
Northumbria Research Link

Citation: Zong, Yan, Dai, Xuewu and Gao, Zhiwei (2017) A software simulator of discrete
pulse-coupled oscillators (PCO) time synchronization in wireless sensor networks. In: 23rd
International Conference on Automation and Computing (ICAC), 7th - 8th September
2018, Huddersfield, UK.

URL: http://dx.doi.org/10.23919/IConAC.2017.8081997
<http://dx.doi.org/10.23919/IConAC.2017.8081997>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/36197/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

A Software Simulator of Discrete Pulse-Coupled

Oscillators (PCO) Time Synchronization in

Wireless Sensor Networks

Yan Zong, Xuewu Dai, Zhiwei Gao

Department of Mathematics, Physics and Electrical Engineering

Northumbria University

Newcastle upon Tyne, United Kingdom

yan.zong@northumbria.ac.uk, xuewu.dai@northumbria.ac.uk, zhiwei.gao@northumbria.ac.uk

Abstract—Time synchronization, aiming to provide a

common timescale among distributed sensor nodes, is a key

enabling technology for many applications, such as

collaborative condition monitoring and localization

detection. Due to the complexity of time synchronization in

wireless sensor networks, the Discrete Event Simulator is

recommended to adopt resulting from the feature that the

behavior of a complex is represented as an order sequence

of well-defined event in time. In this paper, the PCO clock is

firstly implemented into the open-source software simulator

OMNeT++ by using desynchronization mechanism under a

realistic scenario, and it can also be simulated at an

adjustable and higher resolution. The developed relay node,

can either be a Full Function Device or a Reduced Function

Device, enables the high scalability for multi-node and

multi-hop simulation. In addition, the shared code of this

project on the GitHub directly benefits the researchers and

engineers in communication.

Keywords-time synchronization; pulse-coupled oscillators;

desynchronization; OMNeT++; wireless sensor networks

I. INTRODUCTION

Time Synchronization (TS) in Wireless Sensor
Networks (WSNs), aiming to provide a common sense of
timing among distributed sensor nodes, is one of key
enabling technologies for many wireless applications,
such as data fusion and Time Division Multiple Access
(i.e., TDMA) technique. In such applications, a network of
distributed sensors are dedicated to cooperatively monitor
physical or environmental conditions such as temperature,
sound, pressure and motion at different locations
[13],[16].

Some existing TS algorithms, such as PTP (Precise
Time Protocol), RBS (Reference Broadcast
Synchronization), TPSN (Time-sync Protocol for Sensor
Networks) and FTSP (Flooding Time Synchronization
Protocol), achieve the high accuracy TS by improving the
timestamp. And the increase of hop of WSNs does
weaken the performance of these TS algorithms. In
addition, these complicated algorithms demand the high
resource of WSNs [21]. Inspired by one of the most
famous periodic synchronized activities in autonomous
system in biological system, synchronized flashing of
fireflies observed in certain parts of southeast Asia [10], a
bio-inspired mathematical model, namely, Pulse-Coupled
Oscillators (PCO) has been developed, and applied to

sensor networks to enable time synchronization in WSNs
since its simplicity of PCO.

In the classic PCO, one significant assumption is that
the fired Pulse is broadcasted and receipted immediately
and simultaneously, namely, there is no delay (e.g.,
propagation delay) in complex system. In the WSNs, one
technological limitation of wireless transceiver is the half-
duplex constraint (i.e., nodes cannot transmit and receive
at the same time) [15]. Another limitation is time needed
for packet transmission (i.e., transmission delay).
Therefore, PCO cannot be implemented directly to enable
the common timescale of WSNs, and the
desynchronization (DESYNC), logical opposite of
synchronization, is applied to sensor networks to transmit
the Pulse as far away as possible from all other nodes,
rather than Pulse broadcasted at the same time [4].

Due to the complexity of TS in WSNs, it is common to
use the Discrete Event Simulator (DES) to simulate the
network realistically, and feature the behavior of TS as an
order sequence of well-defined event in time [11]. There
are some famous DESs in WSNs simulation, e.g., the
commercial simulator OPNET and open-source simulator
NS2 and OMNeT++.

