 

BoE Bank of England (BoE) 10-y security 

Rf(BoE) BoE rate of change 

Rs (BARC) BARC.L rate of change 

 

Rm ( FTSE) Market FTSE-250 rate of change 

 

R2(Rs,Rm) Similarity BARC and FTSE rate of change 

Rs(CAPM) CAPM rate of change 

S(CAPM) CAPM calculated share price BARC 

R2(BARC,CAPM) Similarity between actual and CAPM prices 
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TABLE 9-2 BETA ROI CALCULATION RESULTS BARC.L 

Date BARC.L FTSE 250 BoE Rf(BoE) Rs (BARC) Rm ( FTSE) Beta Rs(CAPM) CAPM 

28/07/2016 146.5 17252.3 0.838 -0.071 -2.170 -0.079 1.27 -0.0808 149.63 

27/07/2016 149.75 17265.9 0.902 -0.112 0.503 1.153 1.28 1.5052 151.24 

26/07/2016 149 17069.1 1.016 0.041 -1.325 -0.128 1.34 -0.1859 150.72 

25/07/2016 151 17091 0.976 -0.002 -0.527 0.633 1.46 0.9239 153.20 

22/07/2016 151.8 16983.5 0.978 -0.018 -0.066 -0.375 1.08 -0.4016 151.29 

21/07/2016 151.9 17047.4 0.996 0.005 0.629 0.167 1.10 0.1844 151.23 

20/07/2016 150.95 17018.9 0.991 0.005 0.366 0.666 1.08 0.7218 151.49 

19/07/2016 150.4 16906.3 0.986 0.008 -0.364 0.229 1.02 0.2334 151.30 

18/07/2016 150.95 16867.7 0.978 0.008 0.768 0.839 1.09 0.9133 151.17 

15/07/2016 149.8 16727.3 0.970 0.017 1.216 -0.362 1.03 -0.3715 147.45 

14/07/2016 148 16788 0.954 0.023 1.999 0.221 1.70 0.3599 145.62 

13/07/2016 145.1 16751 0.933 -0.069 -2.322 -0.334 1.86 -0.5608 147.72 

12/07/2016 148.55 16807.1 1.001 0.077 2.166 0.603 1.86 1.0549 146.93 

11/07/2016 145.4 16706.4 0.930 -0.008 4.417 3.267 1.86 6.0697 147.70 

 

FIGURE 9-1 BETA AND R2 RESULTS BARC.L AND FTSE 
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FIGURE 9-2 CAPM AND BARC.L SHARE 

Unsystematic or total risk for a company or industry is the specific risk that is inherent in 

each investment. In Excel this is calculated using the standard deviation STDEV function 

and is shown in Table 9-3 

.H7=STDEV(B2:B10)        (9-6) 

TABLE 9-3 UNSYSTEMATIC RISK CALCULATIONS APPROACH 
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The systematic and non-systematic associated risk calculations are as follows: 

Risk_total = Risk_Systematic + Risk_Non-systematic 

Risk_Unsystematic = Beta(Risk_nmarket  –  Risk_free) 

Risk_total =  STDEV(Rs) 

Risk_Systematic =  STDEV(Rf) 

Risk_market = STDEV(Rm) 

STDEV(Rf) = 0.0486 

STDEV(Rs) = 1.7828 

STDEV(Rm) = 0.9377 

Ten year bond yield historic data is shown in Appendix C: Table 27. 

(Source: http://uk.investing.com/rates-bonds/uk-10-year-bond-yield-historical-data) 

The CAPM relates the risk of investment to the expected return. Black et al. (1972) 

confirmed a linear relationship between the financial returns of stock portfolios and their 

betas values in a study of the price movements of stocks on the New York Stock Exchange 

between 1931 and 1965 (see Figure 9-3).  

 

FIGURE 9-3 CLASSIC TEST CAPM AVERAGE MONTHLY RETURNS VS. BETA 

Eugene Fama and Kenneth French (1993) looked at share returns on the New York Stock 

Exchange, the American Stock Exchange and NASDAQ between 1963 and 1990, and 

found that differences in betas over that lengthy period did not explain the performance of 

different stocks. The linear relationship between beta and individual stock returns also 

breaks down over shorter periods. 
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9.6. Summary 

Theoretically, risk can be eventually removed to a certain degree by buying more different 

shares, although even a combination of all different shares in the stock market cannot 

eliminate all systematic risk. 

No matter how much investments are diversified, it is impossible to get rid of all risk. 

There is always the possibility that a stock will lose some or all of its value, although by 

making the right choices market volatility makes it possible to make a profit. 

With beta as a measure of volatility, shares can be chosen that meet expected criteria for 

risk. Low-risk shares have low betas such as utility stocks and treasury bills. High-risk 

shares, which eventually may yield more profit, have higher betas. 
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10. Chapter 10. Conclusions and Future Work 

10.1. Overview 

This chapter outlines the study's major conclusions and future work.  

The primary goal of the present research is to model short-term daily trading in FTSE 100 

shares to forecast with certain levels of confidence and associated risk. The hypothesis 

tested is that financial shares time series contain significant non-linearity and that ANN, 

either separately or in conjunction with PSO, could be utilised effectively.  

Investigation of the periodicity and trend lines in short- and long-term trading and models 

using an ANN with the discrete Fourier transform (DFT) and discrete Wavelet transform 

(DWT) model features performed significantly better than analysis in the time domain.  

A mathematical analysis of the PSO algorithm from a systemic point of view along with 

stability analysis was performed to determine the choice of parameters, and a possible 

proportional, integral and differential (PID) algorithm extension was recommended.  

The evaluation of statistical confidence for the models gave good results, which is 

encouraging for further experimentation considering model cross-validation for 

generalisation with an independent dataset to show how accurately the predictive models 

will perform in practice. 

This chapter covers the following: 

 Conclusions 

 Future work 

10.2. Conclusions  

The conclusions of the research are positive, with good statistical confidence encouraging 

further experimentation.  

The validation of the ANN model for share price investigations has found that non-linear 

models are likely to be a better choice than traditional linear regression for short-term 



 

236 
 

trading, and furthermore the bi-linear model outperforms the ANN. The experiments have 

been conducted with a single layer in order to compare clearly the ANN with linear 

regression models. It is expected that a multi-layer ANN would improve the results further. 

However, the interpretation of the results with the ANN model is more difficult and 

comparison with the linear model is less straightforward.  

A Particle Swarm Optimisation with an Exponentially Varying Inertia Weight Factor 

(EVIWF) algorithm has been proposed, considering constraints. The effectiveness and 

applicability of the proposed algorithm has been tested and the results are compared with 

those in the literature. It is observed from the comparison that the proposed PSO-EVIWF 

has the ability to converge to a good quality solution without any sudden oscillations, and 

it is thus proven to be a better alternative method. 

A chaotic adaptive particle swarm optimisation algorithm is proposed. A chaotic local 

search operator is introduced in the proposed algorithm to avoid premature convergence. 

