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Abstract

In line with technological developments, there is almost no limit to collect data

of high dimension in various fields including bioinformatics. In most cases, these

high dimensional datasets contain many irrelevant or noisy features which need

to be filtered out to find a small but biologically meaningful set of attributes.

Although there have been various attempts to select predictive feature sets from

high dimensional data in classification and clustering, there have only been lim-

ited attempts to do this for regression problems. Since supervised feature selec-

tion methods tend to identify noisy features in addition to discriminative vari-

ables, unsupervised feature selection methods (USFSMs) are generally regarded

as more unbiased approaches. The aim of this thesis is, therefore, to provide (i)

a comprehensive overview of feature selection methods for regression problems

where feature selection methods are shown along with their types, references,

sources, and code repositories (ii) a taxonomy of feature selection methods for

regression problems to assist researchers to select appropriate feature selection

methods for their research (iii) a deep learning based unsupervised feature se-

lection framework, DFSFR (iv) a K-means based unsupervised feature selection

method, KBFS. To the best of our knowledge, DFSFR is the first deep learning

based method to be designed particularly for regression tasks. In addition, a hy-

brid USFSM, DKBFS, is proposed which combines KBFS and DFSFR to select

discriminative features from very high dimensional data. The proposed frame-

works are compared with the state-of-the-art USFSMs, including Multi Cluster

Feature Selection (MCFS), Embedded Unsupervised Feature Selection (EUFS),

Infinite Feature Selection (InFS), Spectral Regression Feature Selection (SPFS),

Laplacian Score Feature Selection (LapFS), and Term Variance Feature Selection

(TV) along with the entire feature sets as well as the methods used in previous

studies. To evaluate the effectiveness of proposed methods, four different case

studies are considered: (i) a low dimensional RV144 vaccine dataset; (ii) three

different high dimensional peptide binding affinity datasets; (iii) a very high di-

mensional GSE44763 dataset; (iv) a very high dimensional GSE40279 dataset.

Experimental results from these data sets are used to validate the effectiveness

of the proposed methods. Compared to state-of-the-art feature selection meth-

ods, the proposed methods achieve improvements in prediction accuracy of as

much as 9% for the RV144 Vaccine dataset, 75% for the peptide binding affinity

datasets, 3% for the GSE44763 dataset, and 55% for the GSE40279 dataset.
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Chapter 1

Introduction

1.1 Motivation

In line with the technological developments, there is almost no foreseeable limit to

the collection of data of high dimension in fields, such as bioinformatics, computer

vision, machine learning. Therefore, there is a pressing need to be able to deal

with high dimensional data. Over the last three decades, the dimensionality

of data associated with various scientific fields has dramatically increased. The

growth trend in the feature and sample size in UCI Machine Learning Repository

from mid 80s to 2012 are shown 1.1(a) and 1.1(b), respectively. [1]. It is clear

that there is a need for not only the organisation, distribution and storage of

higher volumes of data, but also for identifying and understanding important

information from them through the use of machine learning tools to automatically

analyse the content of large volumes of data.

One of the aforementioned domains is bioinformatics, where high dimensional

biomedical data needs to be processed. There are various types of biomedical

data, including peptide binding affinities and epigenetic biomarkers that contain

a large number of features. For example, there are over 512 billion peptides for

each major histocompatibility complex (MHC) molecule [7]. Biological exper-

iments with such large volumes of biomedical data is often impractical, costly

and time consuming.

Machine learning methods have become one of the preferred approaches to the

analysis of high dimensional biomedical data. However, the handling of high

1
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dimensional data poses many challenges to most existing machine learning al-

gorithms. One of the considerable challenges is curse of dimensionality which

states that if the number of features increases, the number of data samples re-

quired to train learning algorithm exponentially increases to achieve the same

level of performance for classification, regression, and clustering tasks.

Another important challenge when dealing with high dimensional data is that

such data does not only contain relevant features, but also a significant number of

irrelevant and redundant features which usually deteriorate learning performance,

increase computational cost, and lead to overfitting. Relevant features are the

ones that contain important information which can be used to solve a prediction

problem. Redundant features encompass critical information which has been

already provided by another feature, and therefore, these features do not provide

additional useful information for the predictive model [8]. Irrelevant features

are those that have no valuable information; hence, their presence reduce the

learning performance of predictive models. Consequently, there is a need to

remove redundant and irrelevant features from high dimensional data in order

to increase the prediction performance of a model and to reduce computational

time.

In order to overcome the aforementioned problems, dimensionality reduction,

which is one of the most effective tools to address those challenges, can be used.

Dimensionality reduction methods can be divided into two main categories: fea-

ture selection and feature extraction.

Feature extraction reduces the dimensionality of the data and constructs new

input data with no physical meaning, and these methods include Locally Linear

Embedding (LLE) [9], Neighbourhood Preserving Embedding (NPE) [10], and

kernel PCA [11]. On the other hand, feature selection builds a subset of relevant

attributes without changing the original semantics of the data. Preserving the

original semantics of data is vital, especially in biomedical domain. In addition,

feature selection reduces execution time and improves the accuracy of prediction

which are preferred in many real-world applications [12].

It is profoundly beneficial to remove irrelevant and redundant features prior to

learning, particularly if the number of attributes are significantly greater than

the number of samples, as is the usual case in biomedical data. Moreover, feature

selection methods generate a subset of relevant features in biomedical data so
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Figure 1.1: Growth trend in UCI Machine Learning Repository [1].

that those features can be further analysed in biology laboratories to discover

new insights in the field.

Another important challenge of dealing with high dimensional data is that label

(output) information is generally not available, owing to the high cost of manual

labelling [13]. Therefore, unsupervised feature methods are needed to deal with

unlabelled high dimensional data.

In line with the technological developments, data has been generated; however,

floating point data is much more in agenda. For example, a decade ago, the prob-

lem of peptide binding was to predict whether peptide binds or not. However,

current technological developments have lead researchers to predict bindings of

peptides quantitatively. Consequently, this study focuses on unsupervised feature

selection particularly for regression problems.

1.2 Aims and Objectives of This Thesis

The thesis focuses primarily on feature selection problems with extremely high

dimensional data in regression domain.
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• Developing an unsupervised feature selection method that is capable of

dealing with high dimensionality of data, identifying discriminative features

and removing redundant, noisy and irrelevant ones.

• Achieving better prediction and generalisation performance than the exist-

ing methods.

In order to achieve the project aim ther following objectives have been set:

• There have been various attempts to select predictive feature sets from high

dimensional data sets in classification and clustering; however, only limited

attempts have been made to do this for regression problems. Therefore, one

of the goals of this study is to develop a feature selection method designed

particularly for regression problems in order to fill this gap in the literature.

• Deep learning has been shown to be capable of representing data at multiple

levels of abstraction. It is able to derive discriminative features, resulting in

enhanced accuracy. Although various feature selection methods have been

proposed in the current literature, no deep learning based feature selection

method exists specifically for regression tasks.

• Most real world data is unlabelled; therefore, unsupervised feature selec-

tion methods are needed since supervised methods can not be applied to

unlabelled data. Furthermore, supervised methods tend to identify noisy

features as well as relevant ones, yet unsupervised methods do not intend

to select features that can act as noise. Therefore, supervised feature selec-

tion can be considered as a biased approach whereas unsupervised feature

selection can be regarded as unbiased [14].

• Researchers have mainly paid attention to single-output regression analysis

so far [15]. However, multi-output regression is crucial, especially in the

analysis of biomedical data.

• Although plenty of reviews of feature selection methods can be found in

the literature for classification and clustering, no review of feature selection

methods specifically for regression tasks has yet been published.

As mentioned above, researchers have paid more attention to feature selection

for classification rather than for regression. In order to justify that a literature
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search using the keywords “feature selection classification” and “feature selection

regression” has been conducted of publications listed at PubMED, Scopus and

Web of Science (It is worth noting that searching with different keywords, such

as feature selection and classification or feature selection for classification have

produced almost the same results, therefore, the number of studies found using

different versions of keywords are consistent). The numbers of publications per

year for the feature selection for regression and feature selection for classification

between 2011 and 2016 are shown in Figs. 1.2-1.5. As shown in Fig. 1.2, feature

selection for classification studies are more than three times those for regression

according to PubMed. Fig. 1.3 shows that feature selection for classification

studies are approximately 6 times the number of studies for feature selection

for regression studies according to Scopus. Fig. 1.4 illustrates a comparison of

published feature selection studies for classification and regression on Web of

Science, which suggests that there are approximately five times as many feature

selection for classification studies than feature selection for regression studies. As

shown in Fig. 1.5, the literature search indicates that there have been feature

selection for classification studies approximately five times as many studies as

feature selection for regression studies from 2011 to 2016. Thus, it is concluded

that feature selection for regression is understudied.

Figure 1.2: A Comparison of Published Feature Selection Studies for Clas-
sification and Regression on PubMed.
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Figure 1.3: A Comparison of Published Feature Selection Studies for Clas-
sification and Regression on Scopus.

Figure 1.4: A Comparison of Published Feature Selection Studies for Clas-
sification and Regression on Web of Science.
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Figure 1.5: A Comparison of Total Number of Published Feature Selection
Studies for Classification and Regression on PubMed, Scopus, Web of Science

from 2011 to 2016.

In this thesis, therefore, a novel deep learning based unsupervised feature selec-

tion framework, a K-means based unsupervised framework, and a hybrid method

for regression problems are provided to overcome the aforementioned problems

and to fill the research gap in the literature. In addition, the proposed deep learn-

ing based unsupervised framework is capable of handling both multi input-single

output (MISO) and multi input-multi output (MIMO) prediction.

By proposing these frameworks, the intention is not only to obtain better gen-

eralisation and performance than with existing unsupervised feature selection

methods, but also to be able to identify a small subset of relevant features from

biomedical data which can be further analysed in real biology labs. The ulti-

mate goal is to be able to identify biologically relevant features from biomedical

data, such as the identification of age-related biomarkers from the whole blood

of individuals in order to contribute to society.

1.3 Contributions of the Thesis

In accordance with the objectives of this study, the contributions of this thesis

are as follows:
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• A comprehensive review of existing feature selection methods, which can

be used for regression tasks, is provided.

• A taxonomy of existing feature selection methods for regression tasks is

offered.

• Feature selection methods are developed that can be applicable to unla-

belled data.

• A K-means based unsupervised feature selection framework for high di-

mensional data is proposed particularly for the regression domain, which

achieves better performance (in terms of higher accuracy with fewer fea-

tures) than existing feature selection methods. (Published work ([16]) and

another work is under review [17]).