[20] theoretically and experimentally proves that the
OMNeT++ is an excellent WSNs simulation platform
from some factors, such as simulation library, debugging
and tracing, delivery ratio and memory usage. Two
simulation models of OMNeT++ are for simulating time
synchronization in WSNs, (i.e., Castalia with clock model
[7] and realistic PTP TS simulator [11]). Both [7] and [11]
provide the realistic drifting clock model, and [11] also
simulates the timestamp uncertainties, delays, jitters and
node movements with good reality. The developed
simulator of [11] achieving realistic delays and jitters
simulation of IEEE 802.15.4 is beneficial to develop the
PCO model. However, the master and slave nodes of [11]
can only realize the functions of Reduced Function Device
(RFD) of ZigBee. And the PCO clock model has not been
implemented into the realistic software simulator.

Therefore, the main contribution of this paper is to
implement the PCO clock into realistic software simulator
by using DESYNC mechanism. Then, the TS superframe
is proposed based on the DESYNC mechanism and IEEE
802.15.4 beacon-enabled superframe. Thirdly, the relay
node, developed to either be the Full Function Device

Proceedings of the 23rd International Conference on
Automation & Computing, University of Huddersfield,
Huddersfield, UK, 7-8 September 2017

(FFD) or RFD of ZigBee, enables the high scalability for
multi-node and multi-hop simulation. In addition, the
shared code of this project on the GitHub directly benefits
the researchers and engineers in communication [22]. The
rest of this paper is as follows: Section 2 presents the
simulation framework of developed simulator. Section 3
introduces the developed drifting PCO clock model,
proposed superframe and measurement offset calculation,
which are implemented into software simulator
OMNeT++ in Section 4. Finally, the simulation results are
given in Section 5, and Section 6 details the conclusion.

II. SIMULATION FRAMEWORK

The general structure of proposed simulation
framework is shown in Fig. 1, and four components of
simulation framework are as follows [11]:

• The World Manager module defines the
environment model representing the geographical
environment of WSN, namely, the size of the
WSN’s deployment area and obstacles
blocking/attenuating wireless signals.

• Connection Manager module manages the
mobility and connectivity, such as the varies of
wireless channel and the change of network
topology resulting from the moving nodes.

• A wireless channel denotes the features of the
wireless channels and its impacts on packet
exchange, namely, propagation delay, collision
and attenuation.

• WSN nodes: there are three types of nodes,
namely, master, slave and relay nodes. The relay
node used in the multi-hop network is to realize
the functions of FFD.

In Fig. 1, four layers of the Internet Protocol (IP) are
implemented into the simulator by C++ classes (referred
as modules), namely, the application layer (app), the
network layer (netw), the MAC layer (mac) and the
physical layer (phy). And two additional modules are
implemented into the simulator, the TS module which is
for timestamp, and the Core module is for functions of
WSN nodes.

In addition, three other supporting modules used in the

simulator are as follows [11]:

• Clock module, providing local time to other
modules of node, simulates the node’s clock.

• Mobility module stores and updates the location
and speeds of nodes, reporting them to the World
Manager and Connection Manager.

• World Manager and Connection Manager update
the location of nodes, and configure the wireless
links in the network topology.

III. MODELLING DYNAMICS OF OSCILLATOR CLOCK

A. Model of Drifting Clock

Clock time in embedded systems is discrete and
usually provided by a crystal oscillator and a series of
counter [13]. A periodic sine-wave signal or square-wave
signal is generated by the crystal oscillator [11],[19]. The
counter, usually called timer in embedded systems, is used
to count the number of the generated periodic signal.
When the value of the counter register reaches the pre-
defined threshold value, an interrupt, called a clock tick, is
generated and the register returns to default value. The
interrupt increments the clock value stored in the memory
at each clock tick. This clock value can be used to
timestamp an event [19].

The output of an ideal sinusoidal oscillator with
nominal frequency can be defined as

   0sin 2V t V f t (1)

where V is a constant amplitude, and the period of the

sinusoidal wave is 0 01 f  .

As the sinusoidal wave is converted into a pulse, the
counter counts the pulse to generate the clock tick,
meanwhile, the clock value can be obtained. This process

is modelled by comparing the instant phase 0(2)f t

against 2 [11]

0
0

0

2

2

f t t
k f t



 

  
       
   

 (2)

where k represents an integer indicating how many

cycles have occurred, the k-th counting event can be

Fig. 1. Simulation Framework

referred as the event of the counter reaching the value k .