The basic strategy of the proposed algorithm is to combine PSO with an adaptive inertia 

weight factor and chaotic local search. Logistics and a Gauss mapping technique are used 

in performing the chaotic local search and the results are compared. Numerical results 

show that the proposed method can obtain quality solutions for optimal cost and that it 

shows excellent convergence characteristics. Hence, the proposed algorithm is competitive 

with other algorithms in terms of its overall performance. 

An extension of the PSO algorithm from a system control point of view was also proposed. 

It has been shown that, in the scalar case, each subsystem of the traditional PSO can be 

viewed as a closed-loop second order system controlled using a proportional controller. 

Consequently, an extension of the PSO was made by including a PID controller in the 

subsystem. Various methods as to how to choose the underlying tuning parameters were 

presented. It was shown that the performance of the proposed method is better than that of 
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traditional PSO. In future work, the performance of the proposed extended algorithms will 

be tested for other benchmark functions and applications. 

Discrete Fourier Transform and Wavelet Transform time series analysis and decomposition 

for the features of the ANN forecasting model proved to perform significantly better than 

analysis in the time domain. Some periodicity was apparent in short-term and long-term 

trading. 

Decomposition of the share time series revealed trends, harmonics and seasonality in the 

banking share sector, which helps with the generalization of the model. The ANN network 

has been applied at all decomposition stages and demonstrated very good robustness and 

prediction performance. 

A hybrid example combining a Back Propagation Neural Network (BPNN) with PSO was 

used to investigate the forecasting of a financial shares time series regression fitting 

function with the banking sector dataset. Sixteen records of time series sets of fifteen 

consecutive closing price values for three trading weeks are the attributes (features), with 

the forecast target being the sixteenth day closing price.  A three-layer neural network was 

used to perform the regression. The code required to integrate the techniques is very 

technically complex. Both NN and PSO are very sensitive to initial state randomness. 

There are many parameters in PSO that need to be adjusted but the main ones are the 

number of hidden layers and the range of the weights needed to get better results in 

different trials. The typical number of particles is 20 – 40, but for a time series ten particles 

is large enough to get good results. The dimensionality of particles is determined by the 

problem to be optimized, where in the case of neural networks there is an explosion in the 

number of weight parameters to over 500 in the experiments, comprising the number of 

NN nodes times the number of the time series samples. The range of particles (NN 

weights) is also determined by the problem to be optimized. The maximum change 

possible for one particle during an iteration is typically given when the learning factor c1 is 
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equal to c2 and ranges from [0, 4] and their sum for convergence reasons is about 4. For 

the stop condition, the maximum number of iterations the PSO executed and the minimum 

error requirement was found for ANN training in share time series to be 1% of the price 

range. The code used to integrate the techniques is again very technically complex. Both 

NN and PSO are very sensitive to initial state randomness. For parameter tuning, the 

efficiency of an algorithm may depend on its algorithm-dependent parameters, and the 

optimal parameter setting of the PSO algorithm is itself an optimization problem, 

especially with an NN.  

10.3. Future Work 

This work could be advanced in general by using either engineering simulation or 

mathematical abstract theoretical approaches, although the right balance is required to keep 

the analysis appropriate. Likely approaches could be to use mathematical models to 

improve the convergence of the simulation or for validation of the models developed. The 

understanding at this point is to measure the associated risk, which would probably be 

further explored with cautious statistical (Bayesian) methods. Furthermore, further 

generalization could be achieved with experimental cross-validation, the inclusion of noise 

or other methods used for the model’s parameters with assumptions made concerning the 

input signal for data fitting and prediction or estimation.  

Promising future investigations would consider the fitness (Kaastra, et al., 1995) of self-

organizing neural networks, the Hopfield network, bidirectional associative memory or 

evolutionary computation genetic algorithms with concern for convergence ambiguity (Qi, 

et al., 2001). Further possible investigations would involve combining inverse finite-

element modelling using the Galerkin residual integral method and multi-layer perceptron 

(MLP) neural network models (Ondimu, et al., 2007). Also time-varying weights in neural 

networks could be used in a semi-non-parametric technique to make approximations by 

means of the Galerkin method (Barucci, et al., 2010, Barucci, et al., 1996) and a 
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Galerkin/neural-network-based design initially applying the Galerkin method to the model 

to derive an ordinary differential equation (ODE) system with unknown non linearity 

subsequently parameterized by a multilayer neural network (MNN) with one hidden layer 

(Wu, et al., 2008), whose relevance to the hypothesis could be checked. 

10.4. Summary 

The major conclusions are: 

 The existing literature suggests that neural networks have not been extensively 

utilised in the field of the modelling of short-term financial stock market shares.  

 The systemic (control theory) analysis and control algorithm extension can 

considerably improve convergence and the system's stability and robustness.  

 The combined application of artificial neural networks and particle swarm 

optimization modelling and acceleration approaches can improve quality, 

robustness, convergence and performance.  

 Deep machine  learning with digital Fourier and wavelets transforms has produced 

superior results in generalization, performance and robustness compared to time 

domain analysis. 

A comparison of the performance of the methods with the coefficient of determination or 

likeliness  (R)2 and root mean square  error (RMS) for BARC.L shows evolution of 

performance with the gradual application and combination of concepts and techniques 

• Analytical Stochastic Model  RMS~16.07,  R2 ~0.75 

• ANN  time domain   RMS~5.42,   R2 ~0.85 

• PSO-PID (convergence quality) RMS~5.6,   R2 ~0.82 

• ANN with DFT & DWT  RMS~5.1,   R2 ~0.91 

• Hybrid ANN and PSO  RMS~1,  R2 ~0.95 
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The most technically challenging contributions are as follows: 

• Experiments and simulations, there is a data explosion in the hybrid model 

algorithms tuning over 500 variables in a relatively simple architecture/structure 

• The randomness in the algorithm calculations, the initial point and tuning of neural 

network initial weights and PSO particle's position with social and learning factors 

make the evaluation and comparison of the results challenging. 

The contributions which most represent breakthroughs: 

• The deep learning with  particle swarm optimization, neural network and digital 

Fourier and wavelet transformations in the hybrid model is absolute sophistication 

dealing with non-linearity (ANN), global optima (PSO) and robustness (digital 

domain) 

• The real-time real-data sector model insight features and timescale classification 

criteria, justifying fourteen days data analysis (trading vs. investment) 

• PSO control theory analysis and proportional derivative and integral extension 

following the application of structured and knowledgeable tuning (existing 

guidance and techniques for stability, convergence and response well developed in 

control theory 

Trading strategy references: 

• The short term trading sector has more volatility and hence more eventual profit / 

loss risk, although it depends on the momentary state of the market. Eventually 

fundamental market research could help to understand the state of the market. 

• Market analysis of two weeks historic data is suggested to be the most general 

period for daily trading. 

• Trading strategy depends on the risk that one is prepared to take, with  the portfolio 

helping to hedge the risk. 
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Future work could be advanced in general in following respects: 

 Using advanced mathematical analytical models to improve the convergence of the 

simulation or for validation of the models developed. The understanding at this 

point is to measure the associated risk, which would probably be further explored 

with cautious statistical (Bayesian) methods.  

