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Abstract 

The regulatory requirement for improving operational energy efficiency in 

buildings make the unregulated Embodied Carbon (EC) of buildings relatively 

significant. The reduction potential of EC is high during the early stages of 

design while estimating EC during the early stage is challenging due to the 

unavailability of detailed design information. Similar to building costs, EC is also 

influenced by morphological and quality parameters of buildings. However, 

there is little evidence in the literature concerning the relationship between EC 

and design variables. Further, the increasing significance of the dual currency of 

construction projects emphasises the need for optimisation of cost and carbon 

of building designs. However, it is not easy to attain the best combination of 

cost and carbon without the adequate knowledge and expertise supported by 

decision support tools. Therefore, the research reported in this thesis addresses 

this knowledge gap by firstly identifying the relationship of the dual currency 

(cost and carbon) with building morphological and quality related parameters 

(referred to as ‘design variables’). Later, developing Capital Cost (CC) and EC 

prediction models to assist in the dual currency estimating during the early 

stages of designs. The research findings are however, applicable to office 

buildings of low to medium-rise within a cradle-to-gate system boundary due to 

data constraints. 

The approach involves the development and validation of a heuristic model of 

cost and carbon, using the statistical simulation of relevant morphological and 

quality parameters of buildings achieved through regression analysis. Historical 

project data from primary and secondary sources were collected and processed 

to develop a complete dataset of 41 buildings. The model variables were 

identified from a literature review and verified using the hotspot analysis. 

Finishes and services indices were developed to transform the qualitative 

variables into quantitative variables for an effective model building. The 

‘Finishes Quality Index’ was developed through a Delphi based expert forum, 

while the ‘Services Quality Index’ was developed using price books. The 

developed EC model had ‘Wall to Floor Ratio’ and ‘Number of Basements’ as 

predictor variables while ‘Circulation Space Ratio’ and ‘Building Height’ were the 
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predictor variables of the CC Model. In contrary to the literature findings, 

finishes and services quality were found to be statistically insignificant in the 

study, suggesting that finishes and services quality does not hugely influence 

the prediction of the dual currency of concept designs. However, Services were 

identified as carbon and cost significant in most of the buildings, while Finishes 

were identified as carbon and cost significant in some of the buildings of the 

sample. 

The findings of the research have a number of contributions to theory and 

practice. The contribution to the design economics theory is the addition of the 

carbon dimension. The relationships analysed between EC and CC at building 

and element level add new insights to the EC literature. In addition, the 

methodology adopted for this thesis can form an exemplar for future research in 

different contexts. The key contribution to practice is the developed dual 

currency models (EC and CC models) which can be used to predict EC and CC 

of office buildings during early stages of design. Findings on carbon-critical 

elements (or carbon hotspots) of office buildings unveil building elements with 

high EC reduction potential that should be given the most attention during the 

design.  
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1. Introduction  

1.1. Background  

The construction industry is one of the largest consumers of both renewable 

and non-renewable resources (Dixit et al., 2010) and responsible for 30% of 

global Greenhouse Gas (GHG) emissions which creates a major impact on the 

environment (UK-GBC, 2014b). The UK Government mentioned in a White 

Paper on Energy, that GHG emissions challenge the stability of the world’s 

climate, economy and population (RICS, 2008b).  A more recent study reported 

that global food production is likely to decline by 0.5% in 2020 and by 2.3% in 

2050 due to climate change (Calzadilla et al., 2013). Therefore, the emissions 

from the UK construction industry are regulated by stringent statutory 

requirements to minimise damage to the environment. For instance, the Energy 

Performance of Buildings Directive (2002) and the UK Building Regulations Part 

L (2006) use carbon emissions as a metric to measure building performance.  

Emissions from buildings are mainly categorised into two types namely 

Operational Carbon (OC) and Embodied Carbon (EC) also known as capital 

carbon (HM Treasury, 2013). OC of buildings encapsulates emissions related to 

the energy consumption during the operation of the building. EC in buildings 

refers to the emissions involved in the construction of the built asset (including 

raw material extraction, manufacture, transport, construction, repair, 

replacement and demolition of materials or products). Of the two, OC has been 

given more attention as the contribution of OC emissions is generally higher 

than EC emissions. In fact, OC accounted for approximately 70-80% of total 

emissions until the introduction of Part L of the Building Regulations (RICS, 

2014, Anderson, 2011) which set benchmark values for the acceptable amount 

of OC of typical building designs.  However, the proportion of OC to EC varies 

depending on the location, building type and the life cycle of the building 

considered in the analysis (See for example, Ibn-Mohammed et al., 2013).  
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Figure 1.1: Increasing significance of EC in buildings 

Modified from: RICS (2014) 

The regulatory move of the UK government towards zero carbon buildings by 

2019 aims at making OC almost nil which is shifting the focus of the 

government and regulatory bodies towards EC (Anderson, 2011, Sansom and 

Pope, 2012, Rawlinson and Weight, 2007) as there is no any legislative control 

over EC. As per Figure 1.1, if zero OC targets are to be met, 100% of the 

carbon emissions are projected to be from EC although the current deadlines of 

the UK are considered to be ambitious (Osmani and O'Reilly, 2009). Despite the 

debates on the achievement of zero carbon deadlines, there is a need to control 

EC. In fact, Rawlinson and Weight (2007) suggest that Embodied Energy (EE) 

might be ten times the annual operational energy in domestic buildings while 

this ratio could be as high as thirty times in commercial building. This 

demonstrates the need to manage EC.   

Management requires measurement. In order to manage EC, there should be a 

standard method to quantify it. EC emissions can be calculated from cradle 

(earth)-to-gate, cradle-to-site, cradle-to-end of construction, cradle-to-grave, or 

even cradle-to-cradle which is called the system boundary of the calculation 

(Hammond and Jones, 2011) (Each of the system boundary mentioned here is 

explained in detail in Section 2.3). In particular, estimating EC is affected by 

several factors including system boundary, the method of estimating, location, 
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accounted energy (primary or delivered energy),  assumptions and data used 

(Dixit et al., 2010, Clark, 2013, Ekundayo et al., 2012, Hammond and Jones, 

2008b). Hence, existing EC datasets and tools have deficiencies and are 

inconsistent. Further, the lack of agreement in the definition of EC and absence 

of a uniform method for quantification (Lockie, 2012, Dixit et al., 2012) signify 

the issues in estimating EC. Further, a recent survey conducted in the UK 

suggests that EC estimating is likely to be one of the future trends in the 

construction industry (Perera et al. 2015). Hence, it is important that the issue of 

standardisation is addressed and a standard measurement protocol is in place 

for EC estimating. 

Carbon emissions reduction measures deliver a range of benefits to various 

stakeholders in addition to combating global threats. Reducing carbon 

emissions enriches competitive advantage and export potential of 

organisations; drives resource efficiency and better business solutions; leads to 

innovation; and provides health benefits (HM Treasury, 2013, Woodcock et al., 

2009). Commercial buildings require more attention (See, Rawlinson and 

Weight, 2007) to reap the benefits and in particular, office buildings are in the 

forefront due to changing clients’ perspectives to enhance their corporate social 

responsibility through legislatively complied sustainable offices (Target zero, 

2012). This suggests that office buildings developers have started realising the 

benefits, hence, demanding carbon compliant designs.  

Selecting the best design solution involves a systematic process as a design is 

developed from a conceptual to a more detailed design. In particular, RICS 

(2014) claims that the carbon reduction potential is high during the early stages 

of a project. Focusing on intensive emission sources would be one good 

approach for achieving high carbon reduction or to reap benefits (Carbon Trust, 

2010, RICS, 2014, Halcrow Yolles, 2010b). For instance, the Pareto principle 

proposes that 80% of effects are attributable to 20% of the causes, in most 

cases. In the context of EC emissions of a building, it can be argued that 80% of 

the EC emissions are attributable to 20% of the building elements. These 

elements are referred to as the carbon-intensive elements of a building or 

‘carbon hotspots’. RICS (2014) proposes two conditions that should be met in 

order for an element to be classed as a carbon hotspot: (1) Measurement data 

is more easily available; and (2) Carbon reductions are possible (RICS, 2014). 
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However, the knowledge on carbon hotspots or the carbon-intensive elements 

is yet to be developed.  

High Capital Cost (CC) of low and zero carbon designs, in comparison to 

conventional designs, used to be a major concern to clients (Catto, 2008), but it 

is now accepted that low and zero carbon buildings are attainable at an efficient 

cost on a par with conventional buildings (Sturgis and Roberts, 2010, Target 

zero, 2012) or at marginally higher cost (Department of Energy & Climate 

Change, 2012). In fact, Langston and Langston (2008) found that there is a 

positive linear relationship between EE and CC of projects. However, the 

findings of Langston and Langston (2008) cannot be substituted with EC as 

there are differences between EE and EC due to the process related emissions 

and sequestrations (Lélé, 1991, Brandt, 2012, Ayaz and Yang, 2009, see, 

Section 2.3 for more details). Therefore, the knowledge gap concerning the 

relationship between EC and CC needs to be explored. Especially, with 

increasing awareness towards the dual currency of construction projects (cost 

and carbon) the need to estimate, control and manage carbon alongside 

construction cost becomes fundamental for construction professionals and 

businesses to be sustainable (Ashworth and Perera, 2015). However, it is not 

easy to attain the best combination of cost and carbon without adequate 

knowledge and expertise supported by decision-making tools.  

A range of online tools exists to help estimate the carbon accountability of 

building designs and some tools propose recommendations to reduce 

emissions. However, most of the estimating tools lack the transparency of the 

underlying methodology of calculations which is one of the major reasons for 

the inconsistency in outcomes of different tools (Čuček et al., 2012). In addition, 

some studies have pointed out that the inconsistency is basically due to the lack 

of EC measurement protocol and have stressed the immediate need for 

developing such a protocol (Dixit et al., 2010, Dixit et al., 2012). While there are 

estimating practices, tools and techniques pertinent to estimating EC, these are 

still in the early stages of development.  Therefore, the need for an early stage 

EC estimating tool, which also generates CC estimates, was identified.  
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1.2. The Research Problem 

The background of this research suggests that there is an urgent need to 

reduce not only the operational carbon but also the embodied carbon in 

buildings, which can be achieved with minimal time and effort by employing 

carbon management tools during the early stages of design. Further, cost 

effective low and zero carbon designs are demanded by current construction 

clients. Designers are therefore under the pressure to produce cost  effective 

yet carbon optimum designs.The existing tools are limited in their capacity to 

perform both embodied carbon and cost estimating at the same time, however. 

This knowledge gap for adopting early stage carbon management in buildings 

will be addressed by the following Research Questions (RQs): 

RQ1: How significant are embodied and OC in building projects and how are 

they regulated? 

RQ2: What are the existing EC estimating tools, methods, their functions, 

outputs and limitations? 

RQ3: What are the carbon-intensive elements or carbon hotspots in buildings? 

RQ4: Are there statistically significant associations between EC and design 

variables and CC and design variables of buildings? 

RQ5: Is there a statistically significant association between EC and CC of 

buildings? 

RQ6: How can an early design stage EC prediction model be developed using 

design variables of buildings? 

RQ7: How can the developed models of EC and CC be validated? 

It has been proven that the cost of buildings is influenced by building 

morphological and quality parameters (or design variables), and this knowledge 

(i.e. design economics) yields economic benefits to construction clients 

(Ashworth and Perera, 2015, Seeley, 1996). Similarly, design economics with 

respect to the EC in buildings will contribute to knowledge and unlock novel 

thinking of designers to help design carbon efficient buildings. The knowledge 
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about relationships between EC and building design variables will enable 

designers to produce cost and carbon optimum designs, even during the early 

stages of design. Therefore, by adopting the theory underlying parametric 

capital cost model prototypes, predicting embodied carbon in relation to design 

variables during the early stages of design, will be considered as an effective 

method. Accordingly, the research approach can be illustrated as follows: 

𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑝𝑒𝑟 𝐺𝑟𝑜𝑠𝑠 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 (𝐺𝐼𝐹𝐴) ⌊
EC

𝑚2
⌋

∝ 𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑀𝑃) 

𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 ⌊
EC

𝑚2
⌋

=  a (
Wall

Floor
) +  b(Storey Height) +  c(Building Height) + ⋯ +  k    

(Where, a, b, c…k = model coefficients) 

Similarly, the effects of other design parameters such as the quality of services 

and the quality of finishes upon EC remain unexplored which are deemed to 

have a significant influence on emissions (Cole and Kernan, 1996). The 

relationship can be hypothesised as,  

𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 ⌊
EC

𝑚2
⌋ ∝ 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑆𝑒𝑣𝑖𝑐𝑒𝑠 (𝐿𝑆) 

𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 ⌊
EC

𝑚2
⌋ ∝ 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 (𝐿𝐹) 

Consequently, EC per Gross Internal Floor Area (GIFA) can be expressed as 

follows: 

𝐸𝑚𝑏𝑜𝑑𝑖𝑒𝑑 𝐶𝑎𝑟𝑏𝑜𝑛 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 ⌊
EC

𝑚2
⌋ = 𝑓(𝑀𝑃, 𝐿𝑆, 𝐿𝐹) 

Subsequently, the relationship between EC and CC can be compared and 

inferences can be made. This knowledge can support designers in decision-

making with minimal time and effort and is likely to yield greater benefits. 
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1.3. Aim and Objectives 

The aim of this research is to develop decision support models (EC and CC 

models) to aid design decision-making for early stage carbon management of 

building projects. 

The following objectives were formulated in order to achieve the above aim: 

 Review the significance of embodied and OC in building construction 

projects and relevant regulatory requirements and conventions. 

 Evaluate the existing EC estimating tools, methods, their functions, 

outputs and limitations. 

 Identify and analyse the carbon-intensive elements (hotspots) in 

buildings. 

 Investigate the relationship between EC and building design variables 

and CC and building design variables. 

 Investigate the relationship between EC and CC of buildings. 

 Develop models for predicting EC and CC during early design stages. 

 Validate the decision support models with real-time construction projects. 

1.4. Scope and Limitations 

The term early design stage refers to the first three stages from the Royal 

Institute of British Architects (RIBA) plan of work 2013, strategic brief, 

preparation and brief and concept design (RIBA, 2013). Particularly, the 

developed models best cater to the estimating needs of the 2-Concept Design 

stage of RIBA plan of work 2013. Further, the system boundary of EC 

estimating was selected as ‘Cradle-to-Gate’ (emissions associated with raw 

material extraction up to the manufacturing factory gate, see Section 2.3 for 

more details) due to the limitations in the availability of EC data. 

Non-domestic buildings are responsible for higher EC emissions than domestic 

buildings and infrastructure (The Green Construction Board, 2013). It is also 

predicted that non-domestic floor area is expected to increase by 35% by 2050 

(UK-GBC, 2014a). Hence, the focus of the study was on non-domestic 

buildings. In particular, office buildings are expected to grow at a rate of 2.7% 
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which is higher compared to other types of non-domestic building (The Green 

Construction Board, 2013). Further, The Green Construction Board (2013) 

states that the commercial office buildings are superior to other types of building 

in terms of the clarity of definition and availability of data which reduces the risk 

of uncertainty in modelling. In addition to that office buildings are the key focus 

of many scholars and an extensive work has been undertaken to improve the 

energy efficiency of office buildings (Halcrow Yolles, 2010a, Yohanis and 

Norton, 2002, Halcrow Yolles, 2010b, Cole and Kernan, 1996, Wu et al., 2012). 

For these reasons, office buildings were selected as the scope of the study. 

The focus of the study was on low to medium-rise office buildings due to the 

limited availability of data. A building is classed as a high-rise building if it is not 

feasible to deploy external firefighting equipment and rescue operations due to 

its height or position (Department of Communities and Local Government, 

2014). Even though there is no set absolute value of height to distinguish high-

rise buildings from low to medium rise buildings, generally, buildings that are 

30m and above (in other words, 10 storeys and above) are generally classified 

as high-rise buildings (Khoukhi and Al-Maqbali, 2011, Craighead, 2009, 

Anderson and Hammarberg, 2015). Accordingly, the boundary of the study was 

established to consider buildings up to nine storeys and the findings are 

applicable to the buildings falling within this range.  

1.5. Structure of the Thesis 

This thesis is presented in nine chapters. This chapter introduces the research 

background, the aim, the objectives and the scope and limitations of the study. 

The next two chapters are dedicated to the literature review. The legislations 

and conventions with regards to the carbon emissions, operational and EC in 

building and their relationships, low and zero carbon buildings, carbon hotspots 

and the cost and EC relationships are reviewed in Chapter 2 which sets the 

platform for EC research. A detailed review of the estimating practices of 

operational and EC including the methods, tools and databases in use are 

presented in Chapter 3 highlighting the deficiencies and limitations of the 

existing EC estimating practices. Chapter 3 concludes by proposing and 

conceptualising a solution to manage EC during the early stages of design. 
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The methodology adopted in the study is explained and justified in Chapter 4 by 

reviewing past research on cost modelling. The research philosophy, approach, 

and design are presented in detail in this chapter. The process of data 

collection, the description of different datasets used in the study, the process 

followed in the study sample development and the data collected through an 

expert forum are explained in Chapter 5. The carbon and cost hotspots 

analyses, the relationship between CC and EC and the regression analyses are 

presented in Chapter 6 followed by the model validations in Chapter 7. Key 

research findings and implications of these findings are presented in three 

major headings: the carbon and cost models, the carbon and cost hotspots, EC 

and CC relationships in Chapter 8. The way the study objectives have been 

achieved is reviewed and recommendations to the industry are made in Chapter 

9. In addition, contributions to knowledge about the theory and to practice are 

discussed and further research directions are proposed in Chapter 9.  
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2. Carbon Emissions  

2.1. Introduction  

This chapter investigates the background of carbon management by reviewing 

international climate change regimes and the UK specific carbon management 

policies that are in place to combat climate change by stabilising the global 

temperature rise. A detailed carbon control trajectory for the UK is presented by 

capturing the emission reduction targets from international and national climate 

policies, conveying the seriousness of the climate change problem and the 

need for rigorous carbon emissions cuts. This chapter also introduces the 

concepts of energy and carbon in the built environment and reviews the 

relationship between energy and carbon. In addition, the concepts of 

operational and EC of buildings are introduced and a few EC case studies are 

presented to give an idea about the EC values of different types of buildings. In 

addition, the relationships between EC and OC is explored and the increasing 

significance of EC in a low and zero carbon built environment is emphasised. 

Finally, the literature on the relationship between carbon and cost of buildings is 

reviewed. 

2.2. Carbon Management  

The industrial revolution between 18th and19th centuries was a major milestone 

in the human history. Many countries experienced exceptional improvement in 

the economy due to new inventions and ideas that uplifted the status of 

countries. The Quality of Life Policy Group (2007) states that the industrial 

revolution was mainly driven by fossil fuels (coal, oil and gas), while BBC (2013) 

reported that coal was the major fuel which triggered the industrial revolution 

and Britain had plenty of coal that could be easily mined. Two centuries of 

industrial revolution brought material progress into the quality of human life 

while environmental burden caused by those aggressive developments was 

often overlooked (The Quality of Life Policy Group, 2007). 

Intergovernmental Panel on Climate Change (2013) reported that 40% increase 

in CO2 levels and 150% increase in methane levels were noticed as at 2011 

since the industrial revolution. The increased amount of GHGs in the 
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atmosphere leads to a steep global temperature rise causing the world climate 

to change. Impacts of the climate change include but are not limited to: decline 

in the food production such as agriculture and fisheries; substantially lower 

economic growth in low-income countries; energy sectors becoming sensitive 

and suffering due to excess demand; tourism to be affected in some parts of the 

world; occurrence of extreme weather events; human health problems; increase 

of civil conflicts; social and economic inequalities in poor populations 

(Intergovernmental Panel on Climate Change, 2013); and even heat-related 

deaths (Intergovernmental Panel on Climate Change, 2012). Hence, climate 

change is a fundamental challenge facing world regions.  

Figure 2.1 illustrates the latest prediction of the mean global temperature rise at 

four different emission scenarios (from low to high – bars on the right-hand side 

of the figure indicates the range of variability of the predicted levels of the 

temperature rise) modelled by Intergovernmental Panel on Climate Change 

(2013). According to Figure 2.1, the mean global temperature at high emission 

scenario (Representative Concentration Pathway (RCP) 8.5, red line) tends to 

reach 4°C at a sharp rate by 2100 and there is a possibility of going beyond that 

level depending on the sensitivity of the assumptions. Further, RICS (2011), 

predicted that in the UK, summer temperatures are likely to increase by 4°C to 

5°C, while rainfall levels may increase by 10 to 30% in the winter and decrease 

by 20% to 30% in the summer by 2080. Moreover, it was also pointed out that in 

the UK opening windows during summer will no longer be a workable solution 

as a cooling mechanism in the near future (RICS, 2011, Intergovernmental 

Panel on Climate Change, 2012). Therefore, the UK has stronger grounds to 

act as fast as possible upon global temperature rise. 
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Figure 2.1: Global mean temperature change at four different emission scenarios 

Source: Intergovernmental Panel on Climate Change (2013) 

The Article 2 of the United Nations Framework Convention on Climate Change 

(UNFCCC) echoes the need to achieve a stabilisation level for GHGs that would 

prevent dangerous anthropogenic interference with the climate system (United 

Nations, 1992). Intergovernmental Panel on Climate Change (2001) projects 

that an average temperature rise over 2.5°C will have negative impacts on the 

biodiversity of the earth. Further, the report warned that when the temperature 

starts to rise over 2°C future warming of the earth would accelerate. According 

to that, the concentration of GHGs in the atmosphere has to be stabilised to not 

to cross the threshold of 2°C. Stern (2007) concluded in his review on the 

economics of climate change that most feasible and effective range of 

stabilising Carbon dioxide equivalent (CO2e) levels in the atmosphere would be 

450 to 550ppm (particles per million) CO2e as cutting below 450ppm would be 

costly and above 550ppm would lead to high climatic risks. Table 2.1 lists the 

stabilisation levels and their respective temperature thresholds presented. It is 

almost in line with the prediction of the Stern review, reconfirming that the 

concentration of GHGs should not exceed 540ppm CO2e to be within the 

maximum allowable threshold of 2°C. 
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Table 2.1: Relationship of atmospheric concentrations of CO2 to temperature  

Source: National Research Council (2011)  

 

Reduction in the burning of fossil fuels is recommended not only to manage the 

climate change but also to address scarcity of fossil fuels. Shafiee and Topal 

(2009) predicted the time depletion for oil, coal and gas to be 35,107 and 37 

years, respectively. Findings of Singh and Singh (2012) also coincide with same 

depletion times predicted by Shafiee and Topal (2009) whilst different 

predictions are presented in other studies (see for example, Lior, 2008, 

International Energy Agency, 2006, Eco Info, 2012). However, the literature 

suggests that only coal will last for the next century and beyond that any activity 

relying on fossil fuels will be distorted. This gave rise to energy and emission 

related policies and regulations to meet the future energy demand and combat 

the climate change, which is also a key conclusion of the 2003 UK White Paper 

on Energy (DTI, 2003). 

2.2.1. Energy and Emission policies 

The 2007 UK White Paper on Energy argues that most of the world’s carbon 

dioxide emissions are due to the inefficient production methods and user 

patterns of the energy. Hence, energy policies having a major role in regulating 

emission levels (DTI, 2007). Further, Stern (2007) argues that the emissions 

tend to grow as the global economy grows if stringent policies are not in place. 

In addition, the reduction of carbon emission levels is the cornerstone of energy 

policies, without which the policies will fail (The Quality of Life Policy Group, 

2007). 
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Following the first World Climate Conference in 1979, many policies and 

agreements emerged eventually to manage carbon emissions to combat 

climate change. The key policies and regulations pertinent to the UK include 

Kyoto protocol in 1997 (amended in 2015), Part L of Buildings regulations in 

2006 (which underwent revisions in 2010, 2013 and expect a further revision in 

the future), Stern review in 2007 and Climate Change Act in 2008. All of which 

encompasses high emission reduction targets for the UK. However, a clear 

vision and roadmap towards the target are important in order to achieve it. The 

crucial target now for the UK is 80% emissions reduction by 2050 at 1990 

levels. Therefore, the UK being a signatory to Kyoto Protocol, it is important to 

understand the targets of various policies and integrate them into a clear 

trajectory to achieve them cost effectively.  

Figure 2.2 illustrates the key targets of emissions reduction in the UK. 

Accordingly, all new homes were expected to be zero-carbon from 2016 in the 

UK until recently, which was abandoned by the UK government and this target 

is now under review. Further, the inclusion of existing stock in the target 

remains undecided where the Energy Company Obligation and Green Deals 

are a few schemes, which were introduced to improve the energy efficiency of 

existing stock. The next most ambitious target is 2019 zero carbon buildings 

which is again likely to be scrapped. Then, the 2020 target of the UK Climate 

Change Act, 30% reductions followed by 50% reduction and 80% reduction in 

2025 and 2050 below 1990 levels, respectively (the increasing size of circles in 

Figure 2.2 represents the increasing emission reduction targets). 
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However, there is a gap between current policy standards and targets (see, 

Figure 2.3) according to the European Union (EU) Commission’s report named 

‘Communication on the development of a Roadmap for a Low Carbon Economy 

by 2050’ to the Council and the European Parliament. Consequently, the report 

outlines a strategy to enable and steer the transition and explore the most 

effective options for "decarbonising" the European economy (European 

Commission, 2011). Table 2.2 lists the strategies proposed for the building 

sector to achieve the main and intermediate milestones to achieve the 2050 

target as buildings being the focus of the study.  The ‘Actions’ column of the 

table is separated using broken line to indicate that the actions will be continued 

in the subsequent years. 

Figure 2.2: Key milestones in the UK carbon roadmap  

2018?

Zero-
carbon 
homes

2019

Zero-
carbon 
buildings

2020
30% 
reduction in 
emissions 
below 1990 
levels

2025
50% 
reduction in 
emissions 
below 1990 
levels

2050
80% 
reduction in 
emissions 
below 1990 
levels
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Figure 2.3: EU GHG emissions towards 80% domestic reduction (100%=1990) 

Source: European Commission (2011) 

 

All plans and actions mostly focus on energy consumed and carbon emitted 

during the operational phase of buildings while less attention is given to the 

emissions associated with the production, maintenance and demolition of 

buildings. Nevertheless, energy consumption and carbon emissions associated 

with these stages are receiving significant attention now.  
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Table 2.2: Detailed trajectory of carbon control in the building sector 

Timeline Target Actions Reference 

2016 Zero carbon homes Renewable Heat Incentive, tightening of Part L regulations, green deal, 

ECO, loft and solid and cavity wall insulation,  switching from halogens 

to Light-Emitting Diodes (LEDs),  improvement in efficiency of cold and 

wet appliances (e.g. fridges and dishwashers) 

 

Gambhir and 

Vallejo (2011), 

Committee on 

Climate 

Change (2013), 

Committee on 

Climate 

Change (2014), 

The Green 

Construction 

Board (2013) 

2017 29% reduction in emissions below 

1990 levels – 2nd carbon budget 

Solid wall insulation in residential sector (3.5 million by 2030) , 

investment in a technology portfolio including renewables, nuclear and 

Carbon Capture and Storage applied to coal and gas,  switching from 

halogens to LEDs,  improvement in efficiency of cold and wet 

appliances (e.g. fridges and dishwashers),  13% of homes to have 

heat pumps in 2030, changes in ECO and green deal schemes 

 

2019 Zero carbon buildings Renewable Heat Incentive (RHI),  tightening Part L regulations,  

Carbon Reduction Commitment,  Display Energy Certificates and 
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Timeline Target Actions Reference 

Energy Performance Certificates,  smart metering, UK Green 

Investment Bank, Landfill tax escalator,  deploy ground source and air 

source heat,  switching from halogens to LEDs 

2020 30% reduction in emissions below 

1990 levels  

Use of low carbon technologies (e.g. PV) , renewable energy sources, 

supply chain management 

2022 35% reduction in emissions below 

1990 levels– 3rd carbon budget 

Install  heat networks in dense urban areas, supply chain management 

2027 50% reduction in emissions below 

1990 levels – 4th carbon budget 

Full ramp up of hard to treat properties 

2050 80% reduction in emissions below 

1990 levels 

Mandatory measuring and reporting of whole life carbon for all 

buildings, aligned to carbon budgets,  Promoting large demonstration 

of carbon capture and storage projects 
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2.3. Energy and Carbon 

Energy is one of the key concerns of the world at the moment. Meeting energy 

demand is considered a huge challenge, hence, a range of measures exist to 

regulate the energy demand. It is also predicted that the global primary energy 

demand will rise by 53%, by 2050 (DTI, 2007). Built environment is one of the 

main reasons for the rise in the predicted energy demand as the global built 

environment is responsible for 30-40% of global energy consumption (UK-GBC, 

2014b). Hence, Energy Performance of Building Directive (2002) and Part L of 

the Building Regulations (2013) are in place to control the energy demand in the 

UK through set benchmarks for building performance. 

Energy usage during the operational phase of buildings is significant in the 

building sector, which is referred to as “Operational Energy” (OE). It is the 

primary energy (the direct energy used at the source without any transformation 

or conversion) consumed for space heating and cooling, hot water and fixed 

lighting.  In other words, it is also called the regulated energy as per the UK 

Building Regulations Part L. Meanwhile, energy consumed in Information and 

Communication Technology (ICT) equipment, cooking and refrigeration 

appliances is not regulated or included under the Standard Assessment 

Procedure (SAP) or Life Cycle Assessment (LCA) calculation which outlines the 

method of quantifying energy and carbon of domestic and non-domestic 

buildings (PRé Consultants, 2014, Wan Omar et al., 2014). However, the other 

part of the energy consumed by the building sector known as “EE” (EE) is not 

regulated presently. 

In response to the requirements of national schemes to assess the 

environmental impacts of buildings and to prevent any technical barriers to 

trade within the EU, TC350 Standard was introduced in 2011-12, through a 

process LCA in which both the OE and EE are included in assessments. In 

accordance with the TC350 Standards, EE is the total primary energy 

consumed from direct and indirect processes associated with a building 

including material extraction, manufacturing, transportation, construction, 

refurbishment and replacement, and disposal activities at the end of the 

building’s life. It also includes the impacts from all material that is lost at every 

stage (Mebratu, 1998).  
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Table 2.3: A review of EE definitions 
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Remarks 

Shafiee and 
Topal 
(2009) 

√ √ √  
 Demolition energy is included in 

EE 

Brandt 
(2012) 

√ √ √  
 Demolition energy is excluded 

from EE 

Dixit et al. 
(2010) 

   √ √ 

Direct energy includes 
construction and assembly on 
site, prefabrication, transportation 
and administration 

Indirect energy includes initial 
EE, recurring EE and demolition 
energy 

Nevertheless, the definitions on EE are still evolving and it is common to see 

that EE is further classified as initial EE and recurring EE (and in some 

instances, demolition energy, see, Table 2.3). Dixit et al. (2010) reviewed 

various definitions of EE and interpreted EE as the energy consumed during the 

life cycle stages of buildings such as processes of production, on-site 

construction, and final demolition and disposal. Dixit et al. (2010) classifies EE 

as direct and indirect energy where direct energy consists of construction and 

assembly on site, prefabrication, transportation and administration and indirect 

energy consists of initial EE, recurring EE and demolition energy. On the other 

hand, Brandt (2012) interprets EE as the energy consumed during the 

manufacturing phase of the building where manufacturing phase is perceived as 

raw material extraction, material production, transportation, construction and 

renovation. While Brandt (2012) classified EE as the initial and recurring EE, 

energy sequestered during the demolition and disposal of buildings at the end 

of the lifespan is excluded from EE and referred to as demolition energy 

(Brandt, 2012).  
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Even though there are similarities and contradictions within the above 

interpretations of definitions, all of the above definitions lack another important 

phase of the lifecycle, which is gaining importance at present, namely “benefits 

beyond the life cycle”. This phase includes reuse, recovery and recycle and is 

considered in TC350 standards (see, Figure 2.4). Recent studies also suggest 

that this phase should also be taken into account in EE computations, as the 

end of life benefits might be significant for some projects (Clark, 2013, Wu et al., 

2012, Anderson et al., 2002). However, there is a risk of double counting EE 

during the lifecycle analysis, which should be avoided.  

All these studies attempt to define EE with reference to different stages of 

building lifecycle, which is referred to as the “system boundary” of the analysis. 

Hence, it is common to see EE studies with different system boundaries. For 

instance, EE can be quantified in the following ways (Hammond and Jones, 

2011, Hammond and Jones, 2008a, RICS, 2014) where “cradle” here is the 

earth: 

 Cradle-to-gate: includes total energy consumed for all the processes 

from cradle up to the factory gate of the material manufacturing factory. 

 Cradle-to-site: includes total energy consumed in Cradle-to-gate plus 

delivery to the installation site. 

 Cradle-to-construction: includes total energy consumed in Cradle-to-site 

plus the construction.  

 Cradle-to-grave: a complete study that includes total energy consumed in 

Cradle-to-gate, operation and end of life processes. 

 Cradle-to-cradle: the process of making a component or a product and 

converting it into a new component or product of the same or lesser 

quality at the end of its life 

 

These system boundaries are mapped on to the TC350 (EN 15978:2011) 

Standard for assessing lifecycle impacts of a product as illustrated in Figure 2.4. 

This standard is widely accepted for EE calculations and commonly cited in 

studies related to EE and carbon. 
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Hammond and Jones (2008a) defined EE in the ICE (the very first energy and 

carbon database of building materials in the UK) as the total primary energy 

consumed throughout its life cycle including raw material extraction, 

manufacturing and transport, energy to manufacture capital equipment heating 

and lighting of factory maintenance, disposal etc. This falls into the cradle-to-

grave system boundary. However, Hammond and Jones (2008a) pointed out 

that it is a common practice to define EE as ‘cradle-gate’. Hence, the definition 

of EE was revised in the second version of ICE report of Hammond and Jones 

(2011) as ‘the total primary energy consumed from direct and indirect processes 

associated with a product or service and within the boundaries of cradle-to-

gate’. 

Eventually, it can be interpreted from the aforementioned discussion that the 

OE is the energy consumed during heating, cooling, hot water, lighting and the 

operations of all other energy appliances. On the other hand, EE of buildings 

implies the total energy consumed by the building materials which form the 

building after deducting for any savings (such as sequestration, reuse and 

recycling), including all the phase from raw material extraction until the 

demolition and disposal of buildings. This cycle includes material manufacturing 

Figure 2.4: Scope of a life cycle assessment based on the impacts agreed by CEN/TC350 

and set out in BS EN 15978:2011 
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(including extraction of raw materials), transportation to site, construction, repair 

and maintenance, replacement, demolition, disposal, reuse and recycle. 

Similarly, the definitions and concepts of carbon are derived from energy. OC is 

the GHG emissions associated with operational energy consumption while EC 

is the GHG emissions associated with the EE consumption. EC is also referred 

to as capital carbon in studies related to infrastructure (HM Treasury, 2013, 

Ahrens, 2007, Intergovernmental Panel on Climate Change, 2007). In the 

earlier definitions proposed by Hammond and Jones (2008a), EC was 

interchanged with EE. However, the definition of EC was modified in the ICE 

version 2.0 as the sum of fuel related carbon emissions (i.e. EE which is 

combusted – but not the feedstock energy which is retained within the material) 

and process related carbon emissions (i.e. non-fuel related emissions which 

may arise, for example, from chemical reactions) which can be measured from 

cradle-to-gate, cradle-to-site, or cradle-to-grave.  (Hammond and Jones, 2011). 

Based on this discussion, energy and carbon are compared and contrasted in 

Table 2.4. 

Table 2.4: Energy vs. Carbon 

 Energy Carbon 

Embodied Total primary energy consumed 

from direct and indirect 

processes throughout the life 

cycle of a product excluding 

operational or use phase. 

Net carbon emissions resulting 

from EE consumption and 

chemical processes (after 

deducting any emissions 

sequestrations) during the life 

cycle of a product excluding 

operational or use phase. 

Operational Total primary energy consumed 

during the operational phase of 

a facility. 

Total carbon emissions resulting 

from operational energy 

consumption of a facility. 

Therefore, there is a close relationship between energy and carbon. Both 

energy and carbon can be classified as EE/carbon and operational 

energy/carbon. In fact, both terms can be interchanged and energy can be 

interpreted as carbon in most occasions. However, Lélé (1991) noted that EE 

and EC are improperly interchanged. Lélé (1991) argues that operational 

energy can be interchanged with OC while EE cannot be interchanged. This is 
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because OC is roughly proportional to operational energy and the magnitude 

depends on the type of energy (or fuel) whereas EC cannot be directly 

interchanged with EE at all times as material production processes emit or 

sequester carbon. For example, cement production emits about half of its EC 

during the chemical process and the timber sequester carbon during its growth 

(Ayaz and Yang, 2009). Therefore, it is important that a clear distinction be 

maintained when attempting to interchange carbon in the place of energy. With 

this understanding, operational and EC literature is reviewed in the context of 

buildings in the following sections. 

2.4. Operational Carbon in Buildings 

OC of buildings gained substantial attention from building owners, construction 

professionals and regulatory bodies as the operational emissions were higher 

than the embodied emissions and it was identified that operational emissions 

account for nearly 70-80% of total emissions from buildings (RICS, 2012b, 

Anderson, 2011). However, the percentage contribution of OC varies for 

different types of buildings as shown in Figure 2.5. Accordingly, less energy 

intensive buildings like warehouses need considerable attention during other 

phases (i.e. EC emission). 

RICS (2014) defines OC in buildings as emissions related to energy 

consumption during the operation of buildings. These emissions include both 

regulated load (e.g. heating, cooling, ventilation and lighting) and 

Figure 2.5: Carbon emissions in different phases of buildings’ life in different types of 

buildings 

Source: RICS (2014, p. 10) 
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unregulated/plug load (e.g. ICT equipment, cooking and refrigeration 

appliances). The Part L of Building Regulations has provisions of controlling 

regulated OC in buildings as the unregulated emissions are entirely depended 

on the occupants’ behaviour of the building. 

As per the Part L of the Building Regulations, the operational emissions or the 

Target CO2 Emission Rate (TER) for a notional building design is calculated 

using either the Simplified Building Energy Model (SBEM) or other approved 

software tools where actual the Building CO2 Emission Rate (BER) should be 

less than the TER for the building design to be approved. The operational 

emissions are expressed in mass of CO2 emitted per year per square meter of 

the usable floor area of the building (kg/m2/year) (see, Section 3.2 and 3.5.1 for 

more details on OC estimating).  

Furthermore, zero carbon agenda has increased the concern on EC emissions, 

because, theoretically total emissions will be equal to the total EC emissions in 

a zero carbon building (see, Figure 1.1). Therefore, EC emissions require 

special attention in a low or zero carbon environment and need to be controlled 

to attain the Kyoto goal of 80% reduction by 2050 and a carbon free economy in 

long run. 

2.5. Embodied Carbon in Buildings 

Reviews on definitions and interpretations of EE and carbon highlight the 

variations in the type of energy considered (primary energy – fossil fuels such 

as coal, oil and gas; and renewable energy like wind, waves, bio fuels etc.) and 

the scope or system boundary defined (Ibn-Mohammed et al., 2013; Dixit et al., 

2012). Dixit et al. (2012) question the inclusion of only non-renewable energy 

sources in the EE calculation, which can be answered based on the definition of 

EC. It is the carbon emitted as a result of the fuel consumption and thus, it is 

sensible only to include fuel related energy consumption (or emissions) in the 

definitions. Further, EC can be calculated from cradle (earth)-to-gate (material 

manufacturing factory gate), cradle-to-site (construction site), cradle-to-end of 

construction, cradle-to-grave (demolition), or even cradle-to-cradle (includes 

savings from reuse, recovery and recycle) which is termed the system boundary 

of the EC calculations as discussed in Section 2.3. System boundary can be 



 

26 
 

selected based on the needs of the beneficiary (or the client); therefore, it is 

unwise to confine the definition by including system boundary. However, the 

revised definition proposed by Hammond and Jones (2011) defines EC as "the 

sum of fuel related carbon emissions and process related carbon emissions" 

resolving the above-mentioned dilemmas.  

The scope of EC is illustrated in Figure 2.6. EC can be categorised into mainly 

two types: initial EC and recurring EC  (Chen et al., 2001a, Ramesh et al., 

2010). Initial EC is the emissions associated with the production of the building 

including raw material extraction, manufacturing, transport and construction; 

recurring EC includes emissions during use of the building such as repair, 

maintenance and replacement due to the difference in the life spans of building 

elements and the overall building. In addition, a third type called demolition EC 

or end-of-life EC that includes emissions associated with the demolition of the 

building. Furthermore, EC saved because of reuse, recovery and recycle at the 

end of buildings’ life cycle are referred to as the ‘benefits beyond system 

boundary’ (as identified in TC350, BS EN 15978 standard). A cradle-to-cradle 

system boundary includes the embodied impacts from all of the four types 

discussed above (please note that the length of the arrows in Figure 2.6 does 

not represent the magnitude of EC emissions). 

 

 

Figure 2.6: Scope of EC in a building life cycle 

Hammond and Jones (2011) and Sansom and Pope (2012) noted that many EC 

datasets available are cradle-to-gate and fail to include emissions from latter 

stages of life cycle (such as construction, operation and maintenance and 

demolition and disposal) due to project specific emissions (see, Section 3.6 for 

the discussion on EC databases). However, transport of materials to the site 

can be significant for materials with lower EC emissions in other phases 

(Hammond and Jones, 2008a). Furthermore, lesser transport distance not 
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necessarily means lesser carbon emissions; mode of transport and type of fuel 

also plays a significant role other than the distance of travel (RICS, 2014, 

Sundarakani et al., 2010). 

Figure 2.7 summarises the EC values of different types of buildings obtained 

from various studies. It should be noted that the EC values presented in the 

graph is for the building structure only. The values of semi-detached houses 

were obtained from Hacker et al. (2008) and Monahan and Powell (2011). A two 

storeyed semi-detached house was studied in both cases and alternative 

structural options were simulated to analyse the impact of design decisions on 

the EC of the building. Both studies concluded that the EC of the residential 

building increases when moving form a lightweight timber framed building to a 

heavy weight concrete building and proved that the EC can be reduced by 51% 

from the structure of the building alone. The EC values of other types of 

buildings were obtained from a study conducted by Sansom and Pope (2012) 

which again includes the EC analysis of the structural form of the buildings. 

Single case studies were employed for each type of the building and the impact 

of alternative structural forms on the EC of each building was studied. Further, 

Sansom and Pope (2012) adopted a cradle-to-grave system boundary which 

includes the emissions associated with the raw material extraction up to the 

demolition of the building (however, the study excluded recurring EC which 

covers repair, maintenance and replacement during the use phase of the 

building). Estimating EC using cradle-to-grave approach provides a more 

holistic view though cradle-to-grave EC analysis is hugely influenced by project 

specific assumptions.   
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Figure 2.7: EC values of different types of buildings from the literature 

On the other hand, EC studies on office buildings are prevalent in the literature. 

Hence, EC values of office buildings are presented separately in Figure 2.8. 

Findings of four studies were mapped onto a spider web diagram to 

demonstrate the variation in the EC values of office buildings. Clark (2013) 

reported EC analyses of office buildings ranging from low to high-rise buildings, 

structure only analyses to whole building analyses and cradle-to-gate analyses 

to cradle-to-grave analyses. Hence, the reported EC values range from 300 

kgCO2/m2 to 1,650 kgCO2/m2. As explained before, the findings of Sansom and 

Pope (2012) covers cradle-to-grave EC analysis of the structure of an office 

building excluding recurring embodied emissions. The change in the EC 

influenced by the change in the structural form of the building was investigated 

by Sansom and Pope (2012). Hence, the variation is small and it was shown 

that 11% reduction in the EC is achievable (structure only) in that particular 

building. Victoria et al. (2015) reported cradle-to-gate EC analyses of seven 

office buildings and the EC ranges from 271 kgCO2/m2 to 706 kgCO2/m2. 

However, the EC values reported by Victoria et al. (2015) excludes some of the 

major building services, hence, not holistic. Halcrow Yolles (2010b) studied 

three low-rise office buildings within a cradle-to-gate system boundary. The EC 

of the three office building ranges from 538 kgCO2/m2 to 924 kgCO2/m2 

(excluding major building services). Further, Halcrow Yolles (2010b) found that 

improvement to operational energy can escalate the EC of up to 25% (Halcrow 

Yolles, 2010b).   
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Figure 2.8: EC studies on office buildings 

EC management requires a great deal of understanding and attention to detail. 

Measures to minimise EC of the building has to be taken during the early stages 

of the design to yield greater savings as the carbon reduction potential is high 

during the early stages of design (RICS, 2014). Figure 2.9 illustrates the 

diminishing reduction potential of EC over the project life cycle while 

approximately 80% of initial EC committed by the end of the design phase  

(Asiedu and Gu, 1998). As more carbon is committed into the project, the 

reduction potential decreases increasingly because possible design solutions 

are constrained by previous design decisions. Then, during the construction 

phase, the reduction potential can be regarded as nearly zero unless there is a 

design change. Further, the design becomes static as the project progresses 

and changing the design at a later stage will result in loss of time and money.  
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In fact, RICS (2014) states that investigating EC emissions in different types of 

buildings is a completely new research avenue, and there are limitations in 

regulatory standards or academic research to aid decision-making at the initial 

stages of projects. Nevertheless, carbon hotspots are identified as an ideal way 

of dealing with this issue. 

2.6. Carbon Hotspots 

A hotspot may mean different things to people from different disciplines. RICS 

(2014) defines ‘carbon hotspot’ as the carbon significant aspect of a project, 

which can be building elements, or other aspects in the supply chain. However, 

carbon hotspots in this research refer to the carbon critical or significant building 

elements. RICS (2014) further extends that carbon hotspots are not only 

carbon-intensive elements but also the elements that are easily measurable and 

carbon reduction is possible. The Pareto Principle proposes that 80% of the 

results (or consequences) are attributable to 20% of the causes which implies 

an unequal relationship between the inputs and the outputs (Koch, 2011, 

Delers, 2015). According to 80:20 Pareto rule, it can be assumed that 80% of 

embodied emissions are caused by 20% of building elements (also see, Section 

4.9.1 for the application of the Pareto theory in the research). These carbon 

Figure 2.9: Behavioural pattern of EC over project 

stages 

After: RICS (2014) and Halcrow Yolles (2010a) 
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hotspots may vary from one building to the other depending on the type or 

function of the building (Ashworth & Perera, 2015).  

Monahan and Powell (2011) highlighted the importance of identifying hotspots 

in buildings by modelling a two-storeyed residential building (in the UK) in three 

different scenarios – timber frame and larch cladding, timber frame and brick 

cladding, conventional masonry cavity wall. The substructure (including 

foundation and ground floor) accounted for 50% of EC in timber frame and larch 

cladding building and substructure, external walls and roof were identified as 

the carbon hotspots in the building (elements responsible for 81% of EC, 

however, not all the building elements were included in the accounting). Further, 

the same building (timber frame with larch cladding) substituted with timber 

frame and brick cladding and conventional masonry resulted in additional EC of 

32% and 51% respectively. The majority of the difference in EC was found to be 

attributed to the difference in foundations and external walls. The findings of the 

study (Monahan & Powell, 2011) reveal substructure and external walls as 

‘carbon hotspots’ in the particular residential building and highlight the potential 

for EC reduction. 

Shafiq et al. (2015) studied a two-storied office building in Malaysia by 

modelling six different scenarios for structural composition using a Building 

Information Model (BIM). However, Shafiq et al. (2015) used UK databases to 

estimate EC due to lack of EC databases in Malaysia. Different grades or 

classes of concrete and steel were combined to generate different composition, 

which resulted in different material quantities producing varying EC impacts. 

Only a few elements were studied including foundation, beams, slabs, columns 

and staircases, which can be related to the substructure, frame, upper floors 

and stairs as per the New Rules of Measurement (NRM) element classification. 

Shafiq et al. (2015) found that it was possible to reduce up to 31% of EC by 

designing these elements with different classes of concrete and steel to meet 

the given design criteria. However, it should be noted that only the elements 

that constitute concrete and steel are considered because concrete and steel 

are considered as the main structural building materials and emit high EC 

during production. Particularly, upper floors were identified as the key carbon 

hotspot followed by substructure, frame and stairs.  
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It is clear that EC studies in different types of buildings highlighted above 

(Monahan & Powell, 2011; Shafiq et al, 2015) have different focuses and hence, 

limit the analysis to few elements. However, an analysis of the whole building 

will provide a holistic picture on the EC contribution of each element and will 

highlight the potential areas for carbon reduction. Generally, floors (ground and 

upper floors), frame, external wall and roof are identified as carbon hotspots in 

buildings (Clark, 2013; Davies, Emmitt, & Firth, 2014; Halcrow Yolles, 2010a). It 

was noticed that the element classification differs from one study to the other 

due to incompatible element classification standards (for example, NRM, 

Standard Method of Measurements (SMM)/ Building Cost Information Services 

(BCIS) - older version, British Council of Offices 2011, some studies did not 

follow any standards). Therefore, literature findings were organised in 

accordance with the NRM element definition, which are presented in Table 2.5. 

Most studies lack transparency of the methodology adopted in the study. This 

questions the validity and applicability of those findings. 

Table 2.5: Carbon profile of building elements of office buildings from published studies 

 

Even though services account for 10-25% of total EC emissions, it is not widely 

considered as a carbon hotspot due to difficulty in the measurement of services 

during the early stages of design and lower EC reduction potential (Hitchin, 

2013; RICS, 2014). However, Cole and Kernan (1996) found that cladding 
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finishes and services are the biggest components of recurring EC emissions of 

an office building in Canada. Especially, it was highlighted that in a 50-year life 

cycle, recurring EE is almost the same as the initial EE and for a longer life 

cycle it would be greater than the initial EE (However, the findings were subject 

to the assumptions and energy data available at that time). Hence, the quality of 

services and finishes cannot be disregarded when making initial design 

decisions, as the contribution is significant. Therefore, it is important that an 

indication of the likely EC of building services and finishes be given at the early 

stages of design to understand the total carbon accountability of the building.  

Hitchin (2013) investigated services EC for a typical office building in London 

and found that ‘space heating and air treatment’ and ‘electrical installations’ 

were the most EC intensive building services. However, this is an incomplete 

picture painted by most scholars due to limiting the building services EC 

analysis to only fundamental services such as water, sanitary and drainage 

installations, electrical and HVAC installations. Sophisticated services such as 

communication installations and building management system are excluded in 

most studies due to their complex nature and limited EC data. However, these 

services constitute cost significant items in office buildings.  

Clark (2013) proposed benchmarks for EC values of a typical UK office building 

based on findings of a range of reported studies, which are listed in Table 2.6. 

However, Clark (2013) admits that the proposed benchmark values are not 

subject to a detailed scrutiny and it should only be regarded as a rule of thumb 

for EC calculations of office buildings in the UK. Further, Clark (2013) insists 

that further research is needed to develop robust carbon benchmarks. The lack 

of scientific evidences on EC hotspots of buildings and the non-conformity of 

existing EC analyses to a standard element classification drive this research 

and highlight the knowledge gap in the existing body of literature. 
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Table 2.6: Indicative EC values for the UK office buildings 

Source: Clark (2013) 

Components 

Indicative EC (kgCO2e/m2 GIFA) 

Typical 

design 

Low carbon 

design 

High 

carbon 

design 

New build (shell and core) 600 400 900 

Fit-out (Category A) 400 70 150 

Fit-out (Category B) 200 100 300 

Minor refurbishment (excluding fit-out) 25 15 40 

Major refurbishment (excluding fit-out) 100 70 150 

Reclad 100 70 150 

Demolition and disposal 30 30 30 

Given that there is no empirical evidence on the carbon hotspots of buildings, it 

can be argued that the hierarchy of building elements in terms of carbon 

intensity will change for different types of buildings/projects due to different 

element intensities. Dixit et al. (2010)  identified a list of factors that affects the 

EC measurements. However, diversity of assumptions, the source of EC data 

and the methodology adopted (Clark, 2013) can be regarded as the most 

significant factors for the reported variations. Furthermore, element 

classification also highly alters the findings of the studies. Especially, analysis of 

EC of building services remains a mystery due to lack of comprehensive 

published dataset and hence, services represent a small percentage in some of 

the reported studies (see, Table 2.5). 

2.7. Operational Vs. Embodied Carbon in Buildings 

Figure 2.10 illustrates the contribution of operational and embodied (capital) 

carbon in different sectors of the built environment (The Green Construction 

Board, 2013). The Figure has been derived using the operational energy 

consumption data from the Digest of UK Energy Statistics for each sector 

(which is produced by the Department for Energy and Climate Change) which 

has been converted into emissions by applying appropriate GHG emission 

factors from DEFRA. On the other hand, capital carbon has been estimated 

using a Multi Regional Input Output model, which is the most comprehensive 
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inventory of historical annual data on capital carbon, though it does not provide 

sectoral distributions. Hence, data from the Office for National Statistics on 

construction outputs by sectors has been used to decide on the percentage 

contribution of each sector owing to the fact that there is a relationship between 

the value of the construction output and the embodied emissions (The Green 

Construction Board, 2013). Accordingly, the domestic sector contributing more 

than 50% of the operational emissions highlights the importance of the ‘zero 

carbon home’ target. Similarly, the zero carbon target for non-domestic 

buildings is also considered equally important, as the non-domestic building 

stock is accountable for one-fourth of the total emissions during the operational 

phase according to Figure 2.10. Given that the targets are achieved by 2019 

(even though these are ambiguous and questionable now), the remaining 

component of carbon to be managed will be EC of domestic and non-domestic 

buildings and infrastructure. Further, it is clear from Figure 2.10 that non-

domestic capital carbon (EC) is higher than the domestic and infrastructure EC. 

 

Figure 2.11 demonstrates the contribution of embodied and operation carbon in 

buildings and infrastructure in different countries. The reasons for varying 

Figure 2.10: Breakdown carbon emissions in built environment 2010 

Source: The Green Construction Board (2013) 
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proportions may include and not limited to the type of building being assessed, 

the use of the building, the type of building materials used, construction 

methods employed, the period of analysis considered and geographical 

differences. Therefore, it is important to be aware of these variations when 

developing models and benchmarks so that these variations be normalised. 

Further, it is important to understand the relationship between operational and 

EC since both are interdependent. Ramesh et al. (2010) noted that operational 

energy/carbon has been drastically reduced in low-energy buildings and 

EE/carbon increases as the operational energy/carbon decreases. The Green 

Construction Board (2013) further extends that there is a strong linkage 

between operational and EC as the efforts to reduce OC tends to increase EC 

and vice versa. This affirms the inverse relationship noted by Ramesh et al. 

(2010). Moreover, in a zero carbon environment, EE/carbon can be expected to 

be higher than in low carbon buildings, which necessitates the need for 

controlling the EC instantly. 
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Figure 2.11: Operational vs. embodied energy and carbon emissions in different 

countries 

Source: Ibn-Mohammed et al. (2013) 
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2.8. Zero Carbon Buildings 

Zero carbon policy for homes simply means that all emissions arising as a result 

of the operational energy use of buildings on site should be offset by possible 

means (Zero Carbon Hub, 2014b). Figure 2.12 illustrates the concept more 

clearly. According to Figure 2.12, three key criteria should be met for a home to 

be regarded as a zero carbon home. Firstly, energy efficiency should be 

achieved at the minimum specified standard (Fabric Energy Efficiency Standard 

(FEES)) thorough fabric performance; secondly, the remaining carbon 

emissions should not exceed the carbon compliance level set in Part L1; finally, 

after meeting the first two requirements (i.e. carbon compliance) the remaining 

emissions should be offset to reach the zero carbon standard (Zero Carbon 

Hub, 2014b). Further, the zero carbon target for homes in the UK was set as 

2016 and it was expected that all new homes should be zero carbon from 2016 

though it went through several twists and turns in the recent past and now 

under another review to push the deadline forward to 2018. 

A survey and semi-structured interviews conducted by Osmani and O'Reilly 

(2009) with major house builders in the UK identified a number of barriers to 

achieve the target of zero carbon homes by 2016. These barriers include 

legislative (lack of clarity in requirement and expected outcomes in the policy), 

cultural (lack of customer demand), financial (lack of data on cost of achieving 

zero carbon homes) and technical barriers (moving from conventional design 

and technology, though it was the considered as the least significant barrier). 

Further, the study (Osmani and O'Reilly, 2009) pointed out that even though the 

target of zero carbon homes seems technically feasible, it requires proper 

strategies and a plan in place and effective implementation. Apparently, the 

zero carbon target for homes has not been achieved yet and is still under 

review. 
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While there is no firm definition or policy for zero carbon non-domestic buildings 

due to varying energy usage pattern for different types of buildings (especially 

unregulated), government has stated in a consultation report (Department for 

Communities and Local Government, 2008) that the minimum compliance for 

non-domestic buildings will be all regulated emissions should be zero. Even 

though the target for non-domestic zero carbon buildings was set as 2019 the 

industry assumes that this target has also been scrapped similar to the target of 

zero carbon homes imposing a challenge on 2050 emission reduction target. 

The Zero Carbon Hub (2013) has proposed three strategies to comply with zero 

carbon definition for homes, namely, Balanced, Extreme Fabric and Extreme 

Low Carbon Technologies. These imply meeting the minimum standard for 

FEES and carbon compliance through a moderate but sensible focus on low-

carbon technologies; reaching extremely high FEES and less on-site low carbon 

technology; fabric performance beyond FEES and maximum use of on-site 

low/zero carbon technologies to reduce emissions well beyond carbon 

compliance, respectively. On the other hand, meeting non-domestic zero 

carbon lacks strong stance due to the absence of a firm definition. 

It is also interesting to see another concept of Nearly Zero-Energy Buildings 

(NZEB) from 2020 in EU in accordance with Energy Performance of Buildings 

Directives (EPBD) Article 2, alongside with zero carbon (or energy) buildings. 