• A deep learning based unsupervised feature selection method is designed

that can be applied specifically for regression tasks.

• Multi input-multi output regression analysis is applied so that associations

among target variables can be revealed. (This work is under review [18]

[17]).

• A hybrid unsupervised feature selection method is proposed which com-

bines the proposed K-means and deep learning based frameworks.

1.4 Thesis Overview

The thesis is organised as follows:

Chapter 1 introduces the problems of dealing with high dimensional data, indi-

cates the importance of feature selection, and establishes the goals of this thesis.

The main contributions of this study are also summarised in this chapter.

Chapter 2 discusses the challenges of dealing with high dimensional data, such

as the curse of dimensionality and overfitting. Feature selection and feature

extraction are defined and their advantages and disadvantages are presented. A

comprehensive review of existing feature selection algorithms for regression tasks

is conducted, and a taxonomy of existing unsupervised feature selection methods

particularly for regression problems is provided.
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Chapter 3 describes the regression models, which are exploited in this study to

perform both single input-multi output and multi input-multi output regression.

The evaluation metrics that are used to analyse and compare the effectiveness

of unsupervised feature selection methods are presented, and the RV144 vaccine,

peptide binding affinity, GSE44763 and GSE40279 data sets that are exploited in

this research to evaluate the performance of proposed frameworks are described.

Chapter 4 describes the K-means algorithm, presents its basic properties and

the shortcomings of existing K-means based feature selection methods. The pro-

posed K-means based unsupervised feature selection framework, which is called

as KBFS is then introduced. Finally, the results of the application of the proposed

method compared to state-of-the-art unsupervised feature selection techniques

over the RV144 vaccine, peptide binding affinities, GSE44763 and GSE40279

data sets are presented.

Chapter 5 identifies research gaps in the literature and describes deep belief

network (DBN) which is a type of deep neural network used in this research.

The proposed deep learning based unsupervised feature selection framework for

regression tasks is presented which is called DFSFR. A new hybrid model, which

combines the proposed KBFS and DFSFR methods, is also proposed in this

chapter. The proposed hybrid method is named DKBFS. Finally, experimental

results are presented to show effectiveness of proposed methods.

Chapter 6 presents discussions of the performance of feature selection meth-

ods which are reviewed in detail. The robustness of unsupervised feature selec-

tion methods for the RV144 vaccine, peptide binding affinity, GSE44763, and

GSE40279 data sets is shown, and a general discussion and interpretation of the

research findings of this study is provided.

Chapter 7 concludes the thesis and suggests possible topics for future research.



Chapter 2

Review on Feature Selection

Methods

This chapter is devoted to reviewing existing feature selection methods. The

challenges of dealing with high dimensional data is reviewed first, then dimen-

sionality reduction, feature selection and feature extraction will be described. In

the following section, existing feature selection methods for regression problems

will be presented as well as a taxonomy of feature selection methods for regres-

sion problems. Finally, a list of those methods along with their types, sources

and code availability will be presented. This taxonomy is provided to assist

researchers to select the appropriate feature selection method for their research.

2.1 Challenges of Dealing With High Dimen-

sional Data

High dimensional data has become very common in various domains, such as

social media, biostatistics, bioinformatics, computational biology, etc. High di-

mensional data poses many challenges to most of the existing machine learning

and data mining algorithms. One of the considerable challenge is the curse of

dimensionality which is presented in following section. In addition, high dimen-

sional data requires large storage and high computational cost for data analytics.

Real world data usually contains irrelevant and redundant features which are

generally not beneficial to discriminate samples from different classes or clusters

10
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Figure 2.1: Relevant, Redundant and Irrelevant Features [2].

[2]. In fact, those features generally deteriorate learning performance and increase

the computational cost. Hence, removing those features is usually beneficial for

the learning model. In Fig. 2.1 [2], relevant, irrelevant and redundant features

are demonstrated. In Fig. 2.1(a), a relevant feature, f1, is shown. Notice that f1

is a relevant feature as it discriminates two clusters. As shown in Fig. 2.1(b), if

f1 and f2 are considered together, f2 is redundant because f2 is highly correlated

to f1. In Fig. 2.1(c), f3 is an irrelevant feature since it is not able to separate

two clusters. Consequently, learning performance will not be affected if f2 and

f3 are removed.

Another important challenge of dealing with high dimensional data is overfitting.

If a data set contains a huge number of features and relatively small number of

samples, learning model is prone to overfitting which might negatively affect

learning performance of the model [2].

2.2 Curse of Dimensionality

The curse of dimensionality is first introduced by Bellman [19] in order to specify

that if the number of features increases, the amount of data to be generalised
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Figure 2.2: The Ratio of the Volume of The Hypersphere Enclosed by the
Unit Hypercube [3].

is increases exponentially to achieve the same level of performance for classifi-

cation, regression, and clustering [1]. In other words, exponential increase in

volume results in adding extra dimensions to Euclidean space [3]. Thanks to this

exponential growth, the volume of space increases which causes high sparsity in

data. On the other hand, this sparseness is not uniformly distributed over the

search space. In order to show that the size of unit hypersphere can be com-

pared with the size of unit cube as shown in Fig. 2.2 [3]. As the dimensionality

increases, the volume of hypersphere gets closer to zero whereas the volume of

surrounding hypercube remains constant; furthermore, nearly entire high dimen-

sional space is quite far away from the centre. Consequently, if the dimensionality

goes to infinity, the ratio of difference between maximum (dmax) and minimum

(dmin) euclidean distance from sample to centroid and the minimum distance

(dmin) goes to zero:

limd→∞
dmax − dmin

dmin
→ 0 (2.1)

Therefore, the data become more sparse as dimensionality increases. In order to

overcome aforementioned problems, dimensionality reduction methods, such as
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feature selection or feature extraction can be used. Next section presents feature

selection and feature extraction.

2.3 Feature Selection and Feature Extraction

Feature selection and feature extraction are both effective dimensionality reduc-

tion techniques and they are able to improve performance, reduce the computa-

tional complexity and the cost, and decrease the requirements for the storage of

the data [20]. In contrast to feature extraction, feature selection techniques do

not change the original semantics of the variables, actually, it eliminates redun-

dant or irrelevant features to identify meaningful smaller subset of the variables

[21]. Furthermore, feature extraction generates a sequence of new features with-

out knowing their physical meanings [2]. This is quite dangerous and it may

cause calamitous results if it is utilised on biomedical data since preserving in-

trinsic information of biomedical data is extremely important. On the other

hand, feature selection identifies a subset of relevant attributes by preserving ac-

tual meanings of original features. Therefore, feature selection does not change

original semantics of the attributes, indeed, it increases feature readability and

interpretability [22].

Feature selection methods are generally designed for three different strategies:

filter [23] [24] [25], wrapper [26] [27] [28] [29] and embedded selection [30]. Filter

subset selection is performed independent from the prediction algorithm. Filter

methods are computationally fast; however, they do not take learning algorithms

into account which generally results in lower prediction performance [31]. Unlike

filters, wrapper methods require a pre-determined learning algorithm and utilise

the dependency between features and prediction algorithm to select a subset of

features. Consequently, the prediction performance of wrappers is better than

filters, however, they are costly to compute and inefficient for dealing with high

dimensional data [32] [33]. Embedded methods exploit the advantages of filter

and wrapper methods, thereby, they learn the prediction algorithm and select

features, simultaneously. Embedded methods are still dependent to induction

algorithms, yet they are more computationally efficient than wrappers.
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Feature evaluation process of filter based methods can be univariate and multi-

variate. Univariate filters rank features independently according to their impor-

tance whereas multivariate filters evaluate each feature with respect to the other

features [34] [35]. Therefore, multivariate feature selection methods are able

to handle feature redundancy [36]. Three different feature selection strategies,

which are filter, wrapper and embedded, are summarised in Table 2.1.

Method Advantages Disadvantages

• Fast, Scalable, Inde-
pendent from learn-
ing algorithm, The
lowest computational
cost, Good generalisa-
tion ability

• Simple, Interacts
with learning al-
gorithm, Captures
feature dependen-
cies Good prediction
performance

• Interaction with in-
duction algorithm,
Capture feature de-
pendencies, Lower
computational cost
than wrappers

• No interaction with
prediction algorithm

• Computationally
expensive, Dependent
to learning algorithm,
Risk of overfitting

• Feature Selection is
dependent on learning
algorithm

Table 2.1: The Advantages and Disadvantages of Different Feature Selection
Strategies

Based on the availability of information and problem definition in prediction,

feature selection methods can be divided into two main categories: unsupervised

and supervised feature selection. In the supervised feature selection scenario, fea-

tures are selected according to their correlation with outputs (e.g., class labels).

In case of unsupervised feature selection, only data inputs are used to select rel-

evant features where the output information (e.g., class label) is not available or

taken into account. As output information is not used for the feature selection,
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carrying out the unsupervised feature selection is more challenging. Further-

more, supervised feature selection methods tend to identify relevant features as

well as noisy ones whereas unsupervised feature selection methods do not tend

to identify features that can act as noise [16].

In the following sections, existing feature selection methods for regression prob-

lems will be presented. A taxonomy of the existing methods is also presented

to assist researchers to select an appropriate feature selection method for their

research. To the best of our knowledge, this is the first study that provides

a comprehensive review of feature selection methods particularly for regression

problems.

2.4 Supervised Feature Selection

In this section supervised feature selection methods for regression problems are

presented. Although there have been various attempts to select predictive feature

sets from high-dimensional data sets in classification and clustering, there is a

limited attempt to study it in regression problems as demonstrated in Figs 1.2-

1.5 where the number of studies in PubMed, Scopus and Web of Science on the

feature selection in regression domains are found to be significantly different than

those in classification ones. Therefore, feature selection methods for regression

problems are presented in this section, yet most of these methods have not been

used for regression problems.

2.4.1 Filter Methods

In this subsection supervised filter feature selection methods are presented.

2.4.1.1 Correlation Based Feature Selection (CFS)

Correlation based feature selection (CFS) [25] is a filter feature selection algo-

rithm that aims to minimise internal correlation of selected variables and max-

imise the dependence between the selected variables and target. Briefly, it uses

a correlation based heuristic to rank the features. The CFS does not only eval-

uate feature-feature correlations, but also measures input-output correlations.
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If a feature is highly correlated to another feature, it is considered irrelevant.

However, if a feature is strongly correlated with the target, it is determined as

relevant [24]. The CFS estimates correlation between features and the target,

rxy, by solving the following formula:

rxy =

∑
xy

nσxσy
(2.2)

where X and Y are the features and the target variable respectively, σx is the

standard deviation of the x, σy is standard deviation of the y, and n represents the

number of samples. CFS ranks feature subsets rather than scoring each feature

individually; therefore, CFS is a multivariate feature selection method.