 Generalization of the models could be achieved with experimental cross-validation, 

the inclusion of noise or other methods used for the model’s parameters selection 

with assumptions made concerning the input signal for data fitting and prediction or 

estimation.   
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Appendix C: Datasets 
APPENDIX C: TABLE 1 BARC.L WORKING DATASET FROM 27/08/2012 TO 21/09/2012 

Date Open High Low Close 
8/27/2012 187.2 187.2 187.2 187.2 
8/28/2012 186.55 191.52 186.1 188.95 
8/29/2012 188.7 188.7 184.85 186.35 
8/30/2012 184.3 185.66 182.44 183.5 
8/31/2012 182 186.4 180.4 183.25 

9/3/2012 182.3 185.55 181.6 184.3 
9/4/2012 183.45 185.44 180.35 181.25 
9/5/2012 180.6 183.83 178.8 181.95 
9/6/2012 182.1 194.13 180.25 193.05 
9/7/2012 197.3 207.25 194.05 206.4 

9/10/2012 206.05 210.75 205.23 207.75 
9/11/2012 206.15 214.56 205 213.5 
9/12/2012 214.9 219.8 214.15 217 
9/13/2012 217 219.38 215 217.95 
9/14/2012 225.55 237 214.9 229.05 
9/17/2012 227.4 230.34 221.63 228 
9/18/2012 226.35 226.95 218.15 225.4 
9/19/2012 225.15 227.15 219 225.15 
9/20/2012 224 224.9 218.1 222.05 
9/21/2012 223.5 235.55 219.6 223.75 
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APPENDIX C: TABLE 2 BARC.L CLOSING PRICE DATASET 27/08/2012 - 21/09/2012 

Date T-target T-1 T-2 T-3 T-4 T-5 
8/27/2012 187.2 187.2 191 194.15 197.05 190.9 
8/28/2012 188.95 187.2 187.2 191 194.15 197.05 
8/29/2012 186.35 188.95 187.2 187.2 191 194.15 
8/30/2012 183.5 186.35 188.95 187.2 187.2 191 
8/31/2012 183.25 183.5 186.35 188.95 187.2 187.2 

9/3/2012 184.3 183.25 183.5 186.35 188.95 187.2 
9/4/2012 181.25 184.3 183.25 183.5 186.35 188.95 
9/5/2012 181.95 181.25 184.3 183.25 183.5 186.35 
9/6/2012 193.05 181.95 181.25 184.3 183.25 183.5 
9/7/2012 206.4 193.05 181.95 181.25 184.3 183.25 

9/10/2012 207.75 206.4 193.05 181.95 181.25 184.3 
9/11/2012 213.5 207.75 206.4 193.05 181.95 181.25 
9/12/2012 217 213.5 207.75 206.4 193.05 181.95 
9/13/2012 217.95 217 213.5 207.75 206.4 193.05 
9/14/2012 229.05 217.95 217 213.5 207.75 206.4 
9/17/2012 228 229.05 217.95 217 213.5 207.75 
9/18/2012 225.4 228 229.05 217.95 217 213.5 
9/19/2012 225.15 225.4 228 229.05 217.95 217 
9/20/2012 222.05 225.15 225.4 228 229.05 217.95 
9/21/2012 223.75 222.05 225.15 225.4 228 229.05 

11.  
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APPENDIX C: TABLE 3 BARC.L ARMA DATASET 

Date Target Close-1 Close-2 Close-3 Close-4 Close-5 rand 
rand-

1 
rand-

2 ARMA(5,3) abs(err) 
8/27/2012 187.20 187.20 191.00 194.15 197.05 190.90 -0.64 -0.06 -0.90 184.82 2.38 
8/28/2012 188.95 187.20 187.20 191.00 194.15 197.05 0.45 -0.64 -0.06 188.11 0.84 
8/29/2012 186.35 188.95 187.20 187.20 191.00 194.15 0.26 0.45 -0.64 190.14 3.79 
8/30/2012 183.50 186.35 188.95 187.20 187.20 191.00 0.08 0.26 0.45 188.06 4.56 
8/31/2012 183.25 183.50 186.35 188.95 187.20 187.20 0.25 0.08 0.26 185.86 2.61 

9/3/2012 184.30 183.25 183.50 186.35 188.95 187.20 -0.47 0.25 0.08 184.34 0.04 
9/4/2012 181.25 184.30 183.25 183.50 186.35 188.95 -0.25 -0.47 0.25 185.37 4.12 
9/5/2012 181.95 181.25 184.30 183.25 183.50 186.35 -0.91 -0.25 -0.47 180.57 1.38 
9/6/2012 193.05 181.95 181.25 184.30 183.25 183.50 0.27 -0.91 -0.25 183.97 9.08 
9/7/2012 206.40 193.05 181.95 181.25 184.30 183.25 0.98 0.27 -0.91 197.52 8.88 

9/10/2012 207.75 206.40 193.05 181.95 181.25 184.30 -0.46 0.98 0.27 211.78 4.03 
9/11/2012 213.50 207.75 206.40 193.05 181.95 181.25 0.93 -0.46 0.98 212.27 1.23 
9/12/2012 217.00 213.50 207.75 206.40 193.05 181.95 0.76 0.93 -0.46 220.17 3.17 
9/13/2012 217.95 217.00 213.50 207.75 206.40 193.05 0.65 0.76 0.93 219.41 1.46 
9/14/2012 229.05 217.95 217.00 213.50 207.75 206.40 0.12 0.65 0.76 220.83 8.22 
9/17/2012 228.00 229.05 217.95 217.00 213.50 207.75 -0.61 0.12 0.65 232.68 4.68 
9/18/2012 225.40 228.00 229.05 217.95 217.00 213.50 0.25 -0.61 0.12 225.16 0.24 
9/19/2012 225.15 225.40 228.00 229.05 217.95 217.00 -0.89 0.25 -0.61 225.70 0.55 
9/20/2012 222.05 225.15 225.40 228.00 229.05 217.95 0.48 -0.89 0.25 223.09 1.04 
9/21/2012 223.75 222.05 225.15 225.40 228.00 229.05 0.53 0.48 -0.89 219.37 4.38 
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APPENDIX C: TABLE 4 BARC.L SHARE PRICE IN PENCE FOR ONE MONTH JANUARY 2013 

 