And floor function operator x   means the largest integer

not greater than x . The time instant  t k can be used to

represent the global reference time at the k-th event, in

addition, it is common to use  C k to represent the clock

time of k-th event. The clock time of an ideal clock is
given by

    0C k t k k    (3)

Due to the crystal manufacturing tolerance, crystal
capacitive loading mismatch and oscillator temperature
drift [2], the frequency of each oscillator of WSNs is non-
identical and time-varying.

In order to model the non-identical and time-varying
oscillators in the distributed system, a random process

()t , representing all the instant phase deviation, can be

used to model the phase noise of the oscillator. And ()t

is adopted to represent the oscillator frequency change at

time t , the drifting frequency ()f t at instant time t is

0 ()f t , and the drifting clocks is modelled as [11]

   0
0

() sin 2
t

V t V f t d t    
  

    
  

 (4)

And the k of (2) is modified to

 
 

0
0 2

t t
k f t d


  



 
   
  

 (5)

Therefore, the time of a drifting clock at k-th event is

   
    

 
 

 
  

   

0
0

0

0

0 0

1

2

2

t k

t k

t k
C k f t d

f

d t k
t k t k k

f f


  



   




 
    
 
 

    




(6)

It is obvious that the clock  C k is inaccurate and

different from the reference  t k due to the second and

third terms of (6) (i.e., the phase noise ()t and the

accumulated frequency variations). And the difference of
clock time between the ideal clock and drifting clock is

clock offset,  k .

Even though the clock frequency is affected by the
oscillator temperature drift, the frequency of drifting clock
can also be considered as a constant value due to the high

clock update frequency. Therefore, the term  
 

0

t k

d  

in (6) can be piecewise discretized as  
1

00

k

i
i 



 . In

addition, the term  01 2 f can be viewed as a scaling

factor. The     02t k f  can be rewritten as a discrete

form  k , because the possibility destiny function (PDF)

of  k is similar to that of     02t k f  .

Therefore, in the discretized clock model, the clock

offset  k of k-th event can be modelled as

 
 

 

1

00

0

k

i
i

k k
f

 
 



 


 (7)

In addition, the skew      0 0k f t k f f   is

used to denote the deviation from the nominal frequency.

For discretized clock model, the skew  k is equal to

     0k t k f  for one clock update period of

   , 1t k t k   . Thus, by introducing

     1k k k     , the offset of (k+1)-th is rewritten

as

       01k k k k         (8)

The skew  k is generally affected by environmental

factors (e.g., temperature), and it can be assumed as a
constant value within diminutive clock update period due
to the slow change of skew. A better model, auto-
regressive (AR) model, can be used to model the skew as
a time-varying process in an auto-regressive manner with
a small perturbation [11]. And the skew of (k+1)-th event
is given by

     1k p k k      (9)

where  is the noise with zero mean, and p , the

parameter of the first-order AR model, is close to 1.

In addition, both offset noise  and skew noise  ,

two uncorrelated random process, are subjected to zero-

mean Gaussian distribution with standard deviation 

and  respectively [11].

B. Pulse-Coupled Oscillators

The Pulse-Coupled Oscillators, also called MS
(Mirollo and Strogatz) model, is developed by [14] based
on the model proposed by Peskin. The PCO consists of
two states, namely, the free running state and interacting
state [17].

In the free running state of classic PCO, the state
variable of node increases to threshold value. When the
state variable reaches the threshold, it is reset to zero,
meanwhile a Pulse is generated and broadcasted, and
increases to threshold, and so on [18].

Threshold

Threshold

Time

Time
Collision

(Failure)




Clock

State

Clock

State

Node i

Node j

Collision

(Failure)

Fig. 2. Interacting state of PCO

In the interacting state of classic PCO, the state
variable evolves as mentioned above, in addition, the state

jX is adjusted by  upon reception of a Pulse from node

i due to the nodes coupled with each other. A Pulse is
generated and broadcasted immediately if the adjusted
state variable exceeds the threshold, and the interaction
between two non-identical oscillators are shown in Fig. 2.
All the oscillators will broadcast a Pulse simultaneously
when the synchronization is achieved. The interacting
behavior of PCO can be described by

 

 
    

  

,

0,

i th

j j th

j

j th

X t

X t if X t

X t

if X t



  

 

 





 

   


 
  


 (10)

where t represents an infinitesimal time instant after t ,

similarly, the t represents an infinitesimal time instant

before t . The th is the pre-defined threshold state value,

the increment function  is referred to as phase response

curve (PRC) [15],[17],[18].