CFS has been applied only in data sets with low dimension for regression tasks

and it is observed that their performances varied from one data set to another

and they generally produced average performance in various domains [25] [37].

2.4.1.2 Minimum Redundancy Maximum Relevance (mRmR)

Minimum redundancy maximum relevance (mRmR) [38] is a filter-based and

supervised feature selection algorithm that selects features which are mutually far

away from each other, yet they are highly correlated to the target variable. The

idea of minimum redundancy is to select features that are considerable dissimilar.

The idea of maximum relevance is to maximise the total relevance of all features.

The minimum redundancy can be calculated as:

W =
1

|S|2
∑
i,j

c(i, j) (2.3)

and the maximum relevance can be found by solving the following formula:

VF =
1

|S|
∑
iεS

F (i, h) (2.4)

where S is the set of features, |S| is the number of features in S, c(i; j) is the

correlation between features i and j, h is the target, and F (i, h) is the F -statistic.

mRmR method is one of the few feature selection methods that can be applied

in both classification and regression tasks. The literature appears to suggest
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that it usually yields reasonably better performance on high dimensional data

sets where the number of features are dramatically greater than the number of

samples [39] [40].

2.4.1.3 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) [41] describes the relationship between

two multivariate sets of variables. The CCA constructs a subset of features

according to the correlation between input and output variables. In order to

calculate the correlation between Ui and Vj, the covariance between these two

variables, cov(Ui, Vj), is divided by the square root of the product of the variances:

Correlation =
(cov(Ui, Vj))√
var(Ui, Vj)

(2.5)

The canonical correlation is a particular type of this correlation. Thus, i-th

canonical variate pair is the correlation between Ui ,Vi and it can be calculated

from the following formula:

p∗i =
(cov(Ui, Vj))√
var(Ui, Vj)

(2.6)

where Uis are a set of linear combinations for X, and Vjs are a set of linear

combinations for Y , cov is co-variance, p is correlation and var represents the

variance.

2.4.1.4 Maximum Likelihood Feature Selection (MLFS)

Maximum Likelihood Feature Selection (MLFS) [42] is a filter, multivariate and

supervised feature selection method that prioritises variables based on input-

target dependency measure. It utilises Maximum Likelihood Mutual Information

(MLMI) [43] in order to measure the dependency between predictors and the

target. MLMI is an estimator of mutual information which depends on density

estimation. MLMI directly models the density ratio, w(x, y) by [42]:

w(x, y) =
Pxy(x, y)

Px(x)Py(y)
(2.7)
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where Pxy(x, y), is the joint density of X and Y, Px(y), Py(x) are densities of X

and Y respectively. MLFS can be exploited for both classification and regression

problems.

2.4.1.5 Least Squares Feature Selection (LSFS)

Least Squares Feature Selection (LSFS) [44] is quite similar to the MLFS method.

Unlike MLFS, the LSFS evaluates the dependency between features and the

target via squared loss mutual information (LSMI) [45]. LSMI directly estimates

the density ratio, r(x, y), by:

r(x, y) =
P (x, y)

P (x)P (y)
(2.8)

where xi and yi, (i = 1, 2, . . . , n) are given a set of paired samples (xi, yi) which

are drawn independently from the joint distribution with a density of p(x, y).

MLFS is a supervised, multivariate filter, and information-based feature selection

method that can be utilised for both classification and regression tasks.

2.4.1.6 Distance Measure Based Conditional Mutual Information

(CMIDIST )

Distance Measure Based Conditional Mutual Information (CMIDIST ) [15] is a

supervised and filter feature selection method that can be used to perform both

single and multi-output regression tasks. It applies information based techniques

to determine the importance of the features. Conditional Mutual Information

is exploited in order to find the clusters in a data set. The CMIDIST selects a

feature that produces the highest mutual information with respect to the target

variable.

CMIDIST has been shown to produce good performance for small dimensional

data sets, particularly if the number of samples are greater than number of

features [15].
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2.4.1.7 Selection via Intersection Method (SEVIM)

Selection via Intersection Method (SEVIM) [46] is a supervised and filter feature

selection method. In SEVIM, features are selected based on the intersection of

Maximum R2, F score and p-values of the variables. In deed, incremental maxi-

mum R2 technique is exploited, and in order to rank features the intersection of

maximum R2, F score and p values of the features are considered. The maximum

R2 can be formulated as [46]:

a = logL(M)logL(0) (2.9)

b =
logL(0)

n
(2.10)

Q = 1− e
2a
n (2.11)

R2 =
Q

1− e2b
(2.12)

where n is the number of features, logL(M) is the maximised logarithmic likeli-

hood and logL(0) refers to the logarithmic likelihood of null model which contains

only intercept term.

While finding a subset of features with highest R2 is in progress, the F score

of the subsets and their related p values are also calculated. Briefly, let X =

(x1, x2, . . . , xn) denotes a data matrix where xi ∈ Rd is the feature descriptor of

the i− th sample. SEVIM selects a feature, xi, if xi ∈ F ∩ P ∩R.

SEVIM has been shown to produce good results for data sets where the number

of features are greater than number of samples SEVIM.

2.4.2 Wrappers

The goal of the wrapper feature selection is to achieve maximum accuracy with

the minimum number of discriminative features. Wrapper methods embeds the

model hypothesis search within feature subset search. The wrapper approaches
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of feature selection attempt to identify the minimum discriminative features in

order to achieve a high prediction accuracy [47]. Since wrappers interact with

the learning algorithm, their prediction performance is better than filters [48].

On the other hand, wrappers are computationally very expensive, and thereby

they are under the risk of overfitting.

2.4.2.1 Sequential Forward Selection (SFS)

Sequential Forward Selection (SFS) is a supervised and wrapper feature selection

method that starts from an empty set and gradually adds features one at a time

until no further improvement of evaluation function value is possible [49]. When

an attribute is added to the current set, the SFS puts the attribute to the learning

structure that generalises the best. Once an attribute is added to the learning

structure, the SFS cannot remove it. The aim of the evaluation function is to

minimise the mean square error for prediction. A common pitfall of the SFS is

that it may not contain inter-dependent attributes because it adds variables one

at a time [50]. The SFS is more applicable to small data sets [51]. The pseudo

code for the SFS algorithm is presented in Algorithm 4.

Algorithm 1 Sequential Forward Selection Algorithm

1: procedure

2: Start with the empty set Y0 = ø;

3: Select the next best feature x+ = argx/∈YkmaxJ(Yk + x)

4: Update Yk+1 = Yk + x+; k = k + 1

5: go to 2

SFS method has generally been applied to low dimensional data sets for regression

tasks and it produced good results [50]. As mentioned earlier, SFS is more

applicable to small data sets. SFS is a widely utilised feature selection algorithm

thanks to its simplicity and speed [52].

2.4.2.2 Sequential Backward Selection (SBS)

Sequential Backward Selection (SBS) and SFS can be considered as antipodes.

In contrast to SFS, the SBS is initialised with entire set of attributes, and it
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updates the feature set by removing the feature which least reduces the value of

the objective function. The pseudo code for SBS is presented in Algorithm 5.

Algorithm 2 Sequential Backward Selection Algorithm

1: procedure

2: Start with the entire set Y0 = X;

3: Remove the worst feature x− = argx∈YkmaxJ(Yk − x)

4: Update Yk+1 = Yk − x−; k = k + 1

5: go to 2

Since SBS starts with the whole set of features, thereby, its early evaluations

are comparatively expensive [53]. The primary disadvantage of SBS is that once

a feature is removed, it will never be re-evaluated [54]. The SBS spends most

of its time for visiting a large subset; therefore, SBS can be exploited when the

optimal feature subset contains a large number of attributes.

In [50], SBS was applied to a number of different data sets, but generally with

low dimension and it generally produced better results than SFS. However, the

number of features were at most 14 on those data sets.

2.4.2.3 Sequential Floating Selection (SFLS)

The SFS and SBS work on one direction either adding or removing an attribute

at a time. Sequential Floating Selection (SFLS) works on both directions either

adding or removing variables or eliminating added variables, and thereby the

SFLS enhances the reliability of the final feature subset. There are two differ-

ent types of SFLS methods: Sequential Floating Forward Selection (SFFS) and

Sequential Floating Backward Selection (SFBS). The SFFS is initiated with the

empty set as the SFS does; however, after each forward step, the SFFS per-

forms backward steps until the objective function increases. On the other hand,

the SFBS is initialised by the full set and after each backward step, the SFBS

caries out forward steps as long as the objective function increases. The F is a

statistical parameter which can be used to judge whether the models including

different feature subsets are sequentially generated or not. The F parameter can
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be calculated from the following formula [55]:

F =
MSM

MSE
=

∑
i(ŷi−yi)2
q−1

(
∑

i ŷi−yi)2
n−q

(2.13)

where i is the number of samples, y is the target, y is the mean of the target, ŷ

is the predicted target, n is the number of features, q is the number of selected

features, and MSM and MSE are mean of squares for model and mean of

squares for error, respectively.

2.4.2.4 Bi-Directional Search

The goal of the Bi-directional Search algorithm is to ensure that the SFS and

SBS converge toward the same solution. Therefore, features selected by the SFS

should not be removed by the SBS, and the features removed by SBS should not

be added by SFS. The pseudo code for BDS is illustrated in Algorithm 6.

Algorithm 3 Bi-Directional Search Selection Algorithm

1: procedure

2: Start SFS with the empty set YF = ø;

3: Start with the entire set YB = X;

4: Select the best feature

5: x+ = argmin
x/∈YFk

,x∈YBk

[J(YFk
+ x)

6: YFk+1
= YFk

+ x+

7: Remove the worst feature

8: x− = argmax
x/∈YFk+1

,x∈YBk

[J(YBk
− x)

9: YBk+1 = YBk
− x−; k = k + 1

10: go to 2

2.4.2.5 Feature Selection by Computing Statistical Scores (FeaLect)

FeaLect [56] is a feature selection method that statistically sorts features to pri-

oritise them. It generates a number of samples from training data, and then

determines the best relevance ordering of the features for each sample. At the

end, it combines those to select maximally relevant features. Basically, FeaLect
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selects a random subset B. Then selects k-features, in which by applying Least

Absolute Shrinkage and Selection Operator (LASSO) method. If a feature be-

longs to subset B, then the value of the feature is 1/k otherwise the value of the

feature is zero. This process is repeated 100 times and average values of features

are calculated. LASSO, which is presented in the next subsection, can select

relevant features as well as irrelevant ones, especially if the number of train-

ing instances goes to infinity [56]. The FeaLect is a wrapper feature selection

algorithm that overcomes this problem by statistically scoring each feature to

accomplish a robust feature selection [57].