EPBD defines NZEB as a building which has very high energy performance that 

Energy efficiency 

On-site low/zero carbon 

heat and power 

Allowable 

solutions 

Carbon compliance 

ZERO 

CARBON 

Figure 2.12: Zero carbon policy for homes 

Source: Zero Carbon Hub (2014b) 
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produces the energy it required from renewable sources on-site or nearby. The 

major difference between NZEB and zero carbon buildings concept is the 

metric. FEES is measured in kWh/m2/year energy demand, carbon compliance 

in kg/m2/year of CO2 and allowable solution in £s whereas NZEB is measured in 

primary energy consumption units, kWh/m2/year. Furthermore, zero carbon 

policy aims at delivering zero carbon domestic buildings from 2016 whereas 

NZEB policy focuses on all types of buildings. The lack of a proper zero carbon 

definition is the reason for this variance (Zero Carbon Hub, 2014a). 

It is apparent that definitions and solutions to achieve zero carbon buildings 

totally focus on OC of the buildings. However, the need to incorporate EC within 

the zero carbon definition has been manifested in many studies. A recent case 

study of a residential building in Norway found that even though the building 

was constructed with energy efficient building envelope and PV system, the net 

environmental impact after considering EC was inadequate (Lützkendorf et al., 

2014). Further, a few studies and consultation reports have reviewed existing 

definitions (Marszal et al., 2011, McLeod et al., 2012, UK-GBC, 2008) and 

proposed that embodied impacts should be included in the zero carbon 

definition (Lützkendorf et al., 2014, Hernandez and Kenny, 2010, McLeod et al., 

2012, UK-GBC, 2014a). 

Figure 2.13 illustrates the state of different buildings, ranging from conventional, 

low and zero energy to energy producing buildings, against a life cycle zero 

energy building in a real sense (this can be applied to carbon as well) 

(Hernandez and Kenny, 2010). It is clear from Figure 2.13 that buildings 

referred to as “energy producing buildings” are not even close to a real zero 

energy/carbon building. This raises a serious concern about the zero carbon 

definition. 
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All these emerging studies and recommendations increase the awareness on 

embodied impacts of buildings and highlight the necessity to incorporate EC 

within the zero carbon definition. Therefore, it can be expected that embodied 

impacts could be incorporated into the zero carbon definition in the near future. 

In that case, designers will be under the pressure to design buildings with 

minimal or zero embodied impacts. Hence, choosing energy/carbon efficient 

designs during the early stages of projects will play an important part in 

reaching the zero carbon targets. 

Even though the carbon accountability of projects is considered important due 

to the climate risk, the cost of construction projects is also of a greater concern 

for clients who initiate these projects. Therefore, it is important to strike a 

balance between carbon and cost when selecting a design to satisfy the needs 

of both the planet and the client. 

  

Figure 2.13: Annualised life cycle energy vs. annualised embodied energy of generic 

buildings against life cycle zero energy buildings 

Source: Hernandez and Kenny (2010) 
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2.9. Carbon and Cost 

An often criticised fact about low and zero carbon buildings is that the cost of 

achieving it. Developing zero carbon designs used to be a bottleneck to 

designers due to the requirement of advanced technologies and high CC 

involvement (Catto, 2008). However, now designers are handling this challenge 

tactfully and inventing intelligent technologies to design a passive design with 

active solution to address climate changes and it is believed and proved that 

low and zero carbon buildings are attainable at an efficient cost similar to 

conventional buildings (Sturgis and Roberts, 2010, Target zero, 2012, CB 

Richard Ellis, 2009) or at a little higher cost. A recent study by the Sweett group 

(Zero Carbon Hub and Sweett, 2014)  validates the above claim by modelling 

different house types and the findings suggest that zero carbon homes can be 

achieved at an additional cost of between £34/m2 and £53/m2 by 2020. 

Moreover, a recent case study on a commercial building (Torcellini et al., 2014) 

proved that zero energy building can be attained at no additional cost when best 

cost controlling practices are implemented. Therefore, the cost can no longer be 

a barrier to the development of zero carbon buildings. 

However, it is not easy to attain a low level of carbon emissions at an efficient 

cost. It demands expert knowledge and structured decision-making. For 

instance, selection of a carbon efficient material might increase the cost while 

not reducing the carbon significantly. Therefore, the decision to choose such a 

material would not yield the desired value for money. Hence, taking a crucial 

decision on designs requires expert knowledge and information.  
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Ibn-Mohammed et al. (2013) explain this issue through a Marginal Abatement 

Cost Curve (MACC) illustrated in Figure 2.14. Accordingly, the width of the bar 

indicates the net savings in emissions and the height of the bar denotes the 

cost per unit of CO2e saved. Consequently, it can be seen from the graph that 

most likely the height of the bars increases (cost per net CO2e emissions 

savings) as the width (net CO2e emissions savings) increases, which means 

both operational emissions savings and embodied emissions incurred increase. 

EC emissions increases as the operational emissions savings increase. This 

supports the claims of Ramesh et al. (2010) and the Green Construction Board 

(2013). On the other hand, the more important relationship between emission 

savings and cost is established through this graph. As the magnitude of 

emissions saved increases, the costs also increase (see the bars, E, F, and H). 

It should be noted that this discussion applies only to the positive cost curves 

due to the perverse behaviour of MACC (Ibn-Mohammed et al., 2013). 

Figure 2.14: MACC integrating economic considerations (positive measures only) 

Source: Ibn-Mohammed et al. (2013) 
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On the other hand, Langston and Langston (2008) studied the relationship 

between EE and CC at various levels of details (such as projects, elemental 

groups, elements and selected items of work) with the goal of predicting EE 

based on CC. Langston and Langston (2008) found a strong positive correlation 

between EE and CC of the buildings. However, this relationship is most likely to 

have caused by a third variable (GIFA) which was responsible for the causality 

between the two variables (EE and CC). However, this third variable was not 

explored in the study of Langston and Langston (2008).  The authors also noted 

that the correlation between EE and CC drops as the level of detail increases 

from project level to individual work item level. This means that all work items 

collectively at the project level demonstrates a correlation (between EC and CC) 

rather than individually which indirectly conveys that differences in rates (cost 

and energy) of work items are neutralised when analysed at the project level.  

Even though there is a close association between EC and EE, both are 

distinguishable and cannot be interchangeable (see, Section 2.3). Therefore, 

EC and CC relationship could be different to EE and CC relationship. Further, 

the study sample of Langston and Langston (2008) includes buildings with 

different functions and both new build and redevelopment. This is a major 

drawback of this study as these factors might possibly alter the findings. For 

instance, it is reported that generally 20-30% of total emissions from buildings 

are associated with EC while EC of warehouses can account for up to 80% 

(See, RICS, 2014). This is also supported by the study findings of Sansom and 

Pope (2012). Therefore, it is important that the sample is homogeneous in 

terms of the building function (i.e. houses, apartments, offices, retail, hospitals 

etc.) and the type of work (i.e. new build or renovation). 

As per the discussion above, it can be deduced that building costs tend to 

increase as emission reduction measures are applied. However, the 

relationship between cost and carbon is under-explored and only a few studies 

have focused on both low cost and low carbon buildings. Further, it is also 

evident that the relationship between carbon and cost might vary due to varying 

element intensities of different types of buildings. Therefore, it is important that 

this knowledge is captured and disseminated, so that designers can produce 

carbon and cost-efficient design solutions. This calls for a tool that supplies the 

design team with the necessary information on carbon and cost accountability 
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of a given design, as decision-making is made easier with the use of decision 

support tools. 

2.10. Summary 

This chapter discussed the background of carbon management beginning with 

the industrial revolution, which triggered the fossil fuel production. This lead to 

significant rise in the global temperature causing unanticipated and radical 

climate change due to the excessive presence of heat-trapping gases like 

carbon dioxide in the atmosphere. As a result, the economic, environmental and 

social conditions of the world regions are severely impacted. Further to that, 

stringent national targets are set by the UK government to meet the 2050 

emission reduction goal through a carbon control trajectory. These actions 

plans are continually reviewed and reported to the government periodically to 

ensure compatibility with the projected climate change. Carbon control in the 

building sector is identified as one of the significant action plans to reach the 

goal, as the building sector is one of the major energy consumers. However, in 

the action plans more focus is given to reducing carbon emissions during the 

operation of the building, which contributes a significant proportion of total 

emissions while emissions associated with the production, maintenance and 

demolition of buildings given less focus. However, EC gained popularity with the 

introduction of the concept of zero carbon buildings.  

It was also found that due to the development of low and zero carbon buildings 

and the zero carbon agenda of the UK government, the OC component was 

significantly reduced to reach the national targets. However, OC reduction 

measures tend to increase EC. It is envisaged that EC might be regulated in the 

future. Therefore, the management of EC is becoming significant. On the other 

hand, low-carbon options affect the cost of buildings. Hence, the need for a tool 

that predicts both carbon and cost to aid decision-making at the early design 

stages was identified. 
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3. Carbon Estimating 

3.1. Introduction 

A famous quote of Lord Kelvin, a mathematical physicist, is ‘If you cannot 

measure it, you cannot improve it’. Accordingly, carbon of a design has to be 

measured in order to reduce it and improve the environmental performance of 

the design. This chapter reviews a range of carbon estimating tools namely: OC 

tools, EC tools, life cycle analysis tools and multi-functional tools for early 

design stage and detail design stage, to establish the case for the development 

of decision support models for early stage carbon management. 

3.2. Operational Carbon Estimating 

OC of a proposed building in the UK is estimated using SAP (for domestic 

buildings), Simplified Building Energy Model (SBEM - for non-domestic 

buildings) or other approved software tools. The software calculates the monthly 

building energy consumption and the carbon emissions for given inputs. Inputs 

include general information about the building, description of the building 

geometry, construction, use, Heating Ventilating and Air Conditioning (HVAC) 

and lighting equipment (Building Research Establishment, 2014). Accordingly, 

Building CO2 Emission Rate (BER) should be less than the Target CO2 

Emission Rate (TER) to approve the building design (as per the Part L of the 

Building Regulations compliant). Operational emissions are expressed in mass 

of CO2 emitted per year per square meter of the usable floor area of the building 

(kg/m2/year). As discussed earlier, OC is proportional to operational energy, 

thus, OC is based on the energy consumption of the building. According to Part 

L of the Building Regulations (in the UK), OC estimating is compulsory and is 

straightforward. 

Further, OC estimating forms an important part of cradle-to-grave and cradle-to-

cradle LCA of buildings. As presented in Figure 2.4, main energy consumption 

of in-use stage is the operation of the buildings (HVAC and lighting). Hence, OC 

is calculated by estimating the annual energy consumption of the building and 

converting it using carbon conversion factors for fuels, available for the UK 

reporting at the Department for Environment Food & Rural Affairs (2015). 
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While OC of a proposed building is calculated using a modelling software, 

actual OC (from actual operational energy consumption) can be calculated from 

a meter reading during the use of the building (Ekundayo et al., 2012).  Some 

studies (Pan and Garmston, 2012, UK-GBC, 2008, UK-GBC, 2014a) pointed 

out that usually there is a gap between the predicted and the actual 

performance of buildings and stress the importance of attending to this issue. 

As a result, CIBSE developed a platform named CarbonBuzz to manage the 

gap between predicted and the actual performances. This emphasises the 

importance of harmonising predicted and actual emissions in reaching zero 

carbon target. 

3.3. Embodied Carbon Estimating 

Estimating EC follows a completely different process to that of OC. 

Measurement of EC has evolved during the recent past. The Inventory of 

Carbon and Energy (ICE) became the fundamental source of reference for EC 

estimating (cradle to gate) (Hammond and Jones, 2008a; Hammond and Jones, 

2011). It is a database of construction materials containing energy and carbon 

data in the form of mass CO2 emissions per mass of materials. Hence, the 

mass of materials that constitute a building needs to be quantified to estimate 

the amount of EC of a building.  RICS (2014) guidance notes clearly state the 

steps in estimating EC based on a bottom-up approach – deconstructing a 

building element up until the material, labour and plant components and 

applying ICE EC factors to arrive at the total amount of EC of the building. This 

is a tedious task, as a building constitutes numerous items, which needed to be 

decomposed to follow this method.  

The process is simplified to a certain extent by Franklin & Andrews (2011) with 

the introduction of the UK Building Blackbook which consists of itemised EC 

dataset for standard building items that are in accordance with SMM6/SMM7. 

The UK Building Blackbook presents data in a similar fashion to building price 

books used for cost estimating though Blackbook presents data in a dual 

currency format (EC and cost).  Refer Table 3.1 for the basic two methods of 

EC estimating. 
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Table 3.1: EC estimating methods 

Estimating EC of Concrete in a building 

Weight/ICE Method Unit of Measurement/Blackbook method 

Material Quantity 

(Weight) 

ICE factor EC Item Quantity 

(units) 

Blackbook 

factor 

EC 

Cement kg KgCO2/kg KgCO2 Concrete m3 KgCO2/m3 KgCO2 

Sand kg KgCO2/kg KgCO2     

Aggregates kg KgCO2/kg KgCO2     

Plant/Fuel l KgCO2/l KgCO2     

3.4. Carbon Estimating Tools for Early Design Stage 

The phrase ‘early design stage’ in this research refers to the first three stages of 

RIBA plan of work 2013 (strategic brief, preparation and brief and concept 

design) (RIBA, 2013). These stages merely hold less amount of design 

information, making the carbon estimating challenging, vague and less 

accurate. However, the calculations are less time-consuming.  

3.4.1. Operational Carbon Tools 

a) Carbon Critical Buildings  

An early stage carbon prediction tool developed by Atkins (2014) to determine 

how space plan, primary system selection (heating and cooling), orientation and 

form assessment and envelope performance will affect the OC of a given 

design using built-in regional data from different countries. Also, this tool allows 

sensitivity analysis of different variables on the carbon footprint of buildings 

enabling better decision-making. In addition, comparison of OC against cost can 

also be generated. (More details can be found at 

http://www.atkinsglobal.co.uk/~/media/Files/A/Atkins-

Corporate/group/cr/buildings-product-sheet-final-july10-tcm12-8458.pdf). 

There seems to be a lack of standalone early design stage OC estimating tools 

and most tools are life cycle carbon estimating tools, which are discussed in 

section 3.4.3. 
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3.4.2. Embodied Carbon Tools 

a) Construction Carbon Calculator 

The calculator is developed by Build Carbon Neutral organisation and is a 

simple web-based tool. The basic concept of the calculator is Reduce, Renew 

and Offset, which means reducing through efficient building design, renew 

through renewable energy sources, locally sourced and recycled material, and 

achieve the maximum reduction possible. Then, focus on offsetting remaining 

project carbon through other available options like carbon trading and investing 

in low-carbon development projects.  

The scope of the calculator is cradle to construction and the inputs required by 

the calculator include floor area, the number of floors above ground and below 

ground, primary structural system, ecoregion, vegetation and landscape. The 

output is measured in tonnes CO2. The accuracy of the calculator ranges from -

25% to +25%. The major limitation of the calculator is that it is applicable to US 

context and commercial or multi-family projects. The underlying database of the 

calculator is ICE Version1.6. (Build Carbon Neutral, 2007). 

Tool is available at http://buildcarbonneutral.org/ 

b) Embodied CO2 Estimator 

A simple web based tool developed by Phlorum, in collaboration with the 

University of Brighton as part of a Knowledge Transfer Partnership. The tool 

requires inputs of floor areas, a number of floors, building perimeter, glazing 

ratio and brief elemental specifications to calculate EC from cradle to 

construction (excluding transport). The output of the calculator is given in 

tonnes CO2e as well as the particular outcome is compared with a typical 

construction outcome and presented in a graphical format. Further, the tool is 

being developed to include cradle to grave impacts of a project (Phlorum, 

2011). 

Tool is available at http://eco2.phlorum.com/calculator/index 
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c) TATA steel - Steel Construction EC Tool 

A simple web-based tool developed by TATA Steel (2014) to calculate EC of 

the superstructure of steel framed buildings. The tool has two modes namely: 

auto-generate and ‘manual. The auto-generate mode will generate the 

quantities through built-in algorithms and when data is input to the tool, relevant 

carbon factors are applied to derive the EC figure. The Same process takes 

place in manual mode except the quantities are input by the user manually if the 

quantities are known. The inputs required by the tool includes in auto-generate 

mode are upper floor areas, number of storeys, upper floor construction type, 

structural grid size (primary span and secondary span), roof structure, fire 

protection columns, upper floor concrete type, vertical bracing, voids in upper 

floors, % of void in upper floors and void walls. The outcome of the tool will be 

in different forms such as total EC - CO2e figure; EC per one unit floor area - 

CO2e/m2; EC contribution of each element illustrated by a bar chart. A limitation 

of this tool is to be that it can be used only for steel buildings. 

3.4.3. Life Cycle Assessment Tools  

a) Green Footstep 

A web-based tool developed by Rocky Mountain Institute. Requires design 

inputs including location, the size of the site, building type, floor area, expected 

life, project completion year. The tool gives three different outputs namely, ‘Site 

carbon storage’ in tonnes CO2e, ‘Construction emissions’ in tonnes CO2e and 

‘Operational emissions’ in tonnes CO2e/year.Limitation of the tool is to be the 

data sources of the tool are US based (coefficients from the U.S. Environmental 

Protection Agency), hence, applicable to US context only. Further, the output 

graph seems less user-friendly, leading to difficulties in interpreting the results 

(Rocky Mountain Institute 2009). 

Tool is available at http://www.greenfootstep.org/ 

b) Building Carbon Calculator 

An excel tool developed by the University of Minnesota. Calculations are linked 

in a separate excel sheet, hence, the user can determine the system boundary 
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for the analyses depending on the availability of data. The tool requiresinputs on 

Operating energy, Potable water, Wastewater, Solid waste, Materials, 

Transportation, Soils and Vegetation. However, all the inputs are based on 

predictions. The outputs of the tool are ‘Immediate construction impact’ given in 

CO2e (embodied impact), ‘Recurring annual impact’ given in CO2e/year and the 

sum of the above two, ‘Total over building life cycle’ given in CO2e. Major 

limitations include the tool was developed for Minnesota context, more focused 

on OC so requires users to input EC impact and depends on lots of predictions 

on energy usage and the like.A major source of data of the tool is to be the 

Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 –2005 

(University of Minnesota, 2014). 

Tool is available at http://www.csbr.umn.edu/research/carboncalc.htm 

3.5. Carbon Estimating Tools for Detailed Design Stage 

The phrase ‘detailed design stage’ in this research refers to the developed 

design and technical design of RIBA plan of work 2013. The early stage design 

will be groomed by material selection. During these stages, the crucial decisions 

on the specification and services arrangements are made. Therefore, the 

carbon accounting becomes more accurate than the early stage estimating with 

the clearly defined elements and services components. On the other hand, the 

calculation becomes more complex than the early stage due to the extensive 

amount of design information. 

3.5.1. Operationa Carbon Tools 

Commonly accepted and legislated OC accounting tools include SAP for 

dwellings (incorporated in the Building Regulations Part L1) and SBEM 

(incorporated in the Building Regulations Part L2) for non-domestic buildings as 

discussed in Section 2.4. Given the scope of the study focuses on office 

buildings, this section will review only SBEM tool.  

a) SBEM 

SBEM is a computer-based tool, which analyses the energy consumption of a 

given building and thereby calculates the carbon dioxide emissions for a given 
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period of time (per annum) which is called as the Building Emissions Rate 

(BER) measured in CO2e/m2/year. The tool requires comprehensive list of 

inputs which includes the shape & orientation of the building, HVAC efficiency 

and type of fuel used, thermal efficiency of building elements (floors, walls & 

roofs – U values), control of heating and cooling systems, renewable 

technologies, ventilation of the building, airtightness of the building, types and 

control of lighting. BRE (2009) states that SBEM could assist in the design 

process, though; it is not a design tool. 

Tool can be downloaded at http://www.ncm.bre.co.uk/disclaimer.jsp 

b) CarbonBuzz 

CarbonBuzz is a platform developed by Chartered Institution of Building 

Services Engineers (CIBSE) for post-occupancy review of the building, to 

compares the designed energy use with actual energy due to the reported gap 

between predicted and actual performance of the building designs (UK-GBC, 

2008, UK-GBC, 2014a, Pan and Garmston, 2012). The platform works based 

on the display energy certificate (which is mandatory for public buildings) to 

capture the actual energy usage rather than the forecasted energy usage. The 

platform enables to enter inputs for electricity and fuel consumption in 

kWh/m2/year and then converts them into emission profile of the building (more 

information can be found at http://www.carbonbuzz.org/). This way the platform 

helps the building owners to compare the results with the benchmarks and take 

necessary actions to close the gap. 

3.5.2. Embodied Carbon Tools 

a) Carbon calculator for construction projects 

The calculator is an excel tool developed by Environment Agency. The scope of 

calculator includes cradle to construction allowing transportation related EC into 

calculations and the emissions are calculated in tonnes CO2e. The inputs 

required by the calculator include material quantity, waste disposal, plant and 

equipment, site accommodation, transport distance, mode of transport and 

personnel travel. The main data sources used by the calculator are Hammond 

and Jones (2006), ICE version 2.0 and DEFRA (2011) for carbon coefficients. 
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The carbon calculator enables appraisal of different designs in terms of the 

material section. The major limitation of the calculator is that the inputs are to be 

entered manually by the user (Environment Agency, 2012). 

Tool is available at https://www.gov.uk/government/publications/carbon-

calculator-for-construction-projects 

b) The Green Guide Calculator 

A web-based tool developed by BRE in compliance with ‘The Green Guide to 

Specification’   with the database of extensive building specifications. The tool 

helps designers to make choices between materials and specifications to 

achieve better environmental rating (e.g. BREEAM, CSH etc.). The Green 

Guide covers six common building types (commercial, educational, healthcare, 

retail, residential and industrial) and eight building components including ground 

floors, upper floors, roofs, external walls, windows, internal walls and partitions, 

insulation and landscaping. However, few window types (i.e. domestic windows 

and commercial windows), insulation, floor finishes and landscaping are not 

included in the calculator and may be included in the future. Access is available 

only to registered users and users are able to upload the design information by 

selecting relevant element and sub-element of a given design so that the tool 

calculates the environmental rating, ranging from A+ to E (lower environmental 

impact to higher impact), as well as the embodied impact of the element in 

kgCO2/m2. The major drawback of the calculator was that it had limited 

predefined specifications, though the latest version of the calculator enables 

users to submit a new specification as a query to BRE Environmental 

Assessment Method (BREEAM) and the new specification will be added and 

made available to all users (BREEAM, 2013). Hence, the calculator is becoming 

more responsive and therefore, is a good tool to select building specification. 

However, the major limitation of the tool is the exclusion of significant carbon 

hotspot elements such as services and finishes in the specification database, 

which is to have a huge impact on design decisions. 
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c) Interoperable Carbon Information Modelling (iCIM) 

The iCIM is a case study by “OpenBIM” (Open Building Information Modelling) 

to assist designers to make informed design decision in terms of carbon and 

enable to choose low carbon specification (Moncaster and Symons, 2013). iCIM 

is a well-advanced tool developed in a BIM platform to allow easy and faster 

calculation of EC of a design. Further, the tool is integrated with a database 

such as NRM2 and ICE to ensure consistency between cost and carbon data. 

The tool is effectively used with detailed designs as the tool indicates the 

alternative specification available for a given element so that allows running 

what-if analyses of different specifications for a particular element. This enables 

the designers to choose the most carbon efficient specification for each element 

and achieve the desired carbon footprint for the entire design. 

However, BIM lacks early stage carbon estimating models so that the outcome 

of this research (early stage carbon prediction model) can be integrated into a 

BIM environment will lead to effective decision-making at early stages of design. 

3.5.3. Life Cycle Assessment Tools 

It is common to see that most of the life cycle assessment tools available are 

very complex tools developed by software developers and available at a high 

cost. Further, very little information is available about the tools. Some of the 

available tools are discussed below: 

a) GaBi Software 

A software solution developed by PE Internationals for life cycle assessment of 

the product and building designs and many other applications including 

certification, EPD generation, design solutions, water footprint, resources and 

energy efficiency solutions and the like (more details can be found at 

http://www.gabi-software.com/solutions/). Contains GaBi database developed 

by PE Internationals, ecoinvent database, U.S Life Cycle Inventory (LCI) 

database and in addition to those PE International provides data on demand 

which is not included in the underlying databases (PE International, 2014). 

Further, a recent review of DEKRA (a leading service provider in auditing and 

certification) on GaBi software pronounces that the methodology used in the 
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software for modelling is thorough in terms of LCA best practice and continuous 

improvement and data maintenance seems to be very much coherent and 

transparent. However, the review does not certify the correctness of the 

outcome, but the focus was on the development and continuous management 

process of key technology dataset of the GaBi database. 

b) SimaPro LCA Software 

A software developed by PRé Consultants to include a cradle to gate as well as 

a cradle-to-grave system boundary that uses regularly updated databases like 

ecoinvent v3 LCI database, other EU, US and Swiss databases which increase 

the accuracy of the predictions. However, it is available at a cost (PRé 

Consultants, 2014). 

c) Carbon Critical Knowledgebase  

A web-based tool developed by Atkins (2014) which evaluates alternative 

options in terms of embodied and OC and indicates the ways of minimising 

carbon footprint (for more details refer the product sheet at 

http://www.atkinsglobal.co.uk/~/media/Files/A/Atkins-

Corporate/group/cr/knowledgebase-product-sheet-final-july10-tcm12-8459.pdf). 

d) Sturgis Carbon Profile Model  

While most studies treated EC and OC as per the general rule, this model 

combines both operational and EC into one unit and proposed a methodology to 

measure lifecycle carbon of a building in kgCO2/m2/year. Figure 3.1 illustrates 

the way that single metric for life cycle carbon of a building is achieved. 

Accordingly, OC profiling follows the industry accepted model, sBEM while 

Sturgis and Roberts (2010) define EC prediction model as Sturgis compatible 

metric and the EC output is called as EC Efficiency (ECE). 

 

http://www.atkinsglobal.co.uk/~/media/Files/A/Atkins-Corporate/group/cr/knowledgebase-product-sheet-final-july10-tcm12-8459.pdf
http://www.atkinsglobal.co.uk/~/media/Files/A/Atkins-Corporate/group/cr/knowledgebase-product-sheet-final-july10-tcm12-8459.pdf


 

56 
 

  

Consequently, Sturgis Carbon Profile of a given building is derived as, 

A - Net Internal Area of building N - Set of elements giving rise to all operational 
emissions 

X - Element giving rise to operational emissions J - Set of all independent components 

y-  Component giving rise to EC emissions B-  Set of all linked component systems 

l - Lifespan of component T - Set of all components comprising an 

individual linked system 

 

Figure 3.1: Sturgis Carbon Profiling Model 

Source: Sturgis and Roberts (2010) 
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The methodology followed by Sturgis to achieve a compatible unit for ECE is 

unique and follows five distinct steps in calculations as indicated in Figure 3.7. 

  

The most challenging part of the calculation is the factoring of life span data for 

each element and identifying the weakest link in the system to arrive at ECE, 

which is briefly illustrated in Figure 3.3. Sturgis and Roberts (2010) admit that 

the outcome of the model is subject to the quality of available data on EC, 

lifespan, building quantities and other subjective interpretations. 

Figure 3.2: Five steps in calculating ECE 

Assess the embodied carbon value of the existing useable 

resources

Assess the embodied carbon in the building components for each 

proposed system (or, if necessary, individual component)

Identify the weakest links in chains of components (Figure 3.3) 

and redesign if necessary

Factor in the lifespan data for each (Figure 3.3)

Combine the systems into the ECE
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Nevertheless, the usefulness of the model in decision-making is not very 

prominent and being a model for detailed design stage the outcome is not 

helpful for the selection of materials. Further, the lifespan of linked component 

relies on the weakest link or system with the shortest life span, which might 

influence the outcome. 

Figure 3.3: Evaluating linked components 

Source: Sturgis and Roberts (2010) 
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3.6. Carbon Databases 

A range of carbon databases is available to aid design decision-making. These 

databases form the key knowledge base of many tools and platforms discussed 

above. However, it should be noted that the embodied impact factor of a 

material should not be compared directly with another material as the material 

databases give the impact of one unit of mass of each material (kgCO2/kg). 

Hence, the total quantity of the material is required to find the total impact of a 

particular material on the design, which should be taken into consideration 

before making a decision. 

a) ecoinvent Database 

The ecoinvent database is developed by the Centre for Life Cycle Inventories. It 

is an international life cycle inventory database with an updated inventory of 

data from several disciplines, in addition to carbon inventory. The database 

form as the underlying source of data in many design tools with LCA 

calculations. The latest version of ecoinvent database is 3.1 with new updates 

to the inventory and changes to the underlying methodologies. Access to the 

database is allowed only for the registered users (ecoinvent Association, 2015). 

b) Inventory of Carbon and Energy (ICE) 

ICE is an extensive database of carbon and energy of building materials, which 

was developed by Professor Geoff Hammond (University of Bath) and Dr Craig 

Jones (Circular Ecology). The first version was made available in 2006 for free 

download which then underwent several revisions and version 1.6 was 

published in 2008 then with significant improvement to the previous version the 

second version was published in 2011 (version 2.0). One of the most important 

revisions includes, the data had been converted from CO2 to CO2e in the latest 

version allowing accountability of other GHG emissions (Hammond and Jones, 

2011).  

The system boundary of the database is said to be cradle to gate. Further, the 

emissions from primary energy had been accounted though feedstock energy is 

considered in special circumstances. Further, carbon sequestration is not 

included in the data. EC values were derived from including foreign sources 
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while most data were sourced within the UK and claimed to be fairly recent 

(Hammond and Jones, 2008a). 

Further, Hammond and Jones (2011) highlighting the growing concern on EC, 

recommends the government and the industry to agree on a standard to 

measure EC to use as a design tool. Hence, enabling carbon appraisal to be 

included in the feasibility studies of a project which will help construction 

industry to meet the low carbon agenda more effectively (Hammond and Jones, 

2011). Moreover, the inventory also recognises the uncertainty in the carbon 

data due to various fuel types. Nevertheless, this is the most widely used 

energy and carbon database for calculations, especially within the UK context, 

and most tools have ICE database as underlying data source. 

c) Hutchins UK Building Blackbook - Small and Major Works 

Franklin+Andrews previously published this book to help industry professionals 

to get the updated knowledge about the cost of doing business which is now 

covering two aspects, cost and carbon accountability of doing a business. This 

book presents the cost and carbon in an itemised pattern in accordance with 

SMM7 (for major works) and SMM6 (for small works). The following is an 

extract from Blackbook listing the resource requirement for one unit quantity of 

the items and the cost and carbon of one unit of the respective items. 

Figure 3.4: An extract from the Blackbook 

Source: Hutchins (2011) 
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This type of dataset is very useful in detailed design stage because when the 

bills of quantities are produced to ascertain the cost aspect of projects the 

carbon accountability can also be established. Provided that carbon plans are 

developed at the early stage, carbon checks checks can be performed in 

parellel to cost checks using this dataset. Eventually, the design can be revised 

to match the established target what is called ‘designing to cost’ can be 

extended to the dual currency – ‘designing to cost and carbon’. A problem with 

the structure of this dataset is that it complies with the SMM. There is a need for 

a NRM compliant dataset as it is considered to be the latest measurement 

standard of the construction industry. 

d) EC Database - WRAP 

The database is developed by WRAP in collaboration with the UK Green 

Building Council to capture the EC data for the whole building. WRAP and UK-

GBC have created a closed database in order to prevent misuse of the project 

information uploaded into the database. Further, the database requires 

construction professionals and academics (including students), those who seek 

carbon information or wish to share carbon information, to register in order to 

gain access to the database. Then the data can be freely accessible by 

registered users. There are more than 300 registered users and more than 200 

projects are stored at present in the database.  

The database allows comparison within the registered projects, in anticipation 

that the designers will use the data to develop more carbon efficient designs. 

The database allows the registered users to upload the project-specific carbon 

data themselves. It follows the definition of life cycle stages stipulated in BS EN 

15804 (see, Figure 2.4) and allows filtering data depending on the extent of the 

analysis (system boundary of the analyses) required by the user namely: 

product stage (A1-3), construction process stage (A4-5), use stage (B1-7), end 

of life stage (C1-4), benefits and loads beyond system boundary (D). The 

database also allows the data to be filtered in terms of CO2 and CO2e.  

In addition, EC analyses are presented in an elemental fashion in accordance 

with NRM element definition. Building elements are grouped into six categories 

including Substructure, Superstructure Structural, Superstructure Non-
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Structural, Envelope, Internal Finishes and External Works. Superstructure 

Structural includes Frame, Upper Floors and Roof; Superstructure non-

structural includes Internal Walls and Partitions and Internal Doors; Envelope 

includes External Walls and Windows and External Doors; Internal Finishes 

cover Wall Finishes, Floor Finishes and Ceiling Finishes. 

Currently, only a few projects are that are available in the database cover 

Cradle-to-Grave system boundary. Nevertheless, it is a worthwhile attempt in 

bringing the concern of the construction professionals and academics on EC of 

projects and provide with more updated information on the real-time projects. 

Moreover, the success of the database entirely depends on the users because 

findings can be generalised when the number of projects in the database is 

large. The database can be accessed through http://ecdb.wrap.org.uk/ (see for 

more details, WRAP and UK-GBC (2014)). 

e) End of Life Dataset of framing materials 

PE International (an international market leader in sustainability-related 

consultancy and software solutions) developed an end of life (during and after 

demolition and disposal - C and D modules in BS EN 15804) dataset for 

common framing materials of buildings. However, end of life EC is a less 

researched area and suffers from limited data.  

This dataset is useful in deriving life cycle embodied impact of the given framing 

materials (brickwork, blockwork, concrete and steel) so that a holistic picture 

can be seen before taking decisions on the type of framing materials for the 

proposed building.  

f) Department for Environment Food & Rural Affairs (DEFRA) carbon 

conversion factors 

This is an online repository with up to date carbon conversion factors for fuels to 

the calculated carbon footprint of business operations and products. However, 

this repository is suitable only for UK businesses, researchers and international 

organisations reporting on the UK operations. This repository allows three 

options in downloading the factors as an excel file as follows (Department for 

Environment Food & Rural Affairs, 2015): 
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 Specific data demanded by the user: this option allows users to filter data 

depending on the scope, fuel or activity type and by the data type that 

needs conversion. DEFRA also recommends this option as it eases the 

process of locating relevant data. However, this option is only available 

for the dataset from 2012. 

 DEFRA’s frequently used data: this allows users to download pre-filtered 

factors used by DEFRA frequently for estimating purposes. This includes 

a range of factors, which are adequate for average footprint calculations 

of businesses. 

 All available data: this option allows users to download all the factors for 

a respective year. This option is not recommended by DEFRA for usual 

carbon accounting while users may be interested in this option for 

advance use. 

This data becomes useful when estimating EC during construction, use stage 

and end-of-life stage. 

3.7. Carbon Guides 

RICS has been a pioneer in carbon profiling research and published many 

research reports and guidance notes related to the topic. The key guidance 

note on quantifying EC is discussed below. 

a) RICS guideline - Methodology to Calculate EC 

The latest guide on EC calculation of construction project during different stages 

of the project was published in 2014. The initial guide on EC calculations was 

published in 2012 titled ‘Methodology to calculate EC of materials’ covering the 

cradle to gate system boundary. Later, RICS developed the guidance note to 

cover cradle-to-grave system boundary for EC calculations, which remains as 

the latest guidance note. RICS (2014) classifies the project into four main 

stages namely: product, construction process, use and end-of-life stages. The 

methodology to be followed in EC calculations on each stage as per the 

guidance note is listed in Table. 
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Table 3.2: EC counting guide in different stages of project 

Stage Methodology Data source 

Product  ECproduct = ∑ Quantity of material 

constituents in each item/element x 

EC factor of the respective material 

ICE (UK) (Hammond and 

Jones 2011), SimaPro, 

GaBi 

Construction 

Process 

ECconstruction = ∑ Quantity of energy 

used for the activity x EC factor for 

respective energy source 

DEFRA Greenhouse Gas 

Conversion Factor 

Repository, GHG 

Protocol calculation tools 

Use Stage ECuse = ∑ Quantity of materials to 

be replaced x No. of replacements 

x EC factor of the respective 

material 

BCIS Life Expectancy of 

Building Components 

(BCIS 2006) + product 

stage sources 

End-of-Life ECend-of life = ∑ Quantity of energy 

used for the activity x EC factor for 

respective energy source 

Construction stage 

sources 

This guidance note allows Quantity Surveyors to calculate the EC manually 

while quantifying building element quantities and pricing the project. Hence, the 

guidance enables the competencies of QS to be utilised for EC calculations 

without spending on expensive tools. 

3.8. Review of Carbon Estimating Tools 

According to Figure 3.5, it is clear that there are plenty of carbon assessment 

tools for both early design and detail design stages. However, the prediction 

accuracy of most tools has a wide band, making them less reliable. Moreover, 

all these early stage tools are perceived as an indicator of the carbon 

accountability of designs rather than a design decision tool. Sturgis and Roberts 

(2010) pointed out that though most of these tools are helpful in giving an 

overall picture of the emissions, they fail to address the issue of mitigation 

measures of one component of emissions affecting the other component. 

Furthermore, most tools fail to integrate cost, which is another important aspect 

of designs. As it can be seen from Figure 3.5, iCIM is intersecting both carbon 

and cost while iCIM is designed to work on a BIM platform during detailed 

design stages. Therefore, there is a need for a simple tool to aid design 
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decision-making in terms of carbon and cost at early design stages as 

discussed previously. Hence, the research outcome intends to fit into the 

patterned area in Figure 3.5, which is vacant at the moment. 

 

  

Figure 3.5: Overview of the carbon tools 
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3.9. Factors Affecting EC Estimating 

A major concern in carbon estimating is the accuracy of estimates. It is not 

surprising to find variations in estimates produced for the same building by 

different estimators (Clark, 2013). A few scholars (Dixit et al., 2010, Clark, 2013, 

Ekundayo et al., 2012) identified that variations in EC measurements among 

which five key factors are system boundary, the method of estimating, 

assumptions, data sources used and element classification, which are 

discussed below. 

a) System Boundary 

The EC estimate can be based upon any one of five system boundaries as 

discussed in Section 2.5. Therefore, an estimate with a cradle-to-grave 

boundary will have higher figures than an estimate with a cradle-to-gate 

boundary. Therefore, the system boundary is one factor to be considered when 

comparing studies and using data from other studies for analysis purposes. 

b) Method of Estimating 

There can be two main possible methods in carbon estimating, 

 Manual estimating: this can be either a bottom-up approach of estimating 

using ICE data source and other relevant sources or itemised estimating 

approach using Blackbook data. Even though the Blackbook is 

developed using ICE data, new data were also sourced by the Blackbook 

team to develop the book. Therefore, there are possibilities of variations. 

Furthermore, missing data in ICE and Blackbook need to be sourced 

from local manufacturers, suppliers or contractors, which can vary from 

project to project. Hence, this needs to be taken into consideration.  

 Automated: automated systems will have a unique built-in program for 

extracting quantities and retrieving carbon data. Hence, different 

standards adopted by the system for the method of measurement will 

result in variations. In addition, most software use ecoinvent database, 

which is updated time to time. These can lead to varying result from 

manual measurements.  
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c) Assumptions 

Assumptions are an important cause of variations. Because EC estimates are 

mainly produced from detailed cost plans or Bills of Quantities (BoQ), if an item 

description is imprecise then assumptions have to be made to proceed with the 

estimate. For instance, a staircase measured in ‘Nr’ has to be broken into 

concrete, formwork, reinforcement, balustrades and finishes to get the carbon 

estimate of that element. In this case, assumptions play a major role in the 

carbon estimate. Further, assumptions vary from a person to person, a project 

to project and it cannot be standardised. Therefore, this is a major drawback in 

EC estimating. 

d) Data Sources 

As explained under the method of measurement, data sources other than ICE 

and Blackbook might vary from study to study due to the difference in 

manufactures, suppliers, contractors, the age of data source and the like. This 

will result in different EC figures. 

e) Element Classification 

Element classification is a common variation among studies. Different studies 

(Halcrow Yolles, 2010b, WRAP, Halcrow Yolles, 2010a, Clark, 2013, Sturgis 

Associates, 2010) adopt different element classifications such as NRM, 

SMM/BCIS - older version, British Council of Offices 2011 and some studies did 

not follow any standard. This inconsistency in element classification makes the 

comparison of findings difficult. 

3.10.The Research Context 

Given that the quantification of carbon is not that easy at early stages of design, 

this research adopts a unique concept of predicting carbon at early stages of 

design. The research idea is explained below: 

Firstly, it could be hypothesised following the Pareto Principle (80:20 rule) that 

80% of the EC emissions come from 20% of the building components. These 

can be referred to as the carbon-intensive elements or hotspots of a building as 

discussed in section 2.6. Hence, EC of a building can be calculated using the 
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hotspots, which is presented in Equation 3.1: Accordingly, it is crucial to identify 

the carbon-intensive elements (A, B, C…) of a building. The EC of carbon-

intensive elements added with the minor EC components (k) will result in the 

total EC emissions (CE) of a building. This implies the selection of material 

determines the EC of buildings. However, selection of building materials and 

specification is to be carried out at the detail design stage. Hence, calculating 

EC is challenging during the early design stages. 

Equation 3.1: Conceptual model to calculate EC using hotspots 

CE = ACE + BCE  + CCE  + ⋯ + k 

Nevertheless, carbon-intensive elements can be captured by obtaining historical 

project data and the building morphology parameters (plan shape, storey 

height, total height, and the like) related to the carbon hotspots can be modelled 

to predict EC at early design stage with low error margin. Further, the influence 

of services and finishes quality on EC was taken into consideration. 

Consequently, services and finishes can be identified as quality parameters in 

the mathematical model, though, assessing the quality of services during the 

early stages of design is challenging (RICS, 2014).  

Finally, the research idea can be presented as a conceptual regression model 

as follows: 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ⌊
Carbon

m2
⌋ ∝ 𝑀𝑜𝑟𝑝ℎ𝑜𝑙𝑜𝑔𝑦 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑠 (𝑀𝑃) 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ⌊
Carbon

m2
⌋ ∝ 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝑆𝑒𝑣𝑖𝑐𝑒𝑠 (𝐿𝑆) 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ⌊
Carbon

m2
⌋ ∝ 𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 (𝐿𝐹) 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ⌊
Carbon

m2
⌋ = 𝑓(𝑀𝑃, 𝐿𝑆, 𝐿𝐹) 

𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ⌊
Carbon

m2
⌋ = a (

Wall

Floor
) +  b(Storey Height) +  c(Building Height) + 

… . . + Service Index + Finshes Index +  k     
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 (Where, a, b, c…k = regression coefficients) 

Developing the model requires identification of influential design variables that 

affect EC. Since there are no reported studies on the relationship between such 

variables and EC relationships, the study capitalises the existing body of 

literature on cost and design variable relationships to deduce the variables 

affecting EC, as there is a connection between carbon and cost. The following 

section explores the design variables affecting cost. 

3.10.1. Design Variables Affecting Cost 

Figure 3.6 presents the variables identified in the past studies affecting 

construction cost, both from the theoretical knowledge base and practical 

application of parametric cost models. However, not all the variables identified 

can be considered for analysis due to the scope of the study that focuses only 

on design variables of alternative designs. Variables that are eliminated from 

further consideration include: 

 Life of the building and end use of the building are important in the case 

of life cycle costing calculations. However, these have no benefit if 

incorporated when only CC is analysed. Further, this variable remains 

constant for alternative designs. 

 Quality of workmanship and specification related variables have an 

impact on CC though during early design stages information is not likely to 

be available.  

 Region or location of the site and site considerations are important 

variables that affect the CC though the aim of the model is to choose an 

optimum design from alternatives, where the site is not a variable. 

 Number of occupants is usually reflected from the building size. 

 Contract duration affects the project overheads, which are covered under 

preliminaries in most of the cases. Also, preliminaries vary from project to 

project depending on the client’s or the contractor’s requirements. Moreover, 

the duration is not a design variable but a project variable. Hence, the model 

excludes preliminaries. 

 Amount of liquidated damage has no implications on the design. 
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 Buildability is another variable that determines the CC. However, the 

impact of buildability is considered irrelevant for this study. Further, it is also 

not easily quantifiable. 

 Refurbishment is an options appraisal and decision to refurbish will 

eliminate the need for a new build. 

After the initial screening, seven design variables were identified as most 

significant and applicable for the study and listed in Table 3.3 with implications 

of each variable on cost described. 
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Figure 3.6: Variables influencing construction cost from past studies 

Picken and Ilozor 

(2015)
Building height

Robinson and 
Symonds (2015)

Plan shape, building 
size, planning 

efficiency, building 
layout/grouping, 

height, quality factors 
site characteristics

Ashworth (2010)

Site, building size, 
planning efficiency/

circulation space, plan 
shape, height, storey 

height, grouping of 
buildings, build ability, 

construction details, 

structural morphology, 

standardisation, pre-

fabrication and pre-
assembly, 

refurbishment

Seeley (1996)

Plan shape, size, 

perimeter/floor area, 
circulation space, 

storey height, total 
height, grouping of 

buildings

Bowlby and Schriver 

(1986)

No. of stories, total 

area of building, 
metropolitan or rural 

location, winter start 
in northern state, end 

use of building, 
building framing 

types, region

Karshenas (1984)

Typical floor area, 

height of the building

Morton and Jaggar 
(1995) 

Life of the building, 

plan shape, 

circulation space, 

size, storey height, 
total height

Asiedu and Gu 
(1998)

Floor area

Collier (1984)

Total area of the 
building, perimeter of 

building, number of 
occupants

Dell'Isola and Kirk 

(1981)

Gross site area, 
footprint area at 

grade, area of 
suspended floors, 

area of roof, area of 
exterior wall, area of 

exterior doors/

windows, total area 

finished (including 

partitions), Storey 
height, No. of floors, 

total enclosed 
volume, transformer 

rating,  No. of fixtures, 

No. of elevators

Sawalhi (2012)
No. of floors, No. of 

elevators, area of 

typical floor. volume 

of HVAC, type of 

external plastering

Phaobunjong (2002) 

footage, number of 
floor levels, space 

usage ratio 

(assignable area/

GFA)

McGarrity (1988)

Contract duration, 
amount of liquidated 

damage, height of 
building, number of 

floors, typical floor 
area, GFA

VARIABLES AFFECTING CONSTRUCTION COST

Kim, An, and Kang 

(2004)
GFA, storeys, total 

units (residential 
units), duration, roof 

types, foundation 

types, usage of 
basement, finishes 

grade

Karanci (2010)

Construction year, project duration, construction area, site area, No. of 

apartment blocks, % area of social buildings, earthquake region, site 

topography, type of insulation, no. of elevator, classification for degree – day
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Table 3.3: Cost influential design variables and its implications on the CC 

Design variables Sources Comments 

Plan shape or 

Wall/Floor area 

Dell'Isola and Kirk 1981 

Collier (1984) 

Morton and Jaggar (1995) 

Seeley (1996)  

Ashworth (2010) 

Robinson and Symonds (2015) 

Plan shape is usually quantified by 

External wall area/Gross Floor 

Area. Design with the lowest ratio 

is economical in terms of plan 

shape. However, sometimes site 

layout dictates the plan shape 

where alternative design solutions 

will be limited. 

Building size Asiedu and Gu (1998) 

Dell'Isola and Kirk 1981 

Collier (1984) 

Karshenas 1984 

Bowlby and Schriver (1986) 

Phaobunjong (2002) 

McGarrity (1988) 

Morton and Jaggar (1995) 

Seeley (1996) 

Ashworth (2010) 

Robinson and Symonds (2015) 

As the project size increases, 

project overheads tend to decrease 

due to economies of scale. Also 

discounts on bulk purchase will 

result in reduced cost. 

Planning 

efficiency/circulation 

space 

Phaobunjong (2002)  

Morton and Jaggar (1995) 

Seeley (1996) 

Ashworth (2010) 

Robinson and Symonds (2015) 

Lower non-usable space will save 

energy cost. However, it is subject 

to planning requirements. 

Building 

layout/grouping of 

buildings 

Seeley (1996) 

Ashworth (2010) 

Robinson and Symonds (2015) 

The advantage of common 

elements reduces the cost. 

Storey height Morton and Jaggar (1995) 

Seeley (1996) 

Ashworth (2010) 

More the storey height more the 

cost. 

Total height/No. of 

floors 

Sawalhi (2012) 

Karshenas 1984 

Bowlby and Schriver (1986) 

Phaobunjong (2002) 

McGarrity (1988) 

Morton and Jaggar (1995) 

Seeley (1996) 

Picken and Ilozor (2015) 

Ashworth (2010) 

Robinson and Symonds (2015) 

Relationship with total height and 

cost is slightly complex. Different 

studies at different locations report 

different results. Generally, cost 

expected to increase with building 

height. 

Quality factors Sawalhi (2012) 

Dell'Isola and Kirk 1981 

Robinson and Symonds (2015) 

The quality of finishes and services 

affect the cost. 

The identified cost influential variables are an indication of potential EC influential 

variables. However, the knowledge on carbon influential variables is not readily 
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available but can be captured by identifying ‘carbon hotspots’ in buildings, as each 

variable defines one or more building elements. Table 3.4 lists the design variables 

that affect the building element/s. For instance, if the frame was identified as the 

biggest carbon hotspot then the height of the building would become the most 

carbon influential design variable of the building. 

Table 3.4: Building parameters affecting building elements (After Dell'Isola and Kirk (1981) 

and Collier (1984)) 

Building Parameters Building Elements 

Footprint area  Substructure 

Area of suspended floors Floors 

Area of roof Roof 

Area of exterior wall External walls 

Area of exterior doors/windows External doors and windows 

Total area finished (including partitions) Finishes  

Total enclosed volume Services – mechanical  

Transformer rating Services - electrical 

Gross site area External works 

Gross floor area Substructure,  upper floors, roof, internal 

partitions, mechanical, electrical 

No. of storeys/total height of the building Frame, stairs 

Storey height  Frame, stairs  

Plan shape or Wall/Floor area External walls, external doors and 

windows, upper floors 

Planning efficiency/circulation space Internal partitions, finishes, services 

Building layout/grouping of buildings External wall 

Quality factors Finishes, services 

In this way, carbon and cost influential variables will be identified by building case 

studies and models will be developed to predict EC and cost during early stages of 

design based on design variables of the buildings. 
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3.11.Summary 

This chapter presented a comprehensive review of the available carbon estimating 

tools during early stages and detailed stages of designs. Among early stage and 

detailed stages of design, it can be noted that there exist a number of simple web-

based early stage carbon estimating tools. However, it is obvious that the 

predictions are vague and the accuracy band is wide, as these tools require the 

minimum amount of information. On the other hand, detailed design stage tools are 

more complex and require more information as inputs resulting in predictions that 

are more accurate. However, most of the detailed stage tools are in the form of 

expensive software packages available for purchase. Some advanced tools only 

work under BIM platforms. Further, none of the tools presented here take account 

of the most important aspect of construction projects that is cost, especially during 

the early design stage, which could lead to decisions that are more rational. This 

gap laid a strong foundation for the current study. Subsequently, the need for 

developing an early design stage prediction tool that uses design variables of 

buildings to predict EC and CC of building designs was identified. Use of 

parametric cost models to estimate cost during the early stages of projects has 

proven successful application. Therefore, the same approach is attempted in this 

study in estimating carbon to make it more approachable and concurrent to cost 

estimates. 
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4. Research Methodology 

4.1. Introduction 

The first two objectives of the study were achieved through the discussion of the 

existing literature on EC management and measurement. Literature findings 

highlighted the need for an early design stage EC prediction model. Accordingly, 

this chapter unfolds the methodology followed in investigating the problem 

established in the literature review (see, Sections 1.2 and 3.10). The research 

methodology is a systematic procedure followed by the researcher based on 

logical thinking to achieve the research objectives and ultimately the aim. A sound 

methodology has the power to uphold the research and find the best possible 

answer for the identified research problem in the literature review. Hence, different 

worldviews and methodological choices available to develop an EC prediction 

model are reviewed in this chapter and the most appropriate methods are selected 

to answer each of the research questions posed in the introduction chapter (see, 

Section 1.2) to achieve the remaining five objectives.  

4.2. Research Philosophy 

A researcher has the key role to establish his or her philosophical stance towards 

the problem researched based on certain assumptions or belief systems. Two 

basic questions needed to be brought into the discussion to establish the 

philosophical stance of the researcher, namely ontological question (what is the 

nature of the reality?), epistemological question (what is acceptable knowledge?) 

which typically dictates the methodological question (how the knowledge can be 

acquired?) and axiological question (what is the role of values of the researcher?) 

(Saunders et al., 2009, Corbetta, 2003, Guba and Lincoln, 1994). Sutrisna (2009) 

argues that ‘Objectivism’ and ‘Subjectivism’ are popular examples of ontology while 

‘Positivism’ and ‘Interpretivism’ are of epistemology. Objectivism assumes that the 

reality exists independent of human conscience and experiences while 

Subjectivism assumes that the existence of reality is conceived through human 

conscience and experiences (Saunders et al., 2009). On the other hand, 
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‘Positivism’ suggests that the reality can be observed and measured by the 

researcher in an objective way while ‘interpretivism’ assumes that the knowable 

reality is influenced by the individuals (Gray, 2014).  

Positivists prefer working in an observable reality where the outcome of a research 

is generalizable and believe that the researcher is independent of the subjects of 

the research (Saunders et al., 2009). However, the positivist theory was criticised 

for its assumption of objectivity in knowing the reality (Robson, 2011, Guba and 

Lincoln, 1994, Corbetta, 2003). For instance, values of the researcher have an 

influence on research designs which leads to subjective outcomes. This gave rise 

to ‘Postpositivism’ theory which is also known as ‘Realism’ that addresses the 

limitations of the epistemological positivism. Realism claims that the reality is 

conceived through our senses. Furthermore, Realism also takes two positions 

including ‘Direct Realism’ and ‘Critical Realism’. Direct Realism claims that our 

senses show us the true reality while Critical Realism suggests that our sensations 

are not a true representation of the reality and objects have an existence 

independent of our human minds (Levers, 2013, Saunders et al., 2009). A clear 

distinction of the three paradigms (Positivism, Realism and Interpretivism) and the 

philosophical questions are explained in Table 4.1. However, sometimes it is hard 

to fit into one of the three positions due to the nature of the research questions. In 

such cases, ‘Pragmatism’ allows researchers to work with variations in the 

branches of epistemology, ontology, methodology and axiology for different 

research questions (Saunders et al., 2009).  
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Table 4.1: Comparison of research philosophies (After: Corbetta (2003), Saunders et al. 

(2009), Guba and Lincoln (1994)) 

 Positivism Postpositivism/ 
Realism  

Interpretivism 

O
n

to
lo

g
y
 Naïve realism: Reality is 

real and knowable 
Critical realism: Reality is 
knowable only in an 
imperfect and 
probabilistic manner 

Constructivism: the 
knowable world is made 
of meanings attributed to 
individuals 
Relativism: constructed 
realities vary  

E
p

is
te

m
o

lo
g

y
 

Dualism/objectivity 
 

Modified 
dualism/objectivity 

Non-dualism/subjectivity 

True findings Probabilistically true 
results 

Created findings 

Explanation 
generalisations: natural 
immutable laws 

Explanation 
generalisations: 
provisional laws, open to 
revisions 

Comprehension 
generalisation 

M
e

th
o

d
o

lo
g

y
 

Experimental 
manipulative 

 

Modified experimental 
manipulative 

 

The empathetic 
interaction between 
scholar and object 
studied. 

Mostly induction Mostly deduction Induction  

Quantitative techniques 
 

Quantitative techniques 
with some qualitative 

Qualitative techniques 
 

Analysis by ‘variables’ Analysis by ‘variables’ Analysis by ‘cases’ 

A
x

io
lo

g
y
 Research is undertaken 

in a value-free way 
Research is value laden Research is value bound 

Researcher is 
independent of the data 

Researcher is biased by 
world views, cultural 
experience and 
upbringing 

Researcher is part of 
what is being researched 
and cannot be separated 

 

Table 4.2 presents the ontological and epistemological stands of the research 

questions. Accordingly, the researcher believes that “the reality” exists independent 

of human conscience and experiences (carbon-intensive elements and the 

association between the variables – EC and design variables; EC and CC), and the 

reality can be modelled (induced by collecting data) probabilistically by employing 

appropriate research methods. However, the outcome does not represent the 

perfect reality but the best-conceived reality by human senses with the selected 

sample and the selected analysis techniques. These assumptions and belief 
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system can be matched with the ontological objectivism and the epistemological 

critical realism. Hence, the research fits better within the post-positivist paradigm. 

Table 4.2: The ontological and epistemological positions of the research questions 

The 

RQ 

Ontology Epistemology Axiology Comment  

RQ3 Objectivism Critical realism Value 

laden 

Carbon-intensive elements 
and the association 
between variables exist 
independent of human 
conscience and 
experiences; this 
knowledge is knowable 
only in an imperfect and 
probabilistic manner, and 
the research is affected by 
the values of the 
researcher. 

RQ4 Objectivism Critical realism Value 

laden 

RQ5 Objectivism Critical realism Value 

laden 

RQ6 Objectivism Critical realism Value 

laden 

RQ7 Objectivism Critical realism Value 

laden 

 

4.3. Research Approach 

The research approach explains the logic of the research, the role of the literature, 

the purpose the data collection and the data analysis (Sutrisna, 2009). There are 

two types of research approaches including: Deductive and Inductive (see Figure 

4.1). Deductive research uses the existing body of knowledge to deduce a 

hypothesis and test the hypothesis by collecting data to affirm or contradict the 

existing knowledge. Popper (1975) argues that theories cannot be proved true but 

can only be falsified. Therefore, with deductive research, hypotheses are tested for 

falsification and if proved to be false, the hypothesis is rejected (Gray, 2014). 

Whereas, inductive research involves observing the reality and gathering data to 

develop a hypothesis or to create a theory (Sutrisna, 2009, Gray, 2014).  

Accordingly, the existing body of knowledge around the problem considered plays 

an important role in determining the research approach. Deductive approach can 
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be adopted if there is a wealth of knowledge concerning the problem investigated 

where a hypothesis can be formed from the existing knowledge, which will be 

eventually tested to confirm or to contradict the existing theory. On the other hand, 

a topic which is under researcher, up for debate and with little existing literature is 

well coped with an inductive approach (Saunders et al., 2009). In view of that, the 

literature on relationships between EC and design variables is scarce and the topic 

is relatively new. The absence of such theory or hypothesis for EC and design 

variable relationship dictated the research approach to be inductive. Hence, data 

were collected to understand the relationship between EC and design variables of 

buildings and to induce a model to predict EC during the early design stage. 