Date Open High Low Close ^Close 

1 1/1/2013 262.4 262.4 262.4 262.4 0.15792575 

2 1/2/2013 272.85 277.08 269.6 275.6 0.3134944 

3 1/3/2013 274.65 278.89 272.83 276 0.3182086 

4 1/4/2013 275.15 278.56 273.5 276.7 0.32645846 

5 1/7/2013 281 288.46 276.04 287.2 0.45020625 

6 1/8/2013 285.6 295.48 282.5 287.2 0.45020625 

7 1/9/2013 289 298.15 288.8 294.75 0.5391868 

8 1/10/2013 293.8 298.79 291.65 294.6 0.53741897 

9 1/11/2013 295.9 301.75 295.54 299.65 0.59693577 

10 1/14/2013 299.55 301.3 297.9 298.9 0.58809664 

11 1/15/2013 298 298.69 292 295.4 0.54684738 

12 1/16/2013 293.95 296 287.25 293.4 0.52327637 

13 1/17/2013 291.95 298.97 289.05 296.05 0.55450796 

14 1/18/2013 296.15 299.9 294.93 297 0.56570418 

15 1/21/2013 298.7 299.37 294.32 297.4 0.57041839 

16 1/22/2013 298 300.05 293.94 296.05 0.55450796 

17 1/23/2013 296.2 299.9 295.75 296 0.55391868 

18 1/24/2013 295 300.05 294.25 300 0.6010607 

19 1/25/2013 299.15 303.9 298.05 300.7 0.60931055 

20 1/28/2013 300.5 307.66 297.47 305.85 0.67000589 

21 1/29/2013 305 306.65 297.1 300.9 0.61166765 

13.  

  



 

281 
 

APPENDIX C: TABLE 5 BARC.L PROBABILITY FREQUENCY 

Bin Frequency Probability Normdist 

249 1 0.0035 0.0026 

249.8485 2 0.0070 0.0028 

250.697 1 0.0035 0.0031 

251.5455 4 0.0141 0.0034 

252.394 1 0.0035 0.0037 

253.2425 2 0.0070 0.0040 

254.091 1 0.0035 0.0043 

254.9395 1 0.0035 0.0046 

255.788 3 0.0106 0.0050 

256.6365 1 0.0035 0.0053 

257.485 4 0.0141 0.0057 

258.3335 1 0.0035 0.0061 

259.182 1 0.0035 0.0066 

260.0305 2 0.0070 0.0070 

260.879 1 0.0035 0.0074 

261.7275 0 0.0000 0.0079 

262.576 3 0.0106 0.0084 

263.4245 2 0.0070 0.0089 

264.273 2 0.0070 0.0094 
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APPENDIX C: TABLE 6  BARC.L SHARE PRICES 13/01/2014 - 31/01/2014 

Date Open High Low Close ^Close 

1/13/2014 286.5 294.25 286.5 291.7 0.50324101 

1/14/2014 287.6 293.15 286.15 291.75 0.50383029 

1/15/2014 293.3 298.03 292.35 296.5 0.55981143 

1/16/2014 297.4 298.13 287.4 290.45 0.48850913 

1/17/2014 291.4 293 286.5 288.6 0.46670595 

1/20/2014 284.5 286.38 282.2 282.8 0.39835003 

1/21/2014 283 285.62 279.93 280.6 0.37242192 

1/22/2014 281.6 283.8 277.49 278.2 0.34413671 

1/23/2014 278 284.55 277.21 278.9 0.35238656 

1/24/2014 279.3 280.89 270.84 272.25 0.27401296 

1/27/2014 272 275.73 268.04 269.35 0.239835 

1/28/2014 271.95 274.64 270.08 273.3 0.28638774 

1/29/2014 281.95 284.8 268.8 274.95 0.30583382 

1/30/2014 275 275.9 271.6 275.05 0.30701237 

1/31/2014 274.35 274.4 267.55 272.5 0.27695934 

14.  
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APPENDIX C: TABLE 7 BARC.L SHARE PRICE 23/12/2013 -  10/01/2014 

Date Open High Low Close ^Close 

12/23/2013 259.35 265.07 259.35 264.35 0.18090748 

12/24/2013 268.55 268.55 262.92 265.45 0.19387154 

12/25/2013 265.45 265.45 265.45 265.45 0.19387154 

12/26/2013 265.45 265.45 265.45 265.45 0.19387154 

12/27/2013 268.9 271.12 268.02 269.7 0.24395993 

12/30/2013 272.5 273.86 269.55 271.1 0.26045963 

12/31/2013 271.55 274.3 271.05 271.95 0.27047731 

1/1/2014 271.95 271.95 271.95 271.95 0.27047731 

1/2/2014 273 274.65 268.35 271.05 0.25987036 

1/3/2014 271.25 273.91 270.4 272.85 0.28108427 

1/6/2014 271.55 278.67 271.2 277.5 0.33588686 

1/7/2014 276.95 282.78 275 280.95 0.37654685 

1/8/2014 282.35 285.9 281.25 283.7 0.40895698 

1/9/2014 283.9 289.71 282.48 284.4 0.41720684 

1/10/2014 286 287.14 282.2 283.6 0.40777843 

 

  



 

284 
 

APPENDIX C: TABLE 8 BARC.L FOR  15-DAYS FROM  09/01/2014 AND 13/01/2014 

Date Price Price Date 

1/13/2014 291.7 284.4 1/9/2014 

1/14/2014 291.75 283.6 1/10/2014 

1/15/2014 296.5 291.7 1/13/2014 

1/16/2014 290.45 291.75 1/14/2014 

1/17/2014 288.6 296.5 1/15/2014 

1/20/2014 282.8 290.45 1/16/2014 

1/21/2014 280.6 288.6 1/17/2014 

1/22/2014 278.2 282.8 1/20/2014 

1/23/2014 278.9 280.6 1/21/2014 

1/24/2014 272.25 278.2 1/22/2014 

1/27/2014 269.35 278.9 1/23/2014 

1/28/2014 273.3 272.25 1/24/2014 

1/29/2014 274.95 269.35 1/27/2014 

1/30/2014 275.05 273.3 1/28/2014 

1/31/2014 272.5 274.95 1/29/2014 
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APPENDIX C: TABLE 9 BARC.L FOR 15-DAYS FROM  20/12/2013 AND 13/01/2014  

Date Price Price Date 

1/13/2014 291.7 259.7 12/20/2013 

1/14/2014 291.75 264.35 12/23/2013 

1/15/2014 296.5 265.45 12/24/2013 

1/16/2014 290.45 265.45 12/25/2013 

1/17/2014 288.6 265.45 12/26/2013 

1/20/2014 282.8 269.7 12/27/2013 

1/21/2014 280.6 271.1 12/30/2013 

1/22/2014 278.2 271.95 12/31/2013 

1/23/2014 278.9 271.95 1/1/2014 

1/24/2014 272.25 271.05 1/2/2014 

1/27/2014 269.35 272.85 1/3/2014 

1/28/2014 273.3 277.5 1/6/2014 

1/29/2014 274.95 280.95 1/7/2014 

1/30/2014 275.05 283.7 1/8/2014 

1/31/2014 272.5 284.4 1/9/2014 
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APPENDIX C: TABLE 10 BARC.L PRICE 01/01/2013 - 14/01/2013 

 