2.4.3 Embedded Methods

In this subsection embedded supervised feature selection methods are presented.

The objective function of embedded methods is to optimise the performance of

a learning algorithm.

2.4.3.1 Least Absolute Shrinkage and Selection Operator (LASSO)

Least Absolute Shrinkage and Selection Operator (LASSO) [58] is a regression

analysis method which changes coefficient estimation and makes some of them

zero in order to perform feature selection. LASSO exploits l1 norm regularisa-

tion for least square linear regression, and it attempts to minimise the following

objective function:

LASSO = argmin
β
‖y − βX‖2

2 + λ‖β‖1 (2.14)

where the response random variable Y ∈ R is dependent on a d-dimensional

covariate X ∈ Rd and the training data D = (xi, yi)
n
1 is independently and

identically sampled from a fixed joint distribution PXY , and λ is a regularisation

parameter. The l1 norm regularisation shrinks most of the coefficients toward

zero; in other words, it performs feature selection [59]. The l1 norm can be

defined as the sum of the absolute values of components of the vector which can

be calculated from:
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‖β‖1 =
n∑
i=1

|βi| (2.15)

The LASSO method is commonly used for genomics [60] [61].

LASSO is an embedded and supervised feature selection method. Even though

LASSO is extremely useful for small n (n is number of samples), and large p (p

is number of features) problems, it can select at most n features [60].

2.4.3.2 High-Dimensional Feature Selection by Feature-Wise Kernel-

ized Lasso (HSIC LASSO)

The LASSO assumes that a linear correlation between features and the target

exists. High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso

(HSIC LASSO) [62] can be considered as a non-linear form of LASSO. The HSIC

LASSO attempts to solve the following optimisation problem [63]:

HSICLASSO = min
α∈Rd

1

2
‖L−

d∑
k=1

αkK
(k)‖2

Frob + λ‖α‖1

subject to α1, α2, . . . , αd ≥ 0

(2.16)

where d represents the number of features, ‖.‖Frob is the Frobenius norm, K
(k)

=

ΓKΓ, L = ΓLΓ are centred Gram matrices, Kk
i,j = K(xk,i, xk,j) and Li,j =

L(yi, yj) are Gram matrices, K(x, x′) and L(y, y′) are kernel functions, Γ =

In − 1
n
1n1Tn is the centring matrix, In is the n-dimensional identity matrix, λ is

a regularisation parameter, α is regression coefficient vector, and 1n is the n-

dimensional vector with all ones. HSIC LASSO is a sparse based, embedded and

supervised feature selection method. It is utilised to select features from high

dimensional data sets to perform non-linear regression tasks.

In [64], LASSO is compared with 8 different feature selection method including

LSMI and mRmR. It achieved the second-best performance over 23 low dimen-

sional data sets (the highest number of features for a data set were 617). This

results appears to suggest that LASSO works well on low dimensional data.
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2.4.3.3 Least Angle Regression for Feature Selection (LARS)

Least Angle Regression for Feature Selection (LARS) [61] is similar to LASSO

and it can be considered as a stepwise variant of LASSO. The LARS selects a

predictor, xi, from a data set which has the largest absolute correlation with

the target (y), and then it performs simple linear regression of y on xi. Other

predictors which are orthogonal to the xi are selected, and then a linear model

is constructed by exploiting the selected predictors. The LARS performs linear

regression with l1 norm regularisation; therefore, most of the coefficients are

shrunk toward zero, and thereby feature selection is accomplished.

The initial coefficients are zero (β = 0). The LARS increases these coefficients so

that their features have the highest correlation with the output variable in each

iteration till all coefficients become non-zero.

2.4.3.4 GUIDE

GUIDE [65] is a regression tree algorithm which aims to provide an unbiased fea-

ture selection using the Chi-Squared test. The GUIDE starts with the selection

of the most important feature by exploiting the Chi-Square statistic. If none of

the feature is considered significant; then, linear combinations of two features are

determined and the most significant feature is decided by using Bonferroni [66]

corrections. If the most significant variable is still not found, then interaction

tests between pairs of features with Bonferronni corrections are performed. If the

most important feature is still not found, then the feature with lowest p-value is

selected at the beginning stage (Chi-Square test). Then, the split points on the

most important feature, which decreases miss-prediction error, are found. Split-

ting continues until pre-defined number of observations exceed cases of a node

[67]. GUIDE is a statistical based, embedded, and supervised feature selection

algorithm which can be exploited for both classification and regression tasks.

2.4.3.5 Minimum Redundancy Spectral Feature Selection (MRSF)

SPEC (which is presented in section 2.3.1.4) ignores feature relevance, therefore,

it cannot handle feature redundancy. MRSF [68] can be considered as an exten-

sion of SPEC where features are jointly evaluated to identify feature relevance.
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The MRSF is a sparse learning based, embedded, and supervised feature selec-

tion method that evaluates a set features jointly and eliminates redundant ones.

The MRSF attempts to solve the following optimisation problem:

argm
W
in‖W ′X − Y ‖2

2 + λ‖W ||2,1 (2.17)

where W ∈ Rd∗q is a projection matrix, ε is a predefined parameter, and Y ∈ Rn∗q

is embedding of the input data (by eigen decomposition) X ∈ Rd∗n.

In [68], MRFS produced better results than HSIC and mRmR over six different

data sets for classification tasks. These benchmarks have at most 11340 features.

The performance of MRFS for regression tasks needs to be investigated.

2.4.3.6 Elastic Net (EN)

The LASSO penalises l1 norm regularisation to shrink many coefficients to ex-

actly ’0’; therefore, LASSO can be utilised for feature selection. However, LASSO

tends to select only one of the highly correlated features, which may not always

be the best choice [69]. In order to select features with high correlations, Zhu

and Hastie proposed Elastic Net (EN) [70] which uses both l1 and l2 norm regu-

larisation given by:

penalty(w) =
n∑
i=1

|wi|γ + (
n∑
i=1

w2
i )
λ (2.18)

where 0 ≤ γ ≤ 1 and λ ≥ 1 are individual tuning parameters. The EN is

a sparsity-based feature selection method that performs feature selection and

regression, simultaneously.

In [15], EN and CMIDIST methods are compared. EN produced better results

than CMIDIST if the number of features are less than 50. This result suggests

that EN is suitable for very low dimensional data sets.
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2.4.4 Remarks on the Use of Supervised Feature Selec-

tion

In this chapter, existing feature selection methods for regression problems are

reviewed. In this section, unsupervised and supervised feature selection methods

are compared and their advantages and disadvantages are presented. In Table 2.2,

supervised and unsupervised feature selection methods are compared, in addition,

their advantages and disadvantages are listed along with their references.

2.5 Unsupervised Feature Selection Methods

In previous section supervised feature selection methods for regression problems

are presented. In this section, unsupervised feature selection methods for regres-

sion problems are presented.

2.5.1 Filter Methods

This subsection presents unsupervised filter feature selection methods for regres-

sion tasks.

2.5.1.1 Term Variance (TV)

Term Variance (TV) [82] is an unsupervised and univariate filter feature selection

method that ranks features according to their variance. TV can be formulated

as:

TVi = var(xi) =
1

n

n∑
j=1

(xij − xi) (2.19)

where xi is sample mean of xi. Even though TV is a simple method, it is

computationally faster. Therefore, it can be applied to very high dimensional

data.
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Table 2.2: A Comparison of Supervised and Unsupervised Feature Selection
Methods

Feature Selection
Supervised Unsupervised Ref
The output weights are trained by
solving a regularised least squares
problem

The output weights are obtained
by solving a generalised eigen
value problem

[71]

A relevance of a feature is mea-
sured according to its correlation
with label information

The relevance of a feature is mea-
sured according to its ability in
preserving some data characteris-
tics (e.g. variance)

[72]

Background knowledge of data is
available

Background knowledge of data is
not available

[72]

Traces for learning activities and
strategies

Can be applied on any data set
comprising traces of activities

[73]

Complexity is low, requires one it-
eration

Complexity is high requires sev-
eral iterations

[73]

Requires human (expert) inter-
vention to obtain labels

Does not require human (expert)
intervention to obtain true labels

[13]

Limited data available Adequate data available [74]
Impractical Practical [74]
Not easily applicable for crowd
sourcing

Easily applicable for crowd sourc-
ing

[74]

Present labels Abcent labels [75]
[76]

Applicable for classification usu-
ally

Applicable for classification, re-
gression and clustering

[77]

Effective for selecting discrimina-
tive features

Effective for clustering features [78]

Higher accuracy Less accuracy [79]
More reliable performance Less reliable performance [79]
Ignore correlation between differ-
ent features

Ignore correlation between fea-
tures and labels

[80]

Less challenging when applied to
high dimensional data

More challenging when applied to
high dimensional data

[81]

Time consuming and costly Computational time greatly re-
duced

[77]

Difficult to apply for text classifi-
cation, fault diagnosis, and infor-
mation retrieval

Easily applicable for information
retrieval, fault diagnosis, and text
classification

[71]
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2.5.1.2 Infinite Feature Selection (InFS)

Infinite Feature Selection (InFS) [4] is a filter and unsupervised feature selection

method. In InFS, each feature is represented with a node in a graph and features

are selected according to their centrality score. All possible subsets of features

are considered as paths on a graph and each feature is ranked. The pseudo code

for infinite feature selection method is illustrated in Fig. 2.3.

Figure 2.3: The Pseudo Code for InFS Algorithm [4].

2.5.1.3 Laplacian Score Feature Selection (LapFS)

Laplacian Score Feature Selection (LapFS) [83] is a graph based, unsupervised

and univariate filter feature selection algorithm that ranks features according

to their locality preserving power. In Laplacian Score, features are evaluated

independently; therefore, the LapFS algorithm cannot handle feature redundancy

[84]. LapFS utilises pairwise similarities between features which are calculated

using the heat kernel. Laplacian score of a feature, fi, can be calculated from

the following formula:

Lap(fi) =
f̃ ′iLf

′
i

f̃ ′iDf
′
i

(2.20)

where fi = fi − f ′iD1

1′D1
1, 1 = [1, 1, ..., 1]′, D is degree or diagonal matrix defined as

D(i, i) =
∑n

j=1 S(i, j), S is affinity matrix S(i, j) = e−‖xi−xj‖
2

t
and the Laplacian

matrix (L) is L = D − S. Keep in mind that constructing a Laplacian graph
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is computationally expensive, especially, if the number of features are extremely

large.