The classic PCO is approved that TS can be achieved
under the two following assumptions: The oscillators are
identical. And there is no time delay during the pulse
exchange among the oscillators. In addition, the Pulse of
oscillators will be broadcasted when all oscillators achieve
the TS.

However, in the realistic WSNs, the clock frequency is
time-varying and non-identical due to the environment
factors (e.g., temperature) and manufacturing tolerance.
And the transmission time is needed to enable RF (Radio
Frequency) module of sensor nodes transmit or receipt a
packet. In addition, the RF module of sensor nodes either
only works in the transmission mode or reception mode,
and the pulse-exchange collision will occur when
synchronization of classic PCO is achieved. As a result,
the classic PCO cannot be applied to the realistic WSNs
directly.

C. Desynchronization and Superframe Structure

Different from synchronization that nodes attempt to
transmit the Pulse at the same time, desynchronization
enables nodes broadcast the periodic Pulse as far as
possible from all other nodes, namely, in a uniformly
distributed fashion (i.e., TDMA fashion) [4].

The superframe structure of Fig. 3 , used in beacon-
enabled operation of IEEE 802.15.4 MAC layer, is
bounded by two neighboring beacons. There are three
types of periods in superframe structure, namely,
contention access period (CAP), contention-free period

(CFP) and inactive period. The CSMA (Carrier Sense
Multiple Access) mechanism needs to be used in CAP to
access a frequency channel, and there is no guarantee for
each node to access the channel when it is needed.
However, during the CFP, the specified slot is guaranteed
to specified node, and TDMA mechanism is used in CFP,
rather than CSMA. In addition, the inactive period enables
the node enter power-saving mode (i.e., sleep mode) [6].

Similar to the superframe of IEEE 802.15.4 MAC
layer, the proposed superframe (i.e., time synchronization
cycle) in Fig. 3, bounded by neighboring Pulse
broadcasted by master node, consists of three types of
periods, namely, Scheduled Offset (SO), DESYNC and
Inactive Period. The SO is used to transmit the data. The
DESYNC is to enable WSN nodes broadcast the Pulse to
achieve the desynchronization of WSNs. And the inactive
period is used to enable the sensor nodes sleep to reduce
the power consumption. In addition, at n-th time

synchronization cycle, the time pt of Pulse generated by

i-th relay node is defined as

p SOt n T t i      (11)

where SOt is duration of SO, and  means the slot

duration representing the time between neighboring Pulse
by relay nodes, and T is the superframe duration (i.e.,
time synchronization interval). Moreover, the slot duration
is needed to enable the sensor nodes transmit or receipt the
Pulse to avoid the pulse-exchange collision.

By introducing the DESYNC mechanism, the i-th
relay clock of (6) is remodified to

     '[] SOC k t k k t i      (12)

It is notable that the clock time of (12) will be the
global reference clock (i.e., standard clock), if the clock is
the standard clock, due to the zero skew and offset of

Superframe
CAP

Beacon Beacon

CFP Inactive Period

Pulse (Master) Pulse (Master)
Pulse (Relay)

Inactive PeriodSlot

DESYNC
Scheduled Offset (SO)

Superframe Duration

SOt

T



Time

Standard PCO

Master Clock

Drifting PCO

Relay Clock i

C
lo

ck
 S

ta
te

Drifting PCO

Relay Clock j

Standard PCO

Relay Clock

SOt 



SOt
ij 

ji 

i

T

0

th

Other App Module

Core
packet

Processing

netw

Clockgate

func
getTime()

adjThre()

phy

Timestamp

TDMAmac nic

Message

Message exchange

Function calls

Fig. 4. The clock offset calculation among one standard PCO

clock and two drifting PCO clocks by implementing DESYNC

mechanism

Fig. 3. IEEE 802.15.4 superframe (upper), proposed superframe

(lower)

Fig. 5. General structure of WSN node

standard clock. Otherwise, the offset  k and skew

 k is updated based on the (8) and (9) to produce the

drifting clock.