Date Open High Low Close 

1 1/1/2013 262.4 262.4 262.4 262.4 

2 1/2/2013 272.85 277.08 269.6 275.6 

3 1/3/2013 274.65 278.89 272.83 276 

4 1/4/2013 275.15 278.56 273.5 276.7 

5 1/7/2013 281 288.46 276.04 287.2 

6 1/8/2013 285.6 295.48 282.5 287.2 

7 1/9/2013 289 298.15 288.8 294.75 

8 1/10/2013 293.8 298.79 291.65 294.6 

9 1/11/2013 295.9 301.75 295.54 299.65 

10 1/14/2013 299.55 301.3 297.9 298.9 
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APPENDIX C: TABLE 11 BARC.L DATASETS  SHARE PRICES FOR DIFFERENT OVERLAP 

STARTING DATE 

 

13-Jan 10-Jan 9-Jan 8-Jan 26-Dec  24-Dec 20-Dec 18-Nov 

1 291.7 283.6 284.4 283.7 265.45  265.45 259.7 251.4 

2 291.75 291.7 283.6 284.4 269.7  265.45 264.35 250.8 

3 296.5 291.75 291.7 283.6 271.1  265.45 265.45 252.6 

4 290.45 296.5 291.75 291.7 271.95  269.7 265.45 257.1 

5 288.6 290.45 296.5 291.75 271.95  271.1 265.45 256.95 

6 282.8 288.6 290.45 296.5 271.05  271.95 269.7 259.1 

7 280.6 282.8 288.6 290.45 272.85  271.95 271.1 260.8 

8 278.2 280.6 282.8 288.6 277.5  271.05 271.95 262.5 

9 278.9 278.2 280.6 282.8 280.95  272.85 271.95 265.6 

10 272.25 278.9 278.2 280.6 283.7  277.5 271.05 271.7 

11 269.35 272.25 278.9 278.2 284.4  280.95 272.85 270.25 

12 273.3 269.35 272.25 278.9 283.6  283.7 277.5 266.2 

13 274.95 273.3 269.35 272.25 291.7  284.4 280.95 262.8 

14 275.05 274.95 273.3 269.35 291.75  283.6 283.7 262.35 

15 272.5 275.05 274.95 273.3 296.5  291.7 284.4 265.65 
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APPENDIX C: TABLE 12 RANDOM SELECTED CORRELATION DATASET 

13-Jan 

Series 

1 

17-Dec 

Series 

2 

15-Nov 

Series 

3 

22-Oct 

Series 

4 

5-Aug 

Series 

5 

27-Sep 

Series 

6 

1 291.7 251.3 249.45 272.6 285.5 265.8 

2 291.75 252.05 251.4 268.2 284.5 265.5 

3 296.5 257.45 250.8 266.45 282.15 269.8 

4 290.45 259.7 252.6 267.9 286.95 272.55 

5 288.6 264.35 257.1 263.25 287.1 273 

6 282.8 265.45 256.95 266.05 285 271.35 

7 280.6 265.45 259.1 268.45 283.65 272.55 

8 278.2 265.45 260.8 263.6 285.45 268.2 

9 278.9 269.7 262.5 256.3 284.3 267.8 

10 272.25 271.1 265.6 255.15 288.05 274.5 

11 269.35 271.95 271.7 249 288.7 278 

12 273.3 271.95 270.25 254.65 286.75 276.85 

13 274.95 271.05 266.2 252.7 283 279.85 

14 275.05 272.85 262.8 255.3 284.7 283.65 

15 272.5 277.5 262.35 257.65 286.85 278.3 
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APPENDIX C: TABLE 13 TREND LINE ANN FIRST AND SECOND LAYERS 

t S ANN-1 S1 SQRT(e^2) ANN-2 S2 SQRT(e^2) 

1 291.7 0.54 294.60 2.90 0.54 294.60 2.90 

2 291.75 0.51 292.49 0.74 0.51 292.49 0.74 

3 296.5 0.49 290.36 6.14 0.49 290.36 6.14 

4 290.45 0.46 288.25 2.20 0.46 288.25 2.20 

5 288.6 0.44 286.15 2.45 0.44 286.18 2.42 

6 282.8 0.41 284.08 1.28 0.41 284.15 1.35 

7 280.6 0.39 282.04 1.44 0.39 282.19 1.59 

8 278.2 0.37 280.04 1.84 0.37 280.31 2.11 

9 278.9 0.34 278.10 0.80 0.35 278.52 0.38 

10 272.25 0.32 276.22 3.97 0.33 276.84 4.59 

11 269.35 0.30 274.41 5.06 0.31 275.26 5.91 

12 273.3 0.28 272.66 0.64 0.29 273.80 0.50 

13 274.95 0.26 271.00 3.95 0.28 272.44 2.51 

14 275.05 0.24 269.41 5.64 0.26 271.19 3.86 

15 272.5 0.22 267.90 4.60 0.25 270.04 2.46 

sum|e| 43.65 sum|e| 39.63 

Mean 281.1267 R2 0.832361 R2 0.832393 
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APPENDIX C: TABLE 14 CENTRED LINEAR TREND AND POLY-2 TIME SERIES 

Date S Linear Centred Poly-2 Centred 

1 1/13/2014 291.7 293.4146 -1.7146 296.6652 -4.9652 

2 1/14/2014 291.75 291.6592 0.0908 293.515 -1.765 

3 1/15/2014 296.5 289.9038 6.5962 290.5794 5.9206 

4 1/16/2014 290.45 288.1484 2.3016 287.8584 2.5916 

5 1/17/2014 288.6 286.393 2.207 285.352 3.248 

6 1/20/2014 282.8 284.6376 -1.8376 283.0602 -0.2602 

7 1/21/2014 280.6 282.8822 -2.2822 280.983 -0.383 

8 1/22/2014 278.2 281.1268 -2.9268 279.1204 -0.9204 

9 1/23/2014 278.9 279.3714 -0.4714 277.4724 1.4276 

10 1/24/2014 272.25 277.616 -5.366 276.039 -3.789 

11 1/27/2014 269.35 275.8606 -6.5106 274.8202 -5.4702 

12 1/28/2014 273.3 274.1052 -0.8052 273.816 -0.516 

13 1/29/2014 274.95 272.3498 2.6002 273.0264 1.9236 

14 1/30/2014 275.05 270.5944 4.4556 272.4514 2.5986 

15 1/31/2014 272.5 268.839 3.661 272.091 0.409 
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APPENDIX C: TABLE 15 CENTRED LONG TERM SHARE PRICES TIME SERIES 

 

Date Close Linear Centered 

1 1/1/2013 262.4 310.0884 -47.6884 

2 1/2/2013 275.6 309.9368 -34.3368 

3 1/3/2013 276 309.7852 -33.7852 

..... ............... ............... ............... ............... 