2.5.1.4 Spectral Regression Feature Selection (SPEC)

Spectral Regression Feature Selection (SPEC) [85] can be considered as an exten-

sion of LapFS. LapFS is an unsupervised feature selection method which exploits

data variance and separability to assess feature relevance [86]. The goal of the

SPEC is to investigate some intrinsic properties of both supervised and unsu-

pervised feature selection and to develop a unified framework which is built on

spectral graph theory. Likewise LapFS, SPEC cannot handle feature redundancy

because it evaluates each feature independently. Therefore, in SPEC, the cor-

relation between features is not taken into account. SPEC exploits the Radial

Basis Function (RBF) in order to calculate the similarity, sij, between two points

xi and xj by:

Sij = e−
‖xi − xj‖2

2σ2
(2.21)

where the graph G is constructed from S, and the projection matrix (W) is

constructed from graph G, and the degree matrix (D) is a diagonal matrix that

can be calculated from Dii =
∑n

i=1Wij. Given W, and D, the Laplacian Matrix

(L) can be expressed as:

L = D −W ; L = D−1/2LD−1/2 (2.22)

As far as the feature selection for classification problems is concerned, SPFS has

been shown to be an average method compared to others [87]. On the other

hand, SPEC has shown its effectiveness for regression tasks in several studies

[88] [89].

2.5.1.5 Trace Ratio Criterion for Feature Selection

Trace ratio feature selection [90] individually ranks features according to their

scores which are computed in trace ratio norm. Two affinity matrices are defined

by trace ratio criterion: Sw and Sb. They represent within class similarity, and
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between class data similarity respectively. Their corresponding graph Laplacian

and diagonal matrices can be calculated from the following formula:

Dw(i, i) =
n∑
j=1

Sw(i, j)

Db(i, i) =
n∑
j=1

Sb(i, j)

and

Lw = Dw − Sw
Lb = Db − Sb

(2.23)

where k is the number of features to be selected, W = [Wi1,Wi2, . . . ,Wik] ∈
Rd∗k is the selection indicator matrix such that only ith element of wij is 1 and

the others are 0. The trace ratio criterion of best selection matrix, W, can be

calculated from [91]:

Trace ratio(W ) = argm
W
ax =

tr(W ′X ′LbXW )

tr(W ′X ′LwXW )
(2.24)

Trace Ratio is a similarity based, supervised and filter feature selection method

that can be utilised for both classification (including multi-class classification)

and regression tasks [2].

2.5.1.6 KCEN

KCEN [14] is a K-means clustering based unsupervised feature selection method

where the number of clusters equals the number of selected features.

Given a data set X = x1, . . . , xj, . . . , xn in which xj = (xj1, . . . , xjd)
T ∈ Rd,

K-Means algorithm attempts to find K clusters of X, C = C1, . . . , Cj, . . . , Ck,

such that

Ci 6= ø, i = 1, . . . , k

∪ki=1 Ci = X

Ci ∩ Cj = ø, i, j = 1, . . . , k and i 6= j

(2.25)
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where k is a user-defined integer. It is shown above that a pattern can only

be allowed to belong one cluster. After determination of the cluster centroids,

a feature which is the closest to the cluster centroid is selected as a represen-

tative feature for the cluster. Therefore, the number of clusters determines the

number of selected features in KCEN algorithm. KCEN is a univariate filter,

unsupervised, and statistical-based feature selection method.

KCEN method is effective and simple it produced comparable results on different

high dimensional data sets [88].

Recently, there is no wrapper unsupervised feature selection method proposed in

the literature Therefore, next sub-section presents embedded methods.

2.5.2 Embedded Methods

This subsection presents unsupervised embedded feature selection methods for

regression problems.

2.5.2.1 Multi-Cluster Feature Selection (MCFS)

Multi-Cluster Feature Selection (MCFS) [92] is an unsupervised and embedded

feature selection algorithm that selects a set of features by utilising spectral

regression and l1 norm regularisation. The correlation between features are eval-

uated using spectral analysis. MCFS consists of three main steps. First step is

spectral clustering that is utilised to disclose cluster structure of the input data.

Second step is sparse coefficient learning, and the final step is feature selection.

MCFS exploits the eigen vectors of the graph Laplacian to appropriately cluster

samples in an unsupervised manner. In order to create a graph of samples and

to reveal local structure of a data, the k-nearest neighbour (KNN) method is

exploited, and thereby a similarity matrix is gained. The Heat kernel affinity or

similarity matrix, Sij can be expressed as:

Sij = e−
‖xi − xj‖2

σ
(2.26)
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where xi and xj are connected samples in KNN graph, and σ is a pre-defined

parameter. Laplacian matrix is calculated from L = D − S where D is a diag-

onal matrix. MCFS utilises l1 norm and spectral regression and minimises the

following function:

Lz = λDz (2.27)

where Z = [z1, z2, . . . , zt] denotes eigen vectors and t is a predefined parameter.

A subset of relevant features can be found by minimising the following function:

m
wi

in‖xwi − ei‖2
2 + α‖wi‖1 (2.28)

where wi is the feature coefficient vector for the i-th embedding. MCFS solves

sparse regression problems and gets t sparse feature coefficients, W = [W1,W2, . . . ,Wt],

and each coefficient corresponds to one embedding of data. MCFS ranks features

based on their score which can be calculated from:

MCFS score(j) = m
i
ax|Wi,j| (2.29)

where Wi,j is the j-th element of vector W.

2.5.2.2 Unsupervised Discriminative Feature Selection (UDFS)

UDFS [93] is a sparse learning based, embedded, and unsupervised feature se-

lection method that jointly utilises local discriminative information and feature

correlations to select features. UDFS attempts to solve the following objective

function:

min
W ′W=I

tr(W ′XLX ′W ) + β‖W‖21 (2.30)

where I is the identity matrix, W is a projection matrix, L = D−1/2(D−S)D−1/2,

X is the input data, tr is trace, ‖‖21 indicates l21 norm regularisation and W
′

is

the transpose matrix of W.
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2.5.2.3 Non Negative Discriminative Feature Selection (NDFS)

NDFS [94] is an unsupervised and embedded feature selection algorithm that

performs feature selection and spectral clustering, simultaneously. Similar to the

UDFS, NDFS exploits l2−1 norm regularisation to eliminate irrelevant features.

NDFS aims to solve the following objective function:

min
G,W

tr(GTLG) + β‖XW −G‖2
F + α‖W‖2,1

subject to GGT = In, G ≥ 0
(2.31)

where α and β are parameters, G is the weight cluster indicator matrix, X is the

input data, and L = D−1/2(D− S)D−1/2 and S is the similarity matrix that can

be computed from the Equation (2.32).

2.5.2.4 Robust Unsupervised Feature Selection (RUFS)

RUFS [95] is an unsupervised, sparse learning based and embedded feature selec-

tion algorithm that selects discriminative features by jointly performing robust

feature selection and robust clustering. RUFS attempts to solve the following

objective function:

min
F,G,W

‖X −GF‖2,1 + vTr[GTLG]+

α‖XW −G‖2,1 + β‖W‖2,1

subject to G ∈ Rnxc
+ , G = Y (Y TY )−1/2, F ∈ Rcxd

+

(2.32)

where v, α, β ∈ R+ are user-defined parameters, G is the weight cluster indicator

matrix, which represents pseudo class labels, X is the given input data, W is

the projection matrix, L is the Laplacian matrix (which is presented in section

2.3.1.3), and F is the cluster centres in the original whole feature space.
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2.5.2.5 Joint Embedding Learning and Sparse Regression (JELSR)

JELSR [87] is an unsupervised, sparse learning based and embedded feature se-

lection technique that joins embedding learning with sparse regression to perform

feature selection [87]. The method is quite similar to Multi Cluster Feature Se-

lection (MCFS) and Minimum Redundancy Feature Selection (MRSF) methods;

however, JELSR provides a new technique by applying local minimal approxima-

tion weights and l21 norm regularisation. JELSR attempts to solve the following

optimisation function:

min
WY

Tr(Y LY ′) + β‖W ′X − Y ‖2
2 + α‖W‖21

subject to Y Y ′ = I
(2.33)

where Y is the low dimension representation of the input, X, and W is the

projection matrix, Tr is trace, and α and β are parameters.

2.5.2.6 Unsupervised Feature Selection with Adaptive Structure Learn-

ing (FSASL)

Unsupervised Feature Selection with Adaptive Structure Learning (FSASL) [96]

is a sparse learning based, embedded and unsupervised feature selection method

that jointly performs feature selection and structural learning. Unlike other

embedded feature selection methods, such as MCFS, NDFS and JELSR, FSASL

exploits the output of feature selection to feed into structure learning procedure

in order to accomplish better structure learning. FSASL attempts to solve the

following optimisation problem:

min
W,S,P

(‖W ′X −W ′XS‖2 + α‖S‖1) + (
n∑
i,j

‖W ′xi −W ′xj‖2Pij + µP 2
i,j) + γ‖W‖21

subject to Sii = 0; P1n = 1n; P ≥ 0; W ′XX ′W = I

(2.34)
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where W ∈ Rd∗c is transformation matrix, γ is the regularisation parameter,

S ∈ Rn∗n is the optimal sparse combination weight matrix which can be obtained

from following function:

min
S

n∑
i=1

‖xi − xSi‖2 + α‖Si‖1

subject to Sii = 0

(2.35)

where α is utilised to balance sparsity and reconstruction error. Pij ∈ Rn∗n is

probabilistic neighborhood matrix and it can be calculated from the following

formula:

min
P

n∑
i,j

‖xi − xj‖2
2Pij + µP 2

ij

subject to P1n = 1n; P ≥ 0

(2.36)

where µ is the regularisation parameter and 1n is the n-dimensional vector with

all ones.

2.5.2.7 Embedded Unsupervised Feature Selection(EUFS)

NDFS, RUFS, and MCFS use clustering algorithms to disclose discriminative

information from a data, and generate the cluster labels. They select features

using the labels as if the selection method is supervised. Unlike these methods,

EUFS [78] embeds feature selection into a clustering algorithm via sparse learning

without transformation. EUFS aims to solve the following optimisation problem:

min
U,V
‖X − UV T‖2,1 + α‖V ‖2,1 + βTr(UTLU)

subject to UTU = I, U ≥ 0
(2.37)

where l12 norm is applied to the cost function in order to decrease the impact

of outliers and noise, α and β are user-defined parameters in which α, β ≥ 0, U
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is the cluster indicator, V is latent feature matrix, Tr is trace, I is the identity

matrix and L is the Laplacian matrix (as presented in section 2.3.1.3).