 

Figure 4.1: Inductive and deductive research 

Adapted from: Trochim (2006) 

Meanwhile, the relationship between the EC and the CC will also be analysed 

inductively, which is one of the research questions. The thought process of 

combining and comparing EC and cost emerged because both EC and cost are 

determined by the quantity of materials and plant (labour only for cost). However, 

the relationship between CC and EC is not explored in the literature (while EE and 

cost relationships are reported by Langston and Langston (2008)). Both CC and 

EC can be reduced simultaneously if a positive linear relationship is found to exist 

between CC and EC, which can be an important contribution to knowledge to the 

construction industry. 

Theory

Hypothesis

Observation

Confirmation

Hypothesis

Observation

Pattern 

Inductive Deductive
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4.4. Research Strategy 

There are several research strategies that one can employ in a research to answer 

the research questions such as experiments, survey, case study, action research, 

grounded theory, ethnography, archival research and history, to name a few. It is 

possible to combine research strategies to answer the research questions while 

some research strategies clearly belong to one or the other research approach 

(e.g., grounded theory and ethnography are strongly rooted in the inductive 

approach). Yin (2014) proposes three questions that would help to select a 

research strategy including (1) the type of research question, (2) the extent of 

control the researcher has over behavioural events, (3) the degree of focus on 

contemporary events. In line with that, Yin (2014) suggests that experiments, 

history and case study are appropriate to deal with ‘how’ and ‘why’ form of 

research questions while experiments require control of behavioural events and 

history does not deal with contemporary events. Hence, a combination of ‘how’ or 

‘why’ form of research questions which does not require the control of behavioural 

events and focusing on contemporary events will employ case study research 

strategy. On the other hand, surveys and archival analysis are good at answering 

‘who’, ‘what’, ‘where’, ‘how many’, ‘how much’ types of research questions (Yin, 

2014). 

The form of research questions indicates whether a research is exploratory, 

explanatory or descriptive. For instance, ‘what’ questions can be either exploratory 

or explanatory; ‘who’ and ‘where’ questions are descriptive; ‘how’ and ‘why’ 

questions are explanatory (Yin, 2014). The research questions of the study are of 

exploratory in nature as opposed to explanatory and descriptive. Hence, surveys 

and archival analysis can be shortlisted based on the form of research questions. 

Among the two (survey and archival analysis), the archival analysis is the better 

option as the research deals with tangible subjects which are buildings and data 

can be obtained from the archives of construction practices.  
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4.5. Research Choice 

A research can be designed with only one method or multiple methods depending 

on the nature of the research questions. Saunders et al. (2009) named the former 

as ‘mono method’ and the latter as ‘multiple methods’. Multiple methods research 

choice is subdivided into two levels as presented in Figure 4.2. Accordingly, multi-

method research choice involves considering either quantitative data collection and 

analysis techniques or qualitative data collection and analysis techniques 

separately. On the other hand, mixed-method research allows both quantitative 

and qualitative data collection and analysis techniques to be employed but the 

approaches are not combined in mixed-method research. However, mixed-model 

research allows combininig the qualitative and quantitative approaches in 

answering the research questions (Saunders et al., 2009). 

As can be seen from the conceptual model presented in Section 3.10, the predictor 

variables of the model include qualitative design variables such as Finishes Quality 

Index and Services Quality Index. Hence, both qualitative and quantitative data 

collection and analysis techniques had to be employed to deal with quantitative 

Multiple 
Methods

Multi-Method

Multi-method 
quantitiative 

studies

Multi-method 
qualitative 

studies

Mixed-Methods

Mixed-method 
research

Mixed-model 
research

Figure 4.2: Subdivisions of multiple methods research choice 

Modified from : Saunders et al. (2009) 
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and qualitative variables separately. Eventually, the outcomes of the qualitative 

data analysis will serve as inputs (finishes quality index and services quality index) 

for the model formulation. Therefore, the research adopts a mixed-model research 

as per the classification presented by Saunders et al. (2009). 

4.6. Time Horizon 

Cross-sectional studies provide a snapshot of a problem concerned at a particular 

time while longitudinal studies investigate an issue over a period of time. 

Accordingly, the research fits within the cross-sectional time horizon category as it 

tries to capture the relationships between EC of buildings and design variables at a 

given time.  

4.7. Modelling Techniques 

Table 4.3 presents a range of modelling techniques used in the development of 

parametric cost model in different studies. Among which statistical and Artificial 

Intelligence (AI) techniques are used repeatedly to predict cost at early stages of 

designs. In particular, regression and Neural Networks (NNs) can be found as the 

most preferred techniques for parametric cost model development. While many 

view regression and NN as competing model building techniques, Paliwal and 

Kumar (2009) suggest that better performance can be achieved if researchers use 

the models to complement each other rather than to compete. Nevertheless, it is 

useful to review the pros and cons of each technique critically to select the 

appropriate technique for the study. 
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Table 4.3: Techniques employed in the development of parametric cost models 

Source Technique Type of Project 

Hegazy and Ayed 

(1998) 

Neural network Highway projects 

Cheng et al. (2009) Combination of Genetic 

Algorithms, Fuzzy Logic 

and Neural Networks 

Buildings  

Kim et al. (2004a) Regression, Neural 

network, Case-based 

reasoning  

Residential 

Adeli and Wu (1998) Neural network Highway construction 

Seo et al. (2002) Neural network Product  

Wilmot and Cheng 

(2003) 

Linear model Highway construction 

Yu (2006) No- linear mapping 

technique  

Civil structures and 

buildings 

Sonmez (2004) Regression, Neural 

network 

Residential, healthcare 

and commons buildings 

Sawalhi (2012) Fuzzy logic  Buildings  

Karshenas (1984) Regression - power  

exponential function 

Multi-storey office 

buildings (steel framed) 

Phaobunjong (2002) Multiple linear regression 

analysis  

Buildings (various 

functions) 

McGarrity (1988) Multiple regression 

analysis - power  

exponential function 

Buildings (steel framed 

office buildings)  

Kouskoulas and Koehn 

(2005) 

Multiple linear regression 

analysis 

Buildings (various 

functions) 

Karanci (2010) Multiple linear regression 

analysis, Neural  

networks, Case-based 

reasoning 

Mass housing projects 

Kim et al. (2004b) Neural network model 

incorporating genetic 

algorithm 

Residential buildings 

Alshamrani (2016) Multiple linear regression 

analysis 

College buildings 
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4.7.1.Regression  

Regression is the conventional technique of developing mathematical models 

based on the relationships between variables. Regression models present the 

relationships between input variables (independent variables) and an output 

variable (dependent variable) in the form of a mathematical equation. The 

relationships are captured using the correlation coefficient constant. For instance, 

cost of the project can be estimated as follows: 

Y = ax1 + bx2 + …. + k 

Cost = f(GFA, Height, Wall Area,….) 

Cost = a.GFA + b.Height + c.Wall Area + ……… + k 

However, the above equation assumes linear regression while there can be non-

linear relationships as studied by Yu (2006), McGarrity (1988) and Karshenas 

(1984). In fact, these authors claim that exponential function produces better 

results than linear regression. 

Key advantages of regression models are that these are transparent, easy to 

understand, reasoning is possible and development procedure is less tedious 

compared to all other models. On the other hand, few studies highlighted that NN 

models outperform regression models (Kim et al., 2004a, Sonmez, 2004, Karanci, 

2010). Another key issue with regression models is that the modelling becomes 

difficult with a large number of variables (Kim et al., 2004a). Therefore, the choice 

has to be made depending on the study objectives. Nevertheless, regression 

models have been used abundantly in construction cost estimating since 1970s 

due to its well-defined mathematical basis (Kim et al., 2004a). Similarly, regression 

could be a starting point for the relatively blooming carbon estimating field. 

4.7.2.Neural Network 

NN is an AI technique, which was developed, based on the metaphor of brain. It is 

actually inspired from brain functions rather than a replication (French et al., 2009). 

A simple NN architecture is illustrated in Figure 4.3. Accordingly, there can be 



 

85 
 

more than one hidden layers and neurons depending on the complexity of the 

problem. Neurons are the basic processing unit of the NN with mathematical 

functions. Further, the outputs in Figure 4.3 could be the final outputs or inputs to 

another neuron (Turban et al., 2011). 

NN has the ability to learn from the dataset and capture the relationship that is 

either parametric or non-parametric which is considered as the major advantage of 

the model. Also, many studies witness the promising results of this type of models. 

Especially NN models mostly outperform other types of models in the test for 

‘closeness of fit’ as NN can capture the best relationship between variables. 

However, a common criticism faced by this model is that it is a ‘black box’, lacking 

explanations on their capabilities. As with regression, the relationships are not 

transparent in NN and all the learning happens within the model itself. 

Nevertheless, according to French et al. (2009)  sensitivity analysis illuminates the 

black box and gives the user an idea of the behaviour of each variable within the 

model.  

Figure 4.3: Neural network architecture 

Source: Turban et al. (2011) 
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Another shortfall of the model is that identifying the best NN model is challenging 

and time-consuming. Normally, the best model is chosen by trial and error method. 

A great example of this is, the best NN model was chosen among seventy-five NN 

models in the study of Kim et al. (2004a). Therefore, time is an important deciding 

factor in experimenting with this type of models. However, later few studies 

proposed that incorporating GA into NN systems eliminates trial and error method 

and allow optimisation of the system (Kim et al., 2004b, Cheng et al., 2009). On the 

other hand, GA said to be more successful with a large range of optimisation 

problems than a simple one (Michalewicz, 2013). 

4.7.3.Fuzzy Logic 

Human reasoning is mostly approximate rather than precise. Eventually, fuzzy 

systems are developed in a similar concept, thus, fuzzy logic provides a model for 

approximate reasoning rather than precise (Zadeh, 1994, Zadeh, 1975). Zadeh 

(1975) lists three distinct features of fuzzy logic as follows: 

1. Fuzzy truth values are expressed in linguistic terms, i.e. true, very true, 

more or less true etc. 

2. Imprecise truth tables 

3. Rules of inference whose validity is approximate 

Even though fuzzy systems claimed to mimic human behaviour, the decisions and 

methods of choosing the decisions are substituted by fuzzy sets and rules in which 

fuzzy rules operate base on if-then statements (Sawalhi, 2012). Fuzzy control 

systems are applied in a number of fields including industrial process control, 

medical diagnosis and securities trading (Lin and Lee, 1991) while very few studies 

(Cheng et al., 2009, Sawalhi, 2012) are found in the construction context. Also, 

fuzzy logic is commonly combined with other types of models, especially with NN 

(Lin and Lee, 1991, Cheng et al., 2009).  

4.7.4.Case-Based Reasoning 

While most identify Case-Based Reasoning (CBR) as an AI technology some claim 

that it is only a methodology (Watson, 1999). CBR works based on the lessons 
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learned from the past projects that lie within the database. It matches the features 

of the input data with that of the historical data in the database and provides a 

tailor-made solution to the problem with reasoning (Aamodt and Plaza, 1994, 

Gupta, 1994, Watson and Marir, 1994, Xu, 1994). Xu (1994) defines two types of 

CBR namely, a) Problem-solving systems: provide new solutions by modifying 

historic case solutions and b) Interpretive systems: evaluate and justifies new case 

based on the similarities and differences with the historic case. Xu (1994) also 

mentions that both the systems are required to solve most real-world problems.  

CBR logic involves four main steps as follows (Aamodt and Plaza, 1994, Xu, 

1994): 

 Retrieve the most similar case/s 

 Reuse the knowledge in the similar case/s to solve the problem 

 Revise the proposed solution 

 Retain the proposed solution as a lesson learned for future problem solving 

The process is illustrated in Figure 4.4. 

Figure 4.4: Case base reasoning logic 

Modified from: Aamodt and Plaza (1994) 
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A key benefit of CBR is that it operates like a human mind or an estimator who 

performs the estimating function from his/her previously acquired experience. 

Karanci (2010) believes that CBR is capable of estimating the cost of conceptual 

designs in a similar fashion to a human mind by using the data stored in its 

knowledge base. Hence, CBR tends to gain superiority over all other models and 

outperforms other models in most of the tests which are supported by Kim et al. 

(2004a) and Karanci (2010). However, Karanci (2010) also pointed out that CBR 

demonstrates better results in the closeness of model fit due to the ability to locate 

the same project from the case library. Another benefit is that the CBR stores the 

new solved project in its case library as a historic project accumulating the library. 

However, the predictions could deviate from the actual cost when the project is 

implemented which is not usually captured. Nevertheless, it is possible to update 

the library if needed (Aamodt and Plaza, 1994). 

Other benefits include (Gupta, 1994, Xu, 1994): 

 suitable for the domains which are experience rich but knowledge poor 

(many past cases) 

 efficient reasoning on the outcome 

 unique explanation capability 

 Faster knowledge acquisition 

However, one drawback of CBR is that the solution or the prediction is entirely 

dependent on the case library. For instance, if the closest similar case does not 

represent a satisfactory match, it could lead to untrustworthy reuse solution. 

Further, other expert systems are preferred over CBR if the sample size (past 

projects in the knowledge base) is small (Gupta, 1994). 

4.8. Data Collection Techniques 

EC, CC and design variables of building are the required data for the research 

(detailed discussion on the data requirement is presented in Section 5.2). Variables 

selected for the study include GIFA, the number of storeys, average storey height 

(or building height), façade area, wall to floor ratio, circulation ratio, the number of 
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basements, finishes quality and services quality (see, Section 4.9.3 and 6.4.1 for 

more details on the selection process of variables). Accordingly, historical project 

data (Bill of Quantities and layout drawings) were collected to obtain quantitative 

design variables and to estimate EC and CC. On the other hand, data to develop 

objective finishes and services quality indices were collected using qualitative 

techniques and these nominal variables were methodically converted into ordinal 

variables to perform the regression analysis (see, Section 4.9.2 for an explanation 

on the level of measurement of variables). Hence, data collection techniques used 

for the historical project data collection and the development of finishes and 

services quality indices are presented separately. 

4.8.1.Data Collection Techniques Used for Historical Project Data Collection 

a) Data Sources 

The problem entailed by historical project data is that the researcher having less 

control over the data contents, quality and quantity which is unavoidable in the 

research context as pointed out by Saunders et al. (2009). However, data are more 

objective and free from external influences or opinions as data are extracted from 

documents or repositories (Phaobunjong, 2002). Data in a research can take two 

forms: primary and secondary. Primary data refers to the data that are specifically 

obtained for the study and the secondary data refers to the data that are collected 

for a different purpose and are reused by another study (Hox and Boeije, 2005).  In 

the present context, primary historical project data can be collected from 

construction consultancy practices and secondary historical project data can be 

collected from public databases. Both primary and secondary sources of data were 

surveyed to obtain as much data as possible. The identified key secondary 

databases included BCIS (RICS, 2016) and WRAP EC Database (WRAP and UK-

GBC, 2014). BCIS is an online cost database maintained by RICS and WRAP EC 

Database is maintained by UK-GBCSL and WRAP. Both databases designed with 

multi-faceted search facilities to cater varying user requirements and contain 

advanced search options to filter the most appropriate data to suit different study 

requirements. In addition to these data sources, another type of data is also 

required for the research to facilitate CC and EC estimating which are data books. 
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These are referred to as ‘supporting data’ in this research context and include the 

ICE (Hammond and Jones, 2011), UK Building Blackbook (Franklin & Andrews, 

2011), EC data from manufacturers and Spon’s price book (Davis Langdon 

Consultancy, 2014). 

b) Sample selection  

The sample size is a key decision to be made to achieve statistical credibility and 

generalise findings. Patton (2015) claims that the sample size of a particular study 

is dependent on the research questions, time and resource availability. It is 

commonly said that the sampling error will be small if the sample size is large. 

However, there are also problems with extremely large samples due to diminishing 

returns where larger sample size results in smaller benefit at a higher cost of time 

and money (Miles and Shevlin, 2001). Therefore, there are methods to assist in 

sample size estimation for a given experiment such as central limit theorem and 

power analysis.    

According to the Central Limit Theorem (CLT), the mean of a sufficiently large 

number (i.e. 30 or more) of independent random variables (each with finite mean 

and variance) will be approximately normally distributed. However, the words 

‘sufficiently large’ are still debatable. Rule of thumb suggests that a sample size of 

a minimum of 30 and a maximum of 500 is appropriate for most research (Roscoe, 

1975). However, Chakrapani (2011) highlights that the minimum sample size of 30 

should not be taken for granted as the research context also plays a major role in 

determining the sample size. Others suggest that a minimum of 50 subjects is 

appropriate for regression analysis (Kelly et al., 2012, VanVoorhis and Morgan, 

2007) while Miles and Shevlin (2001) recommend calculation of sample size using 

power analysis (which takes into account of the value of alpha or the significance 

level, the effect size, the power and the number of predictors in the model).   

Similar research on cost model development (cost is predicted using design and 

project variables) have obtained a larger sample of up to 2827 historical projects as 

a result of publicly available databases (Kim et al., 2004a, Adeli and Wu, 1998, 

Seo et al., 2002, Wilmot and Cheng, 2003, Sawalhi, 2012). On the other hand, 
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other studies were reported to have smaller sample ranging from 18 to 41 (Karanci, 

2010, Kouskoulas and Koehn, 2005, McGarrity, 1988, Karshenas, 1984, Sonmez, 

2004, Cheng et al., 2009, Hegazy and Ayed, 1998). VanVoorhis and Morgan 

(2007) explain that time, access to samples and cost involved are some of the 

practical limitations in obtaining a larger sample. Therefore, studies with smaller 

sample size are not anomalous. Consequently, a minimum sample size of the 

study was set as 30 due to the lack of EC databases and insufficiency of the 

existing EC databases. 

4.8.2.Data Collection Techniques Used for the Development of Design Quality 

Indices 

Finishes and services quality levels vary a lot in commercial buildings compared to 

domestic buildings. Hence, an objective index for finishes and services quality of 

office buildings needed to be developed to be integrated into the model. Finishes 

index covers the quality level of the internal walls, floor and ceiling finishes of office 

buildings. Subsequently, literature was surveyed to assess the adaptability of the 

existing finishes and services quality indices for the study.  

a) Finishes Index Development 

Kouskoulas and Koehn (2005) developed a tailor-made overall quality index of the 

building to be integrated into their cost model. The quality index identifies eight (8) 

components of buildings namely use of the building, design load, exterior wall, 

plumbing, flooring, electrical, HVAC and elevator. Each component is categorised 

into four quality levels such as Fair, Average, Good and Very Good where each 

category is defined. The overall quality of the building is derived by calculating the 

mean quality index from all eight components. Table 4.4 presents the quality index 

of flooring developed by Kouskoulas and Koehn (2005). Problems with the flooring 

quality index propsoed by Kouskoulas and Koehn (2005) are that they were 

confined to only a few types of floor finishes. In addition, ceiling finishes were 

included with electrical component while wall finishes were not included in the 

quality index at all. Hence, the quality index developed by Kouskoulas and Koehn 

(2005) is inadequate. 
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Table 4.4: Floor finishes index developed by Kouskoulas and Koehn (2005) (Modified from: 

Kouskoulas and Koehn (2005)) 

Component  Fair  Average  Good  Very Good 

Flooring Resilient, 

ceramics 

Resilient, 

ceramics and 

terrazzo 

Vinyl, ceramic, 

terrazzo 

Rug. Terrazzo, 

marble 

Indices developed by AACE (formerly known as the Association for the 

Advancement of Cost Engineering) International (2015) and Kim et al. (2004a) 

follows the second type of index. AACE International (2015) proposed an interior 

finishes quality index ranging from one (1) to ten (10) which is listed in Table 4.5. 

This index also suffers from non-objective definitions of the quality levels similar to 

the quality index developed by Kouskoulas and Koehn (2005). This type of quality 

index increases ambiguity in ascertaining the quality level of finishes. Another 

drawback of the index is the possibility of having different combinations of traffic in 

a building was not considered. On the other hand, Kim et al. (2004a) classified 

finishes into five grades, ranging from Grade I to Grade V. Residential buildings for 

rental that are owned by the public sector are classed as Grade I (due to the fact 

that they are to be government-supported non-profit construction). Private owned 

residence are categorised into poor (grade II), average (grade III), good (grade IV), 

and luxury (grade V) where luxury grade implies buildings with imported finishes. 

The index developed by Kim et al. (2004a) also has issues with subjectivity even 

though, it has more clarity than the index developed by AACE International (2015). 

Table 4.5: Interior finishes quality classification of a cost model (AACE International, 2015) 

1 – functional, unattractive 6 – moderate duty, attractive 

2 – functional, passable  7 – heavy duty, passable 

3 – light duty, passable 8 – heavy duty, attractive 

4 – light duty, attractive 9 – moderate duty, luxury 

5 – moderate duty, passable 10 – heavy duty, luxury 

The model developed by Sawalhi (2012) integrated finishes quality by capturing 

the type of external plastering while disregarding internal finishes. Specifically, the 

model of Sawalhi (2012) will not be useful in case of curtain walling which is 

currently the most common type of facade of office buildings in the UK.  
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Mainly, two types of quality indices were identified in the literature. First type of 

indices list the common types of finishes and classify the identified finishes into 

defined quality levels (See, Kouskoulas and Koehn, 2005); second type of indices 

consist of different quality levels defined as numerical values which are vague and 

not objectively defined (See, AACE International, 2015, Kim et al., 2004a).  

Further, finishes indices surveyed from literature lack objectivity and are not 

comprehensive. Hence, a tailor-made finishes quality index for the study was 

developed due to the inadequacies found in the existing finishes quality indices. 

Between the two types of finishes quality indices identified in the literature, the first 

type was selected to be developed (identifying the common types of finishes and 

classifying the identified finishes into prescribed quality levels) as it was more 

objective than the second type. Consequently, three levels of finishes quality were 

established: 

1. Basic finishes (Finishes Index – 1) 
2. Moderate finishes (Finishes Index – 2) 
3. Luxury finishes (Finishes Index – 3) 

The reason for having only three levels of quality is because the model facilitates 

early design stage estimating and during early design stage, detailed specification 

is seldom thought about. Therefore, it is easier to choose the finishes quality of the 

building from three levels rather than more detailed levels.  

Further, literature provides no evidence of any verification process employed in the 

development of these finishes quality indices. However, verification process 

improves the rigour of the proposed finishes index and eliminates the bias of the 

researcher as it involves the judgement of more than one individual. Therefore, a 

two-step process was adopted in developing the finishes quality index for the study 

where a conceptual finishes index was developed and was verified through experts 

(more details follow in Section 5.6.3 and 5.7.3).  

Clayton (1997) suggests that Delphi technique is appropriate when seeking the 

consensus of the experts on content validity, which in this research context is the 

validation, and verification of the proposed finishes quality levels in office buildings. 

Further, Delphi technique allows rigorous and systematic data collection and 
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dissemination without the need of the experts to travel and meet as a group at a 

particular time and a place (Clayton, 1997). Further, responses are isolated 

(independent of the other experts) and anonymised which is an advantage of 

Delphi-based approach over other group based decision-making such as Nominal 

Group Technique and Interacting Group Method (Clayton, 1997, Van de Ven and 

Delbecq, 1974).  

An expert is someone who possesses the knowledge and experience in a 

particular field (Oxford Dictionary, 2010). In this context, construction professionals 

who are competent in early stage cost advising and having experience in office 

building projects were considered as experts for the Delphi-based expert forum 

formed for the study. Further, being a chartered surveyor and having a minimum of 

ten (10) years of professional experience are two key criteria required by RICS 

(2009) for a person to qualify to be considered as an expert. Accordingly, 

construction professionals with a chartered qualification and with more than 10 

years of experience in the UK construction industry were selected using purposive 

or judgmental sampling technique. Purposive sampling enables the researcher to 

select the cases or respondents based on the research questions and the 

knowledge about the population (Polit-O'Hara et al., 2001, Saunders et al., 2009). 

Purposive sampling is usually adopted in studies with very small samples, though 

Saunders et al. (2009) warn that such samples should not be considered to be 

statistically representative of the population. The use of a Delphi-based expert 

forum in the study aims at verifying a conceptual finishes index developed for the 

study, which is not a study objective or research question, but it contributes 

towards the model development, which is a key objective of the study. Hence, 

purposive sampling technique was adopted to select experts for the expert forum 

to verify the conceptual finishes index due to the time constraint of the study. 

The size of the panel depends on the purpose of the study and availability of 

resources (Patton, 2015). A panel size of 15 to 30 is suggested for a homogeneous 

population and 5 to 10 is suggested for a heterogeneous population as a rule of 

thumb (Clayton, 1997). The reason for proposing a larger panel size for 

homogeneous population compared to heterogeneous population is because it can 
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be expected that experts in a homogeneous population to be like-minded, hence, 

requiring a larger panel size to ensure an acceptable representation of the 

population to validate the content. In contrary, a heterogeneous population will 

consists of people from different disciplines, hence, a smaller panel size will be 

adequate to scrutinise the content due to the diversity of the experts. Accordingly, 

a panel size of five (5) to ten (10) was decided to be employed as the construction 

industry is composed of a heterogeneous population (such as Architect, Engineer, 

QS and the like).  

Further, it is also recommended that at least one opportunity is given to the 

respondents to re-evaluate their responses based on the examination of the 

response of the group (Clayton, 1997). Further, Williams and Webb (1994) state 

that the researcher must be aware of when to stop collecting data which is when 

the consensus among the experts’ judgement is achieved and most studies fall 

short in defining consensus. The consensus in the research context was 

considered to be achieved when four (4) of the five (5) respondents agreed on a 

particular quality level. 

Despite the benefits, Clayton (1997) identified following limitations in Delphi 

technique: 

1. The background of the experts might have an influence on the judgement, 

which is beyond the control of the researcher. 

2. Personal and profession obligations might limit the experts to invest more 

time and effort in arriving at rational judgements. 

3. It cannot be measured whether the experts, judge based on their experience 

and work towards consistency of their previous judgement or if they are 

pressurised to conform to the group’s judgement due to an iterative process. 

4. The value of the information presented is subjective to the reader and might 

be limited due to the constraints in panel selection and the background of 

the experts. 

5. Biases of the researcher in arriving at a final decision. 
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Accordingly, the developed finishes quality index is custom made for the study and 

influenced by the above-mentioned factors. Therefore, the readers should be 

mindful of these limitations when trying to re-use the proposed finishes quality 

index.    

b) Services Index Development 

Building services EC can account up to 25% of the total EC emissions (Hitchin, 

2013) while the cost of services can contribute up to 40% of total building cost 

(RICS, 2016). However, building services are paid less attention during early stage 

cost planning and estimating of projects due to the complex nature of the element 

(RICS, 2014), hence, little literature evidence was found on services quality 

indices. Kouskoulas and Koehn (2005) developed quality indices for plumbing, 

electrical, HVAC and lift installations separately under four quality levels such as 

Fair, Average, Good and Very Good (see, Table 4.6). Plumbing, electrical and 

HVAC quality were defined in a way that is subjective to the user of the model 

where a question arises as to ‘what is an average quality?’. Further, both Good and 

Very Good quality levels of plumbing and HVAC were defined as ‘above average 

quality’ causing more confusion in human judgement. 

AACE International (2015) has developed a services index (see, Table 4.6) similar 

to finishes index presented in Table 4.5 for mechanical and electrical services, 

which have the same issues of subjectivity as discussed in the finishes quality 

index development. On the other hand, Sawalhi (2012) captured inputs like the 

number of elevators and volume of HVAC to predict the cost where other types of 

building services such as electrical, plumbing, protective installations, 

communication and IT had not been considered. 
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Table 4.6: Services index developed by Kouskoulas and Koehn (2005) (Modified from: 

Kouskoulas and Koehn (2005)) 

Component  Fair  Average  Good  Very Good 

Plumbing Below average 

quality 

Average quality Above average 

quality 

Above average 

quality 

Electrical  Fluorescent 

light, poor 

quality ceiling 

Fluorescent light, 

average quality 

suspended 

ceiling 

Fluorescent 

light, above 

average 

quality ceiling 

Fluorescent 

light, excellent 

quality ceiling 

HVAC Below average 

quality 

Average quality Above average 

quality 

Above average 

quality 

Elevator Minimum 

required 

Above required 

minimum 

High speed High speed 

deluxe 

The existing services quality indices show inadequacies and could not be adapted 

to the study as the historical project data obtained for the study had limited or no 

detailed specification of Services. Further, the nuances of Service quality were not 

explored due to the lack of detailed measurements and specification of the sample 

projects and limited EC data on Services. In addition, the models are intended to 

assist early design stage estimating. Hence, a service quality index that represents 

the provision of different services (sub-elements of Services as per the NRM such 

as Sanitary Installations, Services Equipment, Drainage Installation and the like) is 

considered appropriate to meet the study requirements and to cater the estimating 

need of early stages of designs. Consequently, the quality levels of Services 

presented in price books were surveyed to develop a simple, yet an objective, 

service quality index for early design stage estimating (see, Section 6.9). 

4.9. Data Analysis Techniques 

The collected data have to be analysed quantitatively and qualitatively as 

discussed in Section 4.5 in light of answering the research question presented at 

the beginning of the chapter.  Accordingly, the research questions include 

identifying the carbon-intensive elements of office buildings; investigating the 

relationships between the EC and design variables of buildings; investigating the 

relationship between EC and CC of buildings; and finally, formulating a model to 

predict EC using design variables of buildings. Hence, the data analysis section is 

divided into three subsections namely analysis of carbon and cost hotspots, 
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analysis of relationships between variables and the formulation of the EC 

prediction model. 

4.9.1. Analysis of Carbon and Cost Hotspots  

Identifying carbon and cost-intensive elements or hotspots of buildings depends on 

the definition of hotspots. The Pareto Principle was adopted to define the carbon 

(or cost) hotspots due to its popularity and applicability, especially in, economics, 

business and management related areas. Vilfredo Pareto (1848 – 1943), an 

economist, found that the 80% of the wealth of his country was owned by the 20% 

of the people. Then, Pareto applied the same theory to other states like Russia, 

France and Switzerland and found the same results. However, it was in 1940s 

Joseph Juran (1904 - 2008), an American engineer, recognised the 80:20 theory 

and named it after Vilfredo Pareto. Pareto Principle defines that 80% of the results 

(or consequences) are attributable to 20% of the causes which implies an unequal 

relationship between the inputs and the outputs (Koch, 2011, Delers, 2015).  

Munns and Al-Haimus (2000) noted that seminal texts in the cost management 

literature (Ashworth and Perera, 2015, Seeley, 1996, Ashworth and Skitmore, 

1983) approving the applicability of Pareto Principle to identify the cost significant 

items. The works of  Munns and Al-Haimus (2000) and Tas and Yaman (2005) are 

examples of embracing 80:20 Pareto Principle to identify the cost significant items 

in a BoQ and eventually, developing prediction models using cost significant 

modelling technique. Hence, it is evident that 80:20 Pareto Principle is widely 

accepted as the popular method of capturing cost significant items in a BoQ. 

However, to identify the cost significant items, the BoQ items have to be grouped 

(to minimise complexity by reducing the number of items) according to the work 

packages (trades) or functional elements as done in previous studies (See, Munns 

and Al-Haimus, 2000, Tas and Yaman, 2005). Accordingly, items were grouped as 

elements as the focus the study was to aid design decision-making during the early 

stages of design as opposed to detailed stages of design where trade wise 

analysis would have been appropriate otherwise. Further, the grouping of elements 

prescribe in NRM standards (RICS, 2012a) was adopted in the study as it is the 

prevailing standard of measurements in the UK at present. 
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Consequently, it can be hypothesised that 80% of the EC is emitted by 20% of the 

building elements. The building elements responsible for 80% of EC emissions are 

referred to as the carbon hotspots in the context of the research. Even though 

80:20 is accepted as the universal ratio, the Pareto Principle neither dictates that 

the 80:20 ratio is applied to all situations nor should the two figures add up to 100 

(say, it could be 90:50 or 80:30). Therefore, this ratio was tested in the case of the 

relationship between EC (and cost) and building elements. Figure 4.5 illustrates the 

process followed in identifying the EC and CC hotspots.  

 

Figure 4.5: The process of identifying EC and CC hotspots of the sample buildings 

As per Figure 4.5 EC and CC were estimated using the UK Building Blackbook, 

ICE, manufacturers’ data and price books for the sample buildings and the BoQ 

items were grouped in accordance with the NRM elements classification. Sum total 

of EC and CC of Each element group were obtained and the element groups were 

arranged in a descending order of their group totals. Cumulative percentage of the 

element group totals were calculated to identify the elements contributing up to 

80% of the total EC and total CC separately, which are referred to as the carbon or 

cost significant elements or the hotspots of office buildings. 

4.9.2. Analysis of the Relationship between Variables 

The technique used to analyse the relationship between variables is the correlation 

coefficient followed by the examples set by previous studies including Langston 
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and Langston (2008) and Luo et al. (2015). Langston and Langston (2008) 

analysed the relationship between EE and CC while Luo et al. (2015) investigated 

the relationship between the EC and the number of storeys of buildings. The 

correlation coefficient is denoted by ‘r’ and it measures to what extent two variables 

are linearly related. Equation 4.1 presents the formula to calculate the correlation 

coefficient. Miles and Shevlin (2001) advise that it is always useful to check if the 

correlation is statistically significant. This implies that the correlation between two 

variables is unlikely to be zero if the probability value associated with the 

correlation is less than 0.05 (usually referred to as the ‘significance’ value).  

Equation 4.1: Formula to calculate correlation coefficient 

𝑟𝑥𝑦 =  
𝑆𝑥𝑦

𝑆𝑥𝑆𝑦
 

Where 𝑥  and 𝑦 are the two variables considered, 𝑆𝑥 is the standard deviation of 

variable 𝑥, 𝑆𝑦 is the standard deviation of variable 𝑦 and 𝑆𝑥𝑦 is the covariance of 𝑥  

and 𝑦 of the sample. 

Further, the correlation can take any value ranging from -1.00 to +1.00, -1 

represents perfect negative linear correlation while +1 implies perfect positive 

linear correlation. The sign of the correlation coefficient dictates the direction of the 

relationship while the magnitude conveys the strength of the relationship between 

two variables. There are guides available in the literature to interpret the size of the 

effect of correlation. Cohen (1988) proposed an absolute value of 0.1 represents a 

small effect, 0.3 represents a medium effect and 0.5 or more represents a large 

effect. Evans (1996) suggests values between 0 and 0.19 to be “very weak”, 

between 0.20 and 0.39 to be “weak”, between 0.40 and 0.59 to be “moderate”, 

between 0.60 and 0.79 to be “strong” and 0.80 and 1.0 to be “very strong”. Even 

though these benchmarks are useful, Field (2013) suggests that it is important to 

interpret the correlation in the context of the research.  

Furthermore, a conclusion about causality cannot be made from the correlation 

between two variables. Causality between two variables simply means that the 

observed change in one variable is caused by the other variable. However, the 
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existence of a correlation between two variables does not prove causality, instead, 

the correlation between the two variables could have been caused by a third 

variable, which could be unknown or not studied. In addition, correlation does not 

convey the direction of causality, that is which variable causes the change in the 

other (Field, 2013). Hence, it is important to prove causality and the direction of 

causality between the two variables considered in order for the correlation to be 

meaningful. 

There are four techniques to calculate the correlation coefficients as follows:  

1. Pearson’s correlation coefficient 

2. Spearman’s correlation coefficient 

3. Kendall’s tau 

4. Biserial and point-biserial correlation 

In order to understand the use of each technique, it is important to understand the 

different levels of measurement of variables such as: 

1. Nominal – a numerical scale used to identify different categories of a 

variable, but the magnitude of the number does not have any value (i.e. 

Male – 0, Female – 1) 

2. Ordinal – a numerical scale used to represent an order in the categories of a 

variable unlike nominal measurement, however, does not tell anything about 

the difference between the two categories (i.e. strongly disagree -0, 

disagree – 1, agree – 2, strongly agree – 3) 

3. Interval - a numerical scale which has the same intervals throughout the 

scale (i.e. temperature measurements) 

4. Ratio – a numerical scale which has a true and meaningful zero point (i.e. 

scores in a test) 

Pearson’s correlation is used only if variables are measured at the interval level of 

measurement. Spearman’s correlation and Kendall’s tau are known as non-

parametric correlation, which can be used with ordinal level variables (ranked 

data). Kendall’s tau is used for a small sample with a large number of tied ranks. 



 

102 
 

Biserial or point-biserial correlation is used when one of the variables is 

dichotomous (categorical variables with two categories). Accordingly, appropriate 

correlation technique was used to analyse the correlation of each pair of variables 

as presented in Table 4.7.  

Table 4.7: Suggested correlation techniques depending on the level of measurements of 

variables 

Variables pairs Measurement 

scale 

Correlation 

Technique 

GIFA/ EC per GIFA Ratio/Ratio  Pearson 

Building height/ EC per GIFA Ratio/Ratio Pearson 

Average storey height/ EC per GIFA Ratio/Ratio Pearson 

Wall to Floor ratio/ EC per GIFA Ratio/Ratio Pearson 

Circulation space ratio/ EC per GIFA Ratio/Ratio Pearson 

4.9.3. Formulation of the EC Prediction Model 

Formulation of the EC prediction model was preceded by sub-processes including 

identification of independent variables of the model (or the predictor variables), 

development of finishes and services indices, development of the dataset for the 

formulation of the model and the examination of data which are discussed herein. 

a) Identification of the variables or model predictors 

Design variables or model predictors were identified through an extensive literature 

search for both CC and EC. Evidences were found in the literature for CC and 

design variable relationship while literature supporting EC and design variables 

relationships was scarce (See Section 3.10.1). However, the EC model was 

conceptualised based on the well-established CC and design variable relationships 

due to the fact that CC and EC are affected by the same design variables (though 

the strength and direction of relationship could be different which is yet to be found 

and this gap became the driver of the research). Even though the conceptual 

model is presented using the key design variables that are likely to be available 

during the early stages of design based on the literature, another step of 
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verification is designed to identify the most influential design variables in predicting 

EC (and CC). This verification was performed using the data collected for the 

study. The design variables affecting the carbon (and cost) hotspots were identified 

through the carbon (and cost) hotspot analysis (see, Table 6.5 in Section 6.2.1) 

though, this type of verification is not found in the literature. However, the selection 

of the most influential design variables is beneficial in terms of fitting the model with 

only (statistically) significant variables.  

b) Development of the finishes and services quality indices 

Two of the cost influential qualitative design variables include finishes quality and 

services quality of the buildings. As a result, quantitative indices were developed 

for finishes and services quality of office buildings by collecting data through a 

Delphi-based expert forum and a document review respectively as explained in 

Section 4.8.2. Experts verified the conceptual finishes quality index in an iterative 

process until consensus is reached. The conceptual finishes index was then 

modified by incorporating the comments of the experts and presenting the modified 

finishes index in the next round, repeating the process until consensus was 

reached among the experts. In this way, the finishes quality index for the study was 

developed. On the other hand, services quality classification adopted in the price 

books was content analysed and matched with the specification of the study 

sample and an applicable services quality index was developed by modifying the 

standard classifications in the price book.   

c) Development of the dataset for the formulation of the model 

An important step in the process of the model formulation is the development of the 

dataset. The dataset of the study was developed with the information obtained 

from historical projects, the EC and cost estimates of the projects and the finishes 

and services quality indices. The raw data (quantitative design variables) and the 

processed data (CC, EC, Finishes Index and Services Index) of the sample 

buildings were entered into a spreadsheet to facilitate analysis. The information 

that was captured and their unit of measurements are as follows: 
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1. Project Identification code 

2. Frame type – Concrete, Steel, Timber, Masonry or Hybrid 

3. GIFA – m2 

4. Number of storeys – Nr 

5. Number of basements – Nr 

6. Average story height - m 

7. Building height – m 

8. Façade area – m2 

9. Wall to Floor ratio (Façade area/GIFA) – % 

10. Circulation Ratio (Non-usable area/GIFA) - % 

11. Finishes Index - no units 

12. Services Index - no units 

13. CC - £1000s 

14. EC - tCO2 

15. CC per GIFA - £/m2 GIFA 

16. EC per GIFA - kgCO2/m2 GIFA 

 

d) Data examination 

Prior to data analysis, a careful examination of data ensures better model 

development (Hair, 1998). Therefore, data (values of design variables, CC and EC) 

were examined by producing histograms and box plots. Histograms give a visual 

indication of the normality of the distribution, though, histograms can be misleading 

when the sample size is small (Miles and Shevlin, 2001). However, box plots are 

useful in identifying non-normality even when the sample size is small. In addition 

to that, outliers and extremes in data can be spotted through box plots. Therefore, 

histograms and box plots were used to study the distribution, normality and outliers 

in the data for each variable of the model (dependent and independent).  

Further, descriptive statistics were used to describe the variables and to discover 

problematic data distributions that deviate significantly from a normal distribution, 

which is a key assumption in regression analysis. Hence, mean, standard 

deviation, minimum, maximum and skewness of the variables were calculated and 
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interpreted. A Linear relationship between dependent and independent variables is 

another key assumption in regression. Scatterplots were produced to identify linear 

relationships between the dependent variable and all the independent variables 

and correlations were calculated for each pair – CC, EC, CC per GIFA and EC per 

GIFA separately. Further, log transformations were applied to the values of the 

variables which deviated from normality and linear assumption to make the 

variables comply with regression assumptions (Field, 2013). 

e) The model development process 

The process of formulating the EC prediction model follows the basic structure of 

cost modelling research which involves three main stages including 

conceptualization of the model, model formulation (by collecting data) and 

validation of the model (Ashworth & Perera, 2015). Figure 4.6 illustrates the basic 

process and sub-process involved in the model development. Accordingly, the 

basic process involves the conceptualization of the model through an extensive 

literature review (see Section 2.10); estimating the model parameters by obtaining 

a study sample of historical office building projects; and validating the refined 

model for applicability and generalisability of the model. In terms of the sub-

processes presented in Figure 4.6, the EC of buildings were estimated using the 

supporting data as explained in Section 4.8.1 and grouped as NRM compliant 

element form (refer to Section 5.3.1 for details on different datasets presented in 

Figure 4.6 – Dataset 1, 2 and 3). Finishes and services quality indices were 

developed through a Delphi-based expert forum and price books as discussed in 

Section 4.8.2. The finishes and services quality level of each building in the sample 

were identified quantitatively using the finishes and service quality indices 

developed for the study (refer to Section 5.8 and 5.9 for the discussion on the 

development of finishes and services quality indices). Consequently, the model 

dataset was developed by collating design data, CC and EC data in a spreadsheet. 

This was followed by the statistical analysis, which is discussed in the next 

subsection (f).  
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Figure 4.6: The model development process 

f) Multiple regression analysis 

Multiple regression analysis was selected over the other decision approaches due 

to its well-defined mathematical basis (Kim et al., 2004a) and transparency. Even 

though NNs were found to be outperforming regression models by many scholars, 

NN was not selected because of its ‘black box’ nature making it difficult to interpret 

the outcome, update and maintain the database. Further, identifying the optimal 

network is a time-consuming process compared to other models. CBR was 

rejected due to small sample size which will affect the trustworthiness of CBR as 

pointed out by Gupta (1994) (see, section 4.5 for detail review of the modelling 

approaches). 

Consequently, the conceptualised EC regression model can be presented as 

follows: 
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Equation 4.2: Multiple regression model of the research 

𝑦 =  𝛽0 + 𝛽1. 𝑥1 + 𝛽2. 𝑥2 + ⋯ + 𝛽𝑛. 𝑥𝑛 + 𝜀 

Where, 𝒚 is the EC per GIFA of the building considered, 𝜷𝟎 is the intercept, 𝜷𝟏…𝒏 

represents the coefficient parameters of the predictor variables 𝒙𝟏…𝒏 where 𝒙𝟏…𝒏 

represents the influential design variables and 𝜺 represents the error term. 

However, the multiple regression equation is presented as follows without the error 

term: 

Equation 4.3: Multiple regression equation of the research 

𝐸(𝑦) =  𝛽0 + 𝛽1. 𝑥1 + 𝛽2. 𝑥2 + ⋯ + 𝛽𝑛. 𝑥𝑛 

Here, the error term is assumed to be zero. 

Yet, the model developed in the research can be presented as follows: 

Equation 4.4: Estimated multiple regression equation of the research 

�̂� =  𝑏0 + 𝑏1. 𝑥1 + 𝑏2. 𝑥2 + ⋯ + 𝑏𝑛. 𝑥𝑛 

Where, �̂� is an estimate of 𝒚, 𝒃𝟎 is an estimate of 𝜷𝟎, 𝒃𝟏…𝒏 are estimates of 𝜷𝟏…𝒏. 

The coefficients of Equation 4.4 are estimates of the parameters presented in 

Equation 4.3, which will be calculated from the study sample. 

Further, key assumptions underlying regression analysis including normality and 

linearity assumptions, have to be checked to ensure the validity of the derived 

regression equation. Key assumptions made in the multiple regression analysis 

include  (Miles and Shevlin, 2001, Field, 2013): 

1. The dependent variable is normally distributed - histograms and box plots along 

with descriptive statistics (skews) will be used to test this assumption (as 

discussed in subsection (d) of Section 4.9.3). 

2. Relationships between dependent and independent variables are linear – this 

can be checked through scatterplots (as discussed in subsection (d) of Section 

4.9.3) before performing the regression analysis and residual plot will also be 
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used to check this assumption. This assumption is considered to be met if the 

residuals in the standardised residual plot are randomly distributed. 

3. There is little or no multicollinearity between data - correlation matrix was 

produced for all the independent variables and Pearson’s correlation will be 

calculated between each pair of the independent variables. A correlation 

coefficient greater than 0.7 (irrespective of the direction + or -) signposts 

multicollinearity. The pairs of the independent variables having a strong 

correlation (> 0.7) will be detected and either of the variables in the pair 

detected with multicollinearity will be used in the model formulation.  In addition 

to that, Variance Inflation Factor (VIF) will also be calculated for the model to 

detect multicollinearity where VIF between 5 and 10 indicates high correlation 

and VIF beyond 10 reveals that the regression correlations are poorly 

estimated.                                                                                                                                                                  

4. The variance of residuals is equal across all values of independent variables 

(Homoscedasticity) - scatterplots will be produced between residuals and 

predicted values to test this assumption where residuals are expected to be 

randomly distributed and not demonstrate any patterns. 

5. There is little or no autocorrelation in the data - this assumption was tested 

using Durbin-Watson score. The Durbin-Watson test statistics (d) is calculated 

by the following equation (Montgomery et al., 2012): 

Equation 4.5: Durbin-Watson test statistics 

𝑑 =
∑ (𝑒𝑖 − 𝑒𝑖−1)2𝑛

𝑖=2

∑ 𝑒𝑖
2𝑛

𝑖=1

 

Where, 𝑛 is the number of observations and 𝑒 is the residual. d = 2 indicates no 

autocorrelation as the value of d will always lies between 0 and 4. d is compared to 

the lower and the upper critical values (dL,α and dU,α) at significance α (See Table 

in Appendix 3 for critical values of the Durbin Watson Score). 

To test for positive autocorrelation: 

 If d < dL,α, - there is statistical evidence that the error terms are positively 

autocorrelated. 
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 If d > dU,α, - there is no statistical evidence that the error terms are positively 

autocorrelated. 

 If dL,α < d < dU,α, - the test is inconclusive. 

To test for negative autocorrelation: 

 If (4 − d) < dL,α, - there is statistical evidence that the error terms are 

negatively autocorrelated. 

 If (4 − d) > dU,α, - there is no statistical evidence that the error terms are 

negatively autocorrelated. 

 If dL,α < (4 − d) < dU,α, - the test is inconclusive. 

The process to be followed in fitting a regression model to the collected data is 

illustrated in Figure 4.7 which was modified from Field (2013). Accordingly, 

compliance of the developed model to the regression assumptions should be 

checked as it is fundamental to consider the model as statistically valid. Different 

strategies (such as weighted least squares regression, bootstrap confidence 

intervals and multilevel modelling) can be used and the regression analysis can be 

rerun when any assumption is not met as indicated in Figure 4.7. Further, a 

different process is followed in the development of a multilevel model which is not 

presented in Figure 4.7 (See, Chapter 19 in Field (2013) more information on 

multilevel models).  
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Figure 4.7: The process of fitting a regression model 

Modified from: Field (2013) 
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4.10.Credibility of Research Findings 

Reliability and validity are two key aspects of a research design to ensure the 

credibility of research findings. Saunders et al. (2009) define reliability as the ability 

of the data collection and analysis techniques to produce consistent results when 

iterated while validity as being able to produce the result what it intended to 

produce. The intended key research findings include: 

1. Carbon and cost hotspots of office buildings 

2. Relationship between EC/CC and design variables 

3. Relationship between EC and CC 

4. The EC prediction model 

All of which are objective for a given sample and will yield the same results when 

repeated using the same data collection and analysis techniques ensuring the 

reliability of research findings. However, the validity of the models was confirmed 

by assessing two metrics including coefficient of determination of the regression 

model (R2) and coefficient of variation of the regression model (CV).  

The coefficient of determination (R2) also referred to as the ‘model fit’ presents the 

percentage change in the dependent variable explained by the model (independent 

variables). R2 is calculated as follows: 

Equation 4.6: Formula to calculate coefficient of determination 

𝑅2 =  
∑(�̂�𝑖 − �̅�)2

∑(𝑦𝑖 − �̅�)2
 

Where, 𝑦𝑖 denotes the observed value of the depended variable, �̂�𝑖 denotes the 

predicted value of the depended variable and �̅�𝑖 denotes mean of the observed 

values. There is another estimate of R2 called adjusted R2, which attempts to 

estimate the R2 of the population instead of the sample itself. It is calculated as 

follows: 
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Equation 4.7: Formula to calculate the adjusted coefficient of determination 

𝑅𝑎𝑑𝑗
2 = 1 − (1 −  𝑅2) 

𝑛 − 1

𝑛 − 𝑝 − 1
 

Where n denotes the number of observations and p denotes the number of 

independent variables in the model. The rationale for this adjustment is that it is 

less likely that the correlation between the dependent variable and a newly added 

independent variable is zero even if it is zero in the population due to sampling 

error and R2 always increases when a new independent variable is added. Hence, 

R2 is adjusted to compensate for this possible error (Miles and Shevlin, 2001). 

Higher R2 implies a better model fit. 

The CV is the metric used to check the accuracy of the models. CV is calculated as 

a percentage of the standard deviation of the residuals divided by the mean of the 

observed values of the dependent variable, which is presented in Equation 4.2. 

Equation 4.8: Formula to calculate coefficient of variation 

𝐶𝑉 =  
√∑(𝑦𝑖−�̅�𝑖)2

𝑛 − 1
�̅�𝑖

𝑋 100 

For instance, a CV of 15% implies that the accuracy of the prediction of most of the 

cases (68%) would fall between ±15%. Hence, a smaller CV is desirable. However, 

Ashworth and Skitmore (1999) from a thorough analysis of the past studies 

suggested that CV of 15% to 20% of prediction accuracy is acceptable for early 

design stage cost estimates while Peurifoy and Oberlender (2002) proposed that 

an accuracy between +25% to -5% is acceptable for a conceptual estimate.  

However, a lower CV implies a better model prediction. Therefore, a prediction 

accuracy of CV ±20% is considered sufficient to validate the models. Nevertheless, 

the CV of a model will most likely deteriorate when the model tends to predict 

cases outside its database (McCaffer, 1999). Hence, the prediction accuracy of the 

model was assessed using internal (data that will be used to formulate the model) 

and external data (data that will not be used to formulate the model).  
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4.11.Research Design 

Based on previous discussions, the positioning of the research is presented in the 

form of the Sauder’s research process ‘Onion’ in Figure 4.8. As discussed in 

Section 4.2 the research philosophy takes the post-positivist critical realist 

perspective and an inductive approach (Section 4.3) was used to formulate the EC 

prediction model by collecting data. Mixed methods of data collection and analysis 

techniques were employed due to the use of qualitative predictor variables in the 

EC prediction model. The research falls within the mixed-model research as the 

findings of the qualitative analysis were used as inputs to the model formulation 

(Section 4.5). In addition, the research design in terms of research objectives is 

presented in Table 4.8. Table 4.8 summarises the data collection and analysis 

techniques employed in order to achieve each objective and provide references to 

the respective chapters.  

 

Philosophies 

Approaches

Strategies

Choices

Time Horizons

Techniques and 
Procedures

• Post-positivism

• Inductive

• Archival analysis

• Mixed model research

• Cross-sectional study

• Regression analysis

• Delphi based expert forum

• Document review

Figure 4.8: The positioning of research based on Sauder’s research process ‘Onion’ 

Modified from: Saunders et al. (2009) 
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Table 4.8: Research design in term of research objective 

Objectives Research Methods Chapter 

Reference Data Collection Data Analysis 

1. Review of EC 

and OC  

Literature review  Synthesis and critiquing 

of the literature 

2 

2. Review of EC 

estimating 

practices 

Literature review  Synthesis and critiquing 

of the literature 

3 

3. Analysis of 

carbon 

hotspots 

Literature review, historical 

project data collection 

Pareto Principle 2.6, 4.8.1 

and 4.9.1 

4. Relationship 

between 

EC/CC and 

design 

variables  

Literature review, historical 

project data collection 

Correlation coefficient 3.10.1, 

4.8.1, 4.8.2 

and 4.9.2 

5. Relationship 

between EC 

and CC 

Literature review, historical 

project data collection 

Correlation coefficient 2.9, 4.8.1 

and 4.9.2 

6. Developing 

EC and CC 

models 

Literature review, historical 

project data collection, 

expert forum, document 

review 

Regression analysis, 

content analysis of the 

qualitative data  

4.7, 4.8.1, 

4.8.2 and 

4.9.3 

7. Validation of 

EC and CC 

models 

Literature review, historical 

project data that were not 

used for the model 

formulation 

Coefficient of 

Determination, 

Coefficient of Variation 

4.10 
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4.12. Summary 

The research was designed to develop an EC prediction model by capturing 

relationships between EC and design variables; and EC and CC. The research 

design begins with the conceptualization of the model from an extensive literature 

review. The parameters of the conceptual were estimated by collecting primary and 

secondary data. Both quantitative and qualitative data collection and analysis 

techniques were employed to develop the model. Historical data were collected 

from online cost databases and QS organisations and the EC and cost were 

estimated using published secondary cost and carbon databases. Meanwhile, 

design data were also captured from historical projects. However, the need to 

develop numerical indices for the finishes and services quality of buildings was 

identified to include quality of buildings as predictors in the model. Consequently, a 

Delphi-based expert forum was selected to develop the finishes quality indicator 

with two rounds of the verification process in order to develop an objective index. 

On the other hand, document review was employed for the development of 

services quality index based on the service provision of buildings due to the lack of 

detailed measurements and specification of services of the collected data and the 

lack of EC data of services.  

Histograms, boxplots and descriptive statistics were used to examine the data to 

identify problems in the dataset before performing the regression analysis. 

Regression analysis was chosen to develop the model due to its strong 

mathematical basis, transparency and the use of it in similar past research. 

However, regression outcome will become invalid if the regression assumptions 

are violated. Hence, various techniques were used to test the regression 

assumptions. Finally, the validity of the model was measured using the coefficient 

of determination and coefficient of variation and a CV of ±20% was considered 

satisfactory as the model is an early design stage prediction model. 
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5. Data Collection and Processing 

5.1. Introduction  

This chapter unveils the intricacies involved in the data collection of the study in 

employing the techniques introduced in the Methodology chapter. Data 

requirement was defined at the beginning of the chapter and the sources of data 

were identified. The information available in each of the data source were mapped 

onto the data requirement of the study to indicate the inadequacies found in each 

dataset. The study sample was developed by combining the available datasets 

using different techniques which are presented in the data collection process of this 

chapter (Section 5.3). Section 5.3 gives a snapshot of the overall data collection 

and processing and set the scene for a detailed discussion. A pilot study was 

conducted initially to assess the feasibility of obtaining data from BCIS online cost 

database, which was identified as the most appropriate data source to obtain a 

large sample. A detailed description and the results of the pilot study are presented 

to demonstrate the inadequacy of BCIS online cost database. The findings of the 

pilot study paved the way to explore additional data sources such as data from QS 

consultancy practices and other special databases.  Data were obtained from QS 

consultancy practices, which were then used in conjunction with the data obtained 

from BCIS online cost database to develop the study sample. The process of 

developing the study data involved some data processing including the calculation 

of descriptive statistics and the comparison of means of the samples to identify 

differences between low to medium rise and high-rise buildings.  Further, the 

developed sample for the regression analysis was validated using an independent 

dataset. In addition, the data collected from the expert forum for the finishes quality 

index development and the data collected from published documents for services 

quality index development are also discussed under separate sections. 

5.2. Data Requirement  

EC, CC and design variables (quantitative like GIFA, building height, wall to floor 

ratio; and qualitative like finishes quality and services quality indicators) of 
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buildings are the basic building blocks to formulate the models. However, it is 

unusual to find data sources where all the information is readily available. In most 

of the cases, at least one of the three can be found to be missing.  For instance, 

historical data available in the online databases contain either cost or EC and 

design variables (BCIS – holds cost and most of the design variables data; WRAP 

EC Database contains EC data of most of the building elements and some design 

variables). Therefore, the best available data were obtained and different 

techniques were employed to replace the missing data systematically. This is 

discussed later in the chapter. Figure 5.1 illustrates types and sources of the data 

obtained for the study. Primary data refers to historical construction project data 

specifically obtained for the study and the secondary data refers to historical 

construction project data that are made available to researchers and community for 

further investigation of a problem (See, Hox and Boeije, 2005).  Hence, primary 

data include unpriced BoQ or detailed cost plans and layout drawings obtained 

Data 
Collection and 

Processing

Primary Data

QS consultancy 
practices (13)

Secondary 
Data

BCIS online 
cost database 

(41)

Specific 
database (28)

WRAP 
database (29)

Supporting 
Data

Published cost 
data - e.g. Spon's 

price books

Published carbon 
data - e.g. UK 

Building 
Balckbook

EC rates, unit cost, 
cost benchmarks 

4BoQs/detailed 

cost plans, layout 
drawings  

Cost analyses, 
EC analyses  

Figure 5.1: Types and sources of data obtained 
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from QS consultancy practices; secondary data include cost analysis obtained from 

BCIS online database and EC analysis obtained from a specific database from a 

QS consultancy practice. In addition, another category of data was identified as 

‘supporting data’ for the study which include published cost and EC databases 

consist of cost and EC benchmarks. These benchmarks are essentials to estimate 

the cost and EC of primary and secondary data.  