281 1/28/2014 273.3 267.6404 5.6596 

282 1/29/2014 274.95 267.4888 7.4612 

283 1/30/2014 275.05 267.3372 7.7128 

284 1/31/2014 272.5 267.1856 5.3144 
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APPENDIX C: TABLE 16 CENTRED SHORT-TERM SHARE PRICES TIME SERIES 

 

Date Scntr Linear Centred 

0 1/10/2014 14.1404 23.073 -8.9326 

1 1/13/2014 22.392 21.7245 0.6675 

2 1/14/2014 22.5936 20.376 2.2176 

3 1/15/2014 27.4952 19.0275 8.4677 

4 1/16/2014 21.5968 17.679 3.9178 

5 1/17/2014 19.8984 16.3305 3.5679 

6 1/20/2014 14.25 14.982 -0.732 

7 1/21/2014 12.2016 13.6335 -1.4319 

8 1/22/2014 9.9532 12.285 -2.3318 

9 1/23/2014 10.8048 10.9365 -0.1317 

10 1/24/2014 4.3064 9.588 -5.2816 

11 1/27/2014 1.558 8.2395 -6.6815 

12 1/28/2014 5.6596 6.891 -1.2314 

13 1/29/2014 7.4612 5.5425 1.9187 

14 1/30/2014 7.7128 4.194 3.5188 

15 1/31/2014 5.3144 2.8455 2.4689 
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APPENDIX C: TABLE 17 CYCLIC COMPONENT WITH THREE HARMONIC COMPONENTS 

Date S Long Short Centred F1 F2 F3 CYCL COMP ERR 

1/10/2014 283.6 269.4596 23.07 -8.93 -2.16 -5.20 -2.00 -9.36 283.17 0.43 

1/13/2014 291.7 269.308 21.72 0.67 2.16 -6.00 2.00 -1.84 289.20 2.50 

1/14/2014 291.75 269.1564 20.38 2.22 5.66 -5.20 4.00 4.47 294.00 -2.25 

1/15/2014 296.5 269.0048 19.03 8.47 7.00 -3.00 2.00 6.00 294.03 2.47 

1/16/2014 290.45 268.8532 17.68 3.92 5.66 0.00 -2.00 3.66 290.20 0.25 

.... .... .... .... .... .... .... .... .... .... .... 

1/27/2014 269.35 267.792 8.24 -6.68 2.16 -3.00 -4.00 -4.84 271.19 -1.84 

1/28/2014 273.3 267.6404 6.89 -1.23 5.66 -5.20 -2.00 -1.53 273.00 0.30 

1/29/2014 274.95 267.4888 5.54 1.92 7.00 -6.00 2.00 3.00 276.03 -1.08 

1/30/2014 275.05 267.3372 4.19 3.52 5.66 -5.20 4.00 4.47 276.00 -0.95 

1/31/2014 272.5 267.1856 2.85 2.47 2.16 -3.00 2.00 1.16 271.19 1.31 
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APPENDIX C: TABLE 18 SHARE PRICES DATASET WITH TRAINING AND TESTING SUBSETS 

Time Price Train Test 

1 262.4 

2 275.6 

3 276 

263 271.05 

  264 272.85 

  265 277.5 284.9258 

267 283.7 284.0129 

268 284.4 283.4979 

269 283.6 282.952 

 270 291.7 282.3842 282 

271 291.75 281.8051 281 

272 296.5 281.2259 281 

273 290.45 280.6582 280 

274 288.6 280.1123 280 

275 282.8 279.5972 279 

276 280.6 279.1198 279 

277 278.2 278.6844 278 

278 278.9 278.2932 278 

279 272.25 

 

277 

280 269.35 

 

277 

281 273.3 277 

282 274.95 277 

283 275.05 276 

284 272.5 
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APPENDIX C: TABLE 19 TRAINING AND TESTING DATASET WITH MLPN 

Time Price Train Test 

265 277.5 283.03 

266 280.95 283.40 

267 283.7 283.70 

268 284.4 284.44 

 269 283.6 286.66 

 270 291.7 291.09 291.0 

271 291.75 294.11 294.0 

272 296.5 294.29 294.0 

273 290.45 290.95 290.0 

274 288.6 288.50 288.0 

275 282.8 282.82 282.0 

276 280.6 280.58 280.0 

277 278.2 278.21 278.0 

278 278.9 274.763 274.0 

279 272.25 272.253 272.0 

280 269.35 270.0 

281 273.3 270.0 

282 274.95 270.0 

283 275.05 

 

270.0 

284 272.5 

 

270.0 
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APPENDIX C: TABLE 20 MULTIPLE ATTRIBUTES TRAINING AND TESTING  DATASET 

 

Date Close Training Testing 

1 01/01/2013 262.4 

2 02/01/2013 275.6 

... .... .... 

253 19/12/2013 257.45 

  254 20/12/2013 259.7 

  255 23/12/2013 264.35 264.35 

256 24/12/2013 265.45 265.45 

258 26/12/2013 265.45 265.45 

259 27/12/2013 269.7 269.7 

 260 30/12/2013 271.1 271.1 271.1 

261 31/12/2013 271.95 271.95 271.95 

262 01/01/2014 271.95 271.95 271.95 

263 02/01/2014 271.05 271.05 271.05 

264 03/01/2014 272.85 272.85 272.85 

265 06/01/2014 277.5 277.5 277.5 

266 07/01/2014 280.95 280.95 280.95 

277 22/01/2014 278.2 278.2 278.2 

278 23/01/2014 278.9 278.9 278.9 

279 24/01/2014 272.25 272.25 272.25 

280 27/01/2014 269.35 

 

269.35 

281 28/01/2014 273.3 273.3 

282 29/01/2014 274.95 274.95 

283 30/01/2014 275.05 275.05 

284 31/01/2014 272.5 

 

272.5 
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APPENDIX C: TABLE 21 MULTIPLE ATTRIBUTES TRANSFORMED TRAINING DATASET 

Att1 Att2 Att3 Att4 Att7 Att8 Att9 Att10 Att11 Att12 target Y Day 

P(t-12) P(t-11) P(t-10) P(t-9) P(t-6) P(t-5) P(t-4) P(t-3) P(t-2) P(t-1) P(t) P(t)  

264.4 265.5 265.5 265.5 272 272 271.1 272.9 277.5 281 283.7 282.5 267 

265.5 265.5 265.5 269.7 272 271.1 272.9 277.5 281 283.7 284.4 280.7 268 

265.5 265.5 269.7 271.1 271.1 272.9 277.5 281 283.7 284.4 283.6 283.6 269 

265.5 269.7 271.1 272 272.9 277.5 281 283.7 284.4 283.6 291.7 288.9 … 

269.7 271.1 272 272 277.5 281 283.7 284.4 283.6 291.7 291.8 291.7 … 

271.1 272 272 271.1 281 283.7 284.4 283.6 291.7 291.8 296.5 296.5 272 

272 272 271.1 272.9 283.7 284.4 283.6 291.7 291.8 296.5 290.5 290.4 … 

272 271.1 272.9 277.5 284.4 283.6 291.7 291.8 296.5 290.5 288.6 288.6 … 

271.1 272.9 277.5 281 283.6 291.7 291.8 296.5 290.5 288.6 282.8 282.8 … 

272.9 277.5 281 283.7 291.7 291.8 296.5 290.5 288.6 282.8 280.6 280.6 … 

277.5 281 283.7 284.4 291.8 296.5 290.5 288.6 282.8 280.6 278.2 278.2 277 

281 283.7 284.4 283.6 296.5 290.5 288.6 282.8 280.6 278.2 278.9 276.79 278 

 