At n-th time synchronization cycle, the PCO clock
time can be generated by comparing the instant clock time

'[]C k against multiple of threshold (thn ), and this

progress is modelled as

  '[] thP k C k n    (13)

The timestamp will be generated, when broadcasted
Pulse is receipted. And timestamp is defined as

   * ()P t P t t  (14)

where  *P t is real reception PCO clock time, and ()t

means the measurement noise which is subjected to zero-

mean Gaussian distribution with standard deviation  .

As shown in [3],[12], the higher layer timestamp, the
higher measurement noise, due to the interrupt and data
processing. And the timestamp between the physical layer
and MAC layer can realize the relatively balanced trade-
off between the time synchronization accuracy and the
expandability and cost of system.

The network topology, two-hop WSN of Fig. 4
consisting of one master (i.e., standard clock) and two
relay nodes (i.e., drifting PCO Clock A is more stable than
Clock B [9],[11]), is analyzed and simulated. Two kinds
of clock correction mechanism are used, one mechanism
is RBS-like clock correction mechanism, the drifting
clock of relay node is corrected based on the measurement
offset relative to the standard clock of master. Another
algorithm is PCO-like clock correction mechanism, the
drifting clock of relay is adjusted based on measurement
offset relative to another relay node. And the measurement
clock offset of i-th relay node relative to the master node,

i , is given by

 *
i i thP t   (15)

By introducing the DESYNC and presence of delay
(i.e., transmission delay), the measurement offset of (15)
is modified to

     *
i i SO thP t t n         (16)

where  is the transmission delay. Similarly,
measurement clock offset of j-th (or i-th) relay about the i-

th (or j-th) relay, ij (or ji), is defined respectively

  
  

*

* 0

jij j th

ji i

P t

P t

   

  

   

   
 (17)

IV. SIMULATOR IMPLEMENTATION NODE STRUCTURE

The proposed simulator for PCO time synchronization
is developed on previous work in [11] and simple
simulator in [8]. In the simulator, three additional modules
(i.e., PCO Clock, TDMA mac and relay Core) are
developed to implement PCO clock and
desynchronization mechanism. The Pulse is modelled by
the 74-byte SYNC packet, based on the ZigBee and IEEE
1588 standards [1],[5],[6].

A. Node Structure

Besides the master and slave nodes of [11], the relay
node, named rnode in simulator, has been developed to
realize the functions of FFD. All three kinds of nodes are
in the deployment area defined by the World Manager
module, and Connection Manager is used to connect these
nodes via a wireless channel [11]. In addition, several
relay nodes can be simulated simultaneously in one
network (i.e., rnode[0], rnode[1], rnode[2], …).

According to the IP structure, a WSN node of Fig. 5 is
constructed with three additional modules, namely, PCO
Clock, Core and Timestamp. And the nic (network
interface card) of [11] is also modified to realize the
TDMA function, rather than the CSMA function.

The PCO clock and the clock correction mechanism
are simulated realistically by Clock module, and Clock
also provides two interfaces to other modules [11]. One
interface is an OMNeT++ gate, which is used to simulate
the Pulse. Each time the clock reaches the threshold, a
message will be sent to the Core module so that the Core
module is able to transmit a SYNC packet based on the
received message of the Clock module. The packet will be
sent to phy layer to broadcast immediately via Timestamp
module when a SYNC is received by mac layer from upper
layer.

Another interface of Clock module is public member
function [11]. By calling these interface functions, e.g.,
getTimestamp() and adjustClock(), the time of Clock
module can be accessed, and clock can be adjusted more

update offset

update drift

start

update clock

reach threshold

update PCO clock

generate pulse

end

update PCO clock

No

Yes

RelayBuffer

app

netw

In[0]

UpperGateIn

Out[0]

In[2] Out[2]

Out[1]

In[1]

RelaySlave

UpperGateIn UpperGateOut
In

Out

RelayMaster
LowerGateIn LowerGateOut

UpperGateOut

LowerGateIn LowerGateOut

Fig.6. Implementation of relay node Fig. 7. Flowchart of PCO clock (right), structure of Core Module

of relay node (left)

easily.