5.3. The Data Collection Process 

Data collection of the study involved collection of both quantitative (historical 

project data) and qualitative data (finishes and services indices development). 

Hence, an overview of the data collection process is provided in this section before 

discussing each step in detail. 

5.3.1. Historical Project Data Collection 

The collection process of historical project data consists of three successive stages 

(see, Figure 5.2) which are discussed briefly here and a detailed discussion is 

presented in subsequent sections. 

 

 

 

  

An exploratory pilot 
study to identify the 
data requirement  

Development of the 
data for a statistically 

significant sample 

Preliminary 
data collection 
and processing  

Figure 5.2: Data collection process - overview 
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Stage 1: Pilot study 

An exploratory pilot study was conducted to determine the feasibility of obtaining 

data from BCIS online cost database to develop EC plans. BCIS was chosen as it 

is a first-hand data source, which contains historical project data. Subsequently, a 

pilot case was employed and effort was made to develop EC plans from data that 

are available in BCIS online database. However, EC of all building elements could 

not be calculated due to insufficient design data. Hence, it was decided to collected 

data from alternative data sources, which include data from QS consultancy 

practices. Detailed discussion of the pilot study is presented in Section 5.4.  

Stage 2: Processing of Dataset 1 and Dataset 2 from QS consultancy 

practices 

Two types of data were from QS practices. The first type includes unpriced 

BoQs/detailed cost plans and drawings (Dataset 1), and the second type includes 

elemental EC analysis of buildings with limited design data (Dataset 2). 

Shortcomings identified in each dataset (see Table 5.1) disqualify the datasets to 

be considered for the statistical analysis. However, these datasets were used to 

develop the study sample, which is discussed in Stage 3. 

Table 5.1: Overview of the data obtained from the QS consultancy practices 

DATASET 1 DATASET 2 

Source : 7 QS consultancy practices Source : A QS consultancy practice 

No of projects: 13 No of projects: 28 

Available data Unavailable data Available data Unavailable data 

 Measurement 

of quantities 

for most of the 

items 

 Design 

variables 

 Specification 

 Measurement 

of quantities for 

Fitting, 

Furnishing & 

Equipment and 

Services 

 Elemental EC 

analysis  

 Some design 

variables – 

GIFA and no. 

of storeys 

 Measurement 

of quantities 

 Specification 

 Other design 

variables 
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Stage 3: Development of Dataset 3 

Dataset 3 consists of 41 historical project data (cost analyses) obtained from BCIS. 

Only 41 projects were selected for the statistical analysis due to their conformity 

with the required data. However, data gaps were identified in Dataset 3, which 

were eventually filled by the information derived from Dataset 1 and Dataset 2. A 

major shortcoming of Dataset 3 is inadequacies in element specifications. On the 

other hand, there is no industry developed elemental EC benchmarks to produce 

EC plans for cost analyses obtained from BCIS. Therefore, EC elemental rates 

were developed from the datasets obtained in Stage 2 to feed into the data 

obtained from BCIS whenever detailed specification was lacking. Particularly, 

elemental EC rates were used for building elements such as Substructure, Frame, 

Upper Floors (only for the in-situ concrete floor), Roof, Fittings, Furnishings and 

Equipment and Services. Figure 5.3 illustrates the inputs received from Dataset 1, 

Dataset 2 and the published sources to develop Dataset 3. Accordingly, the gaps 

in Dataset 3 were filled by Dataset 1 and Dataset 2 to develop the EC estimates for 

projects in Dataset 3.  

Figure 5.3: Inputs from Dataset 1, Dataset 2 and the published sources to the development of 

Dataset 3 

DATASET 2DATASET 1

13 Buildings

Source: 7 QS practices

28 Buildings

Source: 1 QS practices

SUPPORTING DATA 

 Price Books

 UK Building Blackbook

 Inventory of Carbon and 

Energy

 Manufacturers’ catalogues

DATASET 3

41 Buildings

Source: BCIS online database

Design VariablesEmbodied Carbon Capital Cost

Elemental embodied 

carbon (EC-EURs) of 

Substructure, Frame, 

Upper Floors, Roofs

Elemental embodied carbon 

(EC-EURs) of Fittings, 

Furnishings and Equipment 

and Services

Embodied 

carbon factors of 

items and 

materials

Cost data 

of  

Services 

(C-EURs)
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Further, the need was identified to validate Dataset 3 as it was developed from 

multiple sources of data. Hence, WRAP EC Database (WRAP and UK-GBC, 2014) 

was used to check the validity of Dataset 3 (see, Section 3.6 (d) for more details on 

WRAP database) because the data obtained from WRAP database could not be 

used for the study due to inadequate design information and the EC data available 

in the database lacks detailed elemental analysis. The validation of Dataset 3 is 

presented in sub-section 5.7.3. 

Table 5.2: Data available in each of the dataset 

Required data  Measurement 

scale 

Dataset 1 Dataset 

2 

Dataset 

3 

1. Measurement of 

quantities/ element unit 

quantities of the buildings  

Ratio Yes (some 

elements 

are not 

measured) 

- Yes 

2. Specification of the 

buildings 

Nominal Yes - Yes 

3. Design variables of the 

buildings – quantitative: 

GIFA, Building height/No. 

of storeys, Wall to floor 

ratio, Circulation space 

ratio, No. of basements 

Ratio Yes Yes 

(Only 

GIFA & 

no. of 

storeys) 

Yes 

4. Design variables of the 

buildings – qualitative 

finishes quality, services 

quality 

Ordinal Yes - Yes 

5. EC Ratio Yes 

(Excludes 

Fittings & 

Services) 

Yes Yes 

6. CC Ratio Yes 

(Excludes 

Fittings & 

Services) 

- Yes 
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In summary, the checklist of the required data and the data available in each of the 

dataset is presented in Table 5.2. Even though Dataset 1 contains most of the 

required data except for detailed measurements of Fittings, Furnishings and 

Equipment and Services, Dataset 1 could not be used for the model formulation, as 

the sample size is small and not statistically significant. Dataset 2 could not be 

used because it does not contain most of the required data. Subsequently, Dataset 

3 was developed using both Dataset 1 and Dataset 2, eliminating deficiencies in 

the original data sets to meet the data requirements. 

5.3.2. Finishes and Services Index Development 

Finishes and services quality of buildings were required to be identified in an 

objective and a systematic way as finishes and services quality were identified as 

variables affecting cost and carbon (see, Table 3.3). Hence, finishes and services 

quality of buildings become predictors in the cost and EC models. Therefore, the 

finishes quality index was developed from a Delphi-based expert forum while 

services quality index was developed from a review of published price books, 

which are discussed in detail in Section 5.8 and 5.9 respectively.  

5.4. Pilot Study 

A pilot study was conducted to determine the feasibility of developing EC estimates 

from the data obtained from BCIS online database as briefly mentioned in Section 

5.3. BCIS database is designed with multi-faceted search facilities and allows 

users to refine search criteria to obtain specific data. A pilot case was employed to 

proceed with the pilot study from a refined sample produced by BCIS, which met 

the set search criteria, which is discussed as follows.  

5.4.1. Selection of the Pilot Case  

Selection of the pilot case was a step by step process. Data requirement has to be 

fed into the system by defining basic parameters of the buildings, building 

specification and rebase date. Accordingly, ‘Building function’ was selected as 

office buildings under the main category ‘300 Administrative, commercial, 

protective facilities’ as shown in Figure 5.4. ‘Age of analyses’ was chosen to 
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include the analyses from 2006 to obtain most recently completed buildings. ‘Type 

of Work’ was filtered to include only ‘New build’ (see, Figure 5.5) and no 

constraints were imposed on GIFA, the number of storeys, air-conditioning and 

Figure 5.4: Defining basic parameters of the required data 

Figure 5.5: Defining building specification 
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basements. Finally, all the analyses were rebased to 2016 1Q and a location index 

of 100 (see, Figure 5.6) to be in line with the base of the UK Building Blackbook. 

 

 

Figure 5.6: Defining base 

An additional filter was applied to show only the buildings that contain elemental 

analysis including Element Unit Quantity (EUQ – is the total quantity of the element 

expressed in a suitable unit and measurement convention as defined by BCIS) 

which is a fundamental data to produce EC estimates. However, the first search 

did not provide any data that meet all the criteria defined and filters applied. 

Subsequently, ‘Age of analyses’ was modified to include analyses from the year 
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2000 where seven projects were found to meet the defined criteria. Consequently, 

a pilot case building was selected randomly from the seven analyses. The pilot 

case was a customer service centre located in Bridgend, Mid Glamorgan and 

constructed in 2002. It was a two-storied steel framed building with a GIFA of 

3,080m2 (See Appendix 1 for more information on the selected pilot case).  

 

5.4.2. Estimating Embodied Carbon of the Pilot Case 

The steps involved in estimating the EC of a building element for data obtained 

from BCIS is presented in Figure 5.8. Accordingly, EUQ was extracted from cost 

analysis of the building, as EUQs were readily available. However, EC-EUR is not 

Figure 5.7: Applying additional filters 



 

126 
 

readily available. Therefore, the corresponding EC Element Unit Rate (EC-EURs) 

was developed for the building element under concern using published EC factors 

in ICE (Hammond and Jones, 2011), Blackbook (Franklin & Andrews, 2011) and 

manufacturers’ data. EC-EUR is the quantity of carbon embodied in one unit of an 

element. However, the unit of measurement of the elements vary. For instance, 

Substructure EUQ is the internal area of the lowest floor while External Wall EUQ 

is the façade area without the area of windows and external doors. Finally, EC of 

the element was calculated by multiplying EUQ by EC-EUR. In this way EC of all 

building elements in the building were calculated and the total EC of the building 

was derived by adding the EC of elements together. 

 

Figure 5.8: Steps in estimating EC of elements for BCIS data 

The method used in calculating EC-EUR and EC of an element is presented in 

Table 5.3 by using Wall Finishes of the selected customer service office building as 

an example. The element was sub-divided into BoQ items and the quantities of 

each item were extracted from the cost analysis. The EC factors were obtained 

from the UK Building Blackbook and item quantities were multiplied by the 

respective EC factors and the resultants were added together to derive the EC of 

the element (See Appendix 2 for the EC calculations of the rest of the elements). 

Even though the EC estimating process appears to be explicit, challenges were 

Derive Embodied Carbon of the Element

Embodied Carbon of the Element = EUQ X EC-EUR

Build Embodied Carbon Element Unit Rate (EC-EUR)

Corresponding EC-EURs of the elements were developed based on the specification 
provided in the cost anlysis and from the published embodied carbon factors

Extract Element Unit Quantity (EUQ)

The EUQ is readily available in the BCIS cost anlaysis of the building 
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faced in extracting quantities of items and EC factors, which, are listed in Table 

5.4, and the approaches used to overcome the challenges are presented with 

examples.  

Table 5.3: Calculating EC of wall finishes for the selected building 

Blackbook 
Item Nr. 

Wall Finishes Unit Qty EC per Unit EC 

M201202A Cement, sand (1:3) screed 
finish, 13mm thick, over 
300m wide m2 3057 4.950 

      
15,131.386  

M601001B Emulsion paint, one mist 
coat and two full coats, 
plastered background, 3.5- 
5.0 m m2 3057 1.068 

        
3,264.876  

 
Total of Wall Finishes m2 3057 6.018 

    
18,396.262  

 

Table 5.4: Approaches used to overcome the challenges in EC estimating 

Challenges Approaches used to 

overcome challenges 

Examples  

Missing 

details/specifica

tion 

Obtain possible details 

from drawings 

Size and the number of Brise Soleil were 

read from the drawings. 

Making assumptions Number of coats of painting was assumed. 

No matching 

EC factors from 

published 

sources 

Pro-rata EC factor for 15mm render was not 

present so pro-rata applied to 12mm 

render rate. 

Use average of the EC 

factors 

Average of the carbon factors for varying 

sizes of glazed screen was used. 

Find close match Carbon factor of 3.5 N/mm2 Block walls 

was used in the place of for 4 N/mm2 block 

walls 

EC of the selected building was calculated in this way using the available design 

information, published EC factors and different approaches as presented in Table 

5.4. The same approach was followed in estimating EC of Dataset 3, which is 

discussed in Section 5.7.2.  

5.4.3. Results of the Embodied Carbon Estimating of the Pilot Case 

Table 5.5 presents the elemental EC profile of the building. However, the EC of all 

the elements could not be calculated due to insufficient specification and lack of 
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detailed measurements as mentioned already. EC calculation becomes 

challenging especially when there is a difference in the unit of measurement 

between the main element (such as Substructure) and the components within the 

element (concrete, formwork, reinforcement etc.) where no detailed specification is 

available. For instance, elements such as Substructure and Frame which are 

measured in m2 while the components constituting the elements are measured in 

m3 (concrete), m2 (formwork, surface treatments), t (reinforcement), nr (piles) and 

the like. Therefore, EC of Substructure, Frame, Roof, Fittings, Furnishing and 

Equipment and Services could not be calculated. However, similar insufficiencies 

in Dataset 3 were addressed by developing elemental benchmarks from Dataset 1 

and Dataset 2, which is discussed in Section 5.7.2. 

 
Table 5.5: EC of the selected elements of the customer service centre  

Building Elements Unit EC 
(kgCO2/Unit) 

Total EC 
(kgCO2) 

Comments 

2B Upper Floors 86.387 140,983.58 Upper Floor rate is an 
average of two EC factors 

 

2D Stairs 1,680.950 6,723.80 Stairs rate was built based 
on the assumptions on the 
sizes and the specification. 

2E External Walls 26.011 59,565.19  

2F Windows and 
External Doors 

26.971 22,655.60  

2G Internal Walls & 
Partitions 

16.541 36,853.35  

2H Internal Doors 15.887 1,270.96 The EC rate is an average. 

3A Wall Finishes 6.018 18,396.26 The number of coats of paint 
was assumed. 

3B Floor Finishes 60.684 54,750.82  

3C Ceiling Finishes 25.027 67,948.31  

5.4.4. Outcome of the Pilot Study 

Details of measurement, specification and EC factors are the key inputs for EC 

estimating. However, data available in BCIS data suffers due to insufficiently 

detailed cost analyses.  Even though there are EC factors for materials (ICE) and 

BoQ items (Blackbook), there is no published source of data for EC-EURs 

(However, industry published EURs for the cost (C-EURs) are available to assist 
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early design stage cost estimating in the form of price books). EC calculation 

becomes challenging when there is a difference in the unit of measurement 

between the main element and its components when there is no detailed design 

data. Therefore, insufficiently detailed cost analyses in BCIS database and lack of 

industry benchmarks for EC-EURs disqualifies the BCIS online database to be 

used as a standalone data source to develop EC estimates. 

5.5. Dataset 1 

Dataset 1 comprises of thirteen (13) historical project data obtained from seven (7) 

QS consultancy practices. The collected data include blank BoQs or detailed cost 

plans of office buildings and layout drawings for some of the buildings. 

5.5.1. Data Description 

The majority of buildings were steel framed; one building was a hybrid; and the rest 

were concrete framed. GIFA ranges from 2,374 m2 to 63,246 m2 and number of 

storeys ranges from three (3) to eighteen (18).  Fittings, Furnishings and 

Equipment and Services were not measured in detail and identified, as ‘Item’ or 

‘Lump Sum’ was the major problem with Dataset 1. Further, measurement of the 

quantities of Finishes in two of buildings was found to be ambiguous (D1001 & 

D1005). Data description of the thirteen (13) buildings is presented in Table 5.6. 
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Table 5.6: Design data of Dataset 1 

Building ID Frame Type GIFA (m2) No. of 
Storeys 

D1001  Steel       33,663  18 
D1002  Steel       11,320  8 
D1003  concrete          2,859  3 
D1004  Steel       15,120  7 
D1005  Hybrid       63,246  16 
D1006  Steel          1,949  4 
D1007  Steel       22,288  10 
D1008  Steel          3,289  4 
D1009  Concrete          3,262  3 
D1010  Concrete          4,959  3 
D1011  Steel       21,300  13 
D1012  Concrete       21,300  12 
D1013  Steel          2,374  4 

5.5.2. Estimating Embodied Carbon and Capital Cost  

CC and EC estimates were prepared from scratch using unpriced BoQs or detailed 

cost plans where unit rates and EC factors were obtained from the UK Building 

BlackBook (Franklin & Andrews, 2011) (see Table 5.7). Unit rates are the cost 

including mark-up per unit of a BoQ item, given in £ per unit and EC, factors are 

the EC per unit of a BoQ item, given in kgCO2 per unit. The data presented in the 

Blackbook have a base date of 2010 2Q (price index - 218) and a location index of 

100. Therefore, the cost estimates of Dataset 1 were updated to 2016 1Q (price 

index – 276 (forecast)) and the location index was maintained as 100 to normalise 

the base of all the estimates. Further, the unit rates include 10% of mark-up (head 

office overhead and profit).  

On the other hand, EC in buildings are influenced by the manufacturing process of 

building materials, transport, the method of construction, recycling potential and the 

like (Chen et al., 2001b, Ramesh et al., 2010). However, the manufacturing 

process of a material is the key determinant of its EC when cradle-to-gate system 

boundary (EC emissions associated with the fuel consumption from raw material 

extraction up to the manufacturing factory gate) is considered (as in the Blackbook 

data). Therefore, the study assumes the same method of manufacturing for all 

building materials used in the Blackbook by default.  
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Table 5.7: Extract of an estimate of the Upper Floors of a building 

Items Qty 
(a) 

Unit Unit 
Rate 
(b) 

EC factor 
(c) 

CC 
(a x b) 

EC 
(a x c) 

Upper Floors   

    RC concrete in suspended 
floor slab 300 thick 598 m3 106.650 336.444 

       
63,776.70  

     
201,193.51  

Formwork to soffit of 
suspended slabs 1,992 m2 49.630 5.733 

       
98,862.96  

       
11,420.14  

RC concrete in upstands to 
suspended slabs 14 m3 131.640 353.418 

         
1,842.96  

         
4,947.85  

Formwork to edge of 
suspended slab 250 - 500 
high 338 m 18.450 2.783 

         
6,236.10  

            
940.65  

Formwork to edge of 
suspended slab 500 - 750 
high 338 m 33.180 4.656 

       
11,214.84  

         
1,573.73  

Tamped finish to concrete 
1,992 m2 2.030 0     4,043.76 

                   
0    

Rebar - bar reinforcement in 
suspended slabs 73.39 t 1013.940 1722.160 

       
74,413.06  

     
126,389.32  

       

Total of Upper Floors     260,390.38 346,465.20 

 

 

Based on the above mentioned assumptions, EC and cost estimates were 

prepared for all the buildings. However, the element classification was inconsistent 

among the BoQs in Dataset 1. Eventually, each building analysis was arranged in 

accordance with NRM compliant BCIS cost analysis standard. NRM provides a 

standard set of measurement rules and essential guidance for the cost 

management of construction projects and maintenance works. It also superseded 

the old measurement standard Standard Method of Measurements 7 (SMM7). 

NRM suite contains three parts – NRM1: Provides guidance on preparing cost 

estimates and cost plans; NRM 2: Facilitates preparation of BoQs and quantified 

schedules of works; NRM 3: Provides guidance on the quantification and 

description of maintenance works to prepare an initial order of cost estimates. 

Each BoQ item was mapped on to NRM1 element classification system (see, Table 

5.8) which is the latest measurement standard prevailing in the UK. Subsequently, 

NRM compliant elemental cost and carbon plans for each building were produced. 

Even though the carbon plans are not catered for in NRM, it is anticipated that 

 

From the UK Building Blackbook 

 

From the collected BoQs/cost plans 
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NRM will cater for carbon plans in the future due to the increasing emphasis on 

dual currency appraisal of construction projects (See, Ashworth and Perera, 2015). 

Therefore, the same practices proposed for cost planning and estimating in NRM 

were adopted in carbon planning and estimating to allow like-for-like comparisons. 

Table 5.8: Mapping BoQ items on to NRM compliant element classification 

Item Description Quantity Unit NRM Main 
Element 
Group 

NRM Sub 
Element 
Group 

Masonry paint; to blockwork walls  500 m2 3 3.1 

Dry lining and paint 55 m2 3 3.1 

Entrance matting 17 m2 3 3.2 

Carpet tiles 100 m2 3 3.2 

Painted soffit 74 m2 3 3.3 

Suspended plasterboard ceiling 1 x 12.5mm 37 m2 3 3.3 

The estimates exclude Preliminaries (the site overheads and the costs that are not 

directly associated with the building but to the project) and External Works (works 

outside the building including site works, road works within the site, landscaping, 

fencing, external fixtures, drainage and services.). The reason for this is that 

Preliminaries and External Works do not form part of the main building structure 

and are influenced by clients and contractors. Further, exclusion of Preliminaries 

and External Works will allow capturing only the impacts of building design 

variables. The major problem with Dataset 1 was that Fittings, Fixtures and 

Equipment and Services were often identified as ‘Item’ or ‘Lump Sum’, hence, not 

measured. As a result, the produced EC and cost estimates of Dataset 1 exclude 

Fittings, Fixtures and Equipment and Services. The summary of the EC and CC of 

the 13 buildings is presented in Table 5.9. The cost and carbon estimates exclude 

Preliminaries, External Works, Fittings, Fixtures and Equipment and Services. The 

estimates have a base date of 2016 1Q and a location index of 100.  

Among the 13 buildings, EC and cost estimates of one building (D1006) varied 

significantly from the other buildings. This is highlighted in Table 5.9. The 

elemental EC values were also identified as anomalies in that particular building. 
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Therefore, it was concluded that the use of the estimates of this building will affect 

the credibility of the study findings. Hence, it was decided to eliminate building 

D1006 from further analysis. Similarly, Frame EC-EUR of D1009 was also 

identified as an anomaly as the building had similar features to D1010 while has a 

smaller EC-EUR for Frame. Hence, it was not used to estimate Frame EC in 

Dataset 3 (see, Table 5.10). 

Table 5.9: Summary of the CC and the EC of the buildings in Dataset 1 

Building 
Code 

GIFA 
(m2) 

CC (£) EC (kgCO2) CC per 
GIFA 
(£/m2) 

EC per 
GIFA 
(kgCO2/m2) 

D1001  33,663   38,354,147   27,007,531   1,139   802  

D1002  11,320   8,123,613   6,798,939   718   601  

D1003  2,859   2,639,247   1,692,852   923   592  

D1004  15,120   12,847,259   8,825,578   850   584  

D1005  63,246   77,333,327   46,977,344   1,223   743  

D1006  1,949   1,104,199   509,197   567   261  

D1007  22,288   18,353,008   13,283,008   823   596  

D1008  3,289   3,120,328   1,787,778   949   544  

D1009  3,262   2,602,018   1,577,015   798   483  

D1010  4,959   5,636,879   2,944,681   1,137   594  

D1011  21,300   20,156,774   13,251,877   946   622  

D1012  21,300   16,570,313   9,944,685   778   467  

D1013  2,374   1,659,586   1,101,503   699   464  
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Table 5.10: EC-EURs of the selected elements 

Building 

Code 

Substructure 

EC-EUR 

Frame 

EC-EUR 

Upper Floors 

EC-EUR 

Roof 

EC-EUR 

kgCO2/m2 EUQ 

D1001 1027.5 167.0 199.6 368.6 

D1002 1439.4 203.9 111.4 148.0 

D1003 731.3 126.3 131.9 175.6 

D1004 2462.9 143.9 71.1 171.9 

D1005 1318.9 345.2 57.6 199.5 

D1006 117.9 23.3 24.6 68.6 

D1007 1602.7 193.3 116.1 155.9 

D1008 259.2 84.1 211.1 212.1 

D1009 453.0 19.3 154.4 237.8 

D1010 377.2 59.2 191.8 225.8 

D1011 1002.5 236.2 166.5 220.0 

D1012 1167.5 96.3 164.9 257.1 

D1013 366.1 108.8 118.6 81.9 

 

5.5.3. Comparison of the Means of Low to Medium Rise and High Rise 

Buildings 

Elemental EC rates (EC-EURs) of Substructure, Frame, Upper Floors and Roof are 

used from Dataset 1 to deduce EC of these elements in Dataset 3. However, 

Dataset 3 consists of low to medium rise buildings while Dataset 1 consists of low, 

medium and high-rise building. Due to the shortage of data, it was decided to 

utilise the elemental EC rates from all of the selected data from Dataset 1. 

However, to ensure homogeneity of the data, mean values of low to medium rise 

buildings and high-rise buildings were compared to identify any significant 

difference in the EC values. Dataset 1 was categorised into two groups such as 

low to medium rise buildings (sample size - 7) and high rise buildings (sample size 

- 5) and two independent samples were produced. A t-Test for two independent 

samples was run to compare the elemental EC rates of Substructure, Frame, 
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Upper Floors and Roof of low to medium and high rise buildings. The test 

hypothesis is as follows: 

H0: µEC- low to medium = µEC-high (Null hypothesis) 

H1: µEC- low to medium ≠ µEC- high (Alternative hypothesis) 

where, µEC - low to medium is the mean EC of low to medium rise buildings (of 

Substructure, Frame, Upper Floors and Roof), µEC- high is the mean EC of high rise 

buildings (of Substructure, Frame, Upper Floors and Roof). 

The null hypothesis is tested for falsification at α = 0.05. If the significance value (p-

value) is, 

1. ≤ α then, H0 will be rejected, which implies that there is sufficient evidence to 

conclude that the means of the two samples are significantly different OR 

the difference between the two samples is statistically significant. 

2. > α then, H0 cannot be rejected, which implies that there is no sufficient 

evidence to conclude that the means of the two samples are significantly 

different OR the difference between the two samples is not statistically 

significant. 

However, the test statistics of Levene's Test for equality of variances need to be 

examined to investigate the right t-Test statistics. Accordingly, if the variances of 

the two independent samples are found to be significantly different (Sig. > α) then, 

the respective t-Test statistics need to be checked. 

The descriptive statistics of the two samples and the t-Test statistics are presented 

in Table 5.11 and Table 5.12 respectively. According to the descriptive statistics, 

except for Substructure EC values rest of the elements have mean values that are 

not significantly different for the two groups. Also, Substructure EC has a high 

standard deviation in the low to medium rise buildings group compared to the high 

rise buildings group. This difference in Substructure is assumed to be attributable 

to not only the building design features but also the ground conditions. 

Nevertheless, the t-Test provides more certain conclusions about the mean values.  
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The t-Test results suggest with 95% confidence that the variances of the 

population of the two groups are equal. However, it could not be concluded 

whether there is a significant difference in the mean values of EC of Substructure, 

Frame, Upper Floors and Roof of low to medium rise and high rise buildings due to 

insufficient evidence (sig. > 0.05, hence, fail to reject H0). Hence, the EC values of 

both low to medium rise and high rise buildings were used to estimate the EC of 

Substructure, Frame, Upper Floors and Roof in Dataset 3. Nevertheless, the test 

results are considered valid based on the assumption that the data follows a 

normal distribution. 

Table 5.11: Descriptive statistics of the two samples from Dataset 1  

 Group Sample 

size 

Mean Std. 

Deviation 

Std. Error 

Mean 

Substructure Low to 

medium 

7 869.87 808.76 305.68 

High 5 1223.82 246.62 110.29 

Frame Low to 

medium 

6 121.03 50.51 20.62 

High 5 207.60 92.18 41.23 

Upper 

Floors 

Low to 

medium 

7 141.47 48.34 18.27 

High 5 140.94 55.30 24.73 

Roof Low to 

medium 

7 179.01 53.53 20.23 

High 5 240.22 80.53 36.02 
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Table 5.12: t-Test statistics of the two samples from Dataset 1 

Elements Levene's 

Test for 

Equality of 

Variances 

t-test for Equality of Means Test 

Outcome 

F Sig. t df Sig. 

(2-

tailed) 

Mean 

Differenc

e 

Std. 

Error 

Differenc

e 

Substructure Equal variances 

assumed 

4.066 .071 -.936 10 .371 -353.9486 378.0160 Fail to 

reject H0 

Equal variances 

not assumed 

  -

1.089 

7.474 .310 -353.9486 324.9695 

Frame Equal variances 

assumed 

1.298 .284 -

1.984 

9 .079 -86.5667 43.6406 Fail to 

reject H0 

Equal variances 

not assumed 

  -

1.878 

5.953 .110 -86.5667 46.0952 

Upper Floors Equal variances 

assumed 

.121 .735 .018 10 .986 .5314 30.0002 Fail to 

reject H0 

Equal variances 

not assumed 

  .017 7.974 .987 .5314 30.7464 

Roof Equal variances 

assumed 

.653 .438 -

1.591 

10 .143 -61.2057 38.4579 Fail to 

reject H0 

Equal variances 

not assumed 

  -

1.482 

6.492 .185 -61.2057 41.3105 
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5.6. Dataset 2 

Dataset 2 comprised EC estimates of 28 office buildings obtained from a special 

database of a QS consultancy practice. The elemental analyses were prepared to 

an NRM compliant standard. 

5.6.1. Data Description 

The sample contains three (3) hybrid framed buildings, one (1) concrete framed 

building and twenty-four (24) steel framed buildings. The GIFA of buildings ranges 

from 1,788 m2 to 130,930 m2. The number of storeys ranges from 1 to 36. The 

major shortcoming of Dataset 2 is that it lacks design and specification data and 

cost data of the buildings.  

Table 5.13: Design data of Dataset 2 

Building ID Frame Type GIFA (m2) No. of Storeys 

D2001 Steel  95,945  36 
D2002 Steel  54,101  19 
D2003 Steel  65,414  18 
D2004 Steel  29,806  18 
D2005 Steel  86,211  17 
D2006 Steel  126,872  15 
D2007 Steel  130,930  14 
D2008 Steel  54,550  14 
D2009 Steel  48,509  13 
D2010 Steel  31,833  12 
D2011 Steel  35,760  12 
D2012 Steel  13,209  12 
D2013 Steel  23,156  12 
D2014 Steel  19,764  9 
D2015 Steel  19,600  9 
D2016 Steel  27,940  8 
D2017 Steel  66,093  8 
D2018 Steel  9,587  7 
D2019 Steel  19,125  7 
D2020 Steel  11,170  5 
D2021 Steel  7,472  5 
D2022 Steel  11,117  5 
D2023 Steel  9,645  3 
D2024 Steel  1,788  1 
D2025 Hybrid  9,372  5 
D2026 Hybrid  12,470  4 
D2027 Hybrid  2,776  3 
D2028 Concrete  15,192  9 
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5.6.2. Obtaining Embodied Carbon Element Unit Rates (EC-EURs) 

Dataset 2 contains EC estimates of 28 office buildings in the form of NRM 

compliant elemental analysis structure. Hence, EC per GIFA of each element was 

calculated and the descriptive statistics of the elemental EC per GIFA of the 

building elements is presented in Table 5.14. However, EC-EURs could not be 

calculated due to the unavailability of EUQs of the elements. Nevertheless, when 

EUQ of an element is supposed to be GIFA of a building (in accordance with BCIS 

definition) then EC-EUR and EC per GIFA rates will be the same. Hence, EC-

EURs of Frame, Fittings, Furnishings and Equipment and Services were obtained 

from Dataset 2, as the EUQs of these elements are equal to GIFA. 

Table 5.14: Descriptive statistics of elemental EC (per GIFA) of Dataset 2 

Element  Average of 
the EC per 
GIFA (kgCO2 
per m2) 

Minimum Maximum Standard 
Deviation 

1A Substructures 137.20 33.21 320.72 65.31 

2A Frame 236.72 98.00 486.41 101.13 

2B Upper floors 75.99 1.72 191.08 38.68 

2C Roof 25.05 2.88 103.25 19.69 

2D Stairs 7.00 2.47 21.46 5.01 

2E External walls 111.24 8.37 265.80 63.35 
2F Windows and 
external doors 15.20 0.02 157.64 35.20 
2G Internal walls 
and partitions 20.14 1.19 64.37 15.97 

2H Internal doors 1.50 0.12 7.32 1.79 

3A Wall finishes 3.65 0.22 18.47 4.23 

3B Floor finishes 37.69 0.39 97.77 28.82 

3C Ceiling finishes 8.55 0.65 24.62 6.05 
4A Fittings and 
furnishings 0.86 0.02 3.39 1.15 

5 Services 106.81 6.63 192.88 50.16 

5.6.3. Comparison of the Means of Low to Medium Rise and High Rise 

Buildings 

Similar to Dataset 1, Dataset 2 also contains low, medium and high-rise buildings. 

Hence, it is required to compare the mean values of EC of Fittings, Furnishings 

and Equipment and Services of low to medium rise and high rise buildings. Hence, 
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similar hypothesis established in Section 5.5.3 was tested in this case, the only 

difference is that the test was performed for EC values of Fittings, Furnishings and 

Equipment and Services, as follows: 

H0: µEC- low to medium = µEC-high (Null hypothesis) 

H1: µEC- low to medium ≠ µEC- high (Alternative hypothesis) 

where, µEC - low to medium is the mean EC of low to medium rise buildings (of Fittings, 

Furnishings and Equipment and Services), µEC- high is the mean EC of high rise 

buildings (of Fittings, Furnishings and Equipment and Services). 

Descriptive statistics and the t-Test statistics are presented in Table 5.15 and 

Table 5.16 respectively. 

 

Table 5.15: Descriptive statistics of the two samples from Dataset 2 

 Group Sample 

size 

Mean Std. 

Deviation 

Std. 

Error 

Mean 

Fittings, 

Furnishings 

and Equipment 

Low to 

medium 

10 1.15 1.18 .37 

High 9 .52 1.09 .36 

Services Low to 

medium 

13 110.86 50.02 13.87 

High 15 103.31 51.76 13.36 
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Table 5.16: t-Test statistics of the two samples from Dataset 2 

Elements Levene's 

Test for 

Equality of 

Variances 

t-test for Equality of Means 

F Sig. t df Sig. (2-

tailed) 

Mean 

Differenc

e 

Std. 

Error 

Differenc

e 

Fittings, 

Furnishings 

and 

Equipment 

Equal variances 

assumed 

1.502 .237 1.205 17 .245 .62956 .52240 

Equal variances 

not assumed 

  1.211 16.984 .243 .62956 .52004 

Services Equal variances 

assumed 

.332 .569 .391 26 .699 7.54938 19.31226 

Equal variances 

not assumed 

  .392 25.663 .698 7.54938 19.26326 
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The test statistics suggests with 95% confidence that the variances of the 

population of the two groups are equal and there is insufficient evidence to 

conclude that the mean of the EC of Fittings, Furnishings and Equipment and 

Services are significantly different for low to medium rise and high rise buildings. 

Hence, the EC data of both low to medium rise and high rise buildings were used 

to develop the elemental EC rates of Furnishings and Equipment and Services for 

Dataset 3. However, it should also be noted that the test outcomes are valid based 

on the normality assumption. 

5.7. Dataset 3 

Dataset 3 consists of 41 historical project data obtained from BCIS online database 

which contains projects since 1987. Adjusting cost analyses to the same base 

(date and location) is an important step before obtaining data from BCIS online 

database as the database contains data of buildings located in different locations 

within the UK and constructed at different times. Therefore, cost analyses of 

Dataset 3 were adjusted to 2016 1Q and a location index of 100 to be in line with 

Dataset 1.  

5.7.1. Data Description 

Dataset 3 comprises of one (1) hybrid framed building, eight (8) concrete framed 

buildings and the rest were steel framed buildings. GIFA ranges from 212 m2 to 

14,652 m2 while the sample consists of low to medium rise buildings, which vary 

from one to six storeys (see, Table 5.17). It should be noted that the cost analyses 

contained in BCIS include mark-up, which varies from project to project, and the 

mark-up percentage is not explicit. Similarly, the use of different pricing strategies 

in the estimates such as front loading and back loading is also not knowable. 

These differences cannot be adjusted without the information on mark-up 

percentages and pricing strategies. Hence, this is identified as a limitation of the 

study. The drawback of Dataset 3 is that it does not contain EC data of the 

buildings which need to be estimated based on the available design and 
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specification details by making sensible assumptions when necessary information 

are missing. 

Table 5.17: Design data of Dataset 3 

Building ID Frame Type GIFA (m2) No. of Storeys 

D3001 Hybrid   3,987  3 
D3002 Steel  928  2 
D3003 Steel  212  4 
D3004 Concrete  2,412  3 
D3005 Steel  1,028  2 
D3006 Steel  9,007  2 
D3007 Concrete  1,930  2 
D3008 Concrete  9,653  3 
D3009 Concrete  1,136  3 
D3010 Steel  1,896  3 
D3011 Steel  1,534  2 
D3012 Steel  1,756  2 
D3013 Steel  2,432  2 
D3014 Steel  10,400  3 
D3015 Steel  2,926  3 
D3016 Steel  3,797  5 
D3017 Steel  1,323  2 
D3018 Steel  2,325  2 
D3019 Steel  8,444  6 
D3020 Steel  5,900  3 
D3021 Steel  2,510  3 
D3022 Steel  692  1 
D3023 Concrete  1,026  2 
D3024 Steel  9,900  4 
D3025 Steel  3,592  2 
D3026 Steel  1,753  3 
D3027 Steel  1,266  2 
D3028 Steel  2,556  3 
D3029 Steel  1,835  2 
D3030 Steel  1,376  2 
D3031 Steel  1,685  2 
D3032 Concrete  5,687  3 
D3033 Steel  6,885  3 
D3034 Steel  473  2 
D3035 Steel  6,643  3 
D3036 Concrete  4,538  3 
D3037 Concrete  14,652  3 
D3038 Steel  3,080  2 
D3039 Steel  3,887  3 
D3040 Steel  1,545  4 
D3041 Steel  718  3 
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5.7.2. Estimating Embodied Carbon and Capital Cost 

EC estimates of the buildings in Dataset 3 were prepared using the inputs from the 

UK Building Blackbook, Dataset 1 and Dataset 2. Figure 5.3 presented in Section 

5.3 illustrate the data inflow and outflow to and from Dataset 3 towards the 

composition of the study sample. Accordingly, EC-EURs from Dataset 1 (for 

Substructure, Frame, Upper Floors, and Roof) and Dataset 2 (for Fittings, 

Furnishings and Equipment and Services) were used to estimate the EC of certain 

elements and EC-EURs were developed from published sources for the rest of the 

elements. The intricacies involved in the development of EC-EURs of each 

element are explained as follows: 

Substructure of the sample buildings had three design options including, raft, pile 

and pad and strip foundations. Also, substructure was measured in m2 making it 

difficult to develop EC-EURs from the UK Building Blackbook. Therefore, EC-EUR 

for Substructure was obtained from Dataset 1 and multiplied by EUQ to arrive at 

the Substructure EC. Generally, past projects with similar specification will be 

chosen and adjustments will be applied for differences in the quality based on the 

estimator’s experience and the availability of information to arrive at the cost of the 

proposed building (Ashworth and Perera, 2015). Similarly, buildings with the 

closest match to the Substructure specification of the building considered (in 

Dataset 3) were filtered from Dataset 1. However, a different approach was 

followed afterwards to arrive at the EC-EUR of the building as shown in Figure 5.9. 

The most appropriate EC-EUR from Dataset 1 was chosen based on the C-EUR of 

the Substructure when more than one similar match was found in Dataset 1, 

because a close relationship was observed between C-EURs and EC-EURs of 

Substructure in Dataset 1 (see, Figure 5.10). In fact, the correlation coefficient 

between Substructure cost and EC was extremely strong and significant with a 

coefficient of 0.955, which justifies the reason for selecting the EC-EUR by 

matching the C-EUR of the Substructures. 
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Figure 5.10: Relationship between Substructure capital cost and EC per 

EUQ – Dataset 1 

 

Dataset 1  Dataset 3 

Building 
Code 

Foundation 
Type 

Substructure 
C-EUR (£/m2) 

Substructure EC-
EUR (kgCO2/m2) 

 D3001  

D1001 Raft  1099 1,028  Foundation Pile 

D1002 Raft  863 1,439  Substructure 
C-EUR 

£239 

D1003 Pile 521 731  

D1004 Raft  2532 2,463  Substructure 
EC-EUR 

259 x 
(239/230) 
kgCO2/m2 

D1005 
Raft  

612 
829 

 

D1007 Pile 1797 1,603    

D1008 Pile 230 259    

D1009 Pile 529 453    

D1010 Pile 482 377    

D1011 Pile 1066 1,002    

D1012 Pile 1210 1,168    

D1013 Pad and Strip  355 366    

Figure 5.9: Choosing the appropriate EC-EUR of the Substructure for the buildings in 

Dataset 3 from Dataset 1 
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Frame in the sample had three alternatives. The sample buildings were 

predominantly steel framed buildings. Rest were concrete frames except for one 

which was hybrid framed (combination of steel and concrete). Similar to 

Substructure, Frame is also measured in m2, which makes it challenging to develop 

EC-EURs for Frame from Blackbook, as the detailed specification was not 

available. The averages of the EC-EURs for steel, concrete and hybrid frame was 

not used to estimate the EC of Frames in Dataset 3 because generally the building 

cost per GIFA increases as the building height increases (Picken and Ilozor, 2015).  

Further, BCIS average prices of elements also suggest that the EUR of the Frame 

increases with the building height (RICS, 2016). However, when the C-EURs of the 

Frames of the sample buildings in Dataset 3 were plotted in a graph against the 

building heights (see, Figure 5.11) no significant relationship (p value > 0.05) was 

found between Frame cost and building height. The building with the highest 

Frame cost was not the tallest building in the sample. Therefore, it can be deduced 

from Figure 5.11 that even though it is said that taller buildings have higher Frame 

cost there is no enough evidence to prove that there is a significant relationship 

between the Frame C-EURs and the building heights from the given sample. 

However, it was anticipated that there could be a relationship between C-EUR and 

EC-EUR of Frames. Hence, C-EUR and EC-EUR of Frames of Dataset 1 were 

plotted in a graph as shown Figure 5.12. The correlation coefficient between EUR 

and EC-EUR of Frames was found to be significant and strong with a correlation 

coefficient of 0.744. The quantity of steel or concrete primarily determines the cost 

and EC of frames. Therefore, when quantity of steel or concrete is low, cost tends 

to be low; thus, EC also tends to be low. Due to the strong positive relationship 

between C-EUR and EC-EUR, comparable EC-EUR values from Dataset 1 were 

obtained to estimate EC of Frames in Dataset 3, similar to the EC estimating 

approach followed for Substructure. 
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Upper Floors in the sample had following alternatives including in-situ concrete 

floors, pre-cast concrete floors, metal decking, timber floors and the combination of 

two or more of the above. Similar EC-EUR values were noticed for in-situ concrete 

floors of the buildings in Dataset 1; hence, an average of the EC-EURs for in-situ 

floors was used to estimate the EC of the in-situ concrete floors. The average EC-

EUR of in-situ floors was found to be 160.76 kgCO2/m2 with a standard deviation of 

24.84 kgCO2/m2. Pre-cast floor, metal decking and timber floor EC were calculated 
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Figure 5.11: Mapping frame element unit cost against building height 

 

Figure 5.12: Relationship between frame capital cost and EC per element unit 

quantity – Dataset 1 
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using the Blackbook. Further, a composite rate was developed when there were 

combinations of more than one type of floor as shown in Table 5.18. 

Table 5.18: Method of estimating composite rate for upper floors 

Building A Quantity 

(m2) 

Elemental EC 

Rate 

(kgCO2/m2) 

Total EC 

(kgCO2) 

Source 

In-situ concrete floors 500 160.76 80,380 Dataset 1 

Pre-cast floors 300 98.73 29,619 Blackbook 

Timber floor 200 12.23 2,446 Blackbook 

Total EC of Upper Floors 1,000 112.445 112,445  

 

Roof of the sample had many alternatives and combinations of different types of 

roofs. Dataset 1 also had different specifications for roof including concrete flat 

roof, timber pitched roof, timber flat roof, timber mansard roof, metal decking, 

green roof, atrium glass roof, steel trussed roof with various roof finishes. Individual 

rates were developed for all the different types of roof from Dataset 1 and used as 

the basis to develop elemental EC rates for roof for Dataset 3. A similar approach 

used in upper floors (see, Table 5.18) to develop element EC rate for a 

combination of specification was adopted for roof as well. 

Stairs had two alternatives – concrete and steel stairs. However, no detailed 

specification was available. Therefore, EC was estimated based on the 

assumptions on the dimensions for treads, risers, the width of the stairs, depth of 

the landing, reinforcement factor and the like and measuring quantities 

approximately. Finishes to stairs were also included in this element as defined by 

NRM compliant BCIS element classification. 

External Walls were mainly cavity walls and curtain walls. However, other types of 

cladding were also formed part of the external wall. EC of the external walls was 

developed using the Blackbook rates. 
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Windows and External Doors included aluminium, steel, timber and glazed 

(single and double glazed) windows. EC factors for the windows and doors were 

obtained from Blackbook. While windows and external doors were measured in m2 

in most of the cases, it was measured in numbers in some buildings. Hence, when 

it was measured in numbers, standard sizes of windows and doors specified in the 

Blackbook were assumed for the purpose of estimating. 

Internal Walls and Partitions had following alternatives including brick, block, 

concrete, timber, metal stud, glass, WC cubicles, and a combination of the above. 

EC of the internal walls and partitions were developed using the Blackbook rates 

and where there was a combination, the method presented in Table 5.18 was 

followed. 

Internal Doors were mainly timber, steel, aluminium or glazed. The Same strategy 

followed in windows and external doors was followed in estimating the EC of the 

internal doors. 

Wall Finishes had six alternatives include plastering, painting, tiling, wallpapers, 

board linings, claddings and combinations of the above. EC of the wall finishes was 

estimated using the Blackbook data and EC of the different combinations of wall 

finishes was estimated as explained in Table 5.18. 

Floors Finishes had a number of alternatives such as exposed concrete, floor 

paint, screeds, protective finishes, carpet, flexible thin sheets and tiles, rigid tiles, 

stone finish, access floors, timber finish, and combinations of the above. Floor 

finishes were handled in a way, which was similar to wall finishes. 

Ceiling Finishes also had six alternatives including plastering, painting, paper 

finish, board finishes, suspended ceiling systems, and combinations of the above. 

The same method used to estimate EC of the wall and floor finishes was used to 

estimate the EC of the ceiling finishes. 

Fittings, Furnishings and Equipment EC calculation was challenging due to 

insufficient details. On the other hand, EC of Fittings, Furnishings and Equipment is 

insignificant which makes it wasteful to invest more time in it. Consequently, 
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average EC-EUR obtained from Dataset 2 was used as the benchmark value. The 

EC-EUR of Fittings, Furnishings and Equipment was found to be 0.86kgCO2/m2, 

which has a standard deviation of 1.15.  

Building Services EC calculation was also challenging due to insufficiently 

detailed specification. The Blackbook also contains EC factors for fundamental 

building services and the EC data is not comprehensive. Especially, the EC factors 

for services like air conditioning, ventilation systems, communications and security 

installations and special installations are not available in the Blackbook. In addition 

to that, data for electrical installation is available only for small scale housing 

development. All these reasons make it challenging to estimate building services 

EC. Nevertheless, the EC estimates of the building will be incomplete without the 

inclusion of building services. Hence, EC-EURs were developed from Dataset 2 for 

each type of services and used to estimate EC of Services in Dataset 3 based on 

the service provision in the building considered. Average values of each type of 

building service were calculated and the descriptive statistics is presented in Table 

5.19.  

Table 5.19: Descriptive statistics of building services from Dataset 2 

Sub Elements of Building 
Services (NRM) 

Mean 
(kgCO2/m2) 

Standard 
Deviation 

Sample Minimum  Maximum 

5A Sanitary appliances 0.597 0.871 25 0.002 3.542 

5B Services equipment 5.224 - 1 - - 
5C Disposal Installations 6.399 4.846 17 0.026 15.557 
5D Water installations 1.854 2.214 17 0.015 9.659 
5E Heat source 4.487 2.381 15 1.934 10.597 
5F Space heating and air 
treatment 

29.769 25.008 20 0.211 89.007 

5G Ventilating system 18.678 12.421 19 1.233 39.553 
5H Electrical installation 29.782 14.843 27 6.683 55.933 
5I Gas installation 1.185 0.116 2 1.103 1.267 
5J Lift and conveyor systems 9.241 6.664 27 1.728 32.495 
5K Protective installation 11.900 4.382 20 1.796 26.332 
5L Communication installations 16.590 13.497 14 0.573 31.707 
5M Special installations 13.808 13.076 9 0.481 38.799 

      

As can be seen from Table 5.19 sample size varies from one type of service to the 

other, which conveys that not all 28 buildings had all types of services EC 

estimated. 
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5.7.3. Validation of Dataset 3 

EC analyses of twenty-nine (29) office buildings were obtained from WRAP 

database, which conforms to cradle-to-gate system boundary. The EC analyses 

available in WRAP database are presented as six element categories 

(Substructure, Superstructure Structural, Superstructure Non-Structural, Envelope, 

Internal Finishes and External Works - see, Section 3.6 (d)) rather than individual 

elements as defined in NRM. However, only five categories were considered for 

this validation as External Works were excluded from all analyses. Further, the 

dataset obtained from WRAP database did not have Envelope EC values included 

in the analyses. As a result, Envelope EC values could not be validated. Therefore, 

only four element categories were validated including Substructure, Superstructure 

Structural, Superstructure Non-Structural and Internal Finishes. 

EC analyses of Dataset 3 were altered to suit WRAP analyses to allow 

comparisons of the EC values. Accordingly, EC of Superstructure Structural of the 

buildings in Dataset 3 was derived by adding the EC of Frame, Upper Floors and 

Roof. The sum of the EC of Internal Walls and Partitions and Internal Doors gave 

the EC of Superstructure Non-Structural. EC of Internal Finishes was calculated by 

adding the EC of Wall Finishes, Floor Finishes and Ceiling Finishes. In this way, 

two independent samples of EC of office buildings were produced as presented in 

Table 5.20. Two sample t-Test allows comparisons between two independent 

samples and helps to decide if there is a significant difference between the means 

of the two groups. Hence, two-sample t-Test was conducted to compare the mean 

EC values of the four element categories of WRAP dataset and Dataset 3. 

Table 5.20: Datasets for two-sample t-Test 

Data Sample size 

WRAP dataset 29 

Dataset 3 41 

Test hypothesis has to be established before performing the t-Test. Accordingly,  

H0: µEC- WRAP = µEC-Dataset 3 (Null hypothesis) 
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H1: µEC- WRAP ≠ µEC-Dataset 3 (Alternative hypothesis) 

where, µEC- WRAP is the mean EC of WRAP dataset (of each element), µEC-Dataset 3 is 

the mean EC of Dataset 3 (of each element). 

Descriptive statistics of the element groups are presented in Table 5.21and the test 

statistics of Levene's Test for equality of variances and t-Test are presented in 

Table 5.22. The test statistics suggest that the variances of Substructure and 

Superstructure Non-Structural are not significantly different (sig. > 0.05) and the 

variances of Superstructure Structural and Internal Finishes are significantly 

different (sig. < 0.05) of the two samples. Accordingly, the relevant t-test statistics 

were examined to arrive at a conclusion about the means of the two groups, which 

are shown in greyscale in Table 5.22. The t-Test statistics display with 95% 

confidence that there is no sufficient evidence to say that the means of the 

Substructure, Superstructure Non-Structural and Internal Finishes of the two 

samples are significantly different. In other words, the difference between the EC 

values of Substructure, Superstructure Non-Structural and Internal Finishes of the 

two samples are not statistically significant. On the other hand, there is sufficient 

evidence (sig. < 0.05) to conclude that there is a significant difference between the 

mean EC values of Superstructure Structural of the two samples, i.e. the difference 

between the EC values of Superstructure Structural of the two samples is 

statistically significant. 

Table 5.21: Group statistics for individual element categories 

Element Group Group Sample 

size 

Mean Std. 

Deviation 

Std. Error 

Mean 

Substructure WRAP 29 146.08 74.13 13.77 

Dataset 3 41 161.158 57.53 8.98 

Superstructure 

Structural 

WRAP 29 363.84 116.01 21.54 

Dataset 3 41 219.45 63.80 9.96 

Superstructure 

Non-Structural 

WRAP 29 34.67 49.77 9.24 

Dataset 3 41 25.40 33.76 5.27 

Internal Finishes WRAP 29 55.68 36.87 6.85 

Dataset 3 41 54.64 16.06 2.51 
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Table 5.22: t-Test statistics of the two samples from Dataset 3 and WRAP database 

 
Element Category Levene's Test for 

Equality of 
Variances 

t-test for Equality of Means Test 
Outcome  

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

Substructure Equal variances assumed 1.416 .238 -.957 68 .342 -15.07294 15.74265 
Fail to reject 
H0 

Equal variances not 
assumed 

  -.917 50.522 .364 -15.07294 16.43799 

Superstructure 
Structural 

Equal variances assumed 5.030 .028 6.680 68 .000 144.38844 21.61510 Reject H0 
Equal variances not 
assumed 

  6.083 39.979 .000 144.38844 23.73529  

Superstructure 
Non-Structural 

Equal variances assumed 1.123 .293 .928 68 .357 9.26064 9.97663 
Fail to reject 
H0 

Equal variances not 
assumed 

  .870 45.797 .389 9.26064 10.64089 

Internal Finishes Equal variances assumed 32.743 .000 .161 68 .873 1.04135 6.47304 
Fail to reject 
H0 

Equal variances not 
assumed 

  .143 35.573 .887 1.04135 7.29264 
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However, the WRAP sample also contained high-rise office buildings (10 storeys 

and above) to obtain a statistically significant sample. Hence, the same tests were 

conducted after removing the high-rise buildings from WRAP sample to compare 

only the means of low to medium rise office buildings, which are the scope of the 

study. The test statistics are presented in Table 5.23 and Table 5.24. Even though 

a different observation was noticed regarding the variance of Substructure and 

Superstructure Structural, the outcome was in line with the previous test statistics. 

Variances of Superstructure Structural and Superstructure Non-Structural are not 

significantly different (sig. > 0.05) and the variances of Substructure and Internal 

Finishes are significantly different (sig. < 0.05) of the two samples. Further, there is 

no sufficient evidence to say that the means of the Substructure, Superstructure 

Non-Structural and Internal Finishes of the two samples are significantly different. 

Meanwhile, there is sufficient evidence (sig. < 0.05) to conclude that there is a 

significant difference between the mean EC values of Superstructure Structural of 

the two samples. 

 
Table 5.23: Group statistics for individual element categories – reduced sample 

 Group Sample 

size 

Mean Std. 

Deviation 

Std. Error 

Mean 

Substructure WRAP 18 146.34 86.68 20.43 

Dataset 3 41 161.15 57.53 8.98 

Superstructure 

Structural 

WRAP 18 325.44 88.26 20.80 

Dataset 3 41 219.45 63.80 9.96 

Superstructure 

Non-Structural 

WRAP 18 31.29 52.20 12.30 

Dataset 3 41 25.40 33.76 5.27 

Internal Finishes WRAP 18 63.79 33.27 7.84 

Dataset 3 41 54.64 16.06 2.51 
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Table 5.24: Independent sample t-Test statistics 

Element Category Levene's Test for 
Equality of 
Variances 

t-test for Equality of Means Test 
Outcome 

F Sig. t df Sig. (2-
tailed) 

Mean 
Difference 

Std. Error 
Difference 

Substructure Equal variances 
assumed 

4.855 .032 -.775 57 .441 -14.81011 19.10033 

Fail to 
reject H0 Equal variances 

not assumed 
-.664 23.83 .513 -14.81011 22.31827 

Superstructure 
Structural 

Equal variances 
assumed 

2.046 .158 5.209 57 .000 105.98489 20.34836 

Reject H0 
Equal variances 
not assumed 

4.595 25.13 .000 105.98489 23.06522 

Superstructure 
Non-Structural 

Equal variances 
assumed 

.531 .469 .518 57 .607 5.88012 11.35451 

Fail to 
reject H0 

Equal variances 
not assumed 

.439 23.48 .664 5.88012 13.38595 

Internal Finishes Equal variances 
assumed 

16.088 .000 1.432 57 .158 9.15619 6.39276 
Fail to 
reject H0 Equal variances 

not assumed 
1.112 20.57 .279 9.15619 8.23295 
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Based on the test statistics it can be concluded that there is no significant 

difference in the means of EC of Substructure, Superstructure Non-Structural and 

Internal Finishes of the two samples, which validate the reliability of the EC values 

of these elements in Dataset 3.  However, a significant difference in EC values of 

Superstructure Structural (consists of Frame, Upper Floors and Roof) is revealed. 

Possible reason for this difference could be attributable to Roof EC as there are 

several design options available for Roof and the specification is not available for 

WRAP data to study the differences in the specification of the two samples. 

Similarly, EC of Upper Floors could also have influenced the identified difference if 

WRAP data sample predominantly consists of timber floors and pre-cast floors. 

Hence, it is concluded that most of the estimates of the EC of Dataset 3 are 

reliable. However, it is acknowledged that there is some ambiguity about the 

estimate of Superstructure Structural EC and the reliability of the estimate cannot 

be warranted without any additional information on element specification, which is 

unknown in this case. This is identified as a limitation of the study.  
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5.8. Development of the Finishes Quality Index 

The need was identified to develop a finishes quality index to capture the finishes 

quality of the buildings in a uniform and systematic way as explained in the Section 

4.8.2. Data was collected from the expert forum in order to develop finishes quality 

index. The process of data collection is presented in Figure 5.13. Commonly used 

types of wall, floor and ceiling finishes in office buildings in the UK were surveyed 

from Dataset 1, Dataset 3 (the sample comprises 13 buildings from Dataset 1 and 

41 buildings from Dataset 3) and the UK price books and a list of finishes were 

prepared. The identified types of finishes were classified into one of the three 

categories: Basic, Moderate and Luxury, for wall, floor and ceiling separately and a 

conceptual finishes index was developed as presented in Figure 5.13. The 

developed conceptual finishes quality index was verified through a Delphi-based 

expert forum to improve the rigorousness of the proposed finishes quality index of 

the study.  