APPENDIX C: TABLE 22 MULTIPLE ATTRIBUTES TRANSFORMED TESTING DATASET 

Att1 Att2 Att3 Att4 Att7 Att8 Att9 Att10 Att11 Att12 target Y Day 

P(t-12) P(t-11) P(t-10) P(t-9) P(t-6) P(t-5) P(t-4) P(t-3) P(t-2) P(t-1) P(t) P(t)  

271.1 272 272 271.1 281 283.7 284.4 283.6 291.7 291.8 296.5 296.2 272 

272 272 271.1 272.9 283.7 284.4 283.6 291.7 291.8 296.5 290.5 290.1 273 

272 271.1 272.9 277.5 284.4 283.6 291.7 291.8 296.5 290.5 288.6 288.3 274 

271.1 272.9 277.5 281 283.6 291.7 291.8 296.5 290.5 288.6 282.8 282.6 … 

272.9 277.5 281 283.7 291.7 291.8 296.5 290.5 288.6 282.8 280.6 280.5 … 

277.5 281 283.7 284.4 291.8 296.5 290.5 288.6 282.8 280.6 278.2 278.1 277 

281 283.7 284.4 283.6 296.5 290.5 288.6 282.8 280.6 278.2 278.9 276.1 … 

283.7 284.4 283.6 291.7 290.5 288.6 282.8 280.6 278.2 278.9 272.3 276.1 … 

284.4 283.6 291.7 291.8 288.6 282.8 280.6 278.2 278.9 272.3 269.4 276.1 … 

283.6 291.7 291.8 296.5 282.8 280.6 278.2 278.9 272.3 269.4 273.3 276.1 281 

291.7 291.8 296.5 290.5 280.6 278.2 278.9 272.3 269.4 273.3 275 276.1 … 

291.8 296.5 290.5 288.6 278.2 278.9 272.3 269.4 273.3 275 275.1 277 283 
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APPENDIX C: TABLE 23 FREQUENCY ANALYSIS SHARES TRADING DATASET 

Date 

Frequency 

t/N n 

Frequency 

trading Y 

04/01/2016 0 0 0.000 214.25 

05/01/2016 0.0625 1 0.004 215.25 

06/01/2016 0.125 2 0.008 211.75 

08/01/2016 0.25 4 0.016 200.15 

11/01/2016 0.3125 5 0.020 199.7 

13/01/2016 0.4375 7 0.028 201.7 

14/01/2016 -0.5 8 0.032 197.7 

15/01/2016 -0.4375 9 0.036 191.8 

19/01/2016 -0.3125 11 0.044 189.9 

20/01/2016 -0.25 12 0.048 182.05 

21/01/2016 -0.1875 13 0.052 186.15 

22/01/2016 -0.125 14 0.056 190.75 

25/01/2016 -0.0625 15 0.060 181.85 
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APPENDIX C: TABLE 24 DFT, INVERSE DFT AND REAL VALUES OF 16 SAMPLES TIME SERIES 

Frequency Y centred DFT(Y) power(Y) invDFT(Y) Real 

0.000 214.25 0.68 0 0.000 0.679 0.68 

0.063 215.25 3.83 12.280-0.228i 0.589 3.834 3.83 

0.125 211.75 2.49 19.087+11.911i 1.977 2.489 2.49 

0.250 200.15 -4.80 -15.588+3.338i 0.993 -4.801 -4.80 

0.313 199.7 -3.10 -8.964-10.167i 0.718 -3.096 -3.10 

0.375 202.35 1.71 5.935-9.964i 0.526 1.708 1.71 

0.438 201.7 3.21 4.020+3.225i 0.104 3.213 3.21 

-0.438 191.8 -2.38 4.020-3.225i 0.104 -2.377 -2.38 

-0.375 187.65 -4.37 5.935+9.964i 0.526 -4.372 -4.37 

-0.313 189.9 0.03 -8.964+10.167i 0.718 3.235E-02 0.03 

-0.188 186.15 0.59 -10.089+10.174i 0.802 0.591 0.59 

-0.125 190.75 7.35 19.087-11.911i 1.977 7.346 7.35 

-0.063 181.85 0.60 12.280+0.2289i 0.589 0.601 0.60 
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APPENDIX C: TABLE 25 CLOSE PRICE DATASET 

Date Open High Low Close Volume Adj Close 
1/4/2016 216.35 217 212.65 214.25 28332200 206.72 
1/5/2016 214.85 217.6 212.05 215.25 20472900 207.685 
1/6/2016 214.9 214.9 209.85 211.75 26042700 204.308 
1/7/2016 206.6 208.85 201.6 205.55 41970400 198.325 
1/8/2016 206 208.65 200.15 200.15 42733200 193.115 

1/11/2016 200 203.35 199.4 199.7 45116200 192.681 
1/12/2016 201 204.95 199.77 202.35 31436200 195.238 
1/13/2016 204.35 205.8 200.336 201.7 41349200 194.611 
1/14/2016 198.25 200.15 192.52 197.7 57104700 190.751 
1/15/2016 196.45 198.85 190.97 191.8 49774600 185.059 
1/18/2016 191.3 198 185.85 187.65 37826600 181.055 
1/19/2016 190 193.6 187.925 189.9 35139300 183.225 
1/20/2016 185.9 186 179.902 182.05 52318600 175.651 
1/21/2016 182 186.6 179.987 186.15 65099400 179.607 
1/22/2016 190.95 192.95 188.2 190.75 50097300 184.046 
1/25/2016 191.95 192.25 181.35 181.85 48650600 175.458 
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APPENDIX C: TABLE 26 NEURAL NETWORK AND PSO EXPERIMENTS DATASET 

Date Open High Low Close Volume Adj.Close 

1/4/2016 216.35 217 212.65 214.25 28332200 208.51 

1/5/2016 214.85 217.6 212.05 215.25 20472900 209.483 

1/6/2016 214.9 214.9 209.85 211.75 26042700 206.077 

1/7/2016 206.6 208.85 201.6 205.55 41970400 200.043 

1/8/2016 206 208.65 200.15 200.15 42733200 194.788 

1/11/2016 200 203.35 199.4 199.7 45116200 194.35 

1/12/2016 201 204.95 199.77 202.35 31436200 196.929 

1/13/2016 204.35 205.8 200.336 201.7 41349200 196.296 

1/14/2016 198.25 200.15 192.52 197.7 57104700 192.404 

1/15/2016 196.45 198.85 190.97 191.8 49774600 186.662 

1/18/2016 191.3 198 185.85 187.65 37826600 182.623 

1/19/2016 190 193.6 187.925 189.9 35139300 184.813 

1/20/2016 185.9 186 179.902 182.05 52318600 177.173 

1/21/2016 182 186.6 179.987 186.15 65099400 181.163 

1/22/2016 190.95 192.95 188.2 190.75 50097300 185.64 

1/25/2016 191.95 192.25 181.35 181.85 48650600 176.978 
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APPENDIX C: TABLE 27 UK 10 YEAR BOND YIELD HISTORICAL DATA 

         Date       Price   Open     High    Low   Change % 

Jul 29, 2016  0.686  0.756  0.758  0.686  -3.92% 

Jul 28, 2016  0.714  0.721  0.741  0.698  -3.38% 

Jul 27, 2016  0.739  0.826  0.826  0.733  -10.21% 

Jul 26, 2016  0.823  0.776  0.839  0.764  1.48% 

Jul 25, 2016  0.811  0.824  0.840  0.806  1.50% 

Jul 22, 2016  0.799  0.821  0.844  0.797  -4.31% 

Jul 21, 2016  0.835  0.853  0.885  0.830  -0.12% 

Jul 20, 2016  0.836  0.803  0.853  0.791  4.50% 

Jul 19, 2016  0.800  0.783  0.821  0.771  -3.15% 
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Share prices are shown for selected retail and financial sector companies.  