Even if EUFS is an embedded feature selection method, it is computationally

inexpensive; therefore, it can easily be applied to high dimensional or ultra high

dimensional data.

2.5.2.8 Unsupervised Feature Selection Using Feature Similarity (FSFS)

FSFS [97] is a similarity based, unsupervised and filter feature selection method

that groups features into clusters using pairwise similarities between features,

and then, selects the most representative feature from each cluster [98]. The

FSFS exploits feature dependency/similarity to eliminate redundant features.

The Maximal information compression index similarity measure [99] is used for

clustering. In [97], the author used the well-known correlation coefficient:

ρ(Xi, Xj) =
1/n

∑n
k=1(Xik −Xi)(Xjk −Xj)√
V ar(Xi)V ar(Xj)

(2.38)

where ρ(Xi, Xj) = 1 means strongly correlated and ρ(Xi, Xj) = 0 means uncor-

related. The author proposed maximal information compression index, MICI,

that can be computed from the following formula:

2λ(Xi, Xj) = V ar(Xi) + V ar(Xj)−√
(V ar(Xi) + V ar(Xj))2 − 4V ar(Xi)V ar(Xj)(1− ρ(Xi, Xj))

(2.39)

where λ is a parameter, ρ(Xi, Xj) is the correlation coefficient which is aforemen-

tioned, V ar represents the variance, X is the input data, and n is the number of

samples.

2.6 A Taxonomy of Feature Selection Methods

for Regression

In this section, a taxonomy of feature selection methods for regression problems

is provided.
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In section 2.1, feature selection methods are categorised as filters, wrappers and

embedded methods. Filter methods are sub-categorised as univariate and mul-

tivariate methods. Furthermore, based on the availability of information and

problem definition in prediction, feature selection methods can be also divided

into two main categories: supervised and unsupervised.

In this section, a taxonomy of feature selection methods for regression problems

is presented. Feature selection methods are not only categorised based on their

types, but also they are categorised based on their intramural learning style,

such as information based, similarity based, statistical based, or sparse learning

based feature selection methods. To the best of our knowledge, this is the first

comprehensive taxonomy for feature selection methods particularly in regression

domain. This taxonomy of feature selection methods for regression problems is

shown in Fig. 2.4.

In addition to providing a taxonomy, a comprehensive overview of feature se-

lection methods for regression problems is also provided where feature selection

methods are shown along with their types, references, sources, and code reposi-

tories. This comprehensive overview of feature selection methods for regression

tasks is presented in Table 2.3.

2.7 Summary

In this chapter, an in-depth literature review of feature selection methods for

regression problems has been proposed. There are three different types of fea-

ture selection methods: filter, wrapper and embedded methods. Filter methods

are computationally faster, yet they do not interact with the prediction algo-

rithm. Wrapper methods are computationally expensive; however, they produce

better prediction performance than filters since they interact with a prediction

algorithm. Likewise wrapper methods, embedded methods are also dependent

on a learning algorithm, and therefore they produce better prediction perfor-

mance than filters. On the other hand, embedded methods are computationally

less expensive than wrappers, and more expensive than filters. Filter selection

methods can be sub-divided into univariate and multivariate filters. Univariate

filters assess the importance of each feature individually whereas multivariate

filters determine this in the context of other features. Based on the availability
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Table 2.3: A List of Feature Selection Methods for Regression Problems

Method Type SubType Class Reference Code

SEVIM Supervised Embedded Statistical [46] Matlab

MCFS Both Embedded Sparse Learning [92] Matlab

KCEN Unsupervised Filter Statistical [14] Matlab

EUFS Unsupervised Embedded Sparse Learning [78] Matlab

RUFS Unsupervised Embedded Sparse Learning [95] Matlab

UDFS Unsupervised Embedded Sparse Learning [93] Matlab

MLFS Supervised Filter Information [42] Matlab

NDFS Unsupervised Embedded Sparse Learning [94] Matlab

FSASL Unsupervised Embedded Sparse Learning [96] Matlab

JELSR Unsupervised Embedded Sparse Learning [87] Matlab

SPEC Both Filter Similarity [85] Matlab

FSFS Unsupervised Embedded Similarity [97] Matlab

LapFS Unsupervised Filter Similarity [83] Matlab

KBFS Unsupervised Filter Statistical [100] Matlab

InFS Unsupervised Filter Similarity [4] Matlab

LASSO Supervised Embedded Sparse Learning [58] Matlab

LARS Supervised Embedded Sparse Learning [61] Matlab

LSFS Supervised Filter Information [44] Matlab

SFS Supervised Wrapper Similarity [101] Matlab

SBS Supervised Wrapper Similarity [101] Matlab

BD Supervised Wrapper Similarity [101] Matlab

SFLS Supervised Wrapper Similarity [101] Matlab

MRSF Supervised Embedded Sparse Learning [68] Matlab

Trace Ratio Supervised Filter Similarity [90] Matlab

EN Supervised Embedded Sparse Learning [70] Matlab

CMIDIST Supervised Filter Information [15] Matlab

FeaLect Supervised Wrapper Statistical [56] R

CFS Supervised Filter Statistical [? ] Matlab

TV Unsupervised Filter Statistical [82] Matlab

CCA Supervised Filter Statistical [41] Matlab

GUIDE Supervised Embedded Statistical [65] Matlab

HSIC LASSO Supervised Filter Information [62] Matlab

mRmR Supervised Filter Information [38] Matlab
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of information and problem definition in prediction, feature selection methods

can be divided into two main categories: supervised and unsupervised feature

selection. Supervised methods attempt to identify relevant features as well as

noisy ones; on the other hand, unsupervised methods do not tend to select fea-

tures which can act as noise. Consequently, compared to the supervised feature

selection, unsupervised feature selection can be considered as a more unbiased

approach. There have been a number of feature selection algorithms provided

in the literature. They are used generally for classification, regression and clus-

tering. Compared to the methods discussed for the classification, the literature

appears to suggest that there is a lack of studies in regression-based problems for

feature selection, in particular, unsupervised feature selection methods. In ad-

dition to providing a literature review of feature selection methods, a taxonomy

of them, specifically for regression problems is also provided. In this taxonomy,

feature selection methods are not only categorised according to their types, but

also classified based on their intrinsic learning approaches.



Chapter 3

Regression Methods, Data Sets

and Statistical Validation

In this chapter, the prediction methods, data sets and metrics for statistical

validation are presented.

3.1 Prediction Methods

In this thesis, support vector-based models are used to evaluate the prediction

performances of unsupervised feature selection methods since they have produced

impressive generalisation and performance in wide variety of bioinformatics ap-

plications [102] [16]. Multi input-single output (MISO) and multi input-multi

output (MIMO) prediction tasks are performed using Support Vector Regression

(SVR) and multi support vector regression (MSVR) respectively.

3.1.1 Support Vector Regression

Support Vector Regression (SVR) aims to find a model function f(x) that shows

the relationship between the features and the target. In SVR, the ε-intensive loss

function is used [88]. In Fig. 3.1, the one-dimensional linear regression function

with an epsilon intensive band is shown.

43
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Figure 3.1: One Dimensional Linear Regression with Epsilon Intensive Band
adapted from [5]

.

A margin tolerance (ε) is set to identify features to be normalised. Any residue

of a regression less than ε is considered as noisy or meaningless. Only features

out side of the ε-region are penalised, as given by:

C
n∑
i

ξki (3.1)

where k is a positive integer and ξ is the orthogonal distance away from the

ε-region. The regression function, f(x), is defined as:

f(x) =< w, x > + b (3.2)

where w stands for a weight vector, and b is the bias. By minimising the weight

vector and fixing the margin, the optimisation problem can be defined as:

min
ξ,ξ∗,w

1

2
‖w‖2 + C

∑
ξ2 + ξ2∗ (3.3)

This is subject to:
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yi− < w, xi > −b ≤ ε+ ξi

< w, xi > b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(3.4)

where

X = (x1, x2, . . . , xn) (3.5)

is the model, and

Y = (y1, y2, . . . , yn) (3.6)

is the target.

As a certain number of training instances are selected as support vectors, the

weighted sum of these support vectors is then obtained to develop a regression

model. In this study, the SVR part of the process is implemented using the

LIBSVM library [103].

3.1.2 Multi Support Vector Regression (MSVR)

Researchers have mainly paid attention to single-output regression analysis [15].

However, multi-output regression is crucial, especially in the analysis of biomed-

ical data. The purpose of multi-output regression is to achieve a mapping of an

input feature space into a multi-dimensional output space [104]. In this study,

multi-output support vector regression (MSVR) [105] is exploited to perform the

multi-output regression tasks. MSVR not only considers relationships among

features, but also examines interrelationships among output variables.

The purpose of the uni-dimensional regression estimation problem is to find a

model function which maps inputs (x ∈ Rd) to an observable output (y ∈ R).

On the other hand, the multi-dimensional regression estimation problem aims to

find a model function θ(x) that maps input variables (x ∈ Rd) to an observable

vector output (y ∈ Rt) in which wj and bj (j=1,...,t) regressors need to be found

for every target variable. Therefore, it attempts to solve the following function:
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min
wj ,bj ,ξi

k∑
j=1

‖wj‖2
+ C

m∑
i=1

ξ (3.7)

subject to

‖yi − wθ(xi)− b‖ ≤ ε+ ξi ∀i = 1, ...,m

ξi ≥ 0 ∀i = 1, ...,m
(3.8)

where w = [w1, ...wk]T and b = [b1, ...bk]T are k-dimensional linear regressors in

t-dimensional Hilbert space, and m is the number of samples.

3.2 Data Sets

In this study, in order to evaluate the performance of proposed methods, four

different case studies are considered: (i) a low dimensional RV144 vaccine data

set; (ii) high dimensional peptide binding affinity data sets, which contain three

different tasks; (iii) a very high dimensional GSE44763 data set; and (iv) a very

high dimensional GSE40279 data set are exploited. The problem statement for

all these data sets and their characteristics are presented.

3.2.1 RV144 HIV Vaccine

3.2.1.1 Problem Statement

Antibodies are specialised Y-shaped glycoproteins (gp) that are produced by

plasma cells to defend against intruders that cause infection. Antibodies are cru-

cial for the immune system since they play a role in protecting against foreign

substances or antigens. Antibodies consist of two antigen-binding fragments:

fragment antigen-binding (Fab) and fragment crystallizable (Fc). Fab regions

are the arms of the antibodies called immunoglobulin G (IgG) which are respon-

sible for the identification of infected cells [106]. On the other hand, Fc regions

stimulate the innate immune system to neutralise antigens.