Due to the character of PCO, it is necessary to use the
TDMA, rather than CSMA, to realize the behavior of
PCO. In simple simulator by [8], a simple TDMA mac
layer is developed to realize the function of the TDMA.

In addition, the Timestamp module of [11], modelling
(14), has be implemented into the nic consisting of MAC
(TDMAmac) layer and physical (phy) layer to model the
timestamp. In the Timestamp module between the mac
layer and phy layer, the packet will be sent to the phy layer
immediately when a packet is received from the mac
layer. Besides the packet will be transmitted to the upper
layer when Timestamp receives a packet from the lower
layer, a timestamp will be generated (i.e., getTimestamp()
is called) by the Timestamp module to inform the Clock
module the time instant of received Pulse time.

B. Implementation of PCO Clock

In the flowchart of Fig. 7, the clock time is updated
based on the (12). And the PCO clock time is obtained by
comparing the instant clock time against multiple of
threshold (i.e., (13)).

Different from the master clock with zero offset and
skew, the offset and skew of the drifting clock are updated
with the specified clock frequency.

C. Implementation of Relay Node

 The implementation of relay node is indicated in Fig.
6, similar to the master and slave nodes of [11], the rnode
module is composed of several modules, namely, a
compound module nic consisting of phy layer, mac layer
and Timestamp module, a basic network layer netwl and
general application layer appl.

Different from Core module of master and slave nodes
in simulator by [11], the Core of relay node, compound
module consisting of RelayBuffer, RelaySlave and
RelayMaster modules, has been developed to realize the
functions of both master and slave nodes. The structure of
Core module is shown in Fig. 7. In RelaySlave module,
the handleMessage function will be called to process the
message from upper layer or RelayBuffer Module. If the
received message is for itself, RelaySlave will process it,
otherwise the received message will be sent out. The
responsibility of RelayBuffer module is to transmit the

message to respective modules, namely, RelaySlave,
RelayMaster modules and network layer.

There are two kinds of working mechanisms in
RelayMaster module of simulator. One mechanism is that
all RelayMaster module works at the same time when
network is built by using scheduleAt() of OMNeT++ API
in the initialization function of RelayMaster. Another one
is that once the time synchronization of previous hop is
completed, RelayMaster module starts to work to active
the synchronization of next hop. In addition, the Clock
module of relay node is the drifting clock, rather than the
standard clock.

V. SIMULATION RESULTS

In this section, the impacts of parameter variations
(i.e., initial drift, offset noise, drift noise and offset noise)
on the PCO clock model have been evaluated on network
topology (i.e., two-hop WSN consisting of one master and
two relay nodes). The clock update frequency is
configured to 32.768KHz to simulate the typical real-time
clock (RTC) frequency in WSNs, and the superframe
duration, T , is set to 1 to model the PPS (Pulse Per
Second). The configurations of simulations are
summarized in Table 1.

 The measurement offset and clock offset of Clock A
(i.e., rnode[0]) are plotted in Fig. 8 with two kinds of

Symbol Value Unit

0 0 Second

0
52 10

    7 610 ,10ClockA ClockB 
 Second

    9 810 ,10Clock A ClockB 
 Second


8 210 ,10 

 Second

T 1 Second

 2.368 Millisecond

SOt 100 Millisecond

 2.176 Millisecond

Fig. 8. Measurement offset of drifting PCO clock A relative to

standard PCO clock with two kinds of timestamp mechanisms

Fig. 9. Measurement offset of drifting PCO clock A (i.e.,

rnode[0]) and B (i.e., rnode[1]) by hardware timestamp

TABLE I. SIMULATION CONFIGURATION

timestamp mechanisms, namely, hardware timestamp (i.e.,
810
) and software timestamp (i.e.,

210
).

Both the measurement offset and clock offset rise with the
increase of simulation time, and the measurement offset is
equal to the clock offset approximately when the hardware
timestamp is adopted. The accuracy of timestamp has a
significant effect on the accuracy of measurement offset,
and affects the performance of TS furtherly when the
measurement offset is adopted to correct the drifting
clock.