As discussed in the methodology chapter (see, section 4.8.2) an expert in a Delphi-

based expert forum is someone who possesses knowledge and has experience in 

the particular field of study. Accordingly, construction professionals with more than 

10 years of industry experience and with a Royal Institution of Chartered Surveyors 

(RICS) membership were chosen purposively to be the experts on the panel. RICS 

is a leading professional body in land, real estate, infrastructure and construction 

and RICS membership has an international recognition. The profile of the experts 

is presented in Table 5.26. The expert panel consisted of four QSs and an 

architect. One of the core duties of QSs is early stage estimating and advising 

clients on design solutions (Ashworth and Perera, 2015, RICS, 2015). Therefore, 

QSs are expected to be competent in determining the quality level of finishes and 

RICS membership ensures that its members are equipped with necessary 

competencies. For instance, QSs are examined on competencies falling under 

three categories including mandatory, core and optional competencies where 

‘Design economics and cost planning’ is a core competency expected to be 

demonstrated by QSs at the Level 2 (knowledge and understanding into practice) 

or Level 3 (providing professional advice to clients) competency level defined by 
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RICS. This confirms the suitability of QSs being identified as experts to verify the 

conceptual finishes quality index. However, it was also decided to include an 

Architect in the panel to eliminate homogeneity and ensure consistency in cross-

disciplinary judgement. Only one Architect was employed mainly due to the time 

constraint. Accordingly, the selected respondents/experts for the panel 

demonstrated a strong work profile of handling office projects and delivering cost 

advice to the client during early stages of design. Hence, the judgement of the 

experts can be considered contemporaneous and applicable to the present 

construction industry standards.  
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Figure 5.13: The development of the finishes quality index 

Price BooksDataset 1 Dataset 2

Survey common types of wall, floor and ceiling finishes used in 

the office buildings in the UK

Map each identified wall, floor and ceiling finishes in to one of the 

three quality levels: Basic, Moderate and Luxury

The conceptual Finishes Quality Index

Delphi Process

Round one verification

Modified Finishes Quality Index

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

Round two verification

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

The Proposed Finishes Quality Index
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Table 5.25: The conceptual finishes quality index 

Element Quality Level Main Categories Sub categories 

W
a
ll
 F

in
is

h
e

s
 

Basic Plaster and paint Cement sand plaster and paint 

Lime plaster and paint 

Wallpaper Lining paper 

Vinyl paper 

Moderate Plaster and paint Gypsum plaster and paint 

Carlite lightweight plaster 

Board linings Plasterboard and paint 

Insulated plasterboard and paint 

Plywood wall panels 

Wallboards 

Hardboard 

Softwood boarding 

Chipboard 

Veneered MD panels 

Wall tiles Ceramic tiles 

Luxury Wall tiles Mosaic tiles 

Stone cladding Natural granite 

Marble 

Other claddings Composite aluminium 

Glass 

F
lo

o
r 

 F
in

is
h

e
s

 

Basic 
Exposed concrete Concrete hardener 

Screeds Cement sand 

Latex screed 

Protective finish Mastic asphalt floor 

Carpet Medium duty 

Rigid Tiles Slate tiles 

Cement tiles 

Moderate Screeds 
Granolithic 

Resin based finish Epoxy floor 

Flexible thin sheets and 
tiles 

Rubber floor tiles 

Linoleum sheet 

Marmoleum 

Linoleum tiles 

Vinyl sheet 

Vinyl tiles 

Cork tiles 

Carpet tiles 

Rigid tiles Ceramic tiles 

Clay tiles 

Carpet Heavy duty 

Stone finish Terrazzo 
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Access floor Metal access floors 

Luxury 
 

Rigid tiles  
  
  

Quarry tiles 

Porcelain tiles 

Mosaic tiles 

Timber floor 
  
  
  

Woodblock floor 

Woodstrip floor 

Veneered laminated floor 

Parquet floor 

Stone finish 
  

Natural granite 

Marble 

C
e
il
in

g
 F

in
is

h
e
s

 

Basic 
  
  
  
  
  

In-situ finishes 
  
  
  

Sealer   

Skim coat and paint 

Cement sand plaster and paint 

Lime plaster and paint 

Paper finish 
  

Lining paper 

Vinyl paper 

Moderate 
  
  
  
  
  
  

In-situ finishes 
  

Gypsum plaster and paint 

Carlite lightweight plaster 

Board finishes Plasterboard and paint 

Suspended ceiling systems 
  
  
  

Metal frame plasterboard ceilings 

Plasterboard acoustic ceilings  

Moisture resistant ceilings 

Metal suspended ceilings 

Luxury 
 

Integrated/composite ceiling  Coffered ceilings  
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Table 5.26: Profile of the experts 

Expert ID Role Years of Industry 

Experience 

Expert 1 Senior Quantity Surveyor 35 

Expert 2 Senior Quantity Surveyor 30 

Expert 3 Executive Quantity Surveyor 14 

Expert 4 Project Architect and Construction 

Project Manager 

15 

Expert 5 Senior Quantity Surveyor 50 

 

As discussed in the Methodology (see, Section 4.8.2 and 4.9.3(b)), Delphi 

technique was employed to verify the conceptual finishes quality index by allowing 

each expert to comment on the identified finishes quality levels. Experts were 

consulted virtually via email communications individually and their comments were 

recorded. The comments of the experts were allowed to take three different forms 

as follows: 

1. Addition of new types of finishes 

2. Removal of any of the proposed finishes 

3. Changes to proposed quality level (Basic, Moderate, Luxury) 

The conceptual finishes quality index was modified to accommodate the comments 

of all the experts from the first round and a summary of the finishes quality levels to 

which consensus was not reached was sent to the experts via email. Round two 

was conducted to reconcile contradicting comments and to achieve consensus 

among the experts. This was done by compiling the comments of experts and 

producing a summary of comments and sharing with all the experts to allow them 

to re-evaluate their responses based on the examination of the response of the 

group. The consensus in the research context was considered to be achieved 

when 4 of the 5 respondents agreed on a particular quality level (refer Section 

4.8.2). Therefore, iteration was stopped at the end of two rounds because the 

consensus was achieved among the experts in two rounds. 
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5.9. Development of the Services Quality Index 

Price books were reviewed to study different services quality levels proposed in the 

industry published guides. These guides are intended to assist in the estimating of 

the cost of construction projects across different stages of the project. The 

summary of the reviewed sources is presented in Table 5.27. None of the price 

books except for Spon’s Mechanical and Electrical Services Price Book 2014 

(Davis Langdon Consultancy, 2014) have provision for identifying the quality level 

of services installation for early design stages. 

Table 5.27: Proposed services quality levels from literature 

Price Book Proposed Quality Levels For 

Services 

Reference 

Spon’s Mechanical and 

Electrical Services Price 

Book 2014 

Non air-conditioned buildings; 

non air-conditioned automated 

buildings; air-conditioned 

automated buildings 

Davis Langdon 

Consultancy 

(2014) 

Comprehensive Building 

Price Book Major Work 

2013  

No abstract level quality 

classification is proposed. 

Detailed level specifications are 

presented to allow detailed stage 

estimates. 

BCIS (2013)  

Griffiths Price Book 

2012  

Franklin and 

Andrews (2012)  

Spon’s First Estimating 

Handbook 

Spain (2010) 

Estimating Price Book 

SMM7 2008 

RICS (2008a) 

Laxton’s Building Price 

Book Major and Small 

Works 

Johnson (2008) 
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5.10.Summary 

A pilot study was conducted to determine the feasibility of obtaining historical 

project data from BCIS online cost database to develop EC estimates. However, 

the pilot study proved the use of BCIS alone to be unsuccessful due to inadequate 

building data found in BCIS and the lack of industry developed elemental EC 

benchmarks. Consequently, historical project data were collected from both 

primary and secondary data sources. Published EC and the cost databases were 

used as supporting data sources to develop EC and cost estimates. Primary data 

consists of 13 office buildings (Dataset 1) and secondary data were collected from 

three different sources: special database from a QS consultancy practice (Dataset 

2), BCIS online cost database (Dataset 3), and WRAP EC databases.  

Dataset 3 was developed for statistical analysis using the inputs from Dataset 1, 

Dataset 2 and published data books. EC-EURs of Substructure, Frame, Upper 

Floor (only in-situ) and Roof were obtained from Dataset 1 while EC-EURs of 

Fittings, Furnishing and Equipment and Services were obtained from Dataset 2 to 

develop the EC estimates of the respective elements of Dataset 3. On the other 

hand, EC of the rest of the building elements was calculated using the UK Building 

Blackbook, ICE and manufacturers’ EC data. Further, two sample t-Tests were 

conducted for Dataset 1 and Dataset 2 separately to compare the means of low to 

medium rise and high rise buildings within each dataset to ensure that the mean 

values do not differ significantly (at α = 0.05). The t-Test results suggested with 

95% confidence that the variances of the population of the two groups are equal 

and there is no sufficient evidence to conclude that there is a significant difference 

in the values of EC of Substructure, Frame, Upper Floors, Roof, Furnishing and 

Equipment and Services of low to medium rise and high rise buildings.  

Similarly, the reliability of Dataset 3 was confirmed by comparing EC values of 

Dataset 3 with an independent dataset sourced from the WRAP EC database 

using two sample t-Test. Based on the test statistics it was concluded that there is 

no significant difference in the means of EC of Substructure, Internal Walls and 

Partitions, Internal Doors and Internal Finishes of the two samples, which validate 
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the reliability of the EC values of these elements in Dataset 3.  However, a 

significant difference in EC values of Superstructure Structural (consisting of 

Frame, Upper Floors and Roof) was detected which could be attributable to Roof 

or Upper Floor EC due to distinctive element specifications. It was concluded that 

most of the estimates of the EC of Dataset 3 are reliable with the caution that there 

is an ambiguity about the estimate of Superstructure Structural EC.  

Meanwhile, qualitative data were collected to develop finishes and services quality 

indices in an objective way to incorporate finishes and services quality as 

predictors in the model as these were identified as cost and carbon influential 

design variables. Accordingly, data for the development of finishes quality index 

was collected through a Delphi-based expert forum where five experts including 

four QSs and an Architect formed the expert. The conceptual finishes index was 

presented to each expert separately and a summary of comments of experts were 

presented to all experts and a chance was given to experts to re-evaluate their 

responses based on the examination of the response of the group. Consensus was 

reached at the end of the second round, hence, the data collection was stopped at 

this point. On the other hand, data for services quality index development was 

collected by reviewing proposed services quality levels in published price books. 
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6. Data Analysis 

6.1. Introduction  

The analysis of data is presented in five main themes including the carbon and 

cost hotspot analysis, the development of services and finishes indices, pre-

regression analysis, regression analysis and EC and cost relationships. Carbon 

hotspots analysis of Dataset 2 and Dataset 3 and cost hotspots analysis of Dataset 

3 are presented initially which became the basis for the selection of the most 

influential design variables of the models. As suggested in the literature, finishes 

and services quality of buildings were identified as cost and carbon influential 

design variables from the hotspot analysis. Hence, finishes and services quality 

indices were decided to be developed. In light of developing finishes and services 

quality indices,  data collected from expert forum for finishes quality index 

development and data collected from documents for services index development 

were content analysed and the outcomes are presented in separate sections. Pre-

regression analysis was performed before the actual regression analysis to ensure 

better model building, which includes univariate and bivariate analysis. Univariate 

analysis is used to describe the distributions of variables and identify outliers and 

bivariate analysis is used to find correlations and multicollinearity between 

independent variables. After the diagnostics, regression analysis was performed 

with the selected variables to formulate EC and CC models which are presented in 

separate sub-sections. The outcomes of the regression analysis are presented with 

and without outliers and the better model among the two was selected as the final 

model. In addition, the relationship between the EC and the CC was explored at 

building level and individual element level using correlation analysis. 

6.2. Analysis of Carbon and Cost Hotspots 

Carbon and cost hotspots in the sample office buildings were identified through 

elemental EC analysis using the Pareto 80:20 rule (as discussed in the 

methodology chapter section 4.9.1). The elements that are responsible for 80% of 

EC and CC were identified for each building separately in the manner presented in 
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Table 6.1. Firstly, EC of individual elements was estimated and the percentage 

contribution was found. Then, the elements were arranged from the largest to 

smallest in terms of EC (and CC separately). Then, the cumulative percentage was 

calculated to draw a cut-off point at 80% as shown in Table 6.1. Accordingly, 

Frame, External Walls, Services and Substructure are found to be the carbon 

hotspots of the particular building presented in Table 6.1. In addition to the 

individual building analysis, hotspots were analysed for the whole sample and the 

carbon and cost hotspots in office buildings were identified and presented in 

Section 6.2.1 and Section 6.2.2 respectively.  

Table 6.1: Identifying carbon hotspots of a building – an example 

Building Elements EC % (in 
descending order) 

Cumulative 
EC% 

2A Frame 38.54 38.5 

2E External walls 20.30 58.8 

5 Services 13.82 72.7 

1A Substructures 9.90 82.6 

2B Upper floors 6.71 89.3 

2C Roof 3.94 93.2 

2D Stairs 2.44 95.7 
2G Internal walls and 
partitions 1.66 97.3 

3B Floor finishes 1.50 98.8 
4A Fittings and 
furnishings 0.43 99.2 

3A Wall finishes 0.34 99.6 

2H Internal doors 0.32 99.9 

3C Ceiling finishes 0.09 100.0 
2F Windows and 
external doors 0.01 100.0 

Later, the building elements were classified into three categories namely: elements 

that are identified as a carbon (or cost) hotspot in:  

1. most of the buildings/Lead positions (Probability of occurrence > 0.8)  

2. some of the buildings/Special positions (0 < Probability of occurrence < 0.8) 

3. none of the buildings/Remainder positions (Probability of occurrence = 0) 
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Of the three types, first two types needed to be considered in modelling as those 

elements clearly have an impact on the EC and the CC of the building. Eventually, 

design variables that influence the hotspot elements were identified which became 

the predictors of the models.  

6.2.1. Carbon Hotspot Analysis 

Carbon hotspots were analysed for the buildings in Dataset 2 and Dataset 3 

separately as Dataset 3 was inspired partially by Dataset 1 and Dataset 2. As 

mentioned before, buildings were analysed both individually and as a whole. Table 

6.2 presents the carbon hotspots of the 28 buildings. For instance, carbon hotspots 

of the building #D1001 were Substructure, Frame, External Walls and Services. 

Afterwards, the probability of each element being found as a hotspot in the given 

sample was calculated and presented in the bottom of the table. Accordingly, 

Frame found to be a hotspot in all the buildings; Substructure and Services found 

to be a hotspot in 90% of the buildings, and External Walls found to be a hotspot in 

80% of the buildings in the sample. On the other hand, elements like Stairs, 

Internal Doors, Wall Finishes, Ceiling Finishes and Fittings and Furnishings were 

not found as hotspots in any of the sample buildings. Rest of the elements were 

found to be hotspots in some of the buildings.  
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Table 6.2: Carbon hotspot analysis of Dataset 2 

In the same way, Dataset 3 was analysed and the results are presented in Table 

6.3. Carbon hotspots of Dataset 3 overlap with the carbon hotspots of Dataset 2. 

Substructure, Frame, Upper Floors, Services were identified as hotspots in most of 
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the buildings in Dataset 3 while Stairs, Internal Doors, and Fittings and Furnishings 

were not identified as carbon hotspots in any of the buildings. The analysis of 

Dataset 3 identifies more elements as carbon hotspots; hence, increasing the 

uncertainty. 

Based on the observation of carbon hotspots in both the samples, the building 

elements were classified into three categories such as ‘Lead Positions’, ‘Special 

Positions’ and ‘Remainder Positions’. Lead positions were the elements that 

always or mostly found as carbon hotspots in the buildings. Special positions were 

the building elements that were occasionally found to be a carbon hotspot in office 

buildings. Subsequently, the design variables influencing the identified carbon 

hotspots are presented in Table 6.5. However, not all the design variables 

identified in Table 6.5 are likely to be available during the early stages of design. 

Hence, the prediction models needed to be based on the variables that are most 

likely to be available during the early stages of design which includes GIFA (≈ 

footprint area + upper floor area), building height, average height, no. of 

basements, façade area or Wall to Floor ratio and circulation space ratio. 
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Table 6.3: Carbon hotspot analysis of Dataset 3 
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Table 6.4: Classification of carbon hotspots 

Carbon Hotspot Category Building Elements 

Lead positions Substructure, Frame, Upper Floors, External Walls, Building 

Services 

Special positions Roof, Windows and External Doors, Internal Walls and 

Partitions, Wall Finishes, Floor Finishes, Ceiling Finishes,  

Remainder positions Stairs, Internal Doors, Fittings, Furnishings and Equipment 

 

Table 6.5: EC influential design variables 

Building Elements Influential Design Variable 

Substructures Footprint area, no. of basements 

Frame GIFA, average height, building height 

Upper floors Upper floor area 

Roof Roof area 

External walls (including 

Windows and external doors) 

Façade area 

Internal walls and partitions GIFA, internal wall area, usable floor area 

Wall Finishes Wall finish area 

Floor finishes Floor finish area 

Ceiling Finishes Ceiling finish area 

Building Services GIFA 

In addition to the above analysis, carbon hotspots for the whole sample were 

analysed and presented in Table 6.6 and Figure 6.1. Accordingly, Substructure, 

Services, Frame, Upper Floors, External Walls and Roof were identified as the 

most carbon significant building elements in descending order. On the other hand, 

it was also noticed that the same building elements were accountable for 72% of 

the CC. 
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Table 6.6: Carbon hotspots – Dataset 3 

Elements (NRM Classification) Average 
EC per 
GIFA 
(kgCO2/m2 

GIFA) 

Average 
CC per 
GIFA (£/m2 
GIFA) 

Cumulative 
Carbon % 

Cumulative 
Cost % 

1 Substructure  161   89  23.6 7.0 

5 Services  145   419  44.9 39.6 

2A Frame  100   102  59.6 47.6 

2B Upper Floors  69   57  69.7 52.0 

2E External Walls  60   159  78.5 64.5 

2C Roof  43   91  84.8 71.6 

3B Floor Finishes  26   75  88.6 77.4 

2G Internal Walls and Partitions  23   39  92.0 80.5 

3C Ceiling Finishes  19   36  94.8 83.3 

2F External Windows and Doors  16   94  97.2 90.7 

3A Wall Finishes  9   34  98.6 93.3 

2D Stairs  8   27  99.7 95.4 

2H Internal Doors  1   31  99.9 97.8 

4 Fittings and Furnishings  1   28  100.0 100.0 
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Figure 6.1: Pareto curve for EC in Dataset 3 
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6.2.2. Cost Hotspot Analysis 

Cost hotspots were identified only for Dataset 3 due to unavailability of cost data 

for Dataset 2. Substructure, Frame, Roof, External Walls, External Windows and 

Doors and Services were identified as cost hotspots in most of the buildings 

(Services in all of the buildings). Rest of the elements were found to be cost 

hotspots in at least one of the sample buildings in Dataset 3. 

Cost hotspots for the whole sample are presented in Table 6.8 and Figure 6.2. 

Accordingly, Services, External Walls, Frame, External Windows and Doors, Roof, 

Substructure, and Floor Finishes were identified as the most cost significant 

building elements in descending order. Further, these building elements are also 

identified to be accountable for 81% of the EC of the buildings on average.  
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Table 6.7: Cost hotspot analysis of Dataset 3 
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Table 6.8: Cost hotspots – Dataset 3 

Elements (NRM Classification) Average 
CC (£/m2 

GIFA) 

Average EC 
(kgCO2/m2 

GIFA) 

Cumulative 
CC % 

Cumulative 
EC % 

5 Services  419   145  32.7 21.3 

2E External Walls  159   60  45.1 30.1 

2A Frame  102   100  53.1 44.8 

2F External Windows and Doors  94   16  60.4 47.1 

2C Roof  91   43  67.5 53.4 

1 Substructure  89   161  74.5 77.0 

3B Floor Finishes  75   26  80.3 80.8 

2B Upper Floors  57   69  84.7 90.9 

2G Internal Walls and Partitions  39   23  87.8 94.3 

3C Ceiling Finishes  36   19  90.7 97.2 

3A Wall Finishes  34   9  93.3 98.6 

2H Internal Doors  31   1  95.7 98.8 

4 Fittings and Furnishings  28   1  97.9 98.9 

2D Stairs  27   8  100.0 100.0 
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Figure 6.2: Pareto curve for capital cost in Dataset 3 
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Based on the cost hotspot analysis presented in Table 6.7 building elements were 

categorised into three types similar to carbon hotspots, which are presented in 

Table 6.9. Accordingly, Substructure, Frame, Roof, External Walls, Windows and 

External Doors, and Services were found to be lead positions while all other 

elements were identified as special positions (which were found to be hotspots in 

some of the buildings). All elements being identified as cost hotspots in one 

building or the other increases the uncertainty in decision-making.  

Table 6.9: Cost hotspots of office buildings 

 

6.2.3. Cost and Carbon Hotspots Relationships 

Based on the above analysis cost and carbon hotspots were mapped onto the 

hotspot category as shown in Table 6.10 to gain a better understanding and infer 

relationships. As discussed in the beginning of the chapter, lead positions are the 

building elements that are identified as hotspots in most of the buildings; special 

positions are the building elements that are identified as hotspots in some of the 

buildings, and remainder position refers to the elements that never found to be 

hotspots. Accordingly, Substructure, Frame, External Walls and Building Services 

were found to be lead carbon and cost hotspot in office buildings. Roof and 

Windows and External Doors were identified as lead cost hotspots and special 

carbon hotspots. Similarly, Upper Floors identified as lead carbon hotspot and 

special cost hotspots. Internal Walls and Partitions, Wall Finishes, Floor Finishes 

and Ceiling Finishes were found to be special carbon and cost hotspots. Further, 

Stairs, Internal Doors and Fittings, Furnishing and Equipment were identified as the 

remainder carbon hotspots and special cost hotspots.  

Cost Hotspot Category Building Elements 

Lead positions Substructure, Frame,  Roof, External Walls, Windows and External 

Doors, Services 

Special positions Upper Floors,  Stairs, Internal Walls and Partitions,  Internal Doors, 

Wall Finishes, Floor Finishes, Ceiling Finishes,  Fittings, 

Furnishings and Equipment 

Remainder positions Nil 
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Table 6.10: Mapping carbon hotspots and cost hotspots onto the hotspot category 

Lead Positions Special Positions Remainder Positions 

Upper Floors  Roof  Stairs 

Substructure Windows and External Doors Internal Doors 

Frame Internal Walls and Partitions Fittings, Furnishing 

and Equipment 

External Walls Wall Finishes  

Services Floor Finishes  

 Ceiling Finishes  

Roof  Upper Floors  

Windows and External 

Doors 

Stairs  

 Internal Doors  

 Fittings, Furnishing and 

Equipment 

 

6.3. Development of the Design Quality Indices 

6.3.1. Finishes Quality Index 

Finishes quality index was developed from a Delphi-based expert forum as 

discussed in Section 5.8 in the Data Collection chapter. A conceptual finishes 

quality index was developed by surveying the types of internal finishes applied in 

office buildings and classifying the commonly used finishes type under three quality 

levels (Basic, Moderate and Luxury). The developed conceptual finishes quality 

index was then verified by receiving the inputs from the experts.  

Most of the comments were to add or remove a certain type of finishes. Under 

additions, floor painting was suggested to be considered as a Basic type of floor 

finish; fair face masonry as Basic wall finish; moisture resistant painting as a 

Moderate type of wall finish; heavily embossed wallpapers as Luxury wall finish; 

and moisture resistant ceilings with high sound proofing and timber boarded 

ceilings as Luxury ceiling finish.  Under deletions, lime plaster was suggested to be 

removed from the list as lime plaster is generally used in historic properties while 

CARBON 

HOTSPOTS 

COST 

HOTSPOTS 
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not very common in modern offices. Hardboard and chipboards were not 

considered suitable as wall finishes and hence, suggested to be removed. 

However, they were not removed from the list as some of the projects use 

hardboard and chipboards as finishes. Similarly, screeds were also suggested to 

be removed from the list, as it was not considered suitable as a finish but a build up 

for an applied finish.  Further, it was suggested that screeds are applied to 

structural concrete to make a surface for tiling, carpeting, sheeting, etc. However, 

NRM classifies screeds as finishes and screeds form part of the finish when used 

as a build up for an applied finish on top. For these reasons, screeds were not 

removed from the list; vinyl paper was considered not suitable for ceiling, so it was 

removed from the list of ceiling finishes. 

On the other hand, there were some comments on the quality levels of the 

proposed finishes. The most controversial quality level was of ceramic tiles as the 

experts indicated that ceramic tiles could be found in all categories ranging from 

Basic to Luxury at various prices, as it is more dependent on the manufacturer, 

size, grout used and the like. Subsequently, ceramic tiles were classed under each 

quality level as Basic, Moderate and Luxury ceramic tiles. Similarly, porcelain tiles 

were classed under Moderate and Luxury and vinyl sheet, vinyl tiles, carpet tiles 

were classed under Basic and Moderate followed by the comments of the experts. 

Marble was identified as another problematic finish as there are Chinese marble 

and European marble and some projects opt for Chinese marble due to lower cost. 

Therefore, it is clarified in the finishes quality index by classifying Chinese marble 

under Moderate floor finish and European Marble as a Luxury floor finish. 

Furthermore, there were contradicting comments from one expert on the quality 

level of finishes including lightweight plaster, plasterboard, mastic asphalt floor, 

slate tiles, terrazzo floor and veneer laminated floor. This was then highlighted in 

the second round of verification to other experts and opportunity was given to vary 

their judgment on the quality levels of the above-mentioned types of finishes. Three 

of the experts confirmed that slate could also be considered as Luxury finish and 

one suggested terrazzo can be considered as Luxury in its high-value ranges while 

the judgement of the experts remained unchanged for the rest of the controversial 
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finishes. Subsequently, slate was moved from Moderate to Luxury and terrazzo 

was left under Moderate as it was stated that terrazzo could not be classified under 

Luxury when marble, parquet floor and the like are identified as Luxury. Finally, the 

verified finishes quality index is presented in Table 6.11. 

Table 6.11: Finishes quality index 

Element Quality Index Main Category Sub Category 

W
a

ll
 F

in
is

h
e

s
 

Basic Fair face finish Paint to fair face 

Plaster/render Cement sand plaster 

Paint Emulsion/eggshell 

Wallpaper Lining paper 

Vinyl paper 

Wall tiles Basic ceramic tiles 

Moderate  Plaster Thistle plaster 

Carlite plaster 

Paint Moisture resistant paint 

Board linings Plasterboard 

Plywood wall panels and 

treatment 

Wallboards 

Softwood boarding and 

treatment 

Hardboard 

Chipboard 

Veneered MD panels 

Wall tiles Moderate ceramic tiles 

Moderate porcelain tiles 

Stone cladding Chinese marble 

Luxury Wall tiles Mosaic tiles 

Luxury ceramic tiles 

Luxury porcelain tiles 
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Element Quality Index Main Category Sub Category 

Wallpaper Heavily embossed 

wallpapers 

Stone cladding 

  

Natural granite  

European marble  

Other claddings Composite aluminium  

Glass  

F
lo

o
r 

F
in

is
h

e
s
 

Basic 

Exposed concrete  Concrete hardener 

Floor paint Regular floor paint 

Screeds Cement sand 

Latex screed 

Protective finish Mastic asphalt floor 

Flexible thin sheets 

and tiles 

Linoleum sheet 

Linoleum tiles 

Basic vinyl sheet 

Basic vinyl tiles 

Basic carpet tiles 

Rigid Tiles Cement tiles 

Basic ceramic tiles 

Carpet Medium duty carpet 

Moderate Screeds Granolithic 

Resin based finish  Epoxy floor 

Flexible thin sheets 

and tiles 

Rubber floor tiles 

Marmoleum 

Moderate vinyl sheet 

Moderate vinyl tiles 

Cork tiles 

Moderate carpet tiles 

Rigid tiles  Moderate ceramic tiles 

Moderate porcelain tiles 

Clay tiles 
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Element Quality Index Main Category Sub Category 

Quarry tiles 

Carpet Heavy duty carpet 

Stone finish Terrazzo 

Chinese marble 

Access floor Metal access floors 

Timber floor Veneered laminated floor 

Redwood floor 

Luxury Rigid tiles  Mosaic tiles 

Slate tiles 

Luxury ceramic tiles   

Luxury porcelain tiles 

Timber floor 

  

  

Woodblock floor (Oak 

etc.) 

Woodstrip floor (Oak etc.) 

Parquet floor 

Stone finish Natural granite 

European marble 

C
e
il

in
g

 F
in

is
h

e
s

 

Basic In-situ finish Sealer  

Skim coat 

Cement sand plaster 

Paint finish Emulsion/eggshell 

Paper finish Lining Paper 

Moderate 

In-situ finish Thistle plaster 

Carlite plaster 

Paint finish Moisture resistant paint 

Board finish Plasterboard 

Suspended ceiling 

systems 

Metal frame plasterboard 

ceilings 

Plasterboard acoustic 

ceilings  
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Element Quality Index Main Category Sub Category 

Moisture resistant ceilings 

Metal suspended ceilings 

Luxury Timber ceiling Timber boarded ceilings 

Suspended ceiling 

systems 

Moisture resistant ceilings 

with high sound proofing 

Integrated/composite 

ceiling  

Coffered ceilings  

It should also be noted that sometimes materials might be imported from other 

countries due to lower cost while EC in this case, will be higher than the locally 

sourced materials. However, if the system boundary is cradle-to-gate then it will not 

be highlighted in EC values. In conclusion, it was identified that it is difficult to 

categorise many finishes under a particular quality level as the choices spans from 

Basic to Luxury. Nevertheless, an objective finishes quality index had to be 

adopted in the study to assess the finishes quality of the sample building in a 

consistent way, which is satisfied by the developed finishes quality index. The 

verified finishes quality classification system was used as a benchmark to assess 

the finishes quality of the buildings in Dataset 1 and Dataset 3.  

Table 6.12 illustrates the method followed in determining the finishes quality of the 

building considered. Firstly, the percentage of each type of floor finish used in the 

building was calculated. Then, each type of floor finish was classified based on the 

finishes quality index developed for the study. Thirdly, the cumulative percentage 

of Basic, Moderate and Luxury finishes were derived. Finally, the weighted quality 

index was calculated for the building and the final value was rounded off to arrive 

at the finishes quality index of the building. In this way, wall, floor, ceiling finish 

indices were calculated for each of the sample buildings.  
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Table 6.12: Method of determining finishes index of a building 

Building A  

Floor Finish Quantity Finishes Index  

Porcelain tiles 20% Luxury  

Carpet – heavy duty 30% Moderate  

Cement sand screed 10% Basic  

Access floor 30% Moderate  

Clay tiles 5% Moderate  

Oak timber floor 5% Luxury  

    

Floor Finish 

Category 

Quantity Floor Finishes 

Index 

Weighted 

Index 

Basic  10% 1 0.10 

Moderate  65% 2 1.30 

Luxury 25% 3 0.75 

Sum   2.15 

   

Floor Finishes Index of 

the building  
2 (Moderate)  

    

Then, wall, floor and ceiling finishes quality indices were combined into an overall 

finishes quality index of the building to avoid several predictor variables in the 

model. Consequently, a weighted average approach was used to calculate the 

overall finishes quality index of the building as shown in Table 6.13.  Firstly, the 

weighted quantity of the wall, floor and ceiling finishes of the building were 

calculated as a percentage of the total area finished. Then, the derived wall, floor 

and ceiling indices were multiplied by the respective weighted quantity and 

summed up to find the overall finishes index of the building. In this way finishes 

index of the sample buildings were calculated. 
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 Table 6.13: Calculating overall finishes index of the building 

Internal Finish 

Category 

% of the 

area finished 

Finishes 

Index 

Weighted 

Index 

Wall  40% 1 0.40 

Floor 30% 3 0.90 

Ceiling 30% 2 0.60 

Sum   1.90 

Overall Finishes Index of the building  2 (Moderate) 

 

6.3.2. Services Quality Index 

Services specifications are less likely available during early design stages. Hence, 

UK price books were surveyed for a more practical way of classifying quality for 

approximate estimates. Accordingly, a three-tiered classification system was 

proposed in Spon’s Mechanical and Electrical Services Price Book 2014 (Davis 

Langdon Consultancy, 2014) for owner occupied office buildings namely: non air-

conditioned buildings, non-air-conditioned automated buildings and air-conditioned 

automated buildings, which was identified as the most appropriate classification of 

all (see, Section 5.9). however, one type was found to be missing in the above 

classification – air-conditioned non automated buildings. Consequently, based on 

the provision of Services (sub-elements of Services installed in the building) in 

buildings, a four-tiered quality classification system was proposed for the study as 

follows: 

 Level 1 - Non air-conditioned buildings (Essential building services) 

 Level 2 - Air-conditioned buildings (Level 1 + A/C) 

 Level 3 - Non air-conditioned automated buildings (Level 1 + BMS) 

 Level 4 - Air-conditioned automated buildings (Level 2 + BMS) 

(Note: Essential building services in office buildings include sanitary appliance, 

water installations, disposal installations, space heating systems, ventilation 
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systems, electrical installations, fire and lighting protection, communication and 

security installations)  

Furthermore, under each category buildings with and without lift were also present 

in the sample as the sample buildings were primarily low to medium rise. Hence, 

the proposed services index had to accommodate the difference of having lift in the 

building. Considering all of the above-mentioned points the services quality index 

proposed for the study is presented in Table 6.14. 

Table 6.14: Services quality index 

Services Quality Index 

Level 1 - Non air-conditioned buildings (Essential building services) 

1.1 Without lift 

1.2 With lift 

Level 2 - Air-conditioned buildings (Level 1 + A/C) 

2.1 Without lift 

2.2 With lift 

Level 3 - Non air-conditioned automated buildings (Level 1 + BMS) 

3.1 Without lift 

3.2 With lift 

Level 4 - Air-conditioned automated buildings (Level 2 + BMS) 

4.1 Without lift 

4.2 With lift 

 

6.4. Pre-Regression Analysis 

A detailed analysis of the variables forming the model is a pre-requisite of a 

regression analysis. Therefore, this section outlines the variable selection, the 

description of each variable and the relationship between the dependent and the 

independent variables. The analysis of the individual variables is presented under 

the univariate analysis and the paired analysis is presented under the bivariate 

analysis. 
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6.4.1. Variable Selection 

Regression analysis works based on the relationship between the dependent 

variable and the independent variables. Two regression models were developed to 

predict EC and CC for early stages of design. Hence, there were two dependent 

variables (because of the two models) in the study namely: EC and CC. However, 

each model was presented in two ways such as not normalising EC and CC for 

GIFA (EC and CC) and normalising EC and CC for GIFA (EC per GIFA and CC per 

GIFA). The reason for performing regression analysis with each dependent 

variable by normalising and not normalising for GIFA is that the best performing 

model can be selected from the two, as there was a significant difference in 

prediction performance was noted. In addition, some of the previous studies use 

CC as the dependent variable while others use CC per GIFA. It is more convincing 

to compare the performance of the two models and choose the better model rather 

than providing justification for the selection of one of the two forms of the 

dependent variable (EC or EC per GIFA) and not exploring the other. Therefore, 

both versions of the models were analysed herein. 

Design variables affecting cost was studies and presented in the literature review 

(Chapter 3). Accordingly, previous studies regressed GIFA, building height, the 

number of storeys, circulation space, building quality, technology and other non-

design related variables like project duration, liquidated damage, location and the 

like with construction cost (McGarrity, 1988, Kouskoulas and Koehn, 2005, 

Karanci, 2010, Phaobunjong, 2002). In addition to that, literature also suggests that 

plan shape, grouping of buildings and average storey height can have an influence 

on construction cost. 

However, carbon and cost hotspot analyses were used as the basis for variable 

selection in the study. As explained in Section 6.2, the most influential design 

variables that need to be modelled as presented in Table 6.5 includes footprint 

area, GIFA, average height, total height, upper floor area, roof area, façade area, 

internal wall area, useable floor area/circulation space and internal finish area. Of 

which some of the variables are also represented by others, for instance, the 

summation of footprint and upper floor area gives GIFA; floor and ceiling finish 



 

188 
 

areas are approximately equal to GIFA. Therefore, variables were shortlisted to a 

minimum number of variables because fitting more variables in the regression 

model might not be effective (Kim et al., 2004a) and the change in the dependent 

variable will less likely be explained by all the independent variables. Further, more 

variables also cause the problem of multicollinearity ( the relationship between 

independent variables which should be eliminated in a regression model). In 

addition to that, the selected design variables should also meet the requirement of 

the availability during the early stages of design. 

Finally, the variables selected for the study includes GIFA, the number of storeys, 

average storey height (or building height), façade area, wall to floor ratio, 

circulation ratio, the number of basements, finishes quality and services quality. 

Internal wall area was not selected as an independent variable as it is less likely to 

be available during the early stages of design. Further, an objective and consistent 

way of incorporating finishes and services quality of the building was enabled by 

the use of finishes and services quality, which is specific to the study. 

6.4.2. Univariate Analysis of Variables 

It is important that data be examined before the analysis to identify any outliers or 

extremes in the dataset and check for normality of the dependent variables. 

Histograms and boxplots together with descriptive statistics such as minimum, 

maximum, mean and skewness are used to examine each variable separately. 

Histogram presents how the data are distributed and gives a visual indication of the 

distribution of the data, however, when the sample size is small, histogram may not 

represent the normality clearly, hence, boxplots were used to complement 

histograms to understand the distribution of each variable and to identify outliers 

and extremes in the dataset. The summary of the descriptive statistics of the 

variables is presented in Table 6.15. 
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Table 6.15: Descriptive statistics of the variables 

 N Minimum Maximum Mean Std. 

Deviation 

Skewness 

Statistic Std. 

Error 

GIFA (m2) 41 212 14652 3642.07 3329.495 1.535 .369 

Storeys (No) 41 1 6 2.73 .923 1.379 .369 

Average Height (m) 41 2.5 4.4 3.45 .461 .162 .369 

Building Height (m) 41 2.8 25.2 9.50 3.828 1.756 .369 

Façade (m2) 41 148 6682 2261.32 1747.189 1.101 .369 

Wall to Floor Ratio 41 .24 1.50 .71 .243 .926 .369 

Circulation Ratio 33 .09 .46 .24 .092 .477 .409 

CC (£1000s) 41 392 17928 4915.15 4870.790 1.439 .369 

EC (tCO2) 41 177 9383 2469.75 2311.514 1.512 .369 

CC per GIFA (£/m2) 41 698 2285 1301.13 324.321 1.301 .369 

EC per GIFA 

(kgCO2/m2) 
41 551 916 680.44 95.581 .696 .369 

 

As can be seen from Table 6.15, data values for the selected variables are present 

for all 41 buildings except for circulation space. Circulation space had 8 missing 

data points. Further, one of the basic assumptions in performing regression 

analysis is that the variables are normally distributed. The measurements for 

skewness and kurtosis give an indication of the normality of the data distribution of 

the variables. Skewness of a normally distributed variable will have a value of 0. 

Miles and Shevlin (2001) suggest that there is little problem if the skewness 

statistics is less than 1.0 and skewness statistics between 1.0 and 2.0 is also 

cautiously acceptable attributing to the fact that it might have an impact on the 

estimates. However, skewness statistics above 2.0 indicates a serious problem 

with normality. According to the skewness statistics presented in Table 6.15, 

average height, wall to floor ratio, circulation ratio and EC per GIFA are less than 

1.0 and the rest lies between 1.0 and 2.0, which ensures no major violation of the 

assumption of normality occurs. 
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a) Gross Internal Floor Area  

Figure 6.3 presents the distribution of the sample data points of the variable GIFA, 

which ranges from 212m2 to 14,652m2. Mean of GIFA of the sample is 3,642m2 

and skewness is 1.535 indicating a positive skew where more than half of the 

buildings have a GIFA between 0 and 3,000m2. This is because the scope of the 

study covers only low to medium-rise office buildings. Even though the skewness 

statistics is less than 2.0, the skewness of the distribution looks prominent. Boxplot 

indicates that 4 data points fall out of the normal curve, of which 3 data points were 

identified as outliers and 1 as extreme.  

 

 

b) Number of Storeys/Building Height 

Distribution of data points of the number of storeys is presented in Figure 6.4. The 

number of storeys ranges from one (1) to six (6) with a mean of three (3) and a 

positive skew of 1.379 was found. The majority of the buildings in the sample were 

2 to 3 storied buildings. Boxplot identified two data points as outliers, the two 

buildings with five (5) and six (6) storeys while these buildings were not identified 

as outliers or extremes with regards to GIFA. However, they are true data points. 

Figure 6.3: Histogram and boxplot for GIFA of the sample buildings 
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Figure 6.5 presents data distribution of building height of the sample ranges from 

2.8m to 25.2m, with a mean of 9.50 and a positive skew of 1.756. Analysis of 

building height suggests that the building with six (6) storeys is an outlier while five 

(5) storeyed building was also found as an outlier in the analysis of number of 

storeys. 

 

 

  

Figure 6.4: Histogram and boxplot for number of storeys in the sample buildings  

Figure 6.5: Histogram and boxplot for building height of the sample buildings 
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c) Average Storey Height 

Figure 6.6 illustrates the data distribution of the average storey height of the 

sample buildings, which ranges from 2.5m to 4.4m, with a mean storey height of 

3.451m displaying almost perfect normality. Further, boxplot also shows that there 

are no outliers in the dataset for average storey height.  

 

d) Wall to floor ratio 

Distribution of wall to floor ratio is presented in Figure 6.7. The Wall to Floor ratio of 

the sample ranges from 0.24 to 1.50, with a mean value of 0.71 and the skewness 

is 0.926. Half of the sample buildings have a wall to floor ratio between 0.35 and 

0.75. One data point was identified as an outlier, which was identified as an outlier 

in terms of the number of storeys (5 storeys) too.  

 

 

 

Figure 6.6: Histogram and boxplot for average storey height of the sample buildings 
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e) Façade Area 

  

Figure 6.8 illustrates the data distribution of façade area. Façade area ranges from 

148m2 to 6,682m2 with a mean of 2,261m2. However, façade area has a positive 

skew of 1.101 and displays a very similar distribution to GIFA as the façade area is 

affected by GIFA, plan shape and average storey height. Therefore, two of the 

outliers identified here are also identified as outliers in GIFA analysis. 
 

Figure 6.7: Histogram and boxplot for wall to floor ratio of the sample buildings 

Figure 6.8: Histogram and boxplot for façade area of the sample buildings 
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f) Circulation Space 

 

Circulation space in the sample ranges from 0.09 to 0.46 with a mean of 0.24. No 

outliers were identified in the sample and the variable demonstrated perfect 

normality (See, Figure 6.9). 

g) Number of Basements 

The number of basements is a discrete variable that contains only whole numbers. 

Hence, a bar chart is used to illustrate the number of basements in the sample 

buildings, which is depicted in Figure 6.10. Accordingly, the number of basements 

ranges from 0 to 2, where most of the buildings do not have basements.  

Figure 6.9: Histogram and boxplot for circulation ratio of the sample buildings 
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Figure 6.10: Bar chart for no. of basements in the sample buildings 

 

h) Finishes index 

 

 

 
Figure 6.11: Bar chart for finishes index of the buildings in the sample 

 

Figure 6.11 presents finishes index of the buildings in the sample. Finishes index of 

the sample buildings ranges from 1 (Basic) to 2 (Moderate). Predominantly, the 

finishes quality of the building in the sample was to be 2 (Moderate) while only two 

buildings had Basic level of finishes quality. No building had a finishes quality index 

of 3 (Luxury). 

  



 

196 
 

i) Services index 

 
Figure 6.12: Bar chart for services index of the buildings in the sample 

Services index of the sample buildings is presented in Figure 6.12. Services index 

has eight categories including: non A/C (without lift & with lift), A/C (without lift & 

with lift), non A/C automated (without lift & with lift) and A/C automated (without lift 

& with lift). Most buildings are non A/C with lift (services index of 1.2) and no 

buildings in the sample has a services index of 4.1 (A/C automated without lift). 

 

j) EC 

EC in the sample ranges from 177 tCO2 to 9,383 tCO2, with a mean of 2,470 tCO2. 

EC of the sample demonstrates a similar distribution like GIFA with a positive skew 

of 1.5112 and with the same three outliers identified in GIFA (See, Figure 6.13). 

This indicates a close relationship between GIFA and total carbon.  
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k) EC per GIFA 

Figure 6.14 represents the data distribution of EC per GIFA of the sample, ranges 

from 551kgCO2/m2 to 916kgCO2/m2 with a mean value of 680kgCO2/m2. No 

outliers were identified in the boxplots, which showcase normality. 

  

Figure 6.13: Histogram and boxplot for EC of the sample buildings 

Figure 6.14: Histogram and boxplot for EC per GIFA of the sample buildings 



 

198 
 

l) CC  

CC in the sample range from £392,000 to £17,918,000 with a mean of £4,915,150. 

CC of the sample also demonstrates a similar distribution like GIFA with a positive 

skew of 1.439. Three data points were identified as outliers (see, Figure 6.15) and 

all these outliers are outliers in GIFA. Of which, two outliers are also identified as 

outliers in EC. This indicates a close relationship between GIFA, EC and CC.  

 

m) CC per GIFA 

Figure 6.16 presents the data distribution of CC per GIFA of the sample. CC per 

GIFA in the sample ranges from £698 to £2,285 with a mean of £1,301 and a 

positive skew of 1.301. Three data points were identified as outliers in the data 

sample. 

 

Figure 6.15: Histogram and boxplot for CC of the sample buildings 
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6.4.3. Bivariate Analysis of Variables 

Scatterplot matrix was produced to understand the relationships between variables 

dependent and independent variables before performing regression analysis. Two 

scatterplot matrices were produced for EC and CC separately. 

1. First scatterplot was intended to depict relationship between EC (and CC) and 

design variables such as GIFA, building height (or number of storeys, average 

storey height), façade area and circulation ratio – reason for choosing façade 

area for this model rather than wall to floor ratio is because no clear relationship 

can be captured between wall to floor ratio and EC or CC as wall to floor ratio 

simply means how much façade area is required to cover 1m2 of GIFA and 

façade area is determined by GIFA. Further, buildings with higher wall to floor 

ratio might be less expensive and less carbon embodied in it because of lower 

GIFA compared to building with larger GIFA and lower wall to floor ratio. 

2. The second scatterplot was intended to present the relationship between EC 

per GIFA (and CC per GIFA) and design variables such as building height (or 

the number of storeys, average storey height), wall to floor ratio and circulation 

ratio. Figure 6.17 and Table 6.16 presents scatterplot matrix and correlation 

statistics between selected design variables, EC and CC. Accordingly, GIFA 

Figure 6.16: Histogram and boxplot for CC per GIFA of the sample buildings 
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and façade area demonstrates a strong positive correlation to EC with few data 

points scattered with a correlation coefficient of 0.985 and 0.862 respectively 

(correlation is statistically significant at the 0.01 level). However, the 

relationship between building height and EC is not strong like GIFA and façade 

area, which has a correlation coefficient of 0.513 (significant at the 0.01). On 

the other hand, the correlation between circulation space ratio and EC did not 

yield a statistically significant result. Interestingly, similar behaviour was 

demonstrated by CC. CC also showed a strong positive correlation with GIFA 

and façade area with a correlation coefficient of 0.969 and 0.868 (significant at 

the 0.01 level) while building height is moderately correlated with EC (0.535 - 

significant at the 0.01 level). Further, circulation ratio did not show a statistically 

significant relationship with CC same as EC. The relationship between CC and 

EC is very strong with a positive correlation coefficient of 0.977(significant at 

the 0.01) explains the similar behaviour of EC and CC. Further, matrices 

indicate that GIFA and faced are the most influential design variables of EC and 

CC. However, this conclusion is obvious as bigger buildings cost more and 

have more carbon embodied in them due to more material, labour and plant 

inputs. Therefore, it was decided to normalise GIFA and repeat the bivariate 

analysis. 

Further, scatterplot also assists in discovering any collinearity between 

independent variables. Accordingly, the pair of GIFA and façade area was detected 

with collinearity (> 0.7) with a correlation coefficient of 0.861 (significant at the 

0.01). This is not surprising and is logical as larger building implies higher façade 

area. In addition to that, the pair of façade area and building height was also 

demonstrated a positive correlation of 0.670 (significant at the 0.01). This is 

because façade area is calculated by multiplying building height by the girth of the 

building; hence, a positive relationship can be expected. However, the correlation 

between façade area and building height was not of much concern since the 

correlation was within the collinearity threshold. Collinearity can cause problems in 

the model building process if both variables are modelled together. Hence, it was 

decided to exclude façade area in the models. 
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Figure 6.17: Scatterplot matrix of design variables, EC and CC 

Table 6.16: Correlations matrix of design variables, EC and CC 

 GIFA Building 

Height 

Façade 

Area 

Circulation 

Ratio 

EC CC 

GIFA Pearson Correlation 1 .476** .861** -.095 .985** .969** 

Sig. (2-tailed)  .002 .000 .599 .000 .000 

N 41 41 41 33 41 41 

Building Height Pearson Correlation .476** 1 .670** .113 .513** .535** 

Sig. (2-tailed) .002  .000 .531 .001 .000 

N 41 41 41 33 41 41 

Façade Area Pearson Correlation .861** .670** 1 .039 .862** .868** 

Sig. (2-tailed) .000 .000  .829 .000 .000 

N 41 41 41 33 41 41 

Circulation 

Ratio 

Pearson Correlation -.095 .113 .039 1 -.041 -.010 

Sig. (2-tailed) .599 .531 .829  .821 .955 

N 33 33 33 33 33 33 

EC Pearson Correlation .985** .513** .862** -.041 1 .977** 

Sig. (2-tailed) .000 .001 .000 .821  .000 

N 41 41 41 33 41 41 

CC Pearson Correlation .969** .535** .868** -.010 .977** 1 

Sig. (2-tailed) .000 .000 .000 .955 .000  

N 41 41 41 33 41 41 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Same scatterplot and correlation matrices were produced for EC per GIFA, CC per 

GIFA, building height, wall to floor ratio and circulation ratio presented in Figure 

6.18 and. Table 6.17. A moderate positive linear relationship was evident between 

EC per GIFA and wall to floor ratio with a correlation coefficient of 0.523 

(significance at the 0.01 level) and a weak positive linear relationship was found 

between EC per GIFA and circulation ratio with a correlation coefficient of 0.360 

(significance at the 0.05 level). Building height did not indicate a statistically 

significant correlation with EC per GIFA and the relationship was almost neutral. 

Further, EC per GIFA at a particular building height vary a lot as shown in 

scatterplot which was surprising as it was expected that EC per GIFA would 

increase with building height as generally cost per GIFA is expected to increase 

with building height. On the other hand, CC per GIFA demonstrated weak positive 

correlations with all the variables - building height, wall to floor ratio and circulation 

ratio with a correlation coefficient of 0.389, 0.322, 0.391 (significant at the 0.05 

level) respectively. However, a moderate linear positive relationship was found 

between EC per GIFA and CC per GIFA (correlation coefficient of 0.645 significant 

at the 0.01 level). Furthermore, no significant collinearity between variables was 

detected. 
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Figure 6.18: Scatterplot matrix of design variables, EC per GIFA and CC per GIFA 

 
Table 6.17: Correlation matrix of design variables, EC per GIFA and CC per GIFA 

 Building 

Height 

Wall to Floor 

Ratio 

Circulation 

Ratio 

EC per 

GIFA 

CC per 

GIFA 

Building Height Pearson Correlation 1 .206 .113 .306 .389* 

Sig. (2-tailed)  .195 .531 .052 .012 

N 41 41 33 41 41 

Wall to Floor Ratio Pearson Correlation .206 1 .304 .523** .322* 

Sig. (2-tailed) .195  .086 .000 .040 

N 41 41 33 41 41 

Circulation Ratio  Pearson Correlation .113 .304 1 .360* .391* 

Sig. (2-tailed) .531 .086  .039 .024 

N 33 33 33 33 33 

EC per GIFA Pearson Correlation .306 .523** .360* 1 .645** 

Sig. (2-tailed) .052 .000 .039  .000 

N 41 41 33 41 41 

CC per GIFA Pearson Correlation .389* .322* .391* .645** 1 

Sig. (2-tailed) .012 .040 .024 .000  

N 41 41 33 41 41 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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6.4.4. Outcome of the Pre-Regression Analysis 

Univariate analysis helped to discover non-normality in data distribution of the 

variables where GIFA, façade area, EC and CC are found to be significantly 

skewed. Therefore, log transformation was applied to each variable to improve the 

normality of the data distribution through data transformation. Apparently, data 

transformation reduced skewness and helped to achieve normality in all four 

variables. The new statistics is presented in Table 6.18 and the boxplots of the 

variables after log transformation is illustrated in Figure 6.19. Consequently, only 

one data point was identified as an outlier after log transformations. 

 
Table 6.18: Descriptive statistics of transformed variables 

 N Skewness 

Statistic Statistic Std. Error 

GIFA log 41 -.188 .369 

Façade log 41 -.485 .369 

EC log 41 .010 .369 

CC log 41 .140 .369 

 

Figure 6.19: Box plots after the log transformation of the selected variables to achieve 

normality 
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Scatterplot and correlation matrices enabled to identify the relationships between 

variables and hence non-linear relationships were detected. As discussed in 

Section 7.4.3, collinearity exists between GIFA and façade area while no significant 

relationship was found between circulation space ratio and EC or CC. However, 

now that the EC and CC were transformed, correlation matrix was produced 

between circulation space and EC and CC, which is presented in Figure 6.20. Yet, 

no significant linear relationship was noticed. Then, log transformation was applied 

to the entire datum in the variable circulation space ratio and the correlation matrix 

was produced again which is presented in Figure 6.21. Log transformation of the 

variable (circulation space ratio) did not help to achieve linearity (the data points in 

Figure 6.21 are randomly scattered). Therefore, the inverse transformation was 

applied to the data in circulation space ratio to see whether linearity assumption 

could be met. Inverse transformation also did not yield expected results (see, 

Figure 6.22). Hence, it was decided to eliminate circulation space ratio as a 

predictor in EC and CC models. 

 
Figure 6.20: Correlation matrix between circulation space ratio, Log of EC and Log of CC 
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Figure 6.21: Correlation matrix between Log of circulation space ratio, Log of EC and Log of 

CC 

 

 

 

Figure 6.22: Correlation matrix between inverse of circulation space ratio, Log of EC and Log 

of CC 
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Further, regression analysis works on the basis that there is relationship between 

dependent variable and independent variables only and no significant relationship 

between independent variables should exist in order for the model to perform 

effectively in real time scenarios. Therefore, one of the variables should be 

retained and the other should be eliminated to avoid collinearity between 

independent variables. Collinearity was found only between GIFA and façade area. 

Therefore, the decision was made to use GIFA only in the EC and CC models as 

GIFA is more influential and had higher correlation coefficient than façade area. 

6.5. Regression Analysis 

Regression outputs can be sensitive to outliers. Altogether, 5 data points were 

found as outliers after log transformation. Subsequently, the effort was made to 

identify whether the outliers represent true data points or otherwise caused by 

measurement error, error in transferring data or error in the theory. Raw data were 

examined to ensure no errors were made during transferring and estimating. In 

terms of design economics theory, there is less concern as each building is unique 

and therefore, there are no standard values for a particular variable (though 

general practices and design norms are adopted by most of the designers – for 

instance, circulation space might range from 15-25%). Finally, it was concluded 

that all the outliers represent true data points. Outliers can be dealt in two ways as 

follows: 

1. Modelling with outliers 

2. Modelling without outliers 

Modelling with outliers might have an influence on the estimate of correlations of 

the model while modelling without outliers will be unbiased though elimination of 

the outliers might give rise to other outliers requiring further elimination reducing 

the sample size. Therefore, the decision has to be made whether to remove 

outliers and formulate model with less number of data or to include the outliers and 

modelling data poorly. Pedhazur and Schmelkin (1991) suggested that results with 

and without outliers shall be reported to give the readers better understanding 

about the influence of the outliers in modelling. Therefore, the models with outliers 
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and without the outliers were presented and the selection of the model was made 

based on the R2, F statistics, standard error and significance statistics. 

6.5.1. Regression Models for Embodied Carbon Prediction 

Two models were considered to predict EC including EC per GIFA model and EC 

model. Conceptual models are presented below for EC per GIFA (see, Equation 

6.1) and EC (see, Equation 6.2): 

 

Equation 6.1: EC per GIFA conceptual model 

𝑦1̂ = 𝑎0 + 𝑎1𝑥𝐵𝐻 +  𝑎2𝑥𝑊:𝐹  +   𝑎3𝑥𝐶𝑅 + 𝑎4𝑥𝐵 +  𝑎5𝑥𝐹𝐼 + 𝑎6𝑥𝑆𝐼 

Where, 

𝑦1̂        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑎0      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑎1      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵𝐻  

𝑥𝐵𝐻    − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡  

𝑎2      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑊:𝐹 

𝑥𝑊:𝐹 − 𝑊𝑎𝑙𝑙 𝑡𝑜 𝐹𝑙𝑜𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑎3      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐶𝐴 

𝑥𝐶𝑅   − 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑎4      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵 

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑎5      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐹𝐼 

𝑥𝐹𝐼     − 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑎6      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑆𝐼 

𝑥𝑆𝐼      − 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

 

Equation 6.2: EC conceptual model 

𝑦2̂ = 𝑏0 + 𝑏1𝑥𝐺𝐼𝐹𝐴 + 𝑏2𝑥𝐵𝐻 + 𝑏3𝑥𝐹𝐴  +   𝑏4𝑥𝐶𝑅 + 𝑏5𝑥𝐵 + 𝑏6𝑥𝐹𝐼 + 𝑏7𝑥𝑆𝐼 
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Where, 

𝑦2̂        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝐶 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑏0      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑏1      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐺𝐼𝐹𝐴  

𝑥𝐺𝐼𝐹𝐴 − 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔   

𝑏2      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵𝐻  

𝑥𝐵𝐻    − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡  

𝑏3      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐹𝐴 

𝑥𝐹𝐴   − 𝐹𝑎𝑐𝑎𝑑𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑏4      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐶𝐴 

𝑥𝐶𝑅   − 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑏5      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵 

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑏6      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐹𝐼 

𝑥𝐹𝐼     − 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑏7      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑆𝐼 

𝑥𝑆𝐼     − 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

However, after the univariate and bivariate analysis, the EC model was modified to 

address non-normality and collinearity issues, using log values for EC and GIFA to 

conform to normality and eliminating the independent variable façade area to 

eliminate collinearity with GIFA. The modified equation is presented as follows: 
 

Equation 6.3: Modified EC conceptual model 

 �̂�2
′ = 𝑏0 +  𝑏1𝑥𝐺𝐼𝐹𝐴

′  + 𝑏2𝑥𝐵𝐻 +  𝑏5𝑥𝐵  + 𝑏6𝑥𝐹𝐼  + 𝑏7𝑥𝑆𝐼  

Where, 

 �̂�2
′      −  log 𝑦2̂  

𝑥𝐺𝐼𝐹𝐴
′ − log 𝑥𝐺𝐼𝐹𝐴   

Consequently, regression analysis was run to identify best predictive EC per GIFA 

model using the backward method. This method accommodates all input variables 

in the first run and eventually removes one variable at a time – the variable that is 
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found to be the least significant in the model. The least significant variable in the 

model is rejected where more than one variable found to meet the elimination 

criteria. In this way, variables are eliminated one by one until the best model is 

derived.  

a) Regression models with outliers 

The backward method produced the best predictive EC per GIFA model in the fifth 

step with two variables – wall to floor ratio and the number of basements. Model 

summary, analysis of variance and model coefficients resulting from each step are 

presented in Table 6.19, Table 6.20 and Table 6.21 respectively.  