Antigens that exist in vaccines stimulate immune system response by instruct-

ing B-cells in order to produce antibodies which are responsible for protec-

tion. Vaccine-induced immunity effectors, or antibodies, are important defenders
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against antigens, including HIV viruses. Vaccination provides active protection

since it trains the immune system to recognise antigens. Then, the immune sys-

tem produces specific antibodies to fight against the antigens. The function of

antibodies is to recognise and bind to antigens. This detection process begins

when antibodies recognise a small region on the surface of an antigen called the

epitope [107]. Vaccine-mediated antibodies are important defenders against in-

truders including Human Immunodeficiency Virus (HIV) [108]. HIV attacks and

destroys the immune system; indeed, it causes depletion of CD4-positive lympho-

cytes. The RNA of HIV has only nine genes that contain the code necessary to

produce structural enzymes [109]. HIV poses a number of immunological threats

to the human immune system due to its extensive genetic diversity. Furthermore,

HIV is capable of developing countermeasures to avoid the effect of antibodies.

HIV can prevent itself from being detected by the immune system thanks to its

reverse transcription ability. This ability enables HIV to mutate approximately

3x105 per nucleotide base [110].

Therefore, producing an effective vaccine which can elicit antibodies to block

HIV is vital to neutralise the virus. Novel vaccine strategies are required to over-

come the aforementioned challenges posed by HIV. Increasing the knowledge of

associations between virus and immune system would ultimately result in pro-

ducing an effective vaccine; an example is RV144. Functional antibodies are

considered to be HIV inhibitors [111]. These inhibitory antibodies are capable

of binding to virions, reducing their movement across mucus and mediating a

variety of Fc receptor-mediated anti-HIV-1 activities, such as Antibody Depen-

dent Cellular Cytotoxicity (ADCC) [112] [113]. ADCC-mediated antibodies can

eradicate HIV infected CD4 cells [114] and block the transmission of HIV within

24 hours after viral entry [115]. HIV-1 transmissions commonly take place on

mucosal surfaces; hence, mucosa is an excellent region to bind and engulf the

virus. Antibody activities in mucosal tissues are shown in Fig. 3.2 [6].

Vaccination is a provider of active immunity since it stimulates the immune

system to produce antibodies which fight against a virus. Interestingly, spe-

cific antibodies provide protection against specific antigens [116]. Moreover, the

amounts of antibodies that are produced by the immune system are statistically

related to the protection given, since antibodies will be needed for the subse-

quent attacks from antigens [14]. The functional characteristics of antibodies are

also crucial for HIV protection; therefore, the identification of specific antibodies
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Figure 3.2: Antibody Activities on Mucosal Tissues [6]

that mediate effector functions to neutralise HIV is essential for producing an

effective HIV vaccine. Antibodies can also collaborate with other functions to

provide prevention against viruses [117] [118]. Therefore, the identification of

discriminative antibody features is crucial in producing prevention against HIV.

3.2.1.2 The Data Set

The RV144 data set provided in [119] is utilised in this study to model their anti-

body feature-function relationships and to disclose HIV-specific antibodies. This

data set contains 100 plasma samples (20 of them are placebo and 80 of them are

vaccine injected) obtained from the individuals who participated in the RV144

vaccine trial at week 26. Three different cell-mediated assays are used in this the-

sis: Antibody Dependent Cellular Phagocytosis (ADCP), Antibody Dependent

Cellular Cytotoxicity (ADCC), and Natural Killer cell Cytokine release.

ADCC antibodies are capable of identifying infected cells, and these antibodies

are involved in the binding of epitopes of HIV-infected cells [120]. Cytotoxicity

activities are mediated by Natural Killer (NK) cells which can directly kill virally

infected cells by adhering to them. Cytokine release activity includes the NK
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cell surface expression of CD107a and the quantitative detection of MIP-1-β and

IFN-γ levels produced inside the cell. An antigen microsphere based liquid array

is applied to determine antibodies (gp41, gp140, p24, gp120, and V1V2) and

subclasses (IgG1, IgG2, IgG3, IgG4).

HIV-1 vaccine injection has been shown to be less effective due to the intrinsic

variability of the virus. The identification of distinctive antibodies which corre-

late with protection against HIV-1 infection, along with increasing the knowledge

of associations between immune mechanisms and HIV, would ultimately result

in the development an effective vaccines against HIV. In this study, three differ-

ent cell-mediated assays, ADCC, ADCP, and Cytokine release, are used. The

purposes of exploiting the RV144 data set are: (i) to differentiate functional an-

tibodies; (ii) to identify the relationships between the human immune system

and the HIV virus; and (iii) to test the effectiveness of the DFSFR framework

for the given data set. The aim of this study is, therefore, to predict functional

relationships between antibody features and their functional activities in RV144

vaccine recipients. Each data sample has twenty antibody features that consist

of features related to IgG subclass and antigen specificity.

3.2.2 Peptide Binding Affinity

3.2.2.1 Problem Statement

The understanding of interactions among proteins is an essential domain of re-

search in systems biology, with applications in protein engineering and drug

design. Proteins are bio-polymers that consist of chains of amino acid residues.

Proteins play fundamental roles in cellular functions. For example, approxi-

mately, 50% of the cell dry weight of the human body is protein [121].

An amino acid is a small molecule that consists of an amine (NH2) and carboxyl

(COOH) functional groups with an organic substituent, called the R-group which

determines the unique characteristics of each amino acid. A peptide is short

linear chain of an amino acid sequence which contains two or more amino acids

linked by peptide bonds. Polypeptides consist of a series of amino acid units and

residues linked by peptide bonds [122]. A protein is a biological macromolecule

composed of one or more polypeptides. Consequently, the building blocks of

both peptide and protein molecules are amino acids, and thereby peptides can
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be exploited as a secondary structure of proteins to modulate protein-protein

interactions [123] [124] [125].

Protein-protein interactions (PPIs) play a role in mediating signal transactions,

sensing the environment, triggering immunological responses, and monitoring

gene expression [126]. Furthermore, PPIs play a crucial role in the progress

of human diseases such as viral infections. Therefore, increasing knowledge of

the underlying principles of PPIs can ultimately result in the revealing intrin-

sic biochemistry of different diseases and the development of drug design [127].

However, the empirical determination of PPIs is not amendable, and thereby,

to increase the understanding of PPIs, computational methods such as classifi-

cation, regression and feature selection can be used. The purpose of this study

is, therefore, to predict binding affinity values for peptides using amino acid de-

scriptors. Amino acid descriptors quantitatively describe the physicochemical

properties of the peptides [128]. Affinity refers to the strength of binding. The

difficulty of the peptide binding affinity prediction problems when building a pre-

diction model is that the number of features is very large (in this study, around

5000) whereas the number of peptides in the training data set is relatively small

(in this study <150).

3.2.2.2 The Data Sets

In this study, three different high-dimensional peptide data sets provided at the

Comparative Evaluation of Prediction Algorithms CoEPrA modelling competi-

tion [129] are used in order to further improve the predictivity of the affinity

of peptides and, in particular, to test the predictive capability of the proposed

DFSFR framework for the given data sets. Each data set contains training and

test data sets and physicochemical descriptors have been provided for each small

peptide for both training and test data sets. Each amino acid in a peptide is

described by 643 descriptors. Tasks 1 and 3 contain nona-peptides that have a

total of 5787 descriptors (=643x9) whereas Task 2 consists of octa-peptides that

are characterised using a total of 5144 descriptors (=643x8). The characteristics

of the peptide binding affinity data sets are given in Table 3.1. A more detailed

description of these data sets is provided in Appendix A.
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Table 3.1: General Characteristics of the CoEPrA Data sets Used for the
Prediction of Peptide Binding Affinity

Datasets
Number of Peptide Sequences Number of Peptide Sequence

Descriptors
Training Testing

Task 1 89 88 5787

Task 2 76 76 5144

Task 3 133 133 5787

The number of amino acid occurrences in training and testing peptide affinity

data sets for each experiment are shown in Tables 3.2-3.7. In other words, these

tables demonstrate the distribution of amino acids which positioned at the pep-

tide locations for each of the training and testing data sets of related tasks.

Physico-chemical descriptors are provided for each peptide for both training and

testing data sets. Each amino acid is described by 643 descriptors. For example,

Proline (P) contributes greatly in Task 1 data set at locations 4 and 6, and Valine

(V) strongly contributes in Task 1 data at location 9. Leucine (L) contributes

weakly in the Task 1 training data set at location 2; nevertheless, it strongly

contributes at position 2 in the Task 1 testing data. Therefore, prediction for

Task 1 is quite difficult. In the Task 2 data set, Leucine (L), Isoleucine (I),

Phenylalanine (F), Serine (S), Asparaigne (N), Glycine (G), Glutomic Acid (E),

Threonine (T) amino acids appear approximately 60 times at their separate re-

spective locations. Leucine (L) and Valine (V) make a considerable contributions

to the Task 3 model at locations 2 and 9 respectively.
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Table 3.2: Amino acid occurrences in Training Data Set for Task 1

Location
Amino Acid 1 2 3 4 5 6 7 8 9
Alanine 1 2 2 0 0 0 1 2 14
Arginine 5 0 0 0 0 0 0 0 0
Asparagine 1 0 6 1 0 1 1 11 0
Aspartic Acid 0 0 29 4 0 2 1 2 1
Cysteine 1 1 2 1 0 1 1 2 0
Glutamine 0 0 1 10 4 2 2 3 0
Glutamic Acid 0 0 0 0 0 0 2 3 0
Glycine 3 0 1 6 16 1 1 1 2
Histidine 1 1 3 1 1 0 8 1 1
Isoleucine 3 2 3 0 4 1 2 1 5
Leucine 3 6 5 2 10 1 1 4 6
Lysine 2 0 1 2 0 0 0 0 1
Methionine 1 4 4 0 1 1 0 0 0
Phenylalanine 9 1 13 1 33 2 11 0 1
Proline 1 1 0 52 1 50 14 4 1
Serine 2 0 3 4 1 3 4 12 1
Threonine 0 7 1 3 5 6 1 39 3
Tryptophan 0 0 12 0 1 0 1 2 1
Tyrosine 2 1 3 0 3 14 1 1 1
Valine 3 1 0 2 9 4 37 1 51