 

APPENDIX C: FIGURE 1 STOCHASTIC MODEL DATASET BARC.L 

 

APPENDIX C: FIGURE 2 STOCHASTIC MODEL DATASET RBS.L 
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APPENDIX C: FIGURE 3 STOCHASTIC MODEL DATASET HSBA.L 

 

APPENDIX C: FIGURE 4 STOCHASTIC MODEL DATASET LLOY.L 

 

APPENDIX C: FIGURE 5 STOCHASTIC MODEL DATASET TSCO.L 
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APPENDIX C: FIGURE 6 STOCHASTIC MODEL DATASET MKS.L 

 

APPENDIX C: FIGURE 7 STOCHASTIC MODEL DATASET MRW.L 

 

APPENDIX C: FIGURE 8 STOCHASTIC MODEL DATASET SBRY.L 

  

P
ri

ce
 in

 p
en

ce
 a

nd
 n

or
m

al
is

ed
 

P
ri

ce
 in

 p
en

ce
 a

nd
 n

or
m

al
is

ed
 

P
ri

ce
 in

 p
en

ce
 a

nd
 n

or
m

al
is

ed
 

Time in months Time in months 

Time in months Time in months 

Time in months Time in months 



 

306 

Share chart 66 days (three months)  Volatility 66 days (three months) 

  

APPENDIX C: FIGURE 9 AVIVA CHART AND VOLATILITY 66 DAYS 

Share chart 66 days (three months)  Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 10 SANTANDER CHART AND VOLATILITY 66 DAYS 

Share chart 66 days (three months) Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 11 BP CHART AND VOLATILITY 66 DAYS 

Time in days Time in days 

Time in days Time in days 

Time in days Time in days 

P
ri

ce
 in

 p
en

ce
 

P
ri

ce
 in

 p
en

ce
 

P
ri

ce
 in

 p
en

ce
 

Vo
la

til
ity

 in
 p

er
ce

nt
s 

 
Vo

la
til

ity
 in

 p
er

ce
nt

  
Vo

la
til

ity
 in

 p
er

ce
nt

  



 

307 

 Share chart 66 days (three months) Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 12 HSBA CHART AND VOLATILITY 66 DAYS 

Share chart 66 days (three months)   Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 13 LLOYDS CHART AND VOLATILITY 66 DAYS 

 Share chart 66 days (three months)  Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 14 ROYAL BANK OF SCOTLAND CHART AND VOLATILITY 66 DAYS 
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 Share chart 66 days (three months) Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 15 STANDARD CHARTERED CHART AND VOLATILITY 66 DAYS 

 Share chart 66 days (three months) Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 16 TESCO CHART AND VOLATILITY 66 DAYS 

 Share chart 66 days (three months) Volatility 66 days (three months) 

 

APPENDIX C: FIGURE 17 VODAFONE CHART AND VOLATILITY 66 DAYS 
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Appendix D: Descriptive Statistics 
APPENDIX D: TABLE 1 DESCRIPTIVE STATISTICS 13/01/2013-31/01/2013 

13/01/2014/01/13 to 31/01/2014 

Close price 

Mean 281.1266667 

Standard Error 2.234581385 

Median 278.9 

Mode #N/A 

Standard Deviation 8.654496492 

Sample Variance 74.90030952 

Kurtosis -1.23404476 

Skewness 0.419105607 

Range 27.15 

Minimum 269.35 

Maximum 296.5 

Sum 4216.9 

Count 15 

Largest 296.5 

Smallest 269.35 

Confidence Level/Range 0.176526718 

Confidence Level(95.0%) 4.792700394 
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APPENDIX D: TABLE 2 BARC.L DESCRIPTIVE STATISTICS 23/12/2013 - 10/01/2014 

23/12/2013 to10/01/ 2014 

Close price 

Mean 273.2967 

Standard Error 1.832644 

Median 271.95 

Mode 265.45 

Standard Deviation 7.097798 

Sample Variance 50.37874 

Kurtosis -1.17451 

Skewness 0.431526 

Range 20.05 

Minimum 264.35 

Maximum 284.4 

Sum 4099.45 

Count 15 

Largest 284.4 

Smallest 264.35 

Confidence Level/Range 0.196041 

Confidence Level(95.0%) 3.93063 
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Appendix E: Test Functions 

 

APPENDIX E: FIGURE 1 TEST FUNCTION 1-4 
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APPENDIX E: FIGURE 2 TEST FUNCTIONS 5-8 
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APPENDIX E: FIGURE 3 TEST FUNCTIONS 9-12 
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APPENDIX E: FIGURE 4 TEST FUNCTIONS 13-16 
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List of Symbols 
µ: mean or drift  

m: annualised  µ 

σ: standard deviation or volatility 

σ2: variance 

t: current time 

t୧: sampling time i 

T: specified period of time 

τ: length of time interval in years 

N: number of observations 

P: significance score value 

S: price of asset refers to financial share price 

S୧: share price at the end of i th interval (i = 0,1,2..,n)  

ܴଶ: coefficient of determination 

Δ: small change in x for any variable x 

α: significance level 

β: measure of risk 

u: control signal 

v: velocity of change 

 ௜௝: neural network input weightsݓ

W୧: independent and identically distributed random variables 
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List of Abbreviations 

ANN – Artificial Neural Network 

BPNN – Back Propagation Neural Network 

DFT – Digital Fourier Transform 

FTSE – Financial Times Stock Exchange 

FFT – Fast Fourier Transform  

MLP – Multi Layer Perceptron 

NN – Neural Network 

PSO – Particle Swarm Optimization 

IDFT – Inverse Digital Fourier Transform 

PID – Proportional Integral Derivative controller 

WDT – Wavelet Digital Transform 

BARC.L – Barclays PLC stock exchange symbol 

HSBC.L – HSBC stock exchange symbol 

LLOY.L – Lloyds stock exchange symbol 

MKS.L – Marks and Spencer stock exchange symbol 

RBS.L – Royal Bank of Scotland symbol  

 

 

 