 
Table 6.19: Model summary – EC per GIFA Run 1 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

Independent Variables 

1 .747 .559 .457 72.011 Building height, wall to floor ratio, 

circulation ratio, no. of basements, 

finishes index, services index 

2 .746 .557 .475 70.781 Wall to floor ratio, circulation ratio, no. 

of basements, finishes index, services 

index 

3 .743 .552 .488 69.922 Wall to floor ratio, no. of basements, 

finishes index, services index 

4 .736 .542 .495 69.456 Wall to floor ratio, no. of basements, 

finishes index 

5 .717 .513 .481 70.386 Wall to floor ratio, no. of basements 
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Table 6.20: ANOVA table – EC per GIFA Run 1 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 Regression 170638.783 6 28439.797 5.484 .001 

Residual 134824.924 26 5185.574   

Total 305463.707 32    

2 Regression 170194.758 5 34038.952 6.794 .000 

Residual 135268.949 27 5009.961   

Total 305463.707 32    

3 Regression 168567.844 4 42141.961 8.620 .000 

Residual 136895.863 28 4889.138   

Total 305463.707 32    

4 Regression 165565.268 3 55188.423 11.440 .000 

Residual 139898.439 29 4824.084   

Total 305463.707 32    

5 Regression 156836.038 2 78418.019 15.828 .000 

Residual 148627.669 30 4954.256   

Total 305463.707 32    

 

R2 indicates the percentage change in the dependent variable explained by the 

independent variables in the model. Model summary displays that no much 

improvement is achieved in adjusted R2 when progressing from one step to the 

other and the standard error of estimate also shows little improvement. However, a 

drastic drop from R2 to adjusted R2 is clearly notable in the first four steps while the 

drop in less in the fifth model. 48.1% of the change in the dependent variable is 

explained by wall to floor ratio and number of basements in Model 5 while 48.8% 

and 49.5% of change is explained by services index and finishes index in Model 3 

and Model 4, which is better than Model 5. However, finishes and services indices 

are found to be insignificant in the models (Sig. < 0.05). Therefore, Model 5 is 

considered the best predictive EC per GIFA model for the given sample. VIF of the 

variables in Model 5 is close to 1, which confirms no multicollinearity in the model.  
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Table 6.21: Coefficient of the variables  – EC per GIFA Run 1 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

T Sig. Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) 630.353 119.238  5.286 .000   

Building Height 1.066 3.641 .045 .293 .772 .725 1.380 

Wall to Floor Ratio 144.233 52.570 .391 2.744 .011 .834 1.199 

Circulation Ratio 85.992 154.656 .081 .556 .583 .804 1.244 

Basements 66.591 23.180 .455 2.873 .008 .678 1.476 

Finish Index -69.851 54.920 -.173 -1.272 .215 .915 1.093 

Service Index 8.323 10.930 .107 .761 .453 .864 1.157 

2 (Constant) 629.572 117.173  5.373 .000   

Wall to Floor Ratio 145.089 51.592 .394 2.812 .009 .837 1.195 

Circulation Ratio 86.618 152.000 .081 .570 .573 .804 1.244 

Basements 69.569 20.472 .475 3.398 .002 .839 1.191 

Finish Index -65.985 52.396 -.164 -1.259 .219 .971 1.030 

Service Index 8.952 10.533 .115 .850 .403 .899 1.112 

3 (Constant) 654.169 107.611  6.079 .000   

Wall to Floor Ratio 152.976 49.098 .415 3.116 .004 .901 1.109 

Basements 72.309 19.658 .494 3.678 .001 .888 1.126 

Finish Index -70.524 51.159 -.175 -1.379 .179 .994 1.006 

Service Index 8.065 10.291 .103 .784 .440 .919 1.088 

4 (Constant) 665.044 106.000  6.274 .000   

Wall to Floor Ratio 160.879 47.730 .437 3.371 .002 .941 1.063 

Basements 68.595 18.951 .468 3.620 .001 .943 1.060 

Finish Index -68.249 50.736 -.169 -1.345 .189 .997 1.003 

5 (Constant) 530.620 35.829  14.810 .000   

Wall to Floor Ratio 164.079 48.310 .445 3.396 .002 .943 1.060 

Basements 68.147 19.202 .465 3.549 .001 .943 1.060 

 

One of the assumptions in regression is that the residuals should be 

homoscedastic and not auto correlate.  Figure 6.24 depicts the standardised 

residuals of the regression. Accordingly, histogram displays normality of residuals 

in of the regression, which is satisfactory. Scatterplot of standardised predicted 

values against residuals suggests that there is no significant pattern is noticeable 

and the residuals are randomly distributed.  These diagrams approve the 

assumption of homoscedastic of residuals. The Durbin-Watson test statistics of the 
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model was 1.879 which is greater than dU,α (dU,α, =1.60) indicating no positive 

autocorrelation among the residuals. Similarly, 4-d (4 – 1.879 = 2.121) is also 

greater than dU,α confirms no negative autocorrelation. 

 
Figure 6.24: Scatterplot of standardised predicted value vs. standardised residuals of 

regression – EC per GIFA Run 1 

Figure 6.23: Histogram of standardised residual of the regression – EC per GIFA Run 1 
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Next, the EC model was run to see whether it performs better than the EC per 

GIFA model. The Model summary, analysis of variance and model coefficients 

resulting from each step are presented in Table 6.22, Table 6.23 and Table 6.24 

respectively.  

 

Table 6.22: Model Summary – EC Model Run 1 

Model R R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Independent Variables 

1 .993 .986 .984 .05023 Log of GIFA, building height, no. of 

basements, finishes index, services index 

2 .993 .985 .984 .05039 Log of GIFA, building height, no. of 

basements, services index 

3 .992 .985 .984 .05042 Log of GIFA, no. of basements, services 

index 

4 .992 .984 .983 .05131 Log of GIFA, no. of basements 

 

Table 6.23: ANOVA table – EC Model Run 1 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 Regression 6.199 5 1.240 491.413 .000 

Residual .088 35 .003 
  

Total 6.287 40 
   

2 Regression 6.196 4 1.549 610.113 .000 

Residual .091 36 .003 
  

Total 6.287 40 
   

3 Regression 6.193 3 2.064 812.063 .000 

Residual .094 37 .003 
  

Total 6.287 40 
   

4 Regression 6.187 2 3.093 1175.084 .000 

Residual .100 38 .003 
  

Total 6.287 40 
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Table 6.24: Coefficient of the variables – EC Model Run 1 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -.056 .101  -.555 .582   

Log of GIFA .969 .025 .981 39.369 .000 .646 1.547 

Building 

Height 
.004 .003 .034 1.196 .240 .499 2.006 

Basements .040 .016 .064 2.563 .015 .650 1.538 

Finish Index -.041 .037 -.023 -1.108 .276 .949 1.054 

Service Index .008 .007 .025 1.215 .232 .920 1.087 

2 (Constant) -.130 .075  -1.726 .093   

Log of GIFA .968 .025 .980 39.230 .000 .647 1.546 

Building 

Height 
.003 .003 .029 1.024 .313 .512 1.951 

Basements .041 .015 .066 2.676 .011 .657 1.523 

Service Index .009 .007 .026 1.257 .217 .922 1.085 

3 (Constant) -.159 .070  -2.283 .028   

Log of GIFA .983 .020 .995 48.935 .000 .978 1.022 

Basements .051 .013 .081 3.964 .000 .972 1.029 

Service Index .010 .007 .031 1.534 .134 .974 1.027 

4 (Constant) -.145 .070  -2.060 .046   

Log of GIFA .986 .020 .998 48.444 .000 .987 1.013 

Basements .048 .013 .077 3.739 .001 .987 1.013 

The backward method suggests the best predictive EC regression model in four 

steps. Adjusted R2 of the four models are almost the same and the standard error 

is very similar. However, Mode 1 with all the independent variables has the lowest 

standard error among the four. On the other hand, F statistics is highest in Model 

4. Further, the correlation coefficient of building height finishes and services indices 

are insignificant in the first three models. Therefore, Model 4 was considered as 

the best of all. No multicollinearity was found between independent variables as 

VIF of the independent variables are close to 1. Histogram and scatterplot of the 

standardised residuals of the regression are presented in Figure 6.26 and Figure 

6.25 respectively where residuals follow a normal distribution and do not follow any 

prominent pattern when mapped against standardised predicted value, which 

meets the assumption of homoscedasticity. The Durbin-Watson test statistics of 
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the model was 1.93 which is greater than dU,α (dU,α, =1.60) indicating no positive 

autocorrelation among the residuals. Similarly, 4-d (4 – 1.93 = 2.07) is also greater 

than dU,α confirms no negative autocorrelation. 

 

 

 

  

Figure 6.26: Histogram of standardised residual of the regression – EC Run 1 

Figure 6.25: Scatterplot of standardised predicted value vs. standardised residuals of 

regression – EC Run 1 



 

217 
 

b) Regression models without outliers 

Outliers before and after log transformation were identified as a result of verifying 

the assumptions (See Table 6.25 – numbers indicate the building codes of Dataset 

3, for instance, 8 represents the building code D3008). Same regressions were run 

and the results without outliers are reported here to give the readers better 

understanding about the influence of the outliers in modelling. Since façade area 

shows a strong correlation with GIFA as mentioned before façade area is not used 

as a predictor. Only two data points (D3016 and D3019) were identified as outliers 

in the sample when formulating EC per GIFA model as the predictor variables 

include: building height, wall to floor ratio, circulation ratio, no. of basements, 

finishes index and services index.  Similarly, two data points were identified as 

outliers in EC model (D3003 and D3019). Subsequently, EC per GIFA model and 

EC model were run again after eliminating the identified outliers from the sample 

respectively. 

Table 6.25: Outliers in the data sample before and after log transformation 

Variables Outliers before log 

transformations 

(Building code D30**) 

Outliers after 

log 

transformations 

GIFA 8, 14, 24, 37 3 

Building height 19  

Wall to floor ratio 16  

Façade area 24, 37 3 

Circulation ratio None  

basements None  

EC 8, 14, 37 None 

CC 14, 24, 37 None 

EC per GIFA None  

CC per GIFA 1, 3, 21  
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The backward method produced EC per GIFA model in the fifth step identifying 

wall to floor ratio and no. of basements as the predictors (similar to the EC per 

GIFA model with outliers). Regression summary without the two identified outliers 

is compared against the output with outliers and presented in Table 6.26. It is clear 

from all aspects that the model with outlier outperforms the model without outliers – 

model with outliers has better R2, lower standard error and higher F statistics. 

Hence, the model with outliers is identified as the best predictive EC per GIFA 

model. 

Table 6.26: Comparing regression outputs with and without outliers – EC per GIFA models 

Summary 

Statistics 
Without Outliers With Outliers 

Predictor Variables Wall to floor ratio, 

no. of basements 

Wall to floor ratio, 

no. of basements 

R2 39.8% 51.3% 

Adjusted R2 35.5% 48.1% 

Standard error 72.542 70.386 

Significance  0.001 0.000 

F statistics 9.253 15.828 

Durbin-Watson 1.848 1.879 

VIF 1.004 1.060 

Then, EC model without outliers is compared against EC model with outlier and 

presented in Table 6.27. EC model without outliers predicts EC using three 

variables including the log of GIFA, building height and no. of basements. The 

outputs do not show a drastic difference in the performance of the models. EC 

model without outliers suggests that 98.2% of the change in the dependent 

variable (i.e. EC) is explained by GIFA, building height and no. of basements while 

EC model with outliers suggest that 98.3% of the change in EC is explained by 

only GIFA and no. of basements. Hence, it is helpful to see the detailed statistics 

and correlations of the variables, which are presented in Table 6.28  where all 

three predictor variables have a positive correlation, which is sensible. F statistics 

suggest that model with outlier outperform the model without outlier while standard 

error of the estimate is lower in the model without outliers. Analysis of residuals of 
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the model without outliers (Figure 6.27 and Figure 6.28) also conforms to 

homoscedasticity. Hence, both models have their own merits. However, the p-

value of building height in the model without outliers is greater than the 0.05 

significance level, which flags a problem in the model. Hence, the model with 

outliers was selected over the other.  

Table 6.27: Comparing regression outputs with and without outliers – EC models 

Summary Statistics Without Outliers With Outliers 

Predictor Variables Log of GIFA, 

building, height, no. 

of basements 

Log of GIFA, no. 

of basements 

R2 98.4% 98.4% 

Adjusted R2 98.2% 98.3% 

Standard error 0.04938 0.05131 

Significance  0.000 0.000 

F statistics 540.996 1175.084 

Durbin-Watson 1.917 1.930 

VIF 1.098, 1.533, 1.623 1.013 
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Table 6.28: Coefficient of the variables – EC Model Run 2 – without outliers 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -.021 .120  -.172 .865   

Log of GIFA .945 .031 .968 30.497 .000 .611 1.637 

Building 

Height 
.006 .004 .051 1.490 .149 .533 1.877 

Circulation .089 .105 .022 .843 .408 .902 1.109 

Basements .039 .018 .060 2.227 .036 .835 1.198 

Finish Index -.038 .039 -.026 -.997 .329 .891 1.123 

Service Index .006 .008 .021 .801 .431 .876 1.142 

2 (Constant) .009 .114  .075 .941   

Log of GIFA .940 .030 .962 31.370 .000 .645 1.551 

Building 

Height 
.007 .004 .059 1.845 .077 .590 1.694 

Circulation .080 .104 .020 .767 .450 .913 1.096 

Basements .036 .017 .056 2.121 .044 .874 1.145 

Finish Index -.039 .038 -.027 -1.017 .319 .891 1.122 

3 (Constant) .040 .105  .382 .706   

Log of GIFA .938 .030 .961 31.662 .000 .649 1.541 

Building 

Height 
.007 .004 .061 1.942 .063 .596 1.679 

Basements .039 .017 .060 2.316 .029 .903 1.107 

Finish Index -.044 .037 -.030 -1.183 .247 .921 1.086 

4 (Constant) -.030 .088  -.341 .736   

Log of GIFA .935 .030 .958 31.427 .000 .652 1.533 

Building 

Height 
.006 .004 .055 1.743 .093 .616 1.623 

Basements .040 .017 .062 2.413 .023 .910 1.098 



 

221 
 

 

 
Figure 6.27: Histogram of standardised residual of the regression – EC Run 2 

 

 

 
Figure 6.28: Scatterplot of standardised predicted value vs. standardised residuals of 

regression – EC Run 2 
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6.5.2. Regression Models for Capital Cost Prediction 

Similar to EC models two models were considered to predict CC including CC per 

GIFA model and CC model. Conceptual models are presented below for CC per 

GIFA (see, Equation 6.4) and CC (see, Equation 6.5): 

 

Equation 6.4: CC per GIFA conceptual model 

𝑦3̂ = 𝑐0 + 𝑐1𝑥𝐵𝐻 + 𝑐2𝑥𝑊:𝐹  +   𝑐3𝑥𝐶𝑅 + 𝑐4𝑥𝐵 + 𝑐5𝑥𝐹𝐼 +  𝑐6𝑥𝑆𝐼 

Where, 

𝑦3̂        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑐0      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑐1      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵𝐻  

𝑥𝐵𝐻    − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡  

𝑐2      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑊:𝐹 

𝑥𝑊:𝐹 − 𝑊𝑎𝑙𝑙 𝑡𝑜 𝐹𝑙𝑜𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑐3      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐶𝐴 

𝑥𝐶𝑅   − 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑐4      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐶𝐴 

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑐5      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐹𝐼 

𝑥𝐹𝐼     − 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑐6      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑆𝐼 

𝑥𝑆𝐼      − 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

 
Equation 6.5: CC conceptual model 

𝑦4̂ = 𝑑0 +  𝑑1𝑥𝐺𝐼𝐹𝐴 + 𝑑2𝑥𝐵𝐻 +  𝑑3𝑥𝐹𝐴  +   𝑑4𝑥𝐶𝑅 + 𝑑5𝑥𝐵 +  𝑑6𝑥𝐹𝐼 +  𝑑7𝑥𝑆𝐼 

Where, 

𝑦4̂        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝐶 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑑0      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

𝑑1      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐺𝐼𝐹𝐴  

𝑥𝐺𝐼𝐹𝐴 − 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔   
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𝑑2      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵𝐻  

𝑥𝐵𝐻    − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡  

𝑑3      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐹𝐴 

𝑥𝐹𝐴   − 𝐹𝑎𝑐𝑎𝑑𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑑4      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐶𝐴 

𝑥𝐶𝑅   − 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑑5      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐵 

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑑6      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝐹𝐼 

𝑥𝐹𝐼     − 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑑7      − 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑥𝑆𝐼 

𝑥𝑆𝐼     − 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

In the same way, which EC model was modified to address non-normality and 

collinearity issues after the univariate and bivariate analysis, the CC model was 

also modified by log transformations applied to the values of CC and GIFA to 

conform to normality and eliminating the independent variable faced area to 

eliminate collinearity with GIFA. The modified equation is presented as follows: 
 

Equation 6.6: Modified CC conceptual model 

 �̂�4
′ = 𝑑0 +  𝑑1𝑥𝐺𝐼𝐹𝐴

′  + 𝑑2𝑥𝐵𝐻 +  𝑑5𝑥𝐵  +  𝑑6𝑥𝐹𝐼  +  𝑑7𝑥𝑆𝐼  

Where, 

 �̂�4
′      −  log 𝑦4̂  

𝑥𝐺𝐼𝐹𝐴
′ − log 𝑥𝐺𝐼𝐹𝐴   

 

a) Regression models with outliers  

The backward method produced the best predictive CC per GIFA model in the 

fourth step with three variables – building height, circulation and finishes index. 

Model summary, analysis of variance and model coefficients resulting from each 

step are presented in Table 6.29, Table 6.30 and Table 6.31 respectively.  
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Table 6.29: Model summary – CC per GIFA Run 1 

Model R R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Dependent Variables 

1 .734 .538 .432 234.856 Building height, wall to floor ratio, 

circulation ratio, no. of basements, 

finishes index, services index 

2 .734 .538 .453 230.466 Building height, wall to floor ratio, 

circulation ratio, no. of basements, 

finishes index 

3 .725 .526 .458 229.339 Building height, wall to floor ratio, 

circulation ratio, finishes index 

4 .714 .510 .459 229.052 Building height, circulation ratio, 

finishes index 

 
Table 6.30: ANOVA table – CC per GIFA Run 1 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 Regression 1670984.291 6 278497.382 5.049 .001b 

Residual 1434095.635 26 55157.524   

Total 3105079.926 32    

2 Regression 1670983.637 5 334196.727 6.292 .001c 

Residual 1434096.289 27 53114.677   

Total 3105079.926 32    

3 Regression 1632385.446 4 408096.361 7.759 .000d 

Residual 1472694.481 28 52596.231   

Total 3105079.926 32    

4 Regression 1583605.703 3 527868.568 10.061 .000e 

Residual 1521474.223 29 52464.628   

Total 3105079.926 32    

 
  



 

225 
 

Table 6.31: Coefficient of the variables – CC per GIFA Run 1 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity 

Statistics  

B Std. Error Beta 
Toleranc

e  
VIF 

1 (Constant) 1904.373 388.884  4.897 .000   

Building Height 31.155 11.876 .411 2.623 .014 .725 1.380 

Wall to Floor 

Ratio  
142.454 171.450 .121 .831 .414 .834 1.199 

Circulation 

Ratio 
649.002 504.394 .191 1.287 .210 .804 1.244 

Basements 61.136 75.601 .131 .809 .426 .678 1.476 

Finish Index -622.904 179.115 -.485 -3.478 .002 .915 1.093 

Service Index .123 35.647 .000 .003 .997 .864 1.157 

2 (Constant) 1904.606 375.791  5.068 .000   

Building Height 31.163 11.426 .411 2.727 .011 .754 1.326 

Wall to Floor 

Ratio 
142.584 164.144 .121 .869 .393 .876 1.141 

Circulation 

Ratio 
648.746 489.536 .191 1.325 .196 .822 1.217 

Basements 61.068 71.637 .131 .852 .401 .727 1.376 

Finish Index -622.914 175.744 -.485 -3.544 .001 .915 1.093 

3 (Constant) 1874.696 372.319  5.035 .000   

Building Height 35.153 10.372 .463 3.389 .002 .906 1.104 

Wall to Floor 

Ratio 
156.521 162.529 .133 .963 .344 .885 1.130 

Circulation 

Ratio 
755.073 471.064 .223 1.603 .120 .879 1.138 

Finish Index -629.833 174.698 -.490 -3.605 .001 .917 1.090 

4 (Constant) 1953.529 362.754  5.385 .000   

Building Height 36.739 10.228 .484 3.592 .001 .929 1.076 

Circulation 

Ratio 
881.675 451.782 .260 1.952 .061 .953 1.049 

Finish Index -636.349 174.348 -.495 -3.650 .001 .919 1.089 

The model summary suggests that Model 2, Model 3 and Model 4 have almost 

similar and better R2 than Model 1. However, the drop from R2 to adjusted R2 is 

less in Model 4 compared to other models. Further, the standard error of the 

estimate is also the lowest in Model 4 while not a big difference in standard error is 

noticeable among models. 45.1% of the change in CC per GIFA is explained by 

building height, circulation ratio and finishes index while 48.1% of the change in EC 
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per GIFA was explained by wall to floor ratio and number of basements by the best 

predictive models. However, the correlation coefficient of finishes index was 

negative in Model 4, which is unusual. It can be expected that higher quality of 

finishes will increase CC per GIFA rather than decrease it, hence, a positive 

correlation is anticipated. Therefore, Model 4 seems to have a practical problem 

though it is statistically significant. Subsequently, regression analysis was 

performed again after eliminating finishes index as a predictor and the summary 

statistics are presented in Table 6.32, Table 6.33 and Table 6.34.  The new model 

without finishes index has a lower R2 and F statistics compared to the previous 

model with finishes index, which is not impressive. 

 
Table 6.32: Model Summary - CC per GIFA Run 2 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

Independent Variables 

1 .569 .323 .198 278.965 Building height, wall to floor ratio, circulation 

ratio, no. of basements, services index 

2 .569 .323 .227 273.951 Building height, wall to floor ratio, circulation 

ratio, no. of basements 

3 .554 .307 .235 272.496 Building height, circulation ratio, no. of 

basements 

4 .534 .285 .237 272.053 Building height, circulation ratio 

 
Table 6.33: ANOVA table – CC per GIFA Run 2 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 Regression 1003894.786 5 200778.957 2.580 .049 

Residual 2101185.141 27 77821.672   

Total 3105079.926 32    

2 Regression 1003703.206 4 250925.802 3.343 .023 

Residual 2101376.720 28 75049.169   

Total 3105079.926 32    

3 Regression 951710.335 3 317236.778 4.272 .013 

Residual 2153369.591 29 74254.124   

Total 3105079.926 32    

4 Regression 884692.304 2 442346.152 5.977 .007 

Residual 2220387.622 30 74012.921   

Total 3105079.926 32    
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Table 6.34: Coefficient of the variables – CC per GIFA Run 2 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity 

Statistics  

B Std. Error Beta 
Tolerance  VIF 

1 (Constant) 706.880 214.673  3.293 .003   

Building Height 21.220 13.692 .280 1.550 .133 .769 1.300 

Wall to Floor 

Ratio 
160.085 203.562 .136 .786 .438 .835 1.198 

Circulation Ratio 913.621 592.269 .269 1.543 .135 .823 1.216 

Basements 73.950 89.693 .158 .824 .417 .679 1.472 

Service Index 2.101 42.337 .008 .050 .961 .865 1.157 

2 (Constant) 710.545 197.938  3.590 .001   

Building Height 21.355 13.178 .282 1.621 .116 .801 1.249 

Wall to Floor 

Ratio 
162.308 195.003 .138 .832 .412 .877 1.140 

Circulation Ratio 909.301 575.304 .268 1.581 .125 .841 1.189 

Basements 72.795 85.063 .156 .856 .399 .728 1.373 

3 (Constant) 783.729 176.395  4.443 .000   

Building  Height 22.432 13.044 .296 1.720 .096 .809 1.237 

Circulation Ratio 1029.600 553.896 .303 1.859 .073 .897 1.114 

Basements 79.969 84.176 .171 .950 .350 .736 1.359 

4 (Constant) 734.949 168.482  4.362 .000   

Building Height 27.702 11.787 .365 2.350 .026 .987 1.013 

Circulation Ratio 1188.330 527.237 .350 2.254 .032 .987 1.013 

 

VIF of the variables in Model 4 is close to one (1), which confirms no 

multicollinearity in the model. Histogram and scatterplot of standardised residuals 

of regression are presented in Figure 6.29 and Figure 6.30. Histogram of 

standardised residuals affirms the normality of the residuals while scatterplot 

shows that the residuals do not follow any particular pattern. Hence, the 

assumption of homoscedasticity is met. The Durbin-Watson test statistics of the 

model was 2.091 which is greater than dU,α (dU,α, =1.60) indicating no positive 

autocorrelation among the residuals. Similarly, 4-d (4 – 2.091 = 1.909) is also 

greater than dU,α confirms no negative autocorrelation. 
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Figure 6.30: Scatterplot of standardised predicted value vs. standardised residuals of 

regression – CC per GIFA Run 1 

 

 

Figure 6.29: Histogram of standardised residual of the regression – CC 

per GIFA Run 1 
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Then, regression was run for CC model. The model summary, analysis of variance 

and model coefficients resulting from each step are presented in Table 6.35, Table 

6.36 and Table 6.37. 

. 

Table 6.35: Model Summary – CC Model Run 1 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

Independent Variables 

1 .981 .962 .957 .08782 Log of GIFA, building Height, basements, 

finish Index, service Index 

2 .981 .962 .958 .08664 Log of GIFA, building Height, basements, 

finish Index 

3 .981 .962 .959 .08556 Log of GIFA, building Height, finish Index 

 
Table 6.36: ANOVA table – CC Model Run 1 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 Regression 6.884 5 1.377 178.502 .000 

Residual .270 35 .008   

Total 7.154 40    

2 Regression 6.884 4 1.721 229.250 .000 

Residual .270 36 .008   

Total 7.154 40    

3 Regression 6.883 3 2.294 313.377 .000 

Residual .271 37 .007   

Total 7.154 40    
 

  



 

230 
 

Table 6.37: Coefficient of the variables – CC Model Run 1 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) .398 .176  2.259 .030   

Log of GIFA .980 .043 .929 22.752 .000 .646 1.547 

Building 

Height 
.013 .005 .120 2.585 .014 .499 2.006 

Basements .009 .027 .013 .326 .746 .650 1.538 

Finish Index -.185 .065 -.095 -2.830 .008 .949 1.054 

Service Index .002 .012 .007 .192 .848 .920 1.087 

2 (Constant) .404 .171  2.364 .024   

Log of GIFA .979 .042 .929 23.091 .000 .649 1.542 

Building 

Height 
.014 .005 .122 2.742 .009 .527 1.896 

Basements .008 .026 .011 .294 .771 .687 1.455 

Finish Index -.185 .064 -.096 -2.879 .007 .951 1.052 

3 (Constant) .419 .160  2.619 .013   

Log of GIFA .974 .039 .924 25.289 .000 .766 1.305 

Building 

Height 
.014 .004 .130 3.523 .001 .757 1.320 

Finish Index -.187 .063 -.097 -2.954 .005 .959 1.043 

 

The best predictive CC model is produced in the third step by the backward 

method. The adjusted R2 and the standard error of all three models display no big 

difference though the third model has the highest adjusted R2 and the lowest 

standard error. Further, F statistic is highest in the third model. Even though, the 

correlation coefficients of the independent variables are found to be statistically 

significant in the third model finishes index negatively correlated to the log of CC is 

abnormal, similar to the case explained in the CC per GIFA model. Therefore, 

regression was run again without the finishes index and the results are presented 

in Table 6.38, Table 6.39 and Table 6.40. 

 

. 
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Table 6.38: Model Summary – CC Model Run 2 

Model R R Square Adjusted R 

Square 

Std. Error of 

the Estimate 

Independent Variables 

1 
.977 .954 .948 .09599 

Log of GIFA, building Height, basements, 

service Index 

2 .976 .954 .950 .09479 Log of GIFA, building Height, basements 

3 .976 .953 .951 .09386 Log of GIFA, building Height 

 
Table 6.39: ANOVA table – CC Model Run 2 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 Regression 6.822 4 1.706 185.099 .000 

Residual .332 36 .009   

Total 7.154 40    

2 Regression 6.821 3 2.274 253.069 .000 

Residual .332 37 .009   

Total 7.154 40    

3 Regression 6.819 2 3.410 386.994 .000 

Residual .335 38 .009   

Total 7.154 40    
 

Table 6.40: Coefficient of the variables – CC Model Run 2 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. Collinearity Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) .066 .144  .460 .648   

Log of GIFA .976 .047 .926 20.745 .000 .647 1.546 

Building 

Height 
.011 .006 .099 1.965 .057 .512 1.951 

Basements .016 .030 .025 .556 .582 .657 1.523 

Service Index .004 .013 .011 .282 .780 .922 1.085 

2 (Constant) .074 .139  .537 .594   

Log of GIFA .975 .046 .925 21.028 .000 .649 1.540 

Building 

Height 
.011 .005 .102 2.113 .041 .541 1.848 

Basements .015 .028 .022 .511 .612 .693 1.443 

3 (Constant) .099 .129  .764 .449   

Log of GIFA .965 .042 .916 22.914 .000 .771 1.297 

Building 

Height 
.013 .004 .115 2.883 .006 .771 1.297 
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Run 2 returned the best predictive CC model with two independent variables – log 

of GIFA and building height. The standardised residuals depict a normal 

distribution (see, Figure 6.31) and were randomly distributed (see, Figure 6.32), 

fulfilling the assumption of homoscedasticity. The model also has a VIF statistics of 

1.297, which confirms no multicollinearity between independent variables. The 

Durbin-Watson test statistics of the model was 2.005 which is greater than dU,α 

(dU,α, =1.60) indicating no positive autocorrelation among the residuals. Similarly, 4-

d (4 – 2.005 = 1.995) is also greater than dU,α confirms no negative autocorrelation. 

 
Figure 6.31: Histogram of standardised residual of the regression – CC Run 2 
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Figure 6.32: Scatterplot of standardised predicted value vs. standardised residuals of 

regression – CC Run 1 

 

b) Regression models without outliers  

Five data points (D3001, D3003, D3016, D3019 and D3021) were identified as 

outliers in the sample when formulating CC per GIFA model and two data points 

were identified as outliers in CC model (D3003 and D3019) similar to EC model. 

Subsequently, CC per GIFA and CC models were run again after eliminating the 

identified outliers from the sample respectively. 

The backward method produced CC per GIFA model in the sixth step identifying 

only building height as the predictor while CC per GIFA model with outlier identified 

circulation ratio as another predictor of CC per GIFA. Regression summary with 

and without the outliers are compared and presented in Table 6.41. Model without 

outliers is found to be statistically insignificant (sig > 0.05) which disqualifies the 

model without outliers before comparing with other statistics. Hence, the model 

with outliers was identified as the best predictive CC per GIFA model. 
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Table 6.41: Comparing regression outputs with and without outliers – CC per GIFA models 

Summary Statistics Without Outliers With Outliers 

Predictor Variables Building height Building height, 

circulation ratio 

R2 10.6% 28.5% 

Adjusted R2 7.3% 23.7% 

Standard error 205.099 272.053 

Significance  0.084 0.007 

F statistics 3.209 5.977 

Durbin-Watson 2.027 2.091 

VIF 1.000 1.013 

Then, CC model without outliers was compared against CC model with outlier and 

presented in Table 6.42. CC model without outliers also predicts CC using the 

same two variables log of GIFA and building height.  CC model with outliers 

outperforms CC model without outliers in terms of adjusted R2 and F statistics. 

Hence, CC model with outliers was selected as the best predicting CC model. 

 

Table 6.42: Comparing regression outputs with and without outliers – CC models 

Summary Statistics Without Outliers With Outliers 

Predictor Variables Log of GIFA, 

building, height 

Log of GIFA, 

building, height 

R2 95.2% 95.3% 

Adjusted R2 94.8% 95.1% 

Standard error 0.09192 0.09386 

Significance  0.000 0.000 

F statistics 275.133 386.994 

Durbin-Watson 1.786 2.005 

VIF 1.478 1.297 
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6.5.3. Final Regression Models 

Final EC and CC models were derived from the detailed analysis of models and 

their constructs based on the best available data sample at the time of the 

research. EC and EC per GIFA; CC and CC per GIFA models were formulated and 

the accuracy is tested for all four models to identify the best predictive model in 

each pair.  

a) EC per GIFA Model 

Equation 6.7 presents the best predictive EC per GIFA model derived from Table 

6.21. The model with outliers was selected as it outperforms the model without 

outliers in all aspects including adjusted R2, F statistics and standard error. 

 

Equation 6.7: EC per GIFA model 

𝑦1̂ = 530.62 +  164.08𝑥𝑊:𝐹  +   68.15𝑥𝐵 

Where, 

𝑦1̂        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝑊:𝐹 − 𝑊𝑎𝑙𝑙 𝑡𝑜 𝐹𝑙𝑜𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

The regression analysis suggests that wall to floor ratio and the number of 

basements in the building are the most statistically significant design variables in 

predicting the EC of the building during early stages of design over the other 

design variables. The model explains 48.1% of the variation in EC per GIFA 

accounted by Wall to Floor ratio and the number of basements. The model 

indicates that increase in one unit of wall to floor ratio (say, 0.3 to 1.3) while 

maintaining the number of basements will increase EC per GIFA by 164.08 

kgCO2/m2 and adding a basement will increase EC per GIFA by 68.15 kgCO2/m2 

for a given wall to floor ratio. Both of the coefficients are reasonable as a higher 

wall to floor ratio implies higher façade area and more basements implies more 

material and plant inputs for a given GIFA. In addition, the addition of basements in 
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building design influence the substructure of the building and substructure is 

identified as a predominant carbon hotspot in office buildings. Therefore, the 

significance of basement as a variable in the model can be explained by the fact 

that Substructure is identified as a predominant carbon hotspot. Further, it can be 

noticed that the constant is high compared to other coefficients. This can be 

explained by the descriptive statistics of the sample data as the EC per GIFA 

ranges from 551 kgCO2/m2 to 916 kgCO2/m2. Even the smallest building has an EC 

per GIFA value of 834 kgCO2/m2 GIFA. Therefore, it is clear from the coefficient 

that the minimum EC per GIFA of a building will be more than 530.62 kgCO2/m2 as 

per the results. 

However, it was surprising to find that building height has not been identified as a 

significant predictor as Frame is identified as a predominant building element and 

literature (Luo et al., 2015) also suggest that building height (no. of storeys) and 

EC per GIFA has a strong positive correlation while the relationship found in the 

study was not stronger (0.392 at the 0.05 level) compared to the findings of Luo et 

al. (2015).  It can be articulated that when fitting into the regression model other 

variables (wall to floor ratio and basements) override building height. This may be 

due to the selected sample and with a larger sample different result can be 

expected. 

b) EC Model 

The best predictive EC model derived from the sample data is presented in 

Equation 6.8 derived from Table 6.28. The model with outliers was selected 

because both of the independent variables in the models were statistically 

significant. Further, the adjusted R2 and F statistics were also higher in this model 

than the model without outliers. 

 

Equation 6.8: EC model 

 �̂�2
′ =  −0.145 + 0.986𝑥𝐺𝐼𝐹𝐴

′  +   0.048𝑥𝐵 

Where, 
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�̂�2
′        − log �̂�2  

�̂�2        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝐶 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑥𝐺𝐼𝐹𝐴
′  −  log 𝑥𝐺𝐼𝐹𝐴 

𝑥𝐺𝐼𝐹𝐴  − 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝐵       − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔   

EC model identifies GIFA and number of basements as the most statistically 

significant design variables to predict EC for early stages building designs. The 

model explains 98.3% of the variation in EC accounted by GIFA and number of 

basements. EC is highly influenced by GIFA than any other variables because as 

the building becomes bigger the EC content will also become higher due to more 

material and plant inputs. However, the model, does not predict the estimated EC 

of buildings but the log of estimated EC. Therefore, the model prediction has to be 

converted to get the estimated EC of the building (See, Table 6.43). Accordingly, 

one unit increase in Log of GIFA (given the no. of basements) will increase EC by 

9.683 tCO2. Similarly, adding another basement (given the GIFA) will increase EC 

by 1.10 tCO2. 

Table 6.43: Transforming Log of EC to EC  

Predictor Variables Increase in 
Log EC 

Increase in 
EC (tCO2) 

Log GIFA 0.986 9.68278 

Basements (No) 0.048 1.11686 

 

c) CC per GIFA Model 

Equation 6.9 presents the best predictive CC per GIFA model derived from Table 

6.34. The model with outliers was selected as it outperforms the model without 

outliers in terms of R2 and F statistics even though the standard error was higher. 

Equation 6.9: CC per GIFA model 

𝑦3̂ = 734.95 +  27.7𝑥𝐵𝐻  +  1188.33𝑥𝐶𝑅 

Where, 

𝑦3̂       − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  
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Proposed CC per GIFA model identifies building height and circulation ratio as the 

statistically significant predictors over the others. The model explains 23.7% of the 

variation in CC per GIFA accounted by building height and circulation ratio, which 

indicates a poor fit of the model. The model suggests that increase in one unit of 

building height (say, 10m to 11m) will increase CC per GIFA by £27.2/m2 for a 

given circulation ratio and increasing circulation area by 1% for a given building 

height will increase CC per GIFA by £11.88/m2. Both coefficients are sensible as 

taller buildings generally have higher CC per GIFA due to plants involved in 

hoisting materials and operations and higher circulation ratio increases services 

cost resulting in higher CC per GIFA. Services are the most cost significant 

building element in office buildings contributing up to 40% of the CC. Hence, it 

makes sense when circulation ratio is identified as a significant predictor as more 

circulation space increases Services cost. Phaobunjong (2002) also found a 

negative correlation coefficient for usable space ratio (usable space/GIFA) in his 

parametric cost model, which implies lower usable space (higher circulation space) 

increase Services cost which supports the study findings. Further, the constant is 

734.95, which implies the minimum CC per GIFA of a building will be more than 

£734.95 /m2. This can be explained by the descriptive statistics of the sample data 

as the EC per GIFA ranges from £698/m2 to £2,285/m2. 

d) CC Model 

The best predictive CC model derived from the sample data is presented in 

Equation 6.10 derived from Table 6.40. The model with outliers was selected as it 

outperforms the model without outliers similar to CC per GIFA model in terms of R2 

and F statistics even though the standard error was higher. 

Equation 6.10: CC model 

�̂�4
′ =  −0.099 + 0.965𝑥𝐺𝐼𝐹𝐴

′  +   0.013𝑥𝐵𝐻 

Where, 

�̂�4
′        − log �̂�4  

�̂�4        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝐶 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 
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The proposed CC model suggests that GIFA and building height are the 

statistically significant design variables that predict CC during early stages of 

design while EC model identified the number of basements as a significant design 

variable in addition to GIFA and building height in predicting EC. The model 

explains 95.1% of the variation in CC accounted by GIFA and building height. 

Similar to EC model, CC model also predicts log of estimated CC. Therefore, the 

model prediction has to be converted to get the estimated CC of the building (see, 

Table 6.44). As per the model, one unit increase in Log of GIFA (given the building 

height) will increase CC by £9226. Similarly, increase in one unit of building height 

(given the GIFA) will increase CC by £1030. 

Table 6.44: Transforming Log of CC to CC  

Predictor Variables Increase 
in Log CC 

Increase in 
CC (£1000s) 

Log GIFA 0.965 9.22571 

Building Height (m) 0.013 1.03039 

6.5.4. Assumptions in the multiple regression analysis 

The outcomes of the multiple regression analysis rely on five assumptions 

(Statistics Solutions, 2016, Miles and Shevlin, 2001) as discussed in Subsection 

4.9.3 (f) and how the models comply with these assumptions are discussed herein.  

a) Assumption 1 - Normality of data 

The dependent variables of the four models include EC per GIFA, Log of EC, CC 

per GIFA and Log of CC. The histograms, boxplots and descriptive statistics 

confirm that the variables are normally distributed as discussed in Section 6.4.2 

and 6.4.4.  

b) Assumption 2 - Linear relationship between dependent and independent 

variables 

This assumption is met if the residuals in the standardised residual plots are 

randomly distributed which is satisfied by all the four models. 
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c) Assumption 3 - No multicollinearity between independent variables 

VIF values of the models were less than 5 in all the cases, which assure no 

multicollinearity between the independent variables in the model.  

d) Assumption 4 - Residuals are homoscedastic 

Histograms and scatterplots for standardised residuals of the regressions for the 

models confirm that the residuals are homoscedastic (randomly distributed) and do 

not demonstrate any significant patterns. 

e) Assumption 5 - Residuals are not autocorrelated 

Durbin-Watson score was used to test this assumption and all four models satisfied 

this assumption. The summary of Durbin-Watson score is presented in Table 6.45. 

 

Table 6.45: Summary of Durbin-Watson statistics of the models 

Model Durbin-Watson 

Score (d) 

dU,α, d > dU,α, (4-d > dU,α,) 

EC per GIFA 1.879 1.60 Yes 

EC 1.930 1.60 Yes 

CC per GIFA 2.091 1.60 Yes 

CC 2.005 1.60 Yes 

 

6.6. Embodied Carbon and Capital Cost Relationships 

Summary of the predictor variables of all four models is presented in Table 6.46. 

Accordingly, EC and CC models have the same set of the predictor variables 

(GIFA and building height) except for the number of basements in EC model. The 

number of basements has been identified as a significant design variable in EC 

model because Substructure was found to be a predominant carbon significant 

building element. On the other hand, EC per GIFA and CC per GIFA models have 

two distinct predictor variables. Even though the variables are distinctive some of 
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the variables are interrelated. For instance, Wall to Floor ratio implicitly captures 

building height. Subsequently, it was decided to study the relationship between EC 

and CC due to the similarities found in the model predictors and the carbon and 

cost hotspots.  

Pearson’s correlation was calculated to identify the relationship between EC and 

CC (see, Table 6.47), and EC per GIFA and CC per GIFA (see, Table 6.48) as it 

can be expected that correlation between EC and CC is caused by a common third 

factor which is GIFA in this case. A very strong positive correlation was found 

between CC and EC as expected (0.977). On the other hand, EC per GIFA and CC 

per GIFA was also found to be strongly correlated with a correlation coefficient of 

0.645. 

Table 6.46: Summary of dependent and independent variables of the models 

Dependent variable Independent variables 

EC per GIFA Wall to floor ratio, no. of basements 

CC per GIFA Building height, circulation ratio 

EC  GIFA, building height, no. of basements 

CC GIFA, building height 

 

Table 6.47: Correlation between CC and EC 

 CC 

EC Pearson Correlation .977 

Sig. (2-tailed) .000 

N 41 

 

Table 6.48: Correlation between CC per GIFA and EC per GIFA 

 CC per GIFA 

EC per GIFA Pearson Correlation .645 

Sig. (2-tailed) .000 

N 41 
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Further, the data points were also mapped in a scatterplot to study the relationship 

in detail. CC and EC relationship and CC per GIFA and EC per GIFA relationship 

are presented in Figure 6.33 and Figure 6.34 respectively. Accordingly, CC and EC 

showcase a perfect linear correlation and there are only a few data points 

scattered from a straight line while the graph of CC per GIFA and EC per GIFA is 

not perfectly linear and many data points are scattered. However, a strong positive 

linear relationship is noticeable. EC and CC relationships suggest that both EC and 

CC tend to move in the same direction. 

 

Figure 6.33: Scatterplot of CC and EC 
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Figure 6.34: Scatterplot of CC per GIFA and EC per GIFA 

 

Nevertheless, it is important to analyse at an elemental level to understand the 

intricacies of the relationships. There is a lack of reported study especially on the 

relationship between EC per GIFA and CC per GIFA. Consequently, EC per GIFA 

and CC per GIFA of the building elements were analysed and presented in Figure 

6.35. Accordingly, both EC per GIFA and CC per GIFA follows a similar pattern 

across the elements expect for Substructure, Frame and Upper Floors where the 

EC per GIFA exceed the CC per GIFA values. This explains the fact that 

Substructure, Frame and Upper Floors being identified as lead carbon hotspots in 

the sample. Even though Services was identified as the second most carbon 

significant element, CC per GIFA of Services was extremely higher than the EC 

per GIFA of Services, which is apparent in Figure 6.35. 
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Figure 6.35: Comparing the EC per GIFA and the CC per GIFA of the building elements of the 

sample 

Table 6.49 presents the descriptive statistics of EC per GIFA and CC per GIFA. In 

terms of EC per GIFA, Substructure, Upper Floors, Floor Finishes, Ceiling Finishes 

and Services have lower standard deviation, which implies that 68% of the data are 

closely clustered around the meanwhile EC per GIFA of Stairs, Windows and 

External Doors, Internal Walls and Partitions and Wall Finishes demonstrate high 

dispersion of data. On the other hand, CC per GIFA values of Roof and Services 

have a lower standard deviation (close to the means) while Stairs, External 

Windows and Doors, Internal Walls and Partitions, Wall Finishes and Fittings, 

Furnishings and Equipment demonstrate high standard deviation (high dispersion 

from the means).  
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Table 6.49: Descriptive statistics of EC per GIFA and CC per GIFA of the sample 

Building Element EC per GIFA (kgCO2/m2) CC per GIFA (£/m2) 

Average Standard 
Deviation 

Minimum Maximum Average Standard 
Deviation 

Minimum Maximum 

1 Substructure 161.15 57.54 54.04 329.00 89.10 43.00 38.00 222.00 

2A Frame 100.21 50.99 21.29 230.36 102.02 53.21 18.00 277.00 

2B Upper Floors 68.84 25.16 8.14 131.10 56.90 29.86 2.00 125.00 

2C Roof 42.81 21.57 14.66 113.76 91.41 36.26 24.00 163.00 

2D Stairs 7.59 7.44 0.00 45.99 26.73 18.06 0.00 77.00 

2E External Walls 59.80 25.76 13.62 120.64 159.12 104.73 46.00 506.00 
2F Windows and External 
Doors 15.97 11.44 0.00 53.92 93.63 61.74 0.00 281.00 
2G Internal Walls and 
Partitions 24.04 33.58 2.31 176.40 39.32 31.52 2.00 149.00 

2H Internal Doors 1.37 0.89 0.23 4.00 30.51 22.44 6.00 118.00 

3A Wall Finishes 9.36 15.50 2.21 103.71 34.24 21.42 11.00 111.00 

3B Floor Finishes 25.89 9.13 7.18 38.92 74.90 28.92 15.00 148.00 

3C Ceiling Finishes 19.40 5.29 3.98 26.03 36.39 14.77 9.00 75.00 

4 Fittings and Furnishings 0.86 0.00 0.86 0.86 28.31 37.22 0.87 218.00 

5 Services 145.09 19.38 92.67 177.69 418.93 144.77 164.00 864.00 
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Table 6.50: Element level analysis of EC and CC relationships 

Element Pearson’s 

Correlation between 

EC per GIFA and CC 

per GIFA 

P - value No. of 

observations 

Substructure  0.639 0.000 41 

Frame 0.707 0.000 41 

Upper Floors 0.816 0.000 41 

Roof -0.068 0.672 41 

External Walls 0.741 0.000 41 

Stairs 0.086 0.592 41 

External Windows and 

Doors 

0.442 0.004 41 

Internal Walls and 

Partitions 

0.872 0.000 41 

Internal Doors 0.769 0.000 41 

Wall Finishes 0.288 0.067 41 

Floor Finishes 0.457 0.003 41 

Ceiling Finishes 0.015 0.927 41 

Fittings, Furnishings and 

Equipment 

- - - 

Services 0.277 0.080 41 

 

The relationships between the EC per GIFA and CC per GIFA were also analysed 

to get insights into elemental relationships. Pearson’s correlation coefficients 

between EC per GIFA and CC per GIFA were calculated and presented in Table 

6.50. Accordingly, most of the elements demonstrated a statistically significant (at 

99% confidence) positive correlation between EC per GIFA and CC per GIFA 

except for Roof, Wall Finishes, Ceiling Finishes and Services. Especially, EC per 

GIFA and CC per GIFA were very strongly correlated (> 0.80) in Upper Floors and 

Internal Walls and Partitions and strongly correlated (between 0.60 and 0.79) in 

Substructure, Frame, External Walls, and Internal Doors. The correlation was 
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moderate (between 0.40 and 0.59) in External Windows and Doors and Floor 

Finishes. Further, no correlation was found between EC per GIFA and CC per 

GIFA of Fittings, Furnishings and Equipment due to the use of an average EC per 

GIFA value. The elemental analysis suggests that not only there is a relationship 

between EC and CC at building level but also in elemental level. 

6.7. Summary 

Carbon and cost analysis was undertaken to identify the most carbon and cost 

significant building elements in office buildings and to select the most cost and 

carbon influential design variables in light of achieving the third objective. 

Substructure, Services, Frame, Upper Floors, External Walls and Roof were 

identified as the most carbon significant building elements. On the other hand, it 

was noticed that the same building elements are accountable for 72% of the CC. 

Alongside, 80:20 Pareto ratio was also verified which was not supported in the 

case of EC but the findings propose a ratio of 80:43, which implies that 43% of 

building elements are responsible for 80% of EC emissions. Services, External 

Walls, Frame, External Windows and Doors, Roof, Substructure, and Floor 

Finishes were identified as the most cost significant building elements and these 

elements are identified to be accountable for 80% of the CC of the buildings on 

average. Further, the cost hotspot analysis proposed a ratio of 80:50.  

In addition, building elements were categorised into three types namely: ‘Lead 

Positions’, ‘Special Positions’ and ‘Remainder Positions’. Lead positions are the 

building elements which were identified as carbon/cost hotspot in most of the 

buildings (>80%) in the samples and Frame, External Walls and Services were 

identified as lead carbon and cost hotspots. Remainder positions are the building 

elements that were seldom identified as hotspots and Stairs, Internal Doors and 

Fittings, Furnishing and Equipment were identified as remainder carbon hotspots. 

Wall, Floor and Ceiling Finishes were identified as special carbon and cost hotspot, 

which are building elements that are identified as hotspots in some of the buildings 

in the sample (0-80%, both numbers exclusive). Based on the hotspot analysis, 
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cost and carbon significant elements were captured which are ‘Lead’ and ‘Special’ 

positions, and the design variables affecting those elements were identified.  

Finishes and services quality indices were decided to be developed to represent 

the quality level of the building in the model after finishes and services being 

identified as cost and carbon significant building elements.  Finishes index was 

developed from a conceptual finishes index developed for the study which had 

three levels including basic, Moderate and Luxury for  wall, floor and ceiling 

finishes. The conceptual finishes index was content verified through a Delphi-

based expert forum consisting of five experts in two rounds. The conceptual 

finishes index was improved by the experts’ inputs and the final finishes index for 

the study was derived. On the other hand, services index was developed from 

Spon’s Mechanical and Electrical Services price book to suit the study data. 

Consequently, finishes quality and services quality of each building in the sample 

was denoted in accordance with the developed finishes and services indices. 

However, for the finishes quality of the building, the overall finishes quality index of 

each building was calculated from individual wall, floor and ceiling finishes indices 

using weighted average method based on the area finished. 

Bivariate analysis was performed to find correlations between EC and design 

variables and CC and design variables to achieve the fourth objective. Statistically 

significant (α=0.05) relationships were found between EC and certain design 

variables including GIFA, Building Height and Faced Area. These correlation 

coefficients also remain significant at 0.01 significance level. Very similar results 

were obtained for CC, which makes it comparable. On the other hand, EC per 

GIFA correlate with Wall to Floor ratio and Circulation Ratio. The correlations 

between EC per GIFA and Wall to Floor Ratio was also significant at 0.01 

significance level. CC per GIFA correlate with Building Height, Wall to Floor ratio 

and Circulation Ratio at 0.05 significance level. However, the correlations were not 

significant at 0.01 significance level. 

Further, non-normal distributions, outliers and non-linear relationships in the data 

were identified from the univariate and the bivariate analyses of the variables. 

GIFA, EC and CC were found to be positively skewed and the need for data 
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transformation was realised. Hence, log transformation was applied to GIFA, EC 

and CC. Further, collinearity between GIFA and façade area caused the 

elimination of façade area as a predictor variable in the models. Also, statistically 

significant linear relationship was not found between circulation space and EC and 

CC, hence, circulation space was eliminated from being a predictor in the models. 

Consequently, regressions were run for EC, EC per GIFA, CC and CC per GIFA, 

which were the dependent variables of the four different models. Regressions were 

performed in two rounds for each type with and without outliers to compare the 

results. Except for the EC model, all models with outliers outperformed the models 

without outliers. EC and CC models demonstrated much better coefficients of 

determination (R2) or better model fit compared to EC per GIFA and CC per GIFA 

models. In addition, the models were tested against all the regression assumptions 

to ensure that no major violation of assumptions had occurred, as the regression 

outcomes are sensitive to the assumptions. Accordingly, all models satisfied the 

regression assumptions. In this way, the sixth objective of formulating models was 

achieved. 

Pearson’s correlation was calculated and analysed between EC and CC at building 

level and elemental level in order to achieve the fifth objective. Pearson’s 

correlation between EC and CC found to be 0.977 (p-value = 0.000) which was 

expected to have caused by a third variable GIFA, hence, EC and CC were 

normalised for GIFA. EC per GIFA and CC per GIFA also demonstrated a strong 

positive correlation of 0.645 (p-value = 0.000) which implies that both EC and CC 

can be reduced at the same time. However, to investigate at a deeper level, EC 

per GIFA and CC per GIFA of individual elements were also analysed. Results 

suggested that most of the elements display a strong positive correlation between 

EC per GIFA and CC per GIFA, which implies that there is a strong relationship 

between EC and CC at both building and element levels. 
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7. Model Validation 

7.1. Introduction  

The validation of models is an important step in any model development. The 

model validation ensures that the model is a reasonable representation of the 

actual system with sufficient fidelity. In the research context, model validation 

implies the examination of the model fitness and the prediction performance of the 

models. The model validation process is illustrated in Figure 7.1. As introduced in 

the methodology chapter, R2 and CV were used to assess models’ fit and 

prediction accuracy respectively. Accordingly, all four selected models (EC per 

GIFA, EC, CC per GIFA, CC) listed below, were assessed based on the two 

metrics mentioned above.  

 EC per GIFA Model: 𝑦1̂ = 530.62 +  164.08𝑥𝑊:𝐹  +   68.15𝑥𝐵 

 EC Model:�̂�2
′̂ = 530.62 +  164.08𝑥𝑊:𝐹  +   68.15𝑥𝐵 

 CC per GIFA Model: 𝑦3̂ = 734.95 +  27.7𝑥𝐵𝐻  +   1188.33𝑥𝐶𝑅  

 CC Model: �̂�4
′ =  −0.099 + 0.965𝑥𝐺𝐼𝐹𝐴

′  +   0.013𝑥𝐵𝐻  

The R2 reveals the percentage change in the dependent variable explained by the 

model (independent variables). Hence, higher R2 implies lower uncertainty in the 

prediction. On the other hand, CV gives an estimation of the average deviation in 

the model predictions from observed values. Hence, higher CV implies higher 

uncertainty in the prediction. Therefore, a model with high R2 and low CV is 

desirable. In this context, there is no established cut-off point for R2 value, 

however, past research report R2 ranging from 26.1% (Phaobunjong, 2002) to 

99.8% (Kouskoulas and Koehn, 2005). Conversely, CV is expected to be less than 

20% for early design stage estimating models as discussed in the methodology 

chapter (see, Section 5.8.4).  
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Figure 7.1: Model validation process  

 

Internal validity is achieved when the model accurately captures causal relationship 

between variables while external validity is achieved when the study findings can 

be generalised to other similar settings (Saunders et al., 2009). Accordingly, 

internal validity was ensured by testing the prediction accuracy of the models for 

Dataset 3 which was used to develop the model. A good model prediction for 

internal data (data used to develop the model) suggests that the causal 

relationship between variables have been captured accurately. Similarly, external 

validity was ensured by testing the prediction accuracy of the models for Dataset 1, 

where an acceptable prediction accuracy affirms the generalisability of the models 

for data outside the model.  

Further, the models were compared in pairs (EC per GIFA against EC Model and 

CC per GIFA against CC Model) and the better model from each pair was identified 

based on R2 and CV for internal and external data. Additionally, the model 

performance in different storey clusters were analysed to identify the best 

predictive zone for the models. 
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7.2. Model Validation Dataset 

The model validation data includes two datasets: internal and external data to 

validate the models internally and externally. Internal validation ensures effective 

model building while external validation displays the applicability of the developed 

models to real world problems.  

7.2.1. Dataset for Internal Validation 

Dataset 3, which was used to develop the models, was used for internal validation. 