Fig. 9 plots the measurement offset of rnode[0] (or
rnode[1]) about rnode[1] (or rnode[0]). The measurement
offsets of rnode[0] and rnode[1] are symmetric
approximately, since the measurement offsets of rnode[0]
and rnode[1] are same theoretically. And these two
measurement offsets are used to realize the PCO-like
correction mechanism.

Therefore, the PCO clock is implemented into
software simulator by DESYNC successfully, and the
measurement clock offset calculation results coincide with
the expectation.

VI. CONCLUSION

In this paper, the PCO clock is implemented into the
software simulator by DESYNC algorithm successfully,
and relay node is developed to realize the functions of
FFD to enable the simulator more generalized and useful.
Then, the clock offset calculation results coincide with the
expectation. In addition, the code of this project is shared
on the GitHub (i.e., [22]) to benefit the researchers and
engineers in communication.

In the future, the clock correction mechanism
adjusting the drifting PCO clock will be proposed and
evaluated on the software simulator.

REFERENCES

[1] IEEE standard for a precision clock synchronization
protocol for networked measurement and control systems.

[2] Atmel. Real-time-clock calibration and compensation.
Technical report, Atmel, 2014.

[3] Kendall Correll, Nick Barendt, and Michael Branicky.
Design considerations for software only implementations
of the ieee 1588 precision time protocol. 2005.

[4] Julius Degesys, Ian Rose, Ankit Patel, and Radhika
Nagpal. DESYNC: Self-organizing desynchronization and
TDMA on wireless sensor networks. Institute of Electrical
and Electronics Engineers (IEEE), 2007.

[5] Fred Eady. Hands-On ZigBee. Elsevier Science, 2010.

[6] Shahin Farahani. ZigBee Wireless Networks and
Transceivers. Newnes, 2011.

[7] Federico Ferrari, Andreas Meier, and Lothar Thiele.
Accurate clock models for simulating wireless sensor
networks. 2010.

[8] Antonio Franco. Lab 1 : Tdma.
http://omikron.eit.lth.se/ETSN01/ETSN01/labs/. Accessed:
2017-04-21.

[9] Giada Giorgi and Claudio Narduzzi. Performance analysis
of kalman-filter-based clock synchronization in IEEE 1588
networks. IEEE Transactions on Instrumentation and
Measurement, 2011.

[10] Yao-Win Hong and A. Scaglione. A scalable
synchronization protocol for large scale sensor networks
and its applications. IEEE Journal on Selected Areas in
Communications, 2005.

[11] Y. Huang, T. Li, X. Dai, H. Wang, and Y. Yang. TS2: a
realistic IEEE1588 time-synchronization simulator for
mobile wireless sensor networks. SIMULATION, 2015.

[12] Yiwen Huang. Ieee 1588 time synchronization
optimization and omnet simulation for wsns. Master’s
thesis, Southwest University, 2014.

[13] Sami M. Lasassmeh and James M. Conrad. Time
synchronization in wireless sensor networks: A survey.
mar 2010.

[14] Renato E. Mirollo and Steven H. Strogatz. Synchronization
of pulse-coupled biological oscillators. SIAM Journal on
Applied Mathematics, 1990.

[15] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. Strogatz.
Distributed synchronization in wireless networks. IEEE
Signal Processing Magazine, 2008.

[16] Bharath Sundararaman, Ugo Buy, and Ajay D.
Kshemkalyani. Clock synchronization for wireless sensor
networks: a survey. Ad Hoc Networks, 2005.

[17] A. Tyrrell, G. Auer, and C. Bettstetter. Emergent slot
synchronization in wireless networks. IEEE Transactions
on Mobile Computing, 2010.

[18] Alexander Tyrrell, Gunther Auer, and Christian Bettstetter.
A synchronization metric for meshed networks of pulse-
coupled oscillators. 2008.

[19] Nicola Varanese. Distributed Synchronization Algorithms
for Wireless Sensor Networks. PhD thesis, 2011.

[20] Xiaodong Xian, Weiren Shi, and He Huang. Comparison
of omnet++ and other simulator for wsn simulation. June
2008.

[21] Chaonong Xu and Zhulin An. The m&s model and its
application in time synchronization in wireless multi-hop
networks. Computer Applications and Software, 2010.

[22] Yan Zong. Time synchronization for wireless sensor
networks. https://github.com/yan-zong/ts2. Accessed:
2017-04-21.