Data comprising Dataset 3 are presented in Table 7.1. Further, the data were 

clustered into three groups such as 1-2 storeys, 3-5 storeys and more than 6 

storeys to study the model performance in different input ranges. The adopted 

clustering of building data was inspired by the classification used in BCIS (see, 

BCIS average price analysis available at RICS (2016)). 
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Table 7.1: Data for internal validation (Dataset 3) 

Building 

Code 

GIFA 

(m2) 

No. of 

Storeys 

Building 

Height 

Wall 

to 

Floor 

ratio 

Circulation 

Space 

Ratio 

No. of 

Basements 

CC (in 

£1000s) 

EC (in 

tCO2) 

CC per 

GIFA 

(£/m2) 

EC per 

GIFA 

(kgCO2/m2) 

 
1-2 Stories 
D3022  692  1 2.8 0.42 0.33 0  925   410   1,337   592  
D3002  928  2 6.7 0.44 0.13 1  1,037   683   1,118   735  
D3005  1,028  2 5.5 0.85 0.18 0  1,182   779   1,150   758  
D3006  9,007  2 7.2 0.24 0.26 0  11,859   6,309   1,317   700  
D3007  1,930  2 6.5 0.84 0.09 1  1,980   1,444   1,026   748  
D3011  1,534  2 6.7 0.65 0.16 0  1,632   864   1,064   563  
D3012  1,756  2 6.7 0.61 0.14 0  1,737   974   989   555  
D3013  2,432  2 6.7 0.58 0.16 0  2,614   1,340   1,075   551  
D3017  1,323  2 5.7 0.64 0.21 1  924   774   698   585  
D3018  2,325  2 6.5 0.45 0.28 1  3,217   1,607   1,384   691  
D3023  1,026  2 6.2 0.77 - 1  1,377   748   1,343   730  
D3025  3,592  2 6.2 0.43 0.40 0  2,992   2,191   833   610  
D3027  1,266  2 7.9 1.02 0.17 0  1,929   933   1,523   737  
D3029  1,835  2 6.4 0.62 - 0  2,275   1,152   1,240   628  
D3030  1,376  2 6.4 0.58 - 0  1,448   798   1,052   580  
D3031  1,685  2 6.4 0.56 - 0  1,710   970   1,015   576  
D3034  473  2 6.3 1.20 0.32 0  612   384   1,293   811  
D3038  3,080  2 7.8 0.95 0.33 0  3,279   1,885   1,065   612  
           
3-5 Stories 
D3004  2,412  3 9.9 0.78 0.28 1  2,697   1,499   1,118   621  
D3001  3,987  3 10.7 0.84 - 0  8,966   2,921   2,249   733  
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Building 

Code 

GIFA 

(m2) 

No. of 

Storeys 

Building 

Height 

Wall 

to 

Floor 

ratio 

Circulation 

Space 

Ratio 

No. of 

Basements 

CC (in 

£1000s) 

EC (in 

tCO2) 

CC per 

GIFA 

(£/m2) 

EC per 

GIFA 

(kgCO2/m2) 

D3008  9,653  3 8.8 0.52 - 0  13,296   7,933   1,377   822  
D3009  1,136  3 10.3 0.81 - 0  1,503   797   1,323   702  
D3010  1,896  3 11.0 0.85 0.25 1  1,904   1,427   1,004   753  
D3014 10,400  3 10.9 0.37 0.30 1  17,807   7,583   1,712   729  
D3015  2,926  3 9.3 0.65 - 0  3,179   1,694   1,086   579  
D3020  5,900  3 9.4 0.70 0.32 1  7,760   3,795   1,315   643  
D3021  2,510  3 9.9 1.11 0.26 1  5,734   2,299   2,285   916  
D3026  1,753  3 11.9 0.86 0.17 1  2,238   1,241   1,277   708  
D3028  2,556  3 11.9 0.85 0.17 1  3,006   1,607   1,176   629  
D3032  5,687  3 13.2 0.70 0.17 0  5,998   3,433   1,055   604  
D3033  6,885  3 12.2 0.66 0.17 0  8,513   4,275   1,236   621  
D3035  6,643  3 12.2 0.47 0.14 0  8,577   4,338   1,291   653  
D3036  4,538  3 11.9 0.53 0.17 0  5,790   3,000   1,276   661  
D3037 14,652  3 12.0 0.46 0.14 0  17,928   9,383   1,224   640  
D3039  3,887  3 12.2 0.62 0.16 0  4,671   2,350   1,202   605  
D3041  718  3 11.0 1.02 0.34 0  990   578   1,379   805  
D3003  212  4 10.8 0.70 0.38 2  392   177   1,851   834  
D3024  9,900  4 14.0 0.66 0.25 0  15,138   5,845   1,529   590  
D3040  1,545  4 10.0 0.87 0.34 0  2,255   965   1,459   625  
D3016  3,797  5 16.9 1.50 0.46 2  6,758   3,397   1,780   895  
           
6+ Stories 
D3019  8,444  6 25.2 0.62 0.28 2  13,695   6,720   1,622   796  
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7.2.2. Dataset for External Validation 

External validation is crucial to ensure the model can predict the CC and EC of 

new building designs at an acceptable accuracy range. Building data from Dataset 

1 were used to validate the model. However, Dataset 1 underwent an initial 

screening process to identify inadequacies in the data, which is listed in Table 7.2. 

The dataset for external validation after eliminating inadequate data is presented in 

Table 7.3. The cost of the buildings has a base price index of the second quarter of 

2010 and a location index of 1.0. 

Table 7.2: Screening of Dataset 1 

Building 

Code 

No. of 

Storeys 

Adequate/ 

Inadequate 

Comments 

D1001 18 Inadequate Errors in measurements were detected. 

D1002 8 Adequate Out of the scope of the model prediction 

(>6 storeys). 

D1003 3 Adequate Out of the scope of the model prediction 

(>6 storeys). 

D1004 7 Adequate Out of the scope of the model prediction 

(>6 storeys). 

D1005 16 Inadequate Out of the scope of the model prediction 

(>6 storeys). 

D1006 4 Adequate Errors in measurements were detected and 

hence, the cost and carbon values were 

identified as anomalies. 

D1007 10 Adequate Out of the scope of the model prediction 

(>6 storeys). 

D1008 4 Adequate Within the scope of the model prediction. 

D1009 3 Adequate Within  the scope of the model prediction. 

D1010 3 Adequate Within  the scope of the model prediction. 

D1011 13 Adequate Out of the scope of the model prediction 

(>6 storeys). 

D1012 12 Adequate Out of the scope of the model prediction.  

(>6 storeys). 

D1013 4 Adequate Within  the scope of the model prediction. 
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Table 7.3: External validation dataset from Dataset 1 

Building 

Code 

GIFA 

(m2) 

No. of 

Storeys 

Building 

Height 

Wall 

to 

Floor 

ratio 

Circulation 

Space 

Ratio 

No. of 

Basements 

CC (in 

£1000s) 

EC (in 

tCO2) 

CC per 

GIFA 

(£/m2) 

EC per 

GIFA 

(kgCO2/m2) 

1-2 Stories 
           

None           
           

3-5 Stories 
           
D1003  2,859  3 6.5  0.64   0.27  1  2,085   1,693  729  592 
D1009  3,262  3 10.7  0.49   0.20  0 2,055  1,577  630 483 
D1010  4,959  3 11.5  0.48   0.26  0 4,452 2,944  898 594 
D1008  3,289  4 14.1  0.66   0.35  0 2,465  1,788  716 519 
D1013  2,374  4 10.8  0.61   0.42  1 1,311  1,102  552 464 
           
6+ Stories 
           
D1004 15,120 7 27.5 0.31 0.35 2 10,147 8,826 671 584 
D1002 11,320 8 29.7 0.30 0.34 2 6,416 6,799 567 601 
D1007 22,288 10 40.0 0.43 0.18 0 14,455 13,256 649 595 
D1012 21,300 12 48.0 0.37 0.25 1 13,088 9,945 614 467 
D1011 21,300 13 56.0 0.40 0.28 1 15,921 13,252 747 622 
D1005 63,246 16 63.4 0.31 0.39 2 61,082 46,977 966 743 
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Later, the remaining data were clustered into three groups as discussed before. 

The entire screening and clustering process is presented in Figure 7.2. 

 

Figure 7.2: Screening and clustering of Dataset 1 for external validation 

In addition to the above preparation, another issue in Dataset 1 needed to be 

addressed. As discussed in the data collection chapter (see, Section 6.5.1), 

estimates of Dataset 1 excludes Fittings, Furnishing and Equipment and Services 

due to lack of detailed measurements. However, the model will predict embodied 

carbon and capital cost including Fittings, Furnishing and Equipment and Services. 

Hence, one of the two adjustment options mentioned below needed to be applied: 

1. Adjust the data to include Fittings, Furnishing and Equipment and Services 

embodied carbon (OR capital cost) in their estimates and compare with 

model predictions. 

OR 

2. Adjust the model prediction by subtracting Fittings, Furnishing and 

Equipment and Services embodied carbon (OR capital cost) from the 

prediction and compare with the estimates. 

Data clustering
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Option 1 was selected over Option 2 because deducting embodied carbon (OR 

capital cost) of Fittings, Furnishing and Equipment and Services from the estimates 

will leave out the error term of embodied carbon (OR capital cost) of Fittings, 

Furnishing and Equipment and Services in the prediction, leading to higher 

deviation or lower accuracy in prediction (see, Figure 7.3). Further, in both the 

cases the estimated residual will remain the same and the observed values (the 

estimates of Dataset 1) will be higher in option 1 than in the option 2. Hence, the 

first adjustment (adjustment to Dataset 1) will lead to lower deviation as the 

deviation is calculated as a percentage of the observed value. Therefore, the 

Option 1 of the adjustment was selected to maintain the deviation at a lower 

percentage. Consequently, benchmark values for capital cost and embodied 

carbon of Fittings, Furnishing and Equipment and Services were surveyed and 

both cost and EC were treated individually. The steps followed in arriving at cost 

benchmarks is discussed first, followed by the development of embodied carbon 

benchmarks. 

Figure 7.3: The effect of applying Option 2 of the adjustment 
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Accordingly, benchmarks for Fittings, Furnishing and Equipment and Services CC 

were obtained from two data sources including Spon’s Mechanical and Electrical 

Services Price book 2014 (Davis Langdon Consultancy, 2014) and BCIS average 

prices (RICS, 2016). Cost benchmarks obtained from BCIS is presented in Table 

7.4 and the cost benchmarks for services obtained from Spon’s price book are 

presented in Table 7.5. As can be seen from Table 7.4, cost benchmarks for 

services are given based on the number of storeys while the difference in quality 

levels of services is not reflected in the benchmarks. In addition, the sample used 

in arriving at the benchmarks for buildings over six (6) storeys is considerably 

small. Therefore, cost benchmarks for services obtained from BCIS was 

disregarded and the cost benchmarks available in Spon’s mechanical and 

electrical services price book 2014 (Davis Langdon Consultancy, 2014) were used 

to adjust Dataset 1 due to the fact that the quality index adopted in the study was 

developed from the classification followed in Spon’s price book (see, Section 

6.3.2).  
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Table 7.4: Cost benchmarks obtained from BCIS  

Type of building Element  Category Mean 

(£/m2 

GIFA) 

Standard 

deviation 

Sample 

size 

Air-conditioned 

offices 

  

  

  

  

  

  

  

Fittings and 

Furnishings 

  

  

  

Generally 26 53 45 

1-2 storey 19 14 14 

3-5 storey 18 14 23 

6+ storey 64 131 7 

Services 

  

  

  

Generally 398 143 50 

1-2 storey 331 157 17 

3-5 storey 425 133 25 

6+ storey 450 94 7 

Non air-

conditioned offices 

  

  

  

  

  

  

  

Fittings and 

Furnishings 

  

  

  

Generally 22 28 68 

1-2 storey 27 36 36 

3-5 storey 17 15 29 

6+ storey 17 13  4 

Services 

  

  

  

Generally 344 168 70 

1-2 storey 315 147 37 

3-5 storey 360 186 30 

6+ storey 573 76  4 

 

Table 7.5: Cost benchmarks obtained from Spon’s price book 

Quality level of services 
Minimum 
(£/m2 GIFA) 

Maximum 
(£/m2 GIFA) 

Average 
(£/m2 GIFA) 

Services without BMS - Non A/C 255 310 283 

Services without BMS - A/C 425 515 470 

Services with BMS - Non A/C 275 335 305 

Services with BMS - A/C 445 540 493 
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In case of Fittings, Furnishing and Equipment, benchmarks from BCIS were used. 

General average prices for air-conditioned and non-air-conditioned buildings were 

used instead of the average prices for different storey clusters due to the lower 

sample size and higher standard deviation, especially in the values of buildings 

over six (6) storeys.  

Average prices obtained from BCIS has a base price index of the second quarter of 

2010 (price index - 218) and a location index of 1.0 which is similar to the base of 

Dataset 1. Average prices given in Spon’s price book have a base price index of 

the first quarter of 2013 and a location index of 1.03. Hence, all average prices 

were adjusted to the first quarter of 2016 (price index - 276) and a location index of 

1.0 which is the base of the data used to develop the models. Accordingly, the 

updated cost benchmarks of Fittings, Furnishing and Equipment and Services to 

the respective base are presented in Table 7.6. 

Table 7.6: Average prices updated to the model base (Price index of 1Q 2016 and a location 

index of 1.0) 

Items Average (£/m2 

GIFA) 
Updated Price 
(£/m2 GIFA) 

Services without BMS - Non A/C 283 324 

Services without BMS - A/C 470 538 

Services with BMS - Non A/C 305 349 

Services with BMS - A/C 493 564 

Fittings and Furnishings (air-conditioned) 26 33 

Fittings and Furnishings (Non air-conditioned) 22 28 

 

On the other hand, lack of EC benchmarks lead to the use of average EC values 

developed from Dataset 2 (see, Table 5.19 in Section 5.6.2) presented in Table 

7.7. No adjustments were required for EC values because, the initial EC (cradle-to-

gate) depends on the process of manufacturing and it was assumed that no major 

change in the manufacturing process of materials has occurred as discussed in the 

data collection chapter (see, Section 6.5.2).  
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Table 7.7: Average EC values 

Items Average 
(kgCO2/m2 

GIFA) 

Services without BMS - Non A/C 134 

Services without BMS - A/C 164 

Services with BMS - Non A/C 148 

Services with BMS - A/C 178 

Fittings and Furnishings  1 

 

Subsequently, Dataset 1 was modified by updating to the model base (price index 

of the first quarter of 2016 and a location index of 1.0) and by adding Fittings and 

Services EC and CC to the initial estimates. The modified dataset for external 

validation is presented in Table 7.8.  

Table 7.8: External validation dataset from Dataset 1 adjustment for Fittings and Services 

(Price index of 1Q 2016 and a location index of 1.0) 

Building 

Code 

Quality level CC per 

GIFA 

(£/m2) 

EC per 

GIFA 

(kgCO2/m2) 

D1002 Air-conditioned with BMS   597 179 

D1003 Air-conditioned with BMS   597 179 

D1004 Air-conditioned with BMS   597 179 

D1005 Air-conditioned with BMS   597 179 

D1007 Air-conditioned with BMS   597 179 

D1008 Air-conditioned without BMS   571 165 

D1009 Air-conditioned without BMS   571 165 

D1010 Air-conditioned without BMS   571 165 

D1011 Air-conditioned with BMS   597 179 

D1012 Air-conditioned with BMS   597 179 

D1013 Air-conditioned without BMS   571 165 
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7.3. Model Validation Outcome 

As discussed in the model validation process, CV is used to assess the accuracy 

of prediction of the models and R2 is used to assess the closeness of fit of the 

models. Hence, R2, CV of internal and external data of each model have been 

presented herein along with the graphical representation of residuals for each 

model. 

7.3.1. EC per GIFA Model 

a) Closeness of fit  

EC per GIFA model has an R2 value of 48.1%, which is satisfactory. 48.1% of the 

change in the EC per GIFA is explained by Wall to Floor ratio and no. of 

basements. The remaining change in the dependent variable can be expected to 

be explained by other design variables, which were not considered in the study.  

b) Prediction performance with internal data 

The CV of the model was found to be 10.65%, which is within the desired CV 

range for early stage estimating. The difference in the estimates to that with the 

actual EC per m2 GIFA ranges from -25% to 20% for the overall sample. Except for 

one building, predictions of all buildings lie within the acceptable ±20% range.  

Since, the model explains the change in the dependent variable attributable to only 

Wall to Floor ratio and no. of basements, the observed variations in the estimates 

can be expected to be attributable to the other design variables, which were not 

regressed in the model due to insufficient statistical evidence. Figure 7.4 presents 

the scatterplot of predicted and observed EC per GIFA values, which follow a 

vague linear relationship. Further, deviations in the predictions were plotted against 

Wall to Floor ratio and no. of basements as shown in Figure 7.5 and Figure 7.6 (the 

acceptable deviation region is marked with broken lines in the graphs). Residuals 

lie between -206 and 119 kgCO2/m2 GIFA. Residuals of the majority of the 

buildings lie between -120 and 120 kgCO2/m2 GIFA. The building with the highest 

residual has a lower Wall to Floor ratio and has no basements. Further, it can also 
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be noticed that the residuals become smaller as the values for the Wall to Floor 

ratio and the number of basements increase. 

 

 

Figure 7.5: Mapping the model prediction deviation against the Wall to Floor ratio – Internal 

data 
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Figure 7.4: Scatterplot of predicted vs. observed EC per GIFA values – internal data 
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Figure 7.6: Mapping the model prediction deviations against the no. of basements – Internal 

data 

In addition, the performance of the model for different building height clusters was 

also examined as explained in Section 8.3.1. Figure 7.7 illustrates the model 

performance at different clusters. Accordingly, the model prediction lies within the 

20% margin for all buildings except for one building in the 3-5 storey cluster. 

However, the prediction performance for 6+ storeys clustered cannot be certainly 

ascertained as there is only one building in the sample with 6 storeys. Further, the 

model seems to predict closer to the observed values in 1-2 storey cluster in 

comparison to 3-5 storey clusters. In addition, the accuracy ranges from -19% to 

20% with a CV of 10.4% in 1-2 storey cluster and -25% to 17% with a CV of 11.2% 

in 3-5 storey cluster. This implies that the model performs at its best in 1-2 storey 

cluster. 
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Figure 7.7: The EC per GIFA model prediction at different clusters – Internal data 

 

c) Prediction performance with external data 

The model predictions were plotted against the observed EC per GIFA (adjusted 

Dataset 1) in a graph as presented in Figure 7.8. The spread of deviation in the 

predictions over the wall to floor ratio and the number of basements are presented 

in Figure 7.9 and Figure 7.11 respectively. According to the graphs, it is evident 

that most of the predictions are within the acceptable range, with residuals ranging 

from -205 kgCO2/m2 to 70 kgCO2/m2 (-22% to 11% deviation from the observed 

values). The overall CV for external data was found to be 11%, which is 

satisfactory. Table 7.9 presents the model predictions, observed values and the 

residuals for the external data.  Further, the analysis of different storey clusters 

illustrated in Figure 7.12 reveals that the identified highest deviation is due to the 

buildings with more than six (6) storeys. The model performs well with 3-5 storey 

cluster compared to the 6+ storey cluster. This highlights the scope of the 

developed model. The lack of data points in 1-2 storey cluster in the external data 
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makes it impossible to comment on the model performance within this cluster for 

external data.  

  

 

 -

 200

 400

 600

 800

 -  200  400  600  800

Predicted EC 
per GIFA 

in kgCO2/m
2

Observed EC per GIFA in kgCO2/m
2

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

-30% -20% -10% 0% 10% 20%

Wall to Floor 
Ratio

Deviation %

Figure 7.8: Scatterplot of predicted vs. observed EC per GIFA values – external data 

Figure 7.9: Mapping the model prediction deviations against the Wall to Floor ratio – External 

data 



 

268 
 

 

Figure 7.11: Mapping the model prediction deviations against the no. of basements – 

External data 

 

Table 7.9: Calculation of the EC per GIFA model deviation for the external data 

Building 
ID 

Predicted 
(kgCO2/m2) 

Observed 
(kgCO2/m2) 

Residual 
(kgCO2/m2) 

Deviation 
[(Predicted-
Observed)/ 
Observed] 

D1002  663   780  -117  -15% 

D1003  704   771  - 67  -9% 

D1004  717   763  - 46  -6% 

D1005  717   922  -205  -22% 

D1007  601   774  -173  -22% 

D1008  640   709  - 69  -10% 

D1009  611   648  - 37  -6% 

D1010  610   759  -149  -20% 

D1011  664   801  -137  -17% 

D1012  659   646   14  2% 

D1013  699   629   70  11% 
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Figure 7.12: The EC per GIFA model prediction at different clusters – External data 

 

7.3.2. EC Model 

a) Closeness of fit  

EC model had an R2 of 98.3%, which is extremely high and suggests that change 

in the EC is explained by GIFA and no. of basements. In addition, the R2 of the 

model suggests that the influence of other design variables is almost negligible. 

b) Prediction performance with internal data 

CV of the model was found to be 25.7%, which is slightly above the maximum 

threshold (±20%) set for an early stage estimate. The model predictions deviate 

from the observed values ranging from -0.1% to 61%. Even though the model fit 

was impressive, the prediction accuracy of the model demonstrates a problem. 

This could have been caused due to the log transformation. The predicted values 

were plotted against the observed values, which are illustrated in Figure 7.14, 

which displays a perfect linear relationship. Further, the deviation of the model 

predictions against GIFA and the number of basements is presented in Figure 7.13 
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and Figure 7.15. Only a few predictions fall within the acceptable deviation region, 

which is ±20%. Further, the deviation ranges from a  lower value to the highest 

between 0 and 4,000m2 of GIFA (see, Figure 7.13) and the deviation was higher 

for the buildings with no basements and with one basement compared to the 

building with two basements (see, Figure 7.15). This is mainly because the 

prediction was based only on the GIFA when there are no basements. 

Nevertheless, even with an R2 value of 98.3% this deviation is unacceptable.  
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Figure 7.14: Scatterplot of predicted vs. observed EC values – internal data 

Figure 7.13: Mapping the model prediction deviation against GIFA – Internal data 
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Figure 7.15: Mapping the model prediction deviation against the no. of basements – Internal 

data 

Figure 7.16 illustrates the model performance at different clusters with internal 

data.  Both 1-2 and 3-5 storey clusters show similar deviations while the highest 

deviation was found in the 1-2 storey cluster. 
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Figure 7.16: The EC model prediction at different clusters – Internal data 
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c) Prediction performance with external data 

Predicted EC and observed EC of external data were plotted in a scatterplot and 

presented in Figure 7.17. The deviation in predictions against GIFA and the 

number of basements are presented in Figure 7.18 and Figure 7.19 respectively. 

Approximately half of the predictions fell within the acceptable deviation region. 

Further, a deviation within the 20% range and above 20% was noticed for similar 

input values of GIFA and the number of basements. Table 7.10  lists the deviation 

calculation of the external data, which ranges from 8% to 49%. A deviation beyond 

20% is considered unacceptable even for an early stage prediction model. In 

addition, predictions were examined based on the storey clusters, which is 

presented in Figure 7.20. In contrast to the internal data, the model predicts better 

in the 6+ storey cluster than the 3-5 storey cluster with external data. 

  

Figure 7.17: Scatterplot of predicted Vs. observed EC values – External data 
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Figure 7.18: Mapping the model prediction deviation against GIFA – External data 

 

Figure 7.19: Mapping the model prediction deviation against the no. of basements – Internal 

data 
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Table 7.10: Calculation of the EC model deviation for the external data 

Building 
ID 

Predicted 
(tCO2) 

Observed 
(tCO2) 

Residual 
(tCO2) 

Deviation 
[(Predicted-

Observed)/Observed] 

D1002  10,354   8,825   1,528  17% 

D1003  2,666   2,205   461  21% 

D1004  15,383   11,532   3,851  33% 

D1005  63,069   58,298   4,771  8% 

D1007  18,080   17,246   834  5% 

D1008  2,740   2,330   410  18% 

D1009  2,718   2,115   603  29% 

D1010  4,108   3,763   345  9% 

D1011  19,310   17,065   2,245  13% 

D1012  19,310   13,757   5,553  40% 

D1013  2,219   1,493   726  49% 

 

 

Figure 7.20: The model prediction at different clusters – External data 
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7.3.3. CC per GIFA Model 

a) Closeness of fit 

The model fit was found to be 23.7%, which displays a poorly fitted model. Only 

23.7% of the variation in CC per GIFA is explained by building height and 

circulation space ratio. However, other influential design variables like building 

height, circulation space, finishes and services qualities (according to the literature) 

were found to be statistically insignificant in the study.   

b) Prediction performance with internal data 

The CV of the model was 20.3%, which is within the desired CV range for early 

stage estimating, while, the CV of the CC per GIFA model was lower than the CV 

of the EC per GIFA model. The scatterplot of predicted and observed CC per GIFA 

values is presented in Figure 7.21, which follows a vague linear relationship similar 

to EC per GIFA plot (Figure 7.4). Further, deviations in the model predictions were 

plotted against building height and circulation space ratio as shown in Figure 7.22 

and Figure 7.24. Accordingly, most of the predictions lie within the acceptable 

accuracy range while three predictions showed high deviations, which are circled in 

the diagrams (see, Figure 7.22 and Figure 7.24). The storey cluster analysis 

illustrated in Figure 7.23 highlights that the exceptional three predictions fall within 

both 1-2 and 3-5 storey clusters. Hence, regression analysis was executed again 

after eliminating the identified three extreme data points. 
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Figure 7.22: Mapping the model prediction deviation against building height – Internal data 

Figure 7.21: Scatterplot of predicted vs. observed CC per GIFA values – internal data 
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Figure 7.24: Spread of residuals over circulation space ratio 

Figure 7.23: The CC per GIFA model prediction at different clusters – Internal data 
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7.3.4. CC per GIFA Model Recalibrated 

Model summary, ANOVA table and the summary of the coefficient of variables are 

presented in Table 7.11, Table 7.12 and Table 7.13 respectively. The new model 

also identifies building height and circulation space ratio as significant independent 

variables. Even though the Model 4 presented in Table 7.11 has better adjusted R2 

value and lower standard error than all other models, the wall to floor ratio in Model 

4 is not statistically significant. Further, Model 5 has the highest F statistics and 

both the variables are statistically significant in the model. In addition, VIF is within 

the acceptable limit for Model 5 (see, Table 7.13) assuring no multicollinearity 

between independent variables. Residuals of Model 5 follow a standard normal 

distribution (see, Figure 7.25) and are randomly distributed (see, Figure 7.26), 

conforming to the assumption of homoscedasticity. The Durbin-Watson score was 

2.118 which is greater than dU,α (dU,α, =1.57) indicating no positive autocorrelation 

among residuals. Similarly, 4-d (4 – 2.118 = 1.882) is also greater than dU,α 

confirms no negative autocorrelation, which meets the regression assumptions 

discussed in the methodology chapter (see, Section 5.8.3). Hence, Model 5 is 

selected for the validation. 

Table 7.11: Model summary – CC per GIFA Run 3 

Model R R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Independent Variables 

1 .771 .595 .490 165.522 Building height, wall to floor 

ratio, circulation ratio, no. of 

basements, finishes index, 

services index 

2 .771 .595 .511 162.073 Building height, wall to floor 

ratio, circulation ratio, no. of 

basements, services index 

3 .767 .588 .522 160.238 Building height, wall to floor 

ratio, circulation ratio, services 

index 

4 .763 .582 .533 158.234 Building height, wall to floor 

ratio, circulation ratio 

5 .735 .541 .506 162.746 Building height, circulation ratio 
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Table 7.12: ANOVA table – CC per GIFA Run 3 

Model Sum of 

Squares 

df Mean 

Square 

F Sig. 

1 Regression 926289.172 6 154381.529 5.635 .001 

Residual 630140.728 23 27397.423   

Total 1556429.900 29    

2 Regression 926004.381 5 185200.876 7.051 .000 

Residual 630425.519 24 26267.730   

Total 1556429.900 29    

3 Regression 914524.216 4 228631.054 8.904 .000 

Residual 641905.685 25 25676.227   

Total 1556429.900 29    

4 Regression 905438.233 3 301812.744 12.054 .000 

Residual 650991.668 26 25038.141   

Total 1556429.900 29    

5 Regression 841301.117 2 420650.558 15.882 .000f 

Residual 715128.784 27 26486.251   

Total 1556429.900 29    
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Table 7.13: Coefficient of the variables – CC per GIFA Run 3 

Model Unstandardized 

Coefficients 

Standar

dized 

Coeffici

ents 

t Sig. Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) 895.113 372.463  2.403 .025   

Building Height 15.799 8.929 .285 1.769 .090 .678 1.476 

Wall to Floor -233.376 146.222 -.265 -1.596 .124 .638 1.567 

Circulation Ratio 947.062 246.354 .708 3.844 .001 .518 1.930 

Basements 35.947 56.856 .106 .632 .533 .628 1.593 

Finishes Index 19.948 195.654 .016 .102 .920 .740 1.351 

Service  Index 18.829 28.067 .101 .671 .509 .782 1.279 

2 (Constant) 930.996 119.356  7.800 .000   

Building Height 16.061 8.372 .290 1.919 .067 .739 1.353 

Wall to Floor -228.737 136.067 -.260 -1.681 .106 .707 1.415 

Circulation Ratio 938.045 225.144 .702 4.166 .000 .595 1.681 

Basements 36.582 55.336 .108 .661 .515 .635 1.574 

Service Index 18.815 27.482 .101 .685 .500 .782 1.279 

3 (Constant) 914.300 115.332  7.928 .000   

Building Height 18.587 7.365 .335 2.524 .018 .934 1.071 

Wall to Floor -227.077 134.503 -.258 -1.688 .104 .707 1.414 

Circulation Ratio 983.996 211.722 .736 4.648 .000 .658 1.521 

Service Index 15.962 26.834 .085 .595 .557 .802 1.247 

4 (Constant) 941.364 104.654  8.995 .000   

Building Height 19.321 7.170 .349 2.695 .012 .961 1.041 

Wall to Floor -200.651 125.368 -.228 -1.600 .122 .794 1.260 

Circulation Ratio 933.046 191.203 .698 4.880 .000 .786 1.272 

5 (Constant) 850.167 90.285  9.417 .000   

Building Height 18.373 7.349 .332 2.500 .019 .967 1.034 

Circulation Ratio 800.646 177.296 .599 4.516 .000 .967 1.034 
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Figure 7.25: Histogram of standardised residual of the regression – CC per GIFA Run 3 

 

Figure 7.26: Scatterplot of standardised predicted value vs. standardised residuals of 

regression – CC per GIFA Run 3 
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The new CC per GIFA model can be presented as follows: 

�̂� = 850.17 +  18.37𝑥𝐵𝐻  +  800.65𝑥𝐶𝑅 

a) Closeness of fit 

The model fit was found to be 50.6%, which has improved immensely from the 

previous model after eliminating the identified three data points. 50.6% of the 

variation in CC per GIFA is explained by building height and circulation space ratio 

in the model, which is an acceptable model fit. Similar to the previous model, other 

design variables were not identified as statistically significant in predicting CC per 

GIFA.  

b) Prediction performance with internal data 

The CV of the new model was found to be 13.2%, which has improved, compared 

to the previous model and within the desired CV range. Yet, the CV of the new CC 

per GIFA model was lower than the CV of the EC per GIFA model. The scatterplot 

of predicted and observed CC per GIFA values is presented in Figure 7.27, which 

follows a vague linear relationship. Further, deviations in the model predictions 

were plotted against building height and circulation space ratio and presented in 

Figure 7.28 and Figure 7.29. Most of the predictions lie within the acceptable 

accuracy range while four predictions were outside the acceptable accuracy range 

even though those predictions were close to ±25%, which demonstrates a better 

prediction performance than the previous model. Further, the storey cluster 

analysis is illustrated in Figure 7.30 point out that the three out of four deviations 

outside the acceptable region is attributable to 3-5 storey cluster. This implies that 

the model performs better within the 1-2 storey cluster than the 3-5 storey cluster. 
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Figure 7.27: Scatterplot of predicted Vs. observed CC per GIFA values – internal data (new 

CC per GIFA model) 

 

 

  
Figure 7.28: Mapping the model prediction deviation against building height – Internal data 

(new CC per GIFA model) 
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Figure 7.29: Mapping the model prediction deviation against circulation space ratio – Internal 

data (new CC per GIFA model) 

 

 

Figure 7.30: The CC per GIFA model prediction at different clusters – Internal data (new CC 

per GIFA model) 
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c) Prediction performance with external data 

The CV of the model for external data was found to be 24.5% which is outside the 

acceptable margin established in the study though Peurifoy and Oberlender (2002) 

suggest 25% accuracy is acceptable for early stage prediction models. The model 

predictions against the observed values with external data are presented in Figure 

7.31. Deviations in predictions are mapped against building height and circulation 

space ratio is presented in Figure 7.32 and Figure 7.33 where more than half of the 

predictions fall outside the acceptable region. The summary of the predictions of 

external data is presented in Table 7.14. Further, the deviation was analysed 

based on the storey cluster, which is presented in Figure 7.34. Accordingly, the 

majority of the predictions outside the acceptable accuracy region belong to the 6+ 

storey cluster. This implies that the model does not work well with buildings more 

than 6 storeys. 

Figure 7.31: Scatterplot of predicted Vs. observed CC per GIFA values – External data (new 

CC per GIFA model) 
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Figure 7.32: Mapping the model prediction deviation against building height – Internal data 

(new CC per GIFA model) 

 

Figure 7.33: Mapping the model prediction deviation against circulation space ratio – Internal 

data (new CC per GIFA model) 
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Table 7.14: Calculations of the new CC per GIFA model deviation for the external data 

Building 
ID 

Predicted 
(£/m2) 

Observed 
(£/m2) 

Residual 
(£/m2) 

Deviation 
[(Predicted-

Observed)/Observed] 

 D1002   2,061   1,315   420.04  32% 

 D1003   1,234   1,520  -335.69  -22% 

 D1004   1,913   1,447   189.42  13% 

 D1005   2,953   1,820   506.39  28% 

 D1006   2,051   1,418   307.18  22% 

 D1007   1,539   1,520  -132.19  -9% 

 D1008   1,264   1,369  -165.26  -12% 

 D1009   1,366   1,708  -435.40  -25% 

 D1010   2,619   1,543   559.76  36% 

 D1011   2,362   1,375   557.28  41% 

 D1013   1,533   1,270   114  9% 

 

 

Figure 7.34: The CC per GIFA model prediction at different clusters – External data (new CC 

per GIFA model) 
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7.3.5. CC Model 

a) Closeness of fit 

The model fit was found to be 95.1%, which is high, similar to EC model. The 

model explains 95.1% of the change in the dependent variable (CC) by GIFA and 

building height. Remaining change in the dependent variable deemed to be 

explained by the other design variables, which were not found to be statistically 

significant in the study. 

b) Prediction performance with internal data 

The model had a CV of 45.2%, which is very high and unacceptable for an early 

stage estimate. The model predictions deviate highly from the observed values 

(from -64% to 5%). Similar to EC model, the prediction accuracy of the model 

demonstrates a problem. The predicted values were plotted against the observed 

values, which are illustrated in Figure 7.36, which displays a perfect linear 

relationship. Further, deviations in predictions were mapped against GIFA and the 

building height, which are presented in Figure 7.35 and Figure 7.38. There are only 

a few predictions fall within the acceptable accuracy region showing unsatisfactory 

performance of the model. The storey cluster analysis presented in Figure 7.37 

also suggests that the model prediction is poor in both 1-2 and 3-5 storey clusters 

while the highest deviation is found within the 3-5 storey range.  
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Figure 7.36: Scatterplot of predicted Vs. observed CC values – internal data 
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Figure 7.35: Mapping the CC model prediction deviation against GIFA – Internal data 
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Figure 7.37: The CC model prediction at different clusters – Internal data 

Figure 7.38: Mapping the CC model prediction deviation against building height – Internal 

data 
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c) Prediction performance with internal data 

Predicted CC and observed CC for the external data were plotted in a scatterplot 

and presented in Figure 7.39. The deviation in the model predictions mapped 

against GIFA and building height are presented in Figure 7.41 and Figure 7.40 

where only two predictions fall within the acceptable accuracy region and the 

deviation tends to increase with the building height. 

 

Figure 7.39: Scatterplot of predicted Vs. observed CC values – External data 
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Figure 7.41: Mapping the CC model prediction deviation against GIFA – External data 

Figure 7.40: Mapping the CC model prediction deviation against building height – External 

data 
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The residual analysis of external data is presented Table 7.15. The accuracy 

ranges from -52% to 98% with a CV of 140% which indicates an extremely poor 

prediction performance of the model. However, the storey cluster analysis (see, 

Figure 7.42) suggests that the observed highest deviation falls within the 6+ storey 

cluster. This reaffirms the model specification that the developed model caters only 

the estimating need of up to 6 storeys.  

Table 7.15: Calculation of the CC model deviation for the external data 

Building 
ID 

Predicted 
(£1000’s) 

Observed 
(£1000’s) 

Residual 
(£1000’s) 

Deviation 
[(Predicted-

Observed)/Observed] 

 D1002   15,819   14,882   938  6% 

 D1003   2,095   4,346  -2,251  -52% 

 D1004   19,593   21,874  -2,281  -10% 

 D1005   227,865   115,091   112,773  98% 

 D1006   41,390   31,607   9,783  31% 

 D1007   3,003   4,998  -1,995  -40% 

 D1008   2,691   4,465  -1,773  -40% 

 D1009   4,135   8,468  -4,334  -51% 

 D1010   63,957   32,873   31,084  95% 

 D1011   50,337   29,286   21,050  72% 

 

Figure 7.42: The CC model prediction at different clusters – External data 
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7.4. Discussion of the Model Validation Outcome 

7.4.1. Embodied Carbon Models 

The EC per GIFA model and EC model are compared and presented in Table 7.16. 

Accordingly, the EC model outperformed the EC per GIFA model in model fit (R2) 

criteria though it did not produce desired outcomes in case of CV and predicting for 

external data. Therefore, based on the overall performance the EC per GIFA model 

is considered to be better performing model than the EC model.  

Table 7.16: Comparison of EC models 

Model Features EC per GIFA model EC model 

R2 48.1% 98.3% 

CV – internal 10.65% 25.7% 

CV – external 11.00% 15.20% 

Deviation in prediction 

for external data -22% to 11% 9% to 49% 

7.4.2. Capital Cost Models 

Table 7.17 compares the performance of the CC per GIFA model and the CC 

model. Even though CC model has a good model fit, the new CC per GIFA model 

outperformed CC Model in prediction performance of both internal and external 

data. Even though high deviations in predictions of the CC per GIFA model were 

found when predicting for external data, the model performs fairly well within the 3-

5 storey cluster. Hence, the CC per GIFA model was considered as the better 

model than the CC model. 
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Table 7.17: Comparison of CC models 

Model Features CC per GIFA model CC model 

R2 50.6% 95.1% 

CV - internal 13.2% 45.2% 

CV - external 24.5% 140.0% 

Deviation in prediction 

for external data -25% to 41% -52% to 98% 

7.5. Validation of Models with all Variables 

As it is evident from the discussion above that none of the models proved to be 

exemplary, it was decided to validate the models with all the input variables 

considered in the study to find if the models outperform the previous models. 

Therefore, this subsection covers the validation of the full models regardless of the 

statistical significance of the eliminated variables during the model building 

process. 

7.5.1. EC per GIFA Full Model 

The derived EC per GIFA model with all the selected design variables is as follows 

(see, Table 7.21 in Section 7.5.1): 

Equation 7.1: EC per GIFA model with all design variables 

�̂� = 630.353 + 1.066𝑥𝐵𝐻 + 144.233𝑥𝑊:𝐹  +   85.992𝑥𝐶𝑅 + 66.591𝑥𝐵 −  69.851𝑥𝐹𝐼 + 8.323𝑥𝑆𝐼 

Where, 

�̂�        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑥𝐵𝐻    − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡  

𝑥𝑊:𝐹 − 𝑊𝑎𝑙𝑙 𝑡𝑜 𝐹𝑙𝑜𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝐶𝑅   − % 𝑜𝑓 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑥𝐹𝐼     − 𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

𝑥𝑆𝐼      − 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 
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a) Closeness of fit 

The model has an adjusted R2 value of 45.7%, which implies that 45.7% change in 

EC per GIFA, is explained by all the independent variables in the model (building 

height, wall to floor ratio, circulation ratio, no. of basements, finishes index and 

services index). This is lower than the model considered in Section 7.3.1 where 

48.1% variation in EC per GIFA is explained by wall to floor ratio and no. of 

basements.  

b) Prediction performance with internal data  

The CV of the model was found to be 9.93%, which is within the desired CV range 

for early stage estimating and better than the previous model. The overall deviation 

in the prediction of the internal data ranges from -16% to 20%. The deviation range 

of this model is smaller compared to the previous model. Figure 7.43 presents the 

scatterplot of predicted and observed EC per GIFA values, which demonstrate a 

weak correlation. The model prediction for different numbers of storeys was also 

examined as illustrate in  Figure 7.44. Most of the predictions in 1-2 and 3-5 storey 

clusters lie within -15% and 15% and the model performs well within both the 

clusters for internal data. 
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Figure 7.43: Scatterplot of predicted Vs. observed EC per GIFA values for the– internal data 

(complete EC per GIFA model) 

 

Figure 7.44: The EC per GIFA model prediction at different clusters – Internal data (complete 

EC per GIFA model) 



 

298 
 

c) Prediction performance with external data 

Predictions were mapped against the observed values for external data, which is 

presented in Figure 7.45. The accuracy of predictions ranges from -19% to 17% 

with a CV of 11.4% which is within the desired accuracy range and better than the 

previous model. Further, the analysis of different storey clusters illustrated in 

Figure 7.46 reveals that the deviation is smaller (less than ±5%) for most of the 

predictions within the 3-5 storey cluster compared to 6+ storey cluster. Hence, it 

can be said that the model performs well within 3-5 storey cluster compared to the 

6+ storey cluster similar to the previous model. No conclusions can be drawn about 

1-2 storey cluster due to lack of external data within this cluster. 

 

 

Figure 7.45: Scatterplot of predicted vs. observed EC per GIFA values for the– external data 

(complete EC per GIFA model) 
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7.5.2. CC per GIFA Full Model 

The derived EC per GIFA model with all the selected design variables is as follows 

(see, Table 7.21 in Section 7.5.1): 

Equation 7.2: CC per GIFA model with all design variables 

�̂� = 895.113 + 15.799𝑥𝐵𝐻 −  233.376𝑥𝑊:𝐹  +   947.062𝑥𝐶𝑅 + 35.947𝑥𝐵 +  19.948𝑥𝐹𝐼

+ 18.829𝑥𝑆𝐼 

�̂�        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

 

a) Closeness of fit 

The model fit was found to be 49%, which implies that 49% of the change in CC 

per GIFA is explained by all the design variables considered while 50.6% of the 

change in CC per GIFA is explained by building height and circulation space ratio, 

by the previous model.  
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Figure 7.46: The EC per GIFA model prediction at different clusters – External data 

(complete EC per GIFA model) 
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b) Prediction performance with internal data 

In terms of prediction performance, the complete model has a CV of 12.97% where 

the accuracy of the predictions ranges from -30% to 20% for the whole sample. 

The model predictions against the observed values presented in Figure 7.47, which 

shows some degree of correlation. The deviations in predictions are presented for 

different storey clusters in Figure 7.48 where most predictions fall within the 

accepted accuracy region except for two predictions which belong to both 1-2 and 

3-5 storey clusters (circled in Figure 7.48). 

 

Figure 7.47: Scatterplot of predicted Vs. observed EC per GIFA values for the– Internal data 

(complete CC per GIFA model) 
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Figure 7.48: The CC per GIFA model prediction at different clusters – Internal data (complete 

CC per GIFA model) 

 

c) Prediction performance with external data 

The model demonstrates a CV of 24.81%, accuracy ranging from -24% to 42% 

when predicting for the external data. The predictions against the observed values 

of the external data are presented in Figure 7.49 and the model deviations 

analysed based on storey cluster is presented in Figure 7.50. Accordingly, all of the 

predictions, which fall outside the accepted accuracy range, belong to the 6+ 

storey cluster except for one prediction. Hence, it is clear that the model is not 

suitable to predict CC per GIFA for the buildings with more than 6 storeys. 
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Figure 7.49: Scatterplot of predicted Vs. observed EC per GIFA values for the– External data 

(complete CC per GIFA model) 

 

Figure 7.50: The CC per GIFA model prediction at different clusters – External data (complete 

CC per GIFA model) 
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7.6. Comparison of Models with Statistically Significant Variables 

and Models with all Variables 

7.6.1. EC per GIFA Models 

The model performance measures were compared for the model with statistically 

significant variables and the model with all variables and presented in Table 7.18. 

Accordingly, model fit is better in the model with only the statistically significant 

variables. CV for internal data is better in the model with all the variables while CV 

for external data is better in the model with only significant variables. Hence, no 

significant improvement in the predictions of the model with all the variables was 

found. 

Table 7.18: Comparison of EC per GIFA model with statistically significant variables and 

model with all variables 

Performance measures Model with statistically 

significant variables 

Model with all variables 

R2 48.1% 45.7% 

CV – internal data 10.65% 9.93% 

CV – external data 11.00% 11.40% 

 

7.6.2. CC per GIFA Models 

Similar to the comparison of EC per GIFA model, model fit is better in the model 

with only the statistically significant variables (see, Table 7.19). CV is better in the 

model with all the variables for internal data while the model with statistically 

significant variables outperforms the model with all the variables when performing 

with external data. Nevertheless, there is no significant difference in the prediction 

performances of the models.  
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Table 7.19: Comparison of CC per GIFA model with statistically significant variables and 

model with all variables 

Performance Measures Model with statistically 

significant variables 

Model with all 

variables 

R2 50.6% 49% 

CV – internal data 13.2% 12.97% 

CV – external data 24.5% 24.81% 

 

7.7. Summary 

Validating the models is an important step in model development to ensure the 

applicability of the model. Accordingly, the developed models were validated by 

assessing their closeness to fit and prediction accuracy with internal and external 

data. The dataset used to develop the models was used to check the internal 

validity while eleven buildings out of thirteen from Dataset 1 were used to check 

the external validity of the models. However, Dataset 1 was adjusted to 

accommodate Fittings and Services cost and EC in their estimates with the use of 

benchmarks. The EC model outperformed the EC per GIFA model in model fit (R2) 

criterion though it did not produce the desired outcome in the case of CV for both 

internal and external data. Therefore, based on the overall performance the EC per 

GIFA model is a better performing model than the EC model. Similarly, the CC 

model had a good model fit though the CV for both internal and external data were 

poor. Further, it was also found that the models performed well within the 1-2 

storey cluster and poorly for the 6+ storey cluster. The performance within the 3-5 

storey cluster is generally within the acceptable accuracy range. Finally, the 

models with all the variables did not demonstrate any significant improvements in 

the model predictions. From this analysis and validation, it was concluded that the 

models with the statistically significant variables are the most satisfactory. 
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8. Key Findings and Implications 

8.1. Introduction  

This chapter summarises the key findings of the research presented in the data 

analysis (Chapter 6) and the model validation (Chapter 7) chapters and the 

implications of the study findings are discussed by providing examples where 

necessary. Key findings are presented in three sections including the EC and CC 

models, the carbon and cost hotspots and the EC and CC relationships. The model 

descriptions, the applicability of the models and the limitations of the models are 

discussed. In addition, the developed CC model was compared with other CC 

models found in the literature while the EC model could not be compared due to 

the absence of literature on similar models. Further, the application of the 

knowledge of carbon and cost hotspots is illustrated with examples. EC and cost 

relationships were explored at the building level and elemental level, which display 

a close association between the two not only at the building level but also in most 

of the element levels.   

8.2. The Embodied Carbon and Capital Cost Models 

As discussed in the model validation chapter, two CC models (CC Model and CC 

per GIFA model) and two EC models (EC Model and EC per GIFA model) were 

compared in terms of model fit (coefficient of determination – R2) and prediction 

performance (coefficient of variation - CV). Then, the better performing CC and EC 

model was selected from each pair (see, Section 7.6). The selected EC and CC 

models, their applicability, usage guidelines and limitations are discussed in detail 

here. The prediction models were designed specifically for office buildings of up to 

6 storeys. The lowest and the highest values of the predictor variables (of the 

model) that are used to develop the EC and CC models are presented in Table 8.1. 

  



 

306 
 

Table 8.1: Ranges of the predictor variables used to develop the model  

Design Variable Lowest 

Value 

Highest 

Value 

The 

Model 

GIFA (m2) 212 14,652 EC/CC 

Building height (m) 2.8 25.2 CC 

Wall to floor ratio 0.24 1.50 EC 

Circulation space ratio 0.09 0.46 CC 

No. of basements (Nr) 0 2 EC 

8.2.1. The EC Model 

The selected EC model is presented in Equation 8.1 and the model description is 

presented in Table 8.2. The model has a coefficient of determination (R2) of 0.48 

(higher R2 implies better model fit) which means that the model explains 48.1% of 

the variation in EC per GIFA attributable to Wall to Floor ratio and the number of 

basements. In other words, EC per GIFA is increased by 164.08 kgCO2/m2 when 

Wall to Floor ratio is increased by one unit for a given number of basements and 

adding a basement will increase EC per GIFA by 68.15 kgCO2/m2 for a given Wall 

to Floor ratio. The model was statistically significant and all the variables were 

significant at an α value of 0.05. Further, the model has a CV of 10.65%, which is 

within the acceptable accuracy range for early stage estimation (±20% see, 

Section 4.10). However, when predicting outside the database the predictions 

deviate from -22% to 11% from the observed values, producing a CV of 11%. In 

addition, CV was improved to 5.94% when predicting for buildings of up to 6 

storeys for external data. 
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Equation 8.1: EC per GIFA model 

𝑦1̂ = 530.62 + 164.08𝑥𝑊:𝐹  +   68.15𝑥𝐵 

Where, 

�̂�        − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐸𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝑊:𝐹 − 𝑊𝑎𝑙𝑙 𝑡𝑜 𝐹𝑙𝑜𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝐵     − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑠𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

   

Table 8.2: EC per GIFA model descriptors 

Model Variables Description 

EC per GIFA The EC in 1m2 of GIFA of the building 

GIFA The floor area measured from the internal face of the 

external walls including the areas occupied by the internal 

elements like walls, partitions, columns and the like 

Wall to Floor ratio The Façade (including area of windows and doors) area 

divided by GIFA of the building OR the area of the façade 

covering 1m2 of the GIFA 

Basements The number of basements in the building 

 

Accordingly, the estimated model parameters are as follows (see, Equation 6.1 in 

Section 6.5.1): 

𝑎0 = 530.62 

𝑎2 = 164.08  

 𝑎4 = 68.15 

Even though the other identified design variables (building height, circulation space 

ratio, finishes index and services index) were not found to be significant in 
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predicting EC in the model, bivariate analysis (see, Table 6.17 in Section 6.4.3) 

suggests that building height and circulation space ratio are correlated with EC per 

GIFA. Building height has a correlation coefficient of 0.306 (p-value - 0.052) and 

circulation space ratio has a correlation coefficient of 0.360 (p-value - 0.039) which 

indicate a moderate correlation. Hence, users of the model should be aware that 

building height and circulation space ratio also have an association with EC and 

can have an impact on the total EC.  Therefore, further investigation of the 

variables affecting the remaining change in the EC per GIFA is recommended. 

8.2.2. The CC Model 

The selected CC per GIFA model is presented in Equation 8.2 and the model 

description is presented in Table 8.3. The model (building height and circulation 

space ratio) explains 50.6% of the variation in CC per GIFA, which is a better fit 

than the EC per GIFA model. The model suggests that the CC per GIFA increases 

by £18.37/m2 for every meter increase in the building height for a given circulation 

space ratio. Similarly, the CC per GIFA increases by £800.65/m2 for every unit 

increase in circulation space ratio (OR £8.01/m2 for every percentage increase in 

circulation space ratio for a given building height). However, the remaining 49.4% 

of the variation is attributable to other design variables, which were not modelled in 

the study. The CV of the model was found to be 13.2% when predicting for internal 

data and it deteriorates to 24.5% when predicting for external data. This suggests 

that the model does not perform very well with the data outside the model 

database. However, the data used for external validation consisted of building with 

more than 6 storeys. Hence, the CV was calculated only for the buildings up to 6 

storeys which was 9.85% (deviation ranging from -22% to 9%) and within the 

acceptable accuracy range. 

 

Equation 8.2: CC per GIFA model 

𝑦3̂ = 850.17 +  18.37𝑥𝐵𝐻  +  800.65𝑥𝐶𝑅 
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Where, 

𝑦3̂       − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐶𝐶 𝑝𝑒𝑟 𝐺𝐼𝐹𝐴 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔  

𝑥𝐵𝐻    − 𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐻𝑒𝑖𝑔ℎ𝑡  

𝑥𝐶𝑅    − 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 

The estimated model parameters are as follows (see, Equation 6.4 in Section 
6.5.2): 
𝑐0 = 850.17 

𝑐1 = 18.37  

 𝑐3 = 800.65 

Table 8.3: CC per GIFA model descriptors 

Model Variables Description 

CC per GIFA CC incurred per m2 of GIFA of the building 

GIFA Area of the building measured to the internal face of the 

perimeter walls at each floor level including the areas 

occupied by the internal elements like walls, partitions, 

columns and the like 

Building Height Storey height (measured from floor finish to floor finish OR 

to underside of ceiling finish) multiplied by the number of 

storeys 

Circulation Space 

Ratio 

Non-usable area of the building (total area of all enclosed 

spaces forming entrance halls, corridors, staircases, lift 

wells, connecting links and the like) divided by the GIFA of 

the building 

The study findings validate the established theory of cost and design variable 

relationships, which suggest that CC per GIFA increases with building height and 

circulation space ratio. However, other design variables were not found to be 

significant in the model while bivariate analysis (see Table 6.17 in Section 6.4.3) 

suggests that Wall to Floor ratio is also correlated with CC per GIFA with a 

correlation coefficient of 0.322 (p-value - 0.040) indicating a moderate correlation. 
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8.2.3. Applicability of the Models 

These models are proposed for the early stages of design where only limited 

information is likely to be available. This is the conceptual stage according to the 

RIBA plan of work 2013. The models enable an easy and quick way of estimating 

EC and CC during the early stages of design and help to optimise the conceptual 

design. The users can calculate the EC per GIFA and CC per GIFA for a given 

building by entering the values for the predictive design variables in the models as 

shown in Table 8.4. The calculations have to be performed manually by the users. 

Further, the models are only applicable for office buildings of up to 6 storeys. 

Models for different types of buildings with different height categories can be 

formulated by collecting data and analysing the data using the same methods 

proposed in the research. 

It should be noted that the developed models are based on a number of 

assumptions. The prediction of EC model needs not to be adjusted for time and 

location unless the method of manufacturing of materials is changed. For instance, 

EC of materials are deemed lower if fossil fuels are substituted by renewable 

energy sources during the manufacturing process of materials, hence, such global 

variables need to be considered in the EC estimate. In addition, the predicted EC 

covers a Cradle-to-Gate boundary, which implies transport is excluded (other than 

raw material transport to factory gate). However, transport EC could be significant 

in some projects, which use more of imported materials. Therefore, users should 

be mindful of such exceptional circumstance and make necessary allowances in 

the estimate. On the other hand, the prediction of the cost model needs to be 

adjusted for time and location. The cost model has a base date of 2016 1Q and a 

location index of 100. Hence, time and location need to be adjusted accordingly 

when forecasting for a future project. The estimates of EC per GIFA and CC per 

GIFA include only building work (cost includes mark-up which is unknown) and 

exclude preliminaries and external works. Estimators should be aware of this and 

make necessary adjustments to the rates to obtain a holistic estimate. In addition, 

the models cover only the limited set of specifications listed in Table 8.8 later in this 



 

311 
 

chapter. Therefore, adjustments have to be made to the rates if the specification of 

a given building differs significantly from the modelled specification. 

Table 8.4: Using the model to forecast the EC and CC of a building during the early stages of 

design 

Building design data:    

GIFA (m2) 5000   

No. of storeys 4   

Building Height (m) 12.40   

Wall to Floor ratio 0.62   

Circulation space ratio 0.22   

No. of basements 1   

    

Calculation of the EC per GIFA of the building  

Model components Correlation 

coefficient 

Value of the 

design 

variable 

Resultants 

Constant 530.62  530.62 

Wall to Floor ratio 164.08 0.62 101.73 

No. of basements 68.15 1 68.15 

EC per GIFA of the building   700.50 kgCO2/m2 

    

EC of the building       = 700.50 kgCO2/m2 x 5000 m2   

                                      = 3,502.5 tCO2 (accuracy ±11%) 

Range of total  EC       =          3,117.2 tCO2 to 3,887.8 tCO2 

                                      = 3,100 tCO2 to 3,900 tCO2 

    

Calculation of the CC per GIFA of the building  

Model components Correlation 

coefficient 

Value of the 

design 

variable 

Resultants 

Constant 800.17  800.17 

Building height 18.37 12.4 227.79 

Circulation space ratio 800.65 0.22 176.14 

CC per GIFA of the building   £1204.10 

    

CC of the building       = £1204.10 x 5000 m2   

                                      = £6,020,505 (accuracy ±13%) 

Range of total  CC       =                              £5,237,839 to £6,803,171 

                                      = £5.2 to 6.8 million 
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8.2.4. Limitations of the Models 

The study sample contains only low to medium rise buildings and predominantly 3 

to 4 storied buildings. Hence, the developed models work best at predicting EC 

and CC of up to 6 storeys as the sample comprises buildings from 1 to 6 storeys. 

Further, the EC data were derived from three different sources including Dataset 1, 

Dataset 2 and published EC databases. Hence, the EC estimates are influenced 

by the used data sources. Further, the manufacturing method of the materials was 

assumed the same as in the published EC databases. Hence, the models should 

be adjusted to accommodate the changes in the industry, especially for the 

manufacturing methods of construction materials. 

All cost data were rebased to 2016 1Q and a location index of 100. Hence, the cost 

model predictions need to be adjusted for time and location when predicting the 

CC of a future project. On the other hand, absence of such indices for EC made it 

impossible to adjust EC for time and location. However, the difference in time shall 

be accounted only if there is a difference in the manufacturing method and the 

adjustment for the location will be crucial for cradle-to-grave (or cradle) system 

boundary. Accordingly, it was assumed that there is no difference in the 

manufacturing process of construction materials, hence, there is no need of time 

adjustment; and only cradle-to-gate boundary is covered by the study which 

implies that the transport other than from raw material extraction to the 

manufacturing factory is not included in the estimates, hence, location adjustment 

is negligible. Nevertheless, cradle-to-gate system boundary is a limitation of the 

models. Even though, it is desirable for the models to cover cradle-to-grave 

boundary to provide a holistic perspective on designs, it is challenging due to 

limited EC data. 

Another limitation of regression models is that they are static models. Regression 

analysis has to be performed again to derive a new model when new data become 

available. In addition, similar to any other regression model, these models are also 

dependent on the data used to formulate the models. Hence, with a different set of 
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data different parameter estimates might be obtained. Furthermore, non-linear 

relationships were not configured in the modelling technique used.  

8.2.5. Comparison of the Study Cost Model with Cost Models in the 

Literature 

Comparison between the cost model of the study and other cost models found in 

the literature is presented in Table 8.5. Accordingly, all models except for one 

(Phaobunjong, 2002) indicate a better model fit than the study model while the 

prediction performance of the study model is better than most of the identified 

models. The study findings closely align with the findings of Phaobunjong (2002) in 

terms of the predictor variables (independent variables). In comparison, the model 

developed by Kouskoulas and Koehn (2005) performs better in all aspects 

although the model encounters some shortfalls. The issue with the model of 

Kouskoulas and Koehn (2005) was capturing the building height by means of the 

number of storeys which fail to account for buildings with unusual storey heights as 

criticised in McGarrity (1988). On the other hand, the model of McGarrity (1988) 

also suffers from lower sample size, unrealistic correlation coefficients for the 

predictive variables (negative correlation for number of storeys and GIFA), extreme 

deviation when predicting outside the database and not considering the building 

type as a predictive variable as the data sample includes more than one type of 

buildings. The model developed by Alshamrani (2016) looks almost perfect, but a 

problem lies in the method used to develop the model. The sample of buildings 

was formed by considering alternative design scenarios and estimating the cost of 

each scenario by using national average prices of the construction cost of 

elements. Two hundred and fifty (250) scenarios were used for the model 

development and seventy (70) scenarios were used for the model validation of the 

three hundred and twenty (320) scenarios developed by Alshamrani (2016). 

Hence, a good prediction performance is obvious due to the use of benchmark 

rates for all buildings in the sample.  
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Table 8.5: The cost model of the study compared with the other models in the literature 

The study McGarrity (1988) Kouskoulas and 

Koehn (2005)  

Phaobunjong 

(2002) 

Alshamrani 

(2016) 

Regression 

functional form 

Linear Power Linear Linear Linear 

Type of building Offices Not specific to one 

type 

Not specific to 

one type 

Not specific to 

one type 

College buildings 

Dependent 

variable 

Cost per m2 GIFA Cost Cost per ft2 Cost per GIFA Cost per ft2 

Independent 

variables 

(coefficient) 

Building height 

(18.73), 

circulation ratio 

(800.65) 

Height (positive), 

storeys (negative), 

duration (positive), 

liquidated damage 

(positive), GIFA 

(negative) 

Location (23.93), 

time of realization 

(10.97), function 

or type (6.23), 

height (0.167), 

quality (5.26), and 

technology (30.9) 

Number of floors 

(15.74), usage 

ratio (126.196), 

Height (0.666), 

number of floors 

(4.498), area of 

the building 

(0.000129), 

sustainability 

index (6.292), 

structure type 

(5.003) 

R2 0.506 0.907 0.998 0.261 0.873 

CV - Internal 13.2% 24.27% (ranges 

from 1.05% to 

62.43%) 

Ranges from 

-0.05% to 6.5%

Ranges from 

<10% to >50% 

Not provided 

CV - External 9.85% (-22% to 

9%) 

5.15% to 236.98% Not specified -0.8% to 13.5% 5.6% 
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8.3. Carbon and Cost Hotspots 

The carbon and cost hotspots of the sample office buildings are presented in 

Table 8.6 based on the analysis presented in Section 6.2. Accordingly, 

Substructure was identified as the most significant carbon hotspot while less 

significant cost hotspot. Services were identified as the most cost significant 

hotspot and the second most carbon significant hotspot. The level of 

significance of Frame as a carbon and cost hotspot was found to be the same 

(third most cost and carbon significant hotspot). Interestingly, Upper Floors was 

not identified as cost significant while it was identified as the fourth carbon 

significant hotspot. External Walls was identified as the second most cost 

significant building element while carbon significance of External Walls was 

found to be low. Roof was identified as the least carbon significant hotspot while 

it was found to be more cost significant than the Substructure. Floor Finishes 

was identified as the least cost significant hotspot. Further, the concept of cost 

and carbon hotspot emerged from the Pareto Principle, which suggests that 

80% of the EC (or cost) is attributable to 20% of the elements. However, the 

80:20 ratio is not supported in this case. The findings suggest that 80% of the 

EC emissions are caused by 43% of the elements (6 of the 14 elements) and 

80% of the building cost is spent on 50% of the elements (7 of the 14 elements) 

on average. 

Table 8.6: Carbon and cost hotspots of the sample office building 

Level of 

Significance 

Carbon hotspots Cost hotspots 

1 1 Substructure 5 Services 

2 5 Services 2E External Walls 

3 2A Frame 2A Frame 

4 2B Upper Floors 2F External Windows and Doors 

5 2E External Walls 2C Roof 

6 2C Roof 1 Substructure 

7  3B Floor Finishes 

It can also be noticed that the level of significance of each element in terms of 

carbon and cost vary even though most of the elements were found to be both 

carbon and cost hotspots. Therefore, achieving optimisation between carbon 
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and cost is not as simple as it first appeared. For instance, an effort to minimise 

EC in the Substructure might lead to increase in the Frame cost because of 

wind bracings, which might offset the cost savings achieved in the Substructure. 

Hence, the findings highlight the need for in-depth case studies of buildings 

exploring different design options while studying the change in EC and CC for 

alternative design options. This will inform designers of the impact of different 

specifications on the EC and CC of building designs and when an optimum 

point can be achieved. For instance, Figure 8.1 presents average EC and CC 

values for three different types of foundation in the sample building. 

Accordingly, both EC and CC values (mean values) are found to be the lowest 

in raft foundation and the highest in pile foundation. This conveys that the 

choice of raft foundation could reduce both EC and CC.  Similar graphs can be 

produced for other building elements and an informed decision can be made by 

the designers.  Especially, with this kind of knowledge, cost and carbon 

reconciliation can be exercised by compromising the design of the elements 

which do not produce significant savings in cost or carbon and focusing on the 

design of the most cost and carbon significant elements which are referred to as 

the ‘hotspots’. 

Furthermore, some building elements were found to be carbon or cost hotspots 

in most or all of the sample buildings which were named as ‘lead positions’; 

building elements that were found to be hotspots in some of the buildings were 

named as ‘special positions’; and the building elements that were never 
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identified as hotspots were called as ‘remainder positions’. Table 6.4 presents 

and compares different categories of carbon and cost hotspots of the sample 

buildings. Substructure, Frame, External Walls and Services were found to be 

lead carbon and cost hotspots in the office buildings. In addition to the above-

mentioned elements Roof and Windows and External Doors were identified as 

lead cost hotspot while Upper Floors were identified as lead carbon hotspot. On 

the other hand, Internal Walls and Partitions, Wall Finishes, Floor Finishes and 

Ceiling Finishes were identified as special carbon and cost hotspots whose 

identity as a hotspot is ambiguous as these elements were found to be hotspots 

in some of the buildings. Further, Roof and Windows and External Doors were 

also identified as special carbon hotspots while both were identified as lead cost 

hotspots. In addition, Upper Floors, Internal Doors, Fittings, Furnishings and 

Equipment were identified as special cost hotspots. Interestingly, all of the 

building elements were found to be a cost hotspot in one or more of the 

buildings while Stairs, Internal Doors, Fittings, Furnishings and Equipment were 

never identified as carbon hotspots.  

Table 8.7: Classification of carbon and cost hotspots 

Hotspot 

Category 

Carbon Hotspots Cost Hotspots 

Lead 

positions 

Substructure, Frame, Upper Floors, 

External Walls, Services 

Substructure, Frame,  Roof, External 

Walls, Windows and External Doors, 

Services 

Special 

positions 

Roof, Windows and External Doors, 

Internal Walls and Partitions, Wall 

Finishes, Floor Finishes, Ceiling 

Finishes 

Upper Floors,  Stairs, Internal Walls 

and Partitions,  Internal Doors, Wall 

Finishes, Floor Finishes, Ceiling 

Finishes,  Fittings, Furnishings and 

Equipment 

Remainder 

positions 

Stairs, Internal Doors, Fittings, 

Furnishings and Equipment 

Nil 

 

It is clear from the findings above that some building elements were identified 

as hotspots in some buildings, which imply that the building design determines 

the chances of an element being a hotspot in a particular building. Therefore, 

the design of ‘special positions’ can play an important role in influencing carbon 

and cost accountability of the building. Table 8.8 presents the range of 

specification for each building element in the sample. 
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Table 8.8: Alternative design options of the building elements in the sample 

Element Specifications 

1 Substructure Pad and strip, raft, pile 

2A Frame Concrete, steel, hybrid 

2B Upper Floors In-situ concrete, pre-cast concrete, metal decking, timber 

decking 

2C Roof Concrete flat roof, steel truss, steel mansard, timber truss, 

timber pitched, aluminium sheet roof,  metal decking, glazed 

atrium roof, Durox roofing units 

2D Stairs Concrete, steel, timber 

2E External Walls Cavity wall, curtain wall, block wall, aluminium cladding, 

stone ashlar wall, terracotta cladding, pre-cast concrete 

cladding  

2F External Windows 

and Doors 

Double glazed aluminium windows and doors, metal 

windows and doors, sun screens, shop fronts, softwood 

doors, curtain wall  

2G Internal Walls and 

Partitions 

Brick walls, block walls, metal stud partitions, timber stud 

partitions, glazed screens 

2H Internal Doors Oak veneered flush doors, Oak veneered solid core doors, 

ash panelled doors, hardwood doors, softwood panelled 

doors, aluminium doors, borrowed lights 

3A Wall Finishes Wallboard, MDF panels, gypsum plaster, ceramic tiles, 

cement plaster, emulsion paint, wallpaper, lightweight 

plaster, ceramic tiles, eggshell paint, fair face paint, spray 

paint, stone cladding, laminated chip board, laminated 

panels, plywood panels, acoustic panels 

3B Floor Finishes Vinyl sheet, ceramic tiles, carpet tiles, raised access floors, 

asphalt and cement screed, clay tiles, carpet, granolithic 

paving, slate tiles, chip board, timber floor, quarry tiles, floor 

paint 

3C Ceiling Finishes Mineral fibre metal suspended ceiling, aluminium PVC 

composite panels and plasterboard ceiling, Armstrong 

suspended ceiling, sprayed rendered screed, plaster and 

paint 

4 Fittings and 

Furnishings 

Sanitary fittings, vanity, furniture, kitchen fittings and 

appliances 

5 Services A/C, non-A/C, A/C automated, non-A/C automated 
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It can be noticed from the table that some building elements such as 

Substructure and Frame had minimal design options while elements such as 

Roof and Internal Finishes were found with many choices. In fact, the special 

positions have many design options compared to lead positions, highlighting the 

significance of design decision of special positions. Therefore, further studies 

and detailed analysis of the impacts of different choices of design in each 

element will open new avenues for achieving cost and carbon reduction through 

building designs. For instance, Table 8.9 and Table 8.10 present two design 

options for Floor Finishes in a particular building. Design option A proposes a 

combination of vinyl sheet, ceramic tiles (to toilet area) and raised access floor 

with carpet tiles on top; design option B replaces the area covered by vinyl 

sheet with raised access floor with carpet tiles. Replacing vinyl sheet with 

access floor finished with carpet tiles has increased the rates of CC and EC by 

approximately 100% and 400% respectively, which increased CC per EUQ by 

10% and EC per EUQ by 20% (which implies 10% and 20% increase in total 

CC and EC of the building). Therefore, what-if analysis can be run during 

detailed design stages and the most efficient design option can be chosen by 

the designers if this type of analysis is entertained by construction professionals 

and practices. 

Table 8.9: Floor finishes – design option A 

Floor Finishes Qty Unit CC EC Total cost Total carbon 

Vinyl sheet 797 m2 28.71 7.69 
         

22,896.65         6,130.41  

Ceramic tiles 399 m2 84.14 15.37 
         

33,547.42         6,127.22  

Carpet tiles 2,791 m2 26.69 10.45 
         

74,484.77       29,159.32  
Raised access 
floor 2,791 m2 28.30 25.03 

         
78,982.47       69,847.85  

      

       
209,911.31     111,264.81  

  
3,987 m2 Per m2 

 

                
52.65              27.91  
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Table 8.10: Floor finishes – design option B 

Floor Finishes Qty Unit CC EC Total cost Total carbon 

Ceramic tiles 399 m2 84.14 15.37 

         

33,547.42         6,127.22  

Carpet tiles 3,588 m2 26.69 10.45 95,766.13  37,490.56 

Raised access 

floor 3,588 m2 28.30 25.03 

       

101,862.44  89,804.38 

      

230,862.44 133,422.16 

  

3,987 m2 Per m2 

 

57.90 33.46 

In addition to that, analysis of the whole sample gives a different insight into the 

problem investigated. It was found that Substructure, Services, Frame, Upper 

Floors, External Walls and Roof were the most carbon significant building 

elements (in descending order) which also contribute up to 72% of the CC of 

the buildings. On the other hand, Services, External Walls, Frame, External 

Windows and Doors, Roof, Substructure, Floor Finishes (in descending order) 

were found to be the most cost significant elements which contribute up to 81% 

of the EC of the building. This finding implies that tackling carbon hotspots also 

means tackling the building elements that are responsible for 72% of the cost in 

general. Similarly, tackling the identified cost hotspots implies tackling the 

elements accountable for 80% of the EC of the building. In comparison, treating 

cost hotspots seems to be a better option than treating carbon hotspots as it 

includes the elements responsible for 80% of the CC and EC. Given that, the 

list of cost hotspots includes all of the identified carbon hotspots except Upper 

Floors. 

8.4. Embodied Carbon and Cost Relationships 

EC and CC can be analysed at five different levels including building, elements, 

components, items and basic inputs (material, labour and plant) as shown in 

Figure 8.2. However, only the first two levels were analysed in the study due to 

the limitations in the data obtained. Analysis at Level 1 or the building level 

suggested that EC and CC are positively correlated, with a strong correlation 

coefficient of 0.977 at 0.05 significance level. However, it is understood that this 

correlation was caused by a third variable, which was GIFA. Subsequently, EC 

and CC were standardised (by dividing the values by the respective GIFA) and 
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correlation coefficient was recalculated. EC per GIFA and CC per GIFA 

demonstrated a moderately strong correlation with a Pearson’s correlation 

coefficient of 0.645 (p value<0.05). The finding suggests that it is possible to 

achieve lower cost and lower EC simultaneously due to the positive association 

between EC per GIFA and CC per GIFA. However, when investigating EC and 

CC relationships at different levels different insights were drawn. Level 2 

elemental analyses involved the analysis of EC per GIFA and CC per GIFA as 

presented in Figure 6.35, Table 6.49 and Table 6.50 in Chapter 0. Most of the 

elements showcase a positive correlation (at 0.05 significance level) between 

EC per GIFA and CC per GIFA except for Roof, Wall Finishes, Ceiling Finishes 

and Services which implies that EC and CC can be reduced simultaneously in 

most of the elements by concentrating on the design.  

Further, elements’ EC per GIFA values with a lower standard deviation 

including Substructure, Upper Floors, Floor Finishes, Ceiling Finishes and 

Services indicates that the EC per GIFA values of the sample buildings hovers 

closely around the mean, which implies less uncertainty in the prediction of the 

EC of these elements. Particularly, Substructure and Upper Floors had only up 

to three design alternatives, which could be the reason for the lower standard 

deviation. However, elements such as Floor Finishes, Ceiling Finishes and 

Level 1 

Level 2 

Level 3 

Level 

Level 5 

Figure 8.2: Levels of analysis 
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Services had more than three design alternatives, yet the standard deviation 

was low. The reason for lower standard deviation in Services EC per GIFA was 

due to the development of Services EC per GIFA from Dataset 2 (see, Table 

5.19 Section 5.7.2). However, lower standard deviation in the EC per GIFA 

values of Floor finishes and Ceiling Finishes was a true representation of the 

data. On the other hand, the higher standard deviation was found in the EC per 

GIFA values of Internal Walls and Partitions and Wall Finishes. Similarly, CC 

per GIFA of Roof and Services had lower standard deviations even though both 

of the elements had several design alternatives. However, higher dispersion of 

data was found in the CC per GIFA values of Stairs, Windows and External 

Doors, Internal Walls and Partitions, Wall Finishes and Fittings, Furnishings and 

Equipment.  

Table 8.11: Risk or uncertainty matrix of using EC elemental benchmarks for early stage 

EC estimates  

 High Standard Deviation Low Standard Deviation 

Level of 
uncertainty/ 
risk in the 
estimate 

Elements Level of 
uncertainty/ 
risk in the 
estimate 

Elements 

Lead 
Position 

High   None Low  Substructure, 
Upper Floors, 
and Services 

Special 
Position 

Moderate  Internal Walls 
and Partitions 
and Wall 
Finishes 

Very low Floor Finishes, 
Ceiling 
Finishes 

Remainder 
Position 

Low Stairs, Windows 
and External 
Doors, and 
Fittings, 
Furnishings and 
Equipment 

Negligible None 

The spread of data and the hotspot category together have an influence on the 

accuracy of the estimate. The risk or uncertainty matrix of using the developed 

EC elemental benchmarks for early stage EC estimates is presented in Table 

8.11 for different combinations of dispersion of data and hotspot category. 

Accordingly, Substructure, Upper Floors and Services have lower standard 

deviation for EC per GIFA and are identified as lead positions in the carbon 

hotspot category. Hence, there is a lower risk or less uncertainty in the EC 
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estimates of these elements. Floor Finishes and Ceiling Finishes have a lower 

standard deviation and identified as special positions in the carbon hotspot 

category. This implies very low risk and uncertainty involved in the EC 

estimates of Floor and Ceiling Finishes. On the other hand, Internal Walls and 

Partitions and Wall Finishes were identified as ‘Special positions’ in the carbon 

hotspot category and have a higher standard deviation which implies that there 

is moderate risk involved in the EC estimating of these elements. 

EC per GIFA and CC per GIFA are the key data to estimate EC and CC using 

approximate estimating techniques when there is no detailed design of the 

elements is present. Even though the benchmarks are available for CC per 

GIFA in the form of published cost data books developed by construction 

practices and professional bodies, there is no comparable industry developed 

EC benchmarks to assist early stage EC estimating. The need for developing 

comparable EC benchmarks (e.g. EC per GIFA and EC per EUQ) is identified 

and highlighted in the study to facilitate dual currency appraisals (cost and 

carbon). Further, carbon planning process can be entertained and performed 

simultaneously by a Quantity Surveyor similar to cost planning process as 

pointed out by Ashworth and Perera (2015) if such EC benchmarks are 

available (see, Table 8.12). In this way, cost and carbon management can be 

achieved simultaneously in a more efficient way. 

Table 8.12: EC planning process in parallel to cost planning as per NRM1  

Modified from: Ashworth and Perera (2015) 

RIBA Plan of Work 

2013 

Cost Plans (as per 

NRM1) 

Comparable EC plans 

1 Preparation Order of Cost Estimate EC Estimate for the 

Building 

2 Concept Design Formal Cost Plan 1 EC Plan 1 

3 Developed Design Formal Cost Plan 2 EC Plan 2 

4 Technical Design Formal Cost Plan 3 

Bill of Quantities  

Post Tender Estimate 

Full Pre-tender EC Plan 

for the Building 

5 Specialist Design  Refine EC Plan for 

specialist design 

6 Construction   EC management by the 

builder 

7 Use and Aftercare  EC management by the 

Facilities Manager 
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8.5. Summary 

The EC model refuted the hypotheses that suggest there is no relationship 

between EC and wall to floor ratio and EC and number of basements. Similarly, 

the cost model refuted the hypotheses, which suggest that there is no 

relationship between the building cost and the building height and cost and the 

circulation space ratio. The findings suggest that 48.1% of the variation in EC 

per GIFA is attributable to Wall to Floor ratio and a number of basements and 

50.6% of the variation in CC per GIFA is attributable to building height and 

circulation space ratio. The remaining variation in both models is attributable to 

other variables that are not modelled here. These models aim at assisting 

designers during the early design stages of construction projects to select an 

optimum design solution.  

The knowledge of carbon and cost hotspots informs designers about the 

building elements that need more attention during the design stages that have 

high reduction potential. The findings suggest that 80% of the EC emissions are 

caused by 43% of the elements and 80% of the cost is incurred by 50% of the 

elements on average, which does not comply with the 80:20 Pareto rule. 

However, it was also found that the cost hotspots are responsible for 80% of the 

EC emissions while carbon hotspots are responsible for 72% of the CC of the 

construction on average. Even though the all the carbon hotspots except for 

Upper Floors were identified as cost hotspots the level of carbon and cost 

significance of each element is different which makes the cost and carbon 

optimisation complex. More case studies on alternative design options will 

provide insights to this issue. 

The intensity of the risk or uncertainty in the EC and CC estimates was 

ascertained based on the hotspot category and the standard deviation of the 

element rates. Accordingly, it was also found that there is low risk or less 

uncertainty when estimating EC of Substructure, Upper Floors and Services; 

very low risk or uncertainty for Floor Finishes and Ceiling Finishes; moderate 

risk for Internal Walls and Partitions and Wall Finishes. On the other hand, there 

is low risk or uncertainty in the CC estimates of Roof and Services; moderate 

risk on Stairs, Internal Walls and Partitions, Wall Finishes and Fittings, 

Furnishings and Equipment; high risk on Windows and External Doors. These 
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findings are important in presenting the early stage estimates to the client so 

that necessary allowance for uncertainty is accounted in the estimates to cover 

insufficient design data. 
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9. Conclusions and Recommendations 

9.1. Introduction  

The study aimed at developing cost and carbon models for early design stage 

decision-making by collecting historical project data. The study objectives are 

reviewed in this chapter by discussing the method used to achieve each 

objective and summarising the outcome of each objective. Different data 

collection and analysis techniques were employed including archival analysis, 

Delphi-based expert forum, document review and statistical analysis 

(correlations and linear regressions), to achieve the objectives as discussed in 

Chapter 5 and Chapter 6. These are discussed briefly in the review of the study 

objectives. The key findings presented in Chapter 8 are also summarised here 

leading to the key conclusions of the research. Further, the contribution to 

knowledge in terms of theory, practice and application is discussed here. This is 

followed by key limitations of the research and recommendations to the industry 

and professional bodies to improve research in this area. This chapter and the 

overall thesis conclude by identifying three key future research directions. 

9.2. Review of Objectives of the Study 

The aim of the study was achieved through seven objectives, which were 

presented in Chapter 1. 

9.2.1. Review the Significance of Embodied and Operational Carbon in 

Building Construction Projects and Relevant Regulatory 

Requirements 

This objective was achieved through an extensive literature review (Chapter 2) 

and answers the RQ1 (How significant are embodied and OC in building 

projects and how are they regulated?) Literature suggests that generally, OC 

contributes a significant proportion of the total emissions (70%-80%) from 

buildings, hence, is regulated (for instance, Part L of Building Regulations of the 

UK). Further, zero carbon agenda of the UK government aspires to achieve 

zero OC in all the new building from 2019. On the other hand, case studies by 

Ramesh et al. (2010) suggest that EC increases when moving from a 
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conventional building to a low or zero carbon building. However, EC is not 

regulated by any means at present. Therefore, there is a need to manage EC to 

control the rise in the emission levels to attain the emission reduction targets 

prescribed in the Kyoto Protocol and the UK Climate Change Act (80% 

reduction in emission levels by 2050). These targets became more serious with 

the latest Climate Conference COP21 with 195 countries committing to reduce 

emission levels. EC management requires EC estimating throughout the project 

and it is argued that the reduction potential is high during the early stages of 

design (RICS, 2014) (see, Figure 2.9 in Section 2.5). However, estimating EC 

during early design stages is challenging and there is no industry developed 

standards or benchmarks to assist EC estimating during early stages of design. 

Even though there are estimating practices, tools and techniques pertinent to 

estimating EC these are still in the early stages of development. In fact, robust 

early design stage EC estimating tools are scarce. 

9.2.2. Evaluate the Existing Carbon Estimating Practices, Tools and 

Techniques, their Functions, Outputs and Limitations 

This objective answers the RQ2 (What are the existing EC estimating tools, 

methods, their functions, outputs and limitations?) and is achieved through the 

literature review and the evaluation of the existing EC tools and techniques 

(Chapter 3). Carbon emissions can be estimated from Cradle to Grave (from the 

raw material extraction up to the end of life of the building) which is called the 

system boundary of the estimate (see, Figure 2.4 in Section 2.3). RICS (2014) 

guidance note assists in estimating EC during different stages of a project by 

obtaining data from the project and EC and other design specific data from 

databases such as ICE, DEFRA and BCIS (see, Section 2.6 and 2.7). However, 

EC estimating is affected by five key factors including system boundary, the 

method of estimating, assumptions, data sources used and element 

classification adopted in the analysis (Dixit et al., 2010, Clark, 2013, Ekundayo 

et al., 2012) (see, Section 0). Hence, findings of the past research are not 

always consistent and directly comparable. Therefore, the need to define and 

explicitly state all of the identified five key factors affecting carbon estimating 

was highlighted for the knowledge to be transferable. 
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In addition, operational and EC estimating tools were reviewed under two key 

themes namely early stage (up to the Conceptual Stage of RIBA Plan of Work 

2013) and detailed stage (see, Sections 3.4 and 3.5). The review revealed that 

carbon estimating tools ranges from simple easy to use tools to complex and 

comprehensive tools when moving from early stages to detailed stages of 

design. The predictions of the early design stage tools reported to higher CV 

(lower prediction accuracy) due to high uncertainty of designs during early 

stages while detailed design stage tools require project-specific inputs and 

specification information for more accurate predictions. However, most of the 

detailed stage tools are in the form of software packages and are available for 

purchase. Yet, tools that integrate both cost estimating and EC estimating rarely 

exist (unless the tools can operate in a BIM platform), especially during the 

early design stage, which could lead to more rational decisions.  

Consequently, the need to develop early stage estimating tool to predict EC and 

CC was identified. The use of parametric cost models to estimate cost during 

early stages of projects has been proven successful. Therefore, the same 

approach was adopted in EC estimating to make it more approachable and 

parallel to cost estimates (see, Section 3.10). Integration of theories of design 

economics with EC estimating was conceptualised into developing a model for 

EC estimating. Consequently, design parameters of buildings such as 

morphological parameters (plan shape, storey height, total height and the like) 

and quality parameters (quality of services and quality of finishes) were used to 

formulate a linear model for predicting EC.  

9.2.3. Identify and Analyse the Carbon-Intensive Elements in Buildings 

This objective answers the research question RQ3 (What are the carbon-

intensive elements or carbon hotspots in buildings?). In order to rationalise the 

number of predictor variables to be used in the model, the most influential 

design variables were identified by analysing the carbon hotspots or the carbon 

critical elements of the buildings. This was done by collecting data from 

historical projects (office buildings only) from four different sources (Dataset 1, 

Dataset 2, Dataset 3 and WRAP dataset – see Section 6.3) and estimating EC 

of the Dataset 3 using EC data from the UK Building Blackbook, Dataset 1, and 

Dataset 2 (see, Section 5.7). EUR for Substructure, Frame and Upper Floors 
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were obtained from Dataset 1; EURs for Fitting, Furnishings and Equipment and 

Services were obtained from Dataset 2; EURs of the rest of the elements were 

developed from the UK Building Blackbook. Dataset 3 was validated using the 

WRAP dataset to ensure the consistency of the developed data (see, Section 

5.7.3).  

Table 9.1: Carbon and cost hotspot categories 

Hotspot 

Category 

Lead position Special position Remainder 

position 

Both Carbon 

and Cost 

Substructure, 

Frame, External 

Walls, Services 

Internal Walls and 

Partitions, Wall 

Finishes, Floor 

Finishes, Ceiling 

Finishes 

- 

Carbon Upper Floors Roof, Windows 

and External 

Doors 

Stairs, Internal 

Doors, Fittings, 

Furnishings and 

Equipment 

Cost  Roof, Windows 

and External 

Doors 

Upper Floors, 

Stairs, Internal 

Doors, Fittings, 

Furnishings and 

Equipment 

- 

The Pareto Principle (80:20 rule) was used to identify the carbon and cost 

hotspots of the developed sample (Dataset 3). The building elements 

contributing up to the 80% of EC and CC of the buildings in descending order of 

intensity were identified and marked as ‘hotspots’ (see, Section 6.2). 

Accordingly, Substructure, Frame, External Walls, Roof and Services, were 

identified as both carbon and cost hotspots in the whole sample. Further, Upper 

Floors was also identified as a carbon hotspot and External Windows and Doors 

and Floor Finishes were identified as cost hotspots. In addition, elements were 

classified into three types according to their position, namely ‘Lead Position’ 

(elements that were identified as hotspots in more than (or equal to) 80% of the 

buildings in the sample), ‘Special Position’ (elements that were found as 

hotspots in less than 80% of the buildings in the sample) and ‘Remainder 

Position’ (elements that were not identified as hotspots in any of the buildings in 

the sample) which are presented in Table 9.1 (modified from Table 6.10). The 

findings alert designers of the key building elements, which require focus during 
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the design development to achieve a high reduction in either carbon or cost or 

to achieve an optimum balance between the both. 

9.2.4. Investigate the Relationship between Embodied Carbon and 

Building Design Variables and Capital Cost and Building Design 

Variables 

The research question RQ4 (Are there statistically significant associations 

between EC and design variables of buildings?) is addressed by this objective. 

Correlation between EC and building design variables (quantitative) was 

analysed using Pearson’s correlation at 0.05 significance level (95% 

confidence). Table 9.2 and Table 9.3 summarises the correlation coefficients 

obtained from the analysis of Pearson’s correlation. Statistically significant 

relationships were found between EC and certain design variables including 

GIFA, Building Height and Faced Area. These correlation coefficients remain 

significant at 0.01 significance level, which is impressive. Very similar results 

were obtained for CC, which makes it comparable. On the other hand, EC per 

GIFA correlate with Wall to Floor ratio and Circulation Ratio (the correlation 

between EC per GIFA and Wall to Floor Ratio was also significant at 0.01 

significance level). CC per GIFA correlate with Building Height, Wall to Floor 

ratio, and Circulation Ratio at 0.05 significance level (however, the correlations 

were not significant at 0.01 significance level). 

Table 9.2: Correlations between design variables and EC and CC 

 GIFA Building 

Height 

Façade 

Area 

Circulation 

Ratio 

EC Pearson Correlation .985** .513** .862** -.041 

Sig. (2-tailed) .000 .001 .000 .821 

N 41 41 41 33 

CC Pearson Correlation .969** .535** .868** -.010 

Sig. (2-tailed) .000 .000 .000 .955 

N 41 41 41 33 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Table 9.3: Correlations between design variables and EC per GIFA and CC per GIFA 

 Building 

Height 

Wall to Floor 

Ratio 

Circulation 

Ratio 

EC per GIFA Pearson Correlation .306 .523** .360* 

Sig. (2-tailed) .052 .000 .039 

N 41 41 33 

CC per GIFA Pearson Correlation .389* .322* .391* 

Sig. (2-tailed) .012 .040 .024 

N 41 41 33 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 

9.2.5. Investigate the Relationship between the Embodied Carbon and 

the Capital Cost of Buildings  

The research questions RQ5 (Is there a statistically significant association 

between the EC and the CC of buildings?) was answered by this objective. The 

correlation coefficient between EC and CC were analysed at the building level 

and element levels at 0.05 significance level (see, Section 7.6). The analysis at 

the building level suggested that EC and CC are positively correlated. 

Pearson’s correlation indicated a very strong positive correlation of 0.977 

between EC and CC at 99.99% confidence level (or 0.01 significance level). 

However, it was suspected that this correlation was caused by a third variable 

GIFA and hence, the correlation coefficient was calculated between EC per 

GIFA and CC per GIFA, which was found to be 0.645 at 0.01 significance level, 

which is a moderately strong correlation. The finding suggests that it is possible 

to achieve lower cost and lower EC at the same time due to the positive 

association between the EC per GIFA and the CC per GIFA.  

However, when investigating EC and CC relationships at element levels 

different results were found (see, Table 6.50). EC per GIFA and CC per GIFA of 

Upper Floors and Internal Walls and Partitions were very strongly correlated 

(>0.80 at 0.01 significance level) while Substructure, Frame, External Walls, 

and Internal Doors were strongly correlated (between 0.60 and 0.79 at 0.01 

significance level). Correlation between EC per GIFA and CC per GIFA was 

moderate (between 0.40 and 0.59 at 0.05 significance level) in External 

Windows and Doors and Floor Finishes. Therefore, the findings suggest that is 

possible to reduce both EC and CC in most of the elements at the same due to 
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its positive correlation, hence, both EC and CC could be optimised 

simultaneously in office buildings. 

9.2.6. Develop Models for Predicting Embodied Carbon and Capital Cost 

during Early Design Stages  

The research question RQ6 (How can an early design stage EC prediction 

model be developed using design variables of buildings?) was answered by this 

objective. The objective covers two sub-processes including the development of 

services and finishes quality Indices and the regression analysis. Design quality 

indices were developed for internal finishes and services quality to transform 

the qualitative parameters into quantitative parameters by assigning an ordinal 

level scale to facilitate regression analysis. A finishes quality index was 

developed from a conceptual finishes quality index which was verified through a 

Delphi-based expert forum and a three-tiered finishes quality index was 

developed for the study for Wall (internal), Floor and Ceiling finishes of office 

buildings (see, Table 6.11 in Section 6.3.1). Finishes quality of each building 

was identified as Basic, Moderate or Luxury for Wall, Floor and Ceiling Finishes 

based on the type of finish used in the building. The final finishes quality index 

was derived using a weighted average method where the area finished was 

multiplied by the calculated finishes index and the sum was obtained (see, 

Table 6.12 and Table 6.13 in Section 6.3.1).  

A services quality index was developed by reviewing services quality levels 

proposed in various price books (refer, Table 5.27). Among which, the services 

quality levels proposed in the Spon’s Mechanical and Electrical Services Price 

book (Davis Langdon Consultancy, 2014) was considered appropriate due to its 

adaptability to the study which had three levels of services quality. Further, the 

services quality levels proposed in the Spon’s Mechanical and Electrical 

Services Price book was improved by adding another level and each quality 

level was subdivided into two such as ‘with lift installations’ and ‘without lift 

installations’ (see, Table 6.14 in Section 6.3.2). In this way the Finishes Quality 

Index and the Services Quality Index was developed objectively. Then, the 

regression analysis was performed to formulate the EC and CC models after 

deriving the finishes quality and services quality of buildings using the 

developed indices.  
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The EC model is presented in Equation 8.1, which explains 48.1% of the 

variation in EC per GIFA attributable to Wall to Floor ratio and the number of 

basements. EC per GIFA is increased by 164 kgCO2/m2 when Wall to Floor 

ratio is increased by one unit for a given number of basements and adding a 

basement will increase EC per GIFA by 68 kgCO2/m2 for a given Wall to Floor 

ratio. The model was statistically significant and all the variables were 

significant at 0.05 significance level. Circulation Space Ratio was not significant 

in the model even though it significantly correlated with EC per GIFA in the 

bivariate analysis.  

On the other hand, CC per GIFA model was presented in Equation 8.2 explains 

50.6% of the variation in CC per GIFA, which is a better fit than the EC per 

GIFA model. The model suggests that the CC per GIFA increases by £18/m2 for 

every meter increase in the building height, for a given circulation space ratio. 

Similarly, the CC per GIFA increases by £8/m2 for every percentage increase in 

circulation space ratio for a given building height. However, remaining 49.4% of 

the change is attributable to other design variables, which were not modelled in 

the study. In contrast, the bivariate analysis shows that all the design variables 

(building height, wall to floor ratio, circulation space ratio and no. of basements) 

significantly correlate with CC per GIFA at a 0.05 significance level. However, 

during the model fit, not all variables were found to be significant resulting in the 

elimination of the insignificant variables. 

9.2.7. Validate the Decision Support Models with Real-Time Construction 

Projects 

This objective answers the research question RQ7 (How can the developed EC 

and CC models be validated?). The developed models were validated by 

assessing their closeness to fit and prediction accuracy with internal data and 

external data (see, Section 7.1). EC per GIFA model has an R2 value of 48.1%, 

which is satisfactory. The CV of the model was found to be 10.65% when 

predicting for internal data, which is within the desired CV range for early stage 

estimating. The difference in the estimates to that with the actual EC per GIFA 

ranges from -25% to 20%. Further, the predictions range from -20% to 11% 

when predicting for external data (see, Section 7.3.1). Therefore, the model 
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performs fairly well with the data outside of the model and it can be used to 

predict EC of real time projects. 

Similarly, CC per GIFA model fit was found to be 50.6%, which is better than 

the EC model fit. The CV of the model was 13.2% when predicting for internal 

data, which is within the desired CV range for early stage estimating though the 

CV deteriorated when predicting for external data to 24.5%. However, after 

filtering the buildings up to 6 storeys from the external data CV was improved to 

9.85%, which implies the model performs well within the given range with 

buildings up to 6 storeys (see, Section 7.3.4). 

9.3. Contributions to Knowledge 

The findings of this research contribute to the body of knowledge of carbon 

management in buildings both in theoretical and in practical terms which are 

discussed as follows: 

9.3.1. Contributions to Theory 

The research findings on design variables and EC relationships add knowledge 

to the theory of design economics. Theory of design economics is well 

established in terms of construction cost (see, Seeley, 1996, Ashworth and 

Perera, 2015, Dell'Isola and Kirk, 1981, Collier, 1984, Morton and Jaggar, 1995, 

Robinson and Symonds, 2015). However, the other component of the dual 

currency of construction projects, which is carbon, has not been explored. 

Hence, the findings of the research provide a different dimension to the design 

economics theory. The behaviours of both CC and EC with respect to the 

changes in the design variables in building designs are captured in the selected 

sample and compared. This knowledge helps to identify the relationship 

between cost and EC and the design variables affecting both cost and EC (refer 

to Section 9.2.4). In addition, the strength of the relationships highlights the 

significant design variables that affect CC and EC.  

Further, the relationships between CC and EC at different levels, including 

building and element level, demonstrate the interaction between the two. In 

particular, the element level correlations highlight the elements in which both 
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CC and EC reductions are attainable due to the identified positive correlations 

(see, Section 9.2.5) which is absent in the literature.  

In addition, the methodology adopted in the study is also considered as a 

contribution to the theory as this research is relatively new in the field of EC 

estimating and no similar research are reported. Hence, the methodology 

proposed in this study can be replicated at different contexts such as in different 

locations and with different building types. 

9.3.2. Contributions to Practice 

The most significant applied contribution of this research is the early design 

stage EC prediction model. Although it is not currently the trend of the UK 

construction industry, it is expected to become one of the future trends. The EC 

prediction model is not self-sufficient and there is a need for a CC prediction 

model to facilitate dual currency evaluation. However, both prediction models 

developed from the selected sample have limited application in relation to the 

type and the number of storeys of the buildings. Therefore, EC and CC 

prediction models for different types of building with different design features will 

have to be formulated.  

In addition, the findings related to the carbon hotspots contribute to practice 

during the detailed design stage. Designers can be well informed of the building 

elements that require more attention during the detail design stages, with the 

knowledge of carbon hotspots, to realise substantial reductions in the EC of 

buildings. Further, the mapping of cost and carbon hotspots based on their 

positions (Lead, Special and Remainder Positions) helps to achieve an optimum 

balance between the CC and the EC of building designs. Finally, the knowledge 

of elements whose impacts are negligible allows designers to work with these 

elements more liberally compared to the others.  

9.4. Limitations of the Research 

The major limitation of the research was the lack of standalone EC databases. 

Therefore, the study sample for the statistical analysis was obtained from two 

different sources (the primary data from QS consultancy practices and the 

secondary data from a special database from another QS consultancy practice) 
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and validated using another dataset from an independent source (WRAP EC 

Database). However, since the t-Test suggests that there is a significant 

difference in the EC estimates of Superstructure Structural between Dataset 3 

and WRAP dataset. Therefore, there is some form of ambiguity concerning the 

estimate of Superstructure Structural EC. Hence, the reliability of the estimate 

of Superstructure Structural could not be verified without any additional 

information on element specification, which is unknown (see, section 5.7.3). 

Inability to seek clarifications about datasets obtained from online databases 

and BoQs obtained from QS consultancy practices was another challenge faced 

during the research. For instance, the cost analyses and EC analyses obtained 

from BCIS, special databases and WRAP EC Database deemed to be assumed 

as free from errors and manipulations. Further, cost analyses could not be 

adjusted for certain factors such as mark-up. Furthermore, errors in 

measurements were noticed in some elements in the BoQs obtained from QS 

consultancy practices, hence, respective data could not be used for the model 

validation.  

The sample size is another limitation of the study. A larger sample could not be 

obtained due to the lack of EC databases and only a limited set of data met the 

data requirement of the study. However, the best available data from different 

sources were obtained and the study sample was validated. 

Some key limitations of the models include: models work best at predicting EC 

and CC of up to 6 storeys as the sample comprises buildings from 1 to 6 

storeys. Models should be adjusted to accommodate the changes in the 

industry, especially, for the method of manufacturing of construction materials 

as the assumptions used in the EC databases were adopted in the study by 

default. Similarly, cost data were rebased to 2016 1Q and a location index of 

100. Hence, the cost model predictions need to be adjusted for time and 

location when predicting the CC of a future project using appropriate indices. In 

addition, cradle-to-gate system boundary is also a limitation of the models. Even 

though, it is desirable for the models to cover cradle-to-grave boundary to 

provide a holistic perspective on designs, it is challenging due to limited EC 

data. Another limitation of regression models is that they are static models. 

Regression analysis has to be performed again to derive a new model when 

new data become available (see, Section 8.2.4 more details).  
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Finishes and services indices were developed using qualitative data collection 

and analysis techniques due to the qualitative nature of the variables. Even 

though there could be possibilities for employing quantitative methods to 

develop this kind of indices, it is comparatively harder and requires significantly 

more time and participants. Furthermore, materials imported due to lower cost 

will have higher EC compared to locally sourced materials. This was not 

considered in the finishes index development due to the adoption of cradle-to-

gate system boundary.  

9.5. Recommendations  

The key limitation being the lack of a standalone EC database, there is a 

serious need for publicly available industry governed EC databases to facilitate 

research in this area. The rising need for EC estimating of construction projects 

will require a standard practice or models to be in place for a systematic and 

effective day-to-day running of businesses. The proposed methodology can be 

adopted by construction businesses if there is an in-house EC database or an 

industry governed public standalone database such as BCIS. While there is 

WRAP EC Database, developed and maintained by WRAP and UK-GBC, the 

database lacks key design data of the projects. Therefore, it is recommended to 

WRAP and UK-GBC that they improve their existing database with more design 

data and promote the database so that the industry practices can effectively 

contribute to the database development which will facilitate research of this 

kind.  

Further, it is recommended that the construction practices (or regulatory bodies 

such as RICS) develop and manage their in-house EC databases, which can 

contribute to their in-house research and development. Otherwise, it is 

recommended to the RICS that they incorporate EC analyses in the BCIS online 

cost database so that both cost and carbon information can be obtained for a 

particular project at the same time. Secondly, it is recommended that the BCIS 

make detailed specification information available (than what is available at 

present) for the users to allow in-depth studies. In addition, availability of cost 

analyses excluding mark-up will be an added advantage in standardising the 

base for the data. 
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Apart from the need for EC databases, there is a need for industry developed 

benchmarks for EC-EURs to encourage early stage EC estimating. The use of 

this kind of benchmarks can be realised during the preparation of early stage 

EC plans (see, Ashworth and Perera (2015) for the mapping of EC planning 

process to the NRM1 cost planning process). Especially, quantity surveyors 

trained in performing early stage cost planning can also produce EC estimates 

in parallel to cost estimates which lead to dual currency appraisals of 

construction projects provided that benchmarks for EC-EURs are available 

similar to CC-EURs. 

There is also a need for a standardised finishes and services index for the 

finishes and services quality of the buildings so that it can be incorporated into 

the heuristic cost models. This will eliminate the subjectivity of the cost models 

and the definition of the quality of finishes and services will be universal within 

the region. 
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9.6. Further Research Directions 

The thesis concludes with three directions for further research. 

First, the research outputs (CC and EC models) can be developed into a 

scalable decision support system, which will constitute the cost and carbon 

models as the system driver. Such a system should be self-updating as new 

data are fed into the system, easily manageable and user-friendly. On the other 

hand, the integration of these models or similar models into a BIM platform can 

also be studied.  

Secondly, similar research can be conducted in different contexts such as 

different countries and different types of buildings (high rise offices, retail 

buildings, domestic buildings etc.). The CC and EC data used are from the UK 

sources, however, EC of materials vary from one country to another. Therefore, 

there is a scope for similar research in different parts of the world so that the 

findings can be compared. Further, the function of the building also determines 

the cost and the EC of the building, hence, research in different types of 

building will add to the existing knowledge and will create new insights to the 

problem studied.  

Finally, the system boundary of the research can be broadened to cover Cradle-

to-Grave so that both EC and OC can be included in the analysis. Similarly, 

both CC and operation cost should be considered and the total cost of the 

project can be compared to the total carbon of the project. This final point is 

very important, as it would provide a holistic picture of the total cost savings and 

carbon savings of a proposed project. 
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Appendix 1: Details of the Pilot Case from BCIS 

  



 Rebased to 2Q 2014 (248; forecast)    

Customer Service Centre, Brewery Lane - #21402

Customer Service Centre, Brewery Lane

Location:  Bridgend, Mid Glamorgan

Date: 27-Nov-2002

Building cost: £3,037,440   rebased

Cost/m²: £986   rebased

Floor area: 3,080m

Main construction: Steel framed

Storeys: 2

Level of analysis: Elemental   

Ground Floor Plan
Image 1 of 2

Summary

2
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Customer Service Centre, Brewery Lane

Accommodation and design features

£1,976,676  rebased    

£281,284  rebased    

£868,241  rebased    

£454,879  rebased    

£104,911  rebased    

£3,685,991  rebased    

Contract breakdown

Measured work: 

Provisional sums: 

Prime cost sums: 

Preliminaries: 

Contingencies: 

Contract sum: 

Tender list (lowest first)

£3,685,991   (-)

£3,690,019   (0.1%)

£3,860,290   (4.7%)

£3,895,681   (5.7%)

£4,224,069   (14.6%)

£4,463,975   (21.1%)

Areas Areas

Building function: 320. - Offices

Type of work: New build

District: Ogwr  ( Bridgend )

Grid reference: SS9080

 

Receipt date: 27-Nov-2002

Base date: 17-Nov-2002

Date of acceptance: 10-Dec-2002

Date of possession: 13-Jan-2003

 

Project details: 2 storey office block together with external works including block paving, landscaping, services, drainage and site lighting.

Site conditions: Level car park site with good ground conditions. Excavation above water table. Unrestricted working space and access.

Market conditions: Competitive.

Project tender price index: 156 on 1985 BCIS Index Base

 

Client: Welsh Development Agency

Tender documentation: Bill of Quantities

Selection of contractor: Selected competition

Number of tenders issued: 6

Number of tenders received: 6

Contract: JCT Private 1998 contractors designed portion

Contract period (months):  Stipulated: 9; Offered: 9; Agreed: 9

Cost fluctuations: Firm

V shaped 2 storey customer service centre with open plan offices. Mass concrete fill, RC pad foundations and ground slab; PCC upper floor
and stairs. Steel frame, felt covered flat and slate covered pitched roof. Rendered block walls; aluminium curtain walling and windows; Brise
Soleil. Block partitions. Flush doors. Plaster to walls; carpet, tiles and access flooring; mineral fibre suspended ceilings. Fittings.
Sanitaryware. Gas HW central heating, comfort cooling, ventilation, electric light and power. Lift. Lightning protection, fire/intruder alarms,
CCTV, BMS.

Detail
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0m   

1,448m   

1,632m   

3,080 m   

Basement: 

Ground floor: 

Upper floors: 

Gross floor area: 

2,073m   

601m   

341m   

65m   

3,080 m   

Usable area: 

Circulation area: 

Ancillary area: 

Internal divisions: 

Gross floor area: 

2,930m   

95.13%  

4.20m  

3.60m  

External envelope / floor heights

Area of external walls: 

Wall to floor ratio: 

Average storey heights (ground): 

Average storey heights (upper): 

Floor area percentages

2 storey (100.00%)

Credits

Submitted by: Hills

Client: Welsh Development Agency

Architect: Wigley Fox

Quantity Surveyor: Hills

Structural Engineer: Bingham Hall O'Hanlan

Services Engineer: White Young Green

Planning Supervisor: SPR Hooper

General Contractor: Stradform Ltd

2

2

2

2

2

2

2

2

2

2
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Elements   rebased

Specification

  Element Total cost Cost
per m

Element
unit qty

Element
unit rate

Percent
age

1 Substructure £117,313  £38   1448 m2 £81 3%

2A Frame £152,228  £48   3080 m2 £49 4%

2B Upper Floors £97,980  £31   1632 m2 £60 3%

2C Roof £248,125  £80   1948 m2 £127 7%

2D Stairs £22,565  £7   4 No £5,641 1%

2E External Walls £329,040  £106   2290 m2 £144 9%

2F External Windows and Doors £320,719  £103   640 m2 £501 9%

2G Internal Walls and Partitions £74,065  £23   2228 m2 £33 2%

2H Internal Doors £81,305  £26   80 No £1,016 2%

2 Superstructure £1,326,026  £429   36%

3A Wall Finishes £59,983  £18   3057 m2 £20 2%

3B Floor Finishes £201,080  £65   2775 m2 £72 5%

3C Ceiling Finishes £57,104  £18   2715 m2 £21 2%

3 Finishes £318,167  £103   9%

4 Fittings and Furnishings £159,739  £51   4%

5A Sanitary Appliances (Costs include other elements) £59,405  £18   54 No £1,100 2%

5B Services Equipment £0  £0   

5C Disposal Installations (Costs included in 5A)    

5D Water Installations £19,753  £5   1%

5E Heat Source £0  £0   

5F Space Heating and Air Conditioning £219,584  £70   6%

5G Ventilating Systems £131,867  £42   4%

5H Electrical Installations £201,337  £65   5%

5I Fuel Installations £439  £0   

5J Lift and Conveyor Installations £28,226  £9   1%

5K Fire and Lightning Protection £33,708  £10   1%

5L Communications and Security Installations £8,872  £3   

5M Special Installations £13,053  £4   

5N Builder's Work in Connection £14,127  £4   

5O Management of the Commissioning of Services £0  £0   

5 Services £730,370  £236   20%

Building Sub-total £2,651,616  £860   72%

6A Site Works £277,380  £89   8%

6B Drainage £67,644  £21   2%

6C External Services £129,562  £42   4%

6D Minor Building Works £0  £0   

6E Demolition and Work Outside the Site £0  £0   

6 External Works £474,586  £154   13%

7 Preliminaries £454,879  £147   12%

8 Contingencies £104,911  £34   3%

Total (less Design Fees) £3,685,991  £1,196   100%

9 Design Fees £0  £0   

Total Contract sum £3,685,991  £1,196   100%

2
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  Element Specification

1 Substructure Mass concrete fill. RC GEN3 pad foundations to BS 5328 and grade 40 bed.

2A Frame Steel frame.

2B Upper Floors Contractor designed PCC upper floor, 3-9m spans.

2C Roof Steel pitched roof with profiled sheet deck, Tactray 90, and 600x300mm fibre cement slates on battens and
counterbattens; Celotex insulation. Steel flat roof with single layer polymer warm deck covering.

2D Stairs Contractor designed PCC stairs.

2E External Walls 100mm blockwork with 15mm proprietary render; cast stone features to openings.

2F External Windows and
Doors

Contractor designed double glazed aluminium curtain walling and windows. Brise Soleil to south and east
elevations. Stainless steel frames and surrounds to entrance door.

2G Internal Walls and
Partitions

Non-loadbearing 4N/mm2 blockwork.

2H Internal Doors Flush cherry veneered solid core doors in hardwood frames and linings.

2 Superstructure

3A Wall Finishes 13mm lightweight plaster.

3B Floor Finishes 600x600mm, 269mm cavity access floor. 300x300x8mm ceramic tiles on screed; carpet tiles.

3C Ceiling Finishes Armstrong Orcal Tegular Microlook Prelude 24 grid, 600x600x16mm micro-perforated metal tiles.

3 Finishes

4 Fittings and Furnishings Shelving.

5A Sanitary Appliances Sanitaryware.

5B Services Equipment

5C Disposal Installations Soil and waste pipes.

5D Water Installations Hot and cold water services.

5E Heat Source

5F Space Heating and Air
Conditioning

Gas HW central heating. Comfort cooling and heating.

5G Ventilating Systems Fresh air supply and extract.

5H Electrical Installations Electric light and power.

5I Fuel Installations Gas supply.

5J Lift and Conveyor
Installations

Lift.

5K Fire and Lightning
Protection

Lightning protection.

5L Communications and
Security Installations

CCTV, security and fire alarms.

5M Special Installations BMS.

5N Builder's Work in
Connection

General builder's work in connection with services.

5O Management of the
Commissioning of
Services

5 Services

Building Sub-total

6A Site Works 200x100x53mm clay block paving on sand; 219x109x80mm concrete sett paving on sand. Planting shrubs
and trees.

6B Drainage 150 and 225mm clay pipes, concrete beds and surrounds. Polypropylene inspection chambers; PCC
manholes.
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6C External Services External services and site lighting.

6D Minor Building Works

6E Demolition and Work
Outside the Site

6 External Works

7 Preliminaries 14.55% of remainder of Contract Sum (excluding Contingencies).

8 Contingencies 3.36% of remainder of Contract Sum (excluding Preliminaries).

Total (less Design Fees)

9 Design Fees

Total Contract sum

  Element Specification
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Appendix 2: Detailed Calculations of the Pilot Study 

  



Item Nr Description Unit Quantity

Unit Emb. 

Carbon 

(kgCO2) 

Total Emb. 

Carbon 

(kgCO2) 

1 Substructure

No details at all

2 Superstructure

2A Frame

Columns

Beams

Fixings

2B Upper Floors m
2

1632 86.387      140,983.58 

Contractor designed PCC floors

E6010003A/B Standard JJ1/RJ1 m
2

1632 74.046 120,843.07     

OR

E6010003C/D Jetplus JP1/RP1 m
2

1632 98.728 161,124.10     

2C Roof

Pitched and flat roof quantity 

combined together

2D Stairs

Rate build-up Contractor designed PCC stairs No 4 1,680.95     6,723.80         

E101325A Reinforced concrete C30 m
3

2 350.14        654.09            

E200105A Formwork general finish to steps m 25 1.77            44.25              

E200112E Formwork general finish to soffit of 

stairs m
2

9 5.73            51.81              

E301105G Bar reinforcements, 25 mm bars 

fixed with tying wire t 0.43 1,722.16     739.95            

M505502A Carpet tiles, 500 x 500 mm Heuga 

interloop m
2

13 10.448 133.03            

No details about 
the sections and 
the span



Item Nr Description Unit Quantity

Unit Emb. 

Carbon 

(kgCO2) 

Total Emb. 

Carbon 

(kgCO2) 

M202101A & 

M601001G

Carlite plaster 10 mm thick two 

coats to concrete background and 

one mist coat and two full coats of 

emulsion paint to soffits m
2

9 2.15            19.91              

P207153B Balustardes, 25 x 25 mm housed at 

100 mm centres; 50 x 75 mm 

moulded handrail, 25 x 75 mm 

string capping m 6 6.341 37.92              

2E External Walls m
2

2290 26.011      59,565.19       

F100107D 100mm Block work, 7N/mm
2
, in 

cement motar (1:3) m
2

2290 20.573 47,112.17          

M201501A Cement, lime, sand (1:1:6) screed 

finish, 15mm thick, over 300m wide m
2

2290 4.370 10,007.30          

M601001B Emulsion paint, one mist coat and 

two full coats, plastered 

backgroung, 3.5- 5.0 m
m

2
2290 1.068 2,445.72            

2F Windows and External Doors m
2

840 26.971 22,655.60       

L105150 Steel framed glased screens, 6mm 

clear toughned glass; fixing with 

screws m
2

640 32.249 20,639.36          

L105160C Brise-soleil, 7.5 x 2.0 m Nr 12 112.400 1,348.80            

L105160C Brise-soleil, 10.0 x 2.0 m Nr 1 667.440 667.44               

2G Internal Walls & Partitions m
2

2228 16.541 36,853.35       

F100106A 100mm Block work, 3.5N/mm
2
, in 

cement motar (1:3) m
2

2228 16.541 36,853.35          

2H Internal Doors Nr 80 15.887 1,270.96         

L202313 Wood veneered interior flush doors, 

clear laquer finish, 40mm thick Nr 80 15.887 1,270.96            



Item Nr Description Unit Quantity

Unit Emb. 

Carbon 

(kgCO2) 

Total Emb. 

Carbon 

(kgCO2) 

3 Finishes

3A Wall Finishes m
2

3057 6.018 18,396.26       

M201202A Cement, sand (1:3) screed finish, 

13mm thick, over 300m wide
m

2
3057 4.950 15,131.39          

M601001B Emulsion paint, one mist coat and 

two full coats, plastered 

backgroung, 3.5- 5.0 m m
2

3057 1.068 3,264.88            

3B Floor Finishes m
2

2248.5 60.684 54,750.82          

Maufacturers' rate600 x 600 cavity access floor m
2

2073 25.027 51,880.97          

M101206A & M405401A300 x 300x 8 mm ceramic tiles on 

screed m
2

70 25.209 1,769.67            

M505502A Carpet tiles, 500 x 500 mm Heuga 

interloop m
2

105 10.448 1,100.17            

3C Ceiling Finishes

K401312C Armstrong Orcal Tegular Microlook 

Prelude 24 grid, 600x600x16mm 

micro-perforated metal tiles. m
2

2715 25.027 67,948.31          

4 Fittings & Furnishings

Lack of details

5 Services

Lack of details



 

 

 

 

 

 

 

 

 

Appendix 3: Table for Durbin-Watson Test



 

 

 
 Table for Durbin Watson Test 