Table 3.3: Amino acid occurrences in Testing Data Set for Task 1

Location
Amino Acid 1 2 3 4 5 6 7 8 9
Alanine 3 0 4 1 1 1 5 2 13
Arginine 4 0 0 3 3 1 0 1 0
Asparagine 2 1 3 1 0 3 0 5 1
Aspartic acid 0 1 25 8 2 0 1 5 0
Cysteine 0 1 1 0 1 2 1 2 2
Glutamine 0 2 0 11 0 1 0 2 1
Glutamic acid 0 0 2 3 2 0 1 5 1
Glycine 3 1 3 1 16 2 1 4 0
Histidine 2 0 1 1 6 1 11 2 0
Isoleucine 29 4 2 1 6 4 3 4 6
Leucine 3 65 6 0 8 2 6 4 16
Lysine 2 0 3 0 0 0 0 0 0
Methionine 1 3 1 0 0 1 3 1 1
Phenylalanine 8 0 17 1 24 5 8 2 0
Proline 0 0 2 45 2 46 10 1 0
Serine 4 1 2 4 1 2 3 8 0
Threonine 3 5 2 4 0 3 2 39 1
Tryptophan 2 1 10 2 2 0 0 1 0
Tyrosine 19 0 3 1 5 10 1 0 0
Valine 3 3 1 1 9 4 32 0 46
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Table 3.4: Amino acid occurrences in Training Data Set for Task 2

Location
Amino Acid 1 2 3 4 5 6 7 8
Alanine 1 0 1 1 1 0 0 1
Arginine 0 0 1 1 0 1 0 1
Asparagine 2 0 1 0 2 66 1 9
Aspartic 1 1 1 1 0 1 2 1
Cysteine 0 0 0 0 0 0 1 0
Glutamine 2 1 1 0 0 0 1 1
Glutamic 0 67 0 1 0 1 2 0
Glycine 1 2 1 1 65 2 0 1
Histidine 1 0 1 0 0 0 1 1
Isoleucine 1 1 1 1 1 0 1 57
Leucine 1 1 2 1 1 0 64 0
Lysine 1 1 1 1 0 3 1 0
Methionine 1 0 0 0 0 0 0 1
Phenylalanine 60 1 2 1 1 0 1 0
Proline 1 0 0 1 1 0 1 0
Serine 1 0 63 1 1 0 0 1
Threonine 0 1 0 61 0 0 0 0
Tryptophan 1 0 0 1 1 1 0 1
Tyrosine 0 0 0 1 0 0 0 0
Valine 1 0 0 2 2 1 0 1

Table 3.5: Amino acid occurrences in Testing Data Set for Task 2

Location
Amino Acid 1 2 3 4 5 6 7 8
Alanine 1 4 0 0 1 1 1 0
Arginine 1 0 0 0 1 0 1 0
Asparagine 0 1 0 1 0 59 0 10
Aspartic 1 0 0 0 1 0 0 0
Cysteine 0 0 0 0 0 0 0 0
Glutamine 0 0 0 1 1 1 0 0
Glutamic 1 62 1 0 1 1 0 0
Glycine 0 0 0 1 63 1 1 0
Histidine 1 1 1 2 1 1 0 0
Isoleucine 0 0 2 0 0 1 1 55
Leucine 1 1 0 1 0 2 64 2
Lysine 0 0 1 1 1 0 0 1
Methionine 0 1 1 1 1 2 1 0
Phenylalanine 68 0 2 0 1 2 0 1
Proline 0 1 1 2 0 1 1 1
Serine 0 1 63 1 2 1 1 0
Threonine 1 1 1 64 1 1 1 1
Tryptophan 0 1 1 1 0 0 1 0
Tyrosine 1 1 1 0 1 1 1 1
Valine 0 1 1 0 0 1 2 4



54

Table 3.6: Amino acid occurrences in Training Data Set for Task 3

Location
Amino Acid 1 2 3 4 5 6 7 8 9
Alanine 10 3 15 6 16 14 17 12 22
Arginine 5 0 1 8 3 4 3 1 0
Asparagine 2 0 4 6 3 4 3 0 0
Aspartic 1 0 10 9 5 3 0 5 0
Cysteine 2 1 2 1 1 2 2 4 1
Glutamine 1 0 1 13 2 4 4 1 0
Glutamic 0 0 2 4 4 3 3 6 0
Glycine 10 0 10 15 19 9 1 9 0
Histidine 1 0 2 2 5 1 2 4 0
Isoleucine 14 13 6 4 5 6 11 5 15
Leucine 17 88 22 10 15 16 16 29 33
Lysine 2 0 0 6 1 1 0 1 0
Methionine 5 10 7 1 2 6 2 3 0
Phenylalanine 16 0 7 4 10 6 19 11 0
Proline 1 0 4 20 5 26 8 5 0
Serine 13 0 9 9 1 5 7 16 0
Threonine 5 9 5 8 6 8 6 12 2
Tryptophan 4 0 8 3 4 2 1 2 0
Tyrosine 19 0 12 1 5 1 7 4 0
Valine 5 9 6 3 21 12 21 3 60

Table 3.7: Amino acid occurrences in Testing Data Set for Task 3

Location
Amino Acid 1 2 3 4 5 6 7 8 9
Alanine 17 6 17 8 17 6 16 19 27
Arginine 7 0 0 3 3 0 1 1 1
Asparagine 2 0 1 1 2 5 4 2 0
Aspartic 2 0 8 7 11 2 3 0 0
Cysteine 0 0 2 5 1 4 3 4 0
Glutamine 3 1 2 17 3 7 4 3 0
Glutamic 0 0 4 4 2 1 0 3 0
Glycine 10 0 4 23 21 8 3 9 0
Histidine 5 0 3 3 6 2 1 5 0
Isoleucine 16 4 6 1 4 5 4 6 14
Leucine 15 87 21 9 15 26 17 22 34
Lysine 4 0 2 5 1 1 3 1 0
Methionine 3 15 8 1 1 3 3 1 2
Phenylalanine 13 0 9 3 8 5 18 3 0
Proline 0 1 3 9 1 24 11 6 0
Serine 4 0 7 12 6 4 8 20 0
Threonine 1 7 4 6 4 11 8 13 2
Tryptophan 3 0 6 0 3 1 4 5 0
Tyrosine 16 0 18 3 4 5 3 2 0
Valine 12 12 8 13 20 13 19 8 53
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3.2.3 Age and Obesity Prediction (The GSE44763 Data

Set)

3.2.3.1 Problem Statement

The prediction of human age from epigenetic information can be used to identify

human remains for forensic analysis, chronological age, and age-related diseases.

Aging and obesity contribute to fatal diseases, including cancers and circulatory

and respiratory disease. Recent studies have proven that CpG dinucleotides are

associated with both aging and obesity [130].

The degree of methylation at CpG sites is linearly correlated with aging, which in-

dicates that CpG dinucleotides are appropriate biomarkers to predict the chrono-

logical age of individuals [131]. Consequently, the identification of age-related

CpG biomarkers is crucial in the prediction of chronological age.

Circulatory disease, cancers, and respiratory disease are three of the main causes

of mortality [132] [133]. Obesity can increase the risk of these three fatal dis-

ease types as well as other diseases such as diabetes and depression. According

to the World Health Organization (WHO), there were over 600 million obese

people worldwide in 2014 [134]. Most of the time, the risks associated with

obesity-related diseases also increase with aging [130]. Even though obesity has

a heritable component, whole genome association studies have provided only

a few genetic polymorphisms which are associated with obesity. Some genetic

variants, such as LEP, LEPR, and POMC, contribute to obesity; however, these

variants do not fully explain the heritability of obesity. Indeed, they only specify

a portion of the heritability of obesity (40 − 70%) [135]. Therefore, other vari-

ants such as epigenetic changes, which are potentially heritable changes in gene

expression, must be considered. Some studies indicate that the epigenetic profile

can be used to differentiate between low and high responders to calorie or caloric

restriction [133].

The most common epigenetic mark is DNA methylation, which can be related

to obesity [136] [137]. Several studies have proven the association between DNA

methylation and obesity [138] [130].

The goal of this study is, therefore, to reveal relationships among CpG dinu-

cleotides, aging and obesity. In other words, the purpose of this study is to
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Table 3.8: A description of participants in the lean and obese group

Obese Lean
Subjects 24 22

Age (years) 57 (42-70) 55 (41-69)
Weight (kg) 92 (78-108) 60 (40-75)

BMI (kg/m2) 35 (30-42) 22 (16-25)

disclose specific CpG biomarkers that are related to aging and obesity. However,

in the GSE44763 data set, there are approximately 28000 CpG biomarkers (fea-

tures) and 46 samples. It is clear that building a predictive model is problematic

when the number of samples is profoundly less than the number of features.

3.2.3.2 The GSE44763 Data Set

The GSE44763 data set provided in [130] is utilised to model the associations

among CpG biomarkers (features), chronological age and obesity. This data set

contains 27482 Cytosine-phosphate-Guanine (CpG) biomarkers from the periph-

eral blood of 46 adult female donors (samples). There are 24 obese and 22 lean

subjects. A person is considered to be obese if their BMI is greater than or

equal to 30 kg/m2 and a subject with less than 25 kg/m2 is considered lean. A

description of the participants in the lean and obese groups is shown in Table

3.8.

In this study, Ilumina average beta values are utilised as numerical data where

the Beta-value is the ratio of the methylated probe intensity and the overall

intensity (sum of methylated and unmethylated probe intensities). The Beta

value for an ith investigated CpG island is determined as follows [139]:

Betai =
max(yi,methy, 0)

max(yi,unmethy, 0) +max(yi,unmethy, 0) + α
(3.9)

where yi,methy and yi,unmethy are the intensities measured by the ith methylated

and unmethylated probes respectively, and α is a constant offset which is added

to the denominator in order to regularise the Beta value if unmethylated and

methylated probe intensities are low. The default value of α is 100.
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3.2.4 Age Prediction (The GSE40279 Data Set)

3.2.4.1 Problem Statement

The identification of the age of individuals from epigenetic biomarkers can reveal

vital information for criminal investigation, disease prevention, and the extension

of life. Changes in DNA methylation are strongly associated with chronological

age and the process of disease development. Changes in DNA methylation are

also one of the most important indicators of biological aging [140] [141] [142].

DNA methylation can be utilised to precisely predict the chronological age of

individuals from blood samples [143]. It has recently been shown that the aging

process is highly related to changes in DNA methylation patterns. Furthermore,

DNA methylation marks have been associated with age-related diseases such as

Alzheimer’s disease, metabolic disease, and cancer [144].

The purpose of this study is to disclose associations between CpG biomarkers

and chronological age. The difficulty of revealing important information from

CpG biomarkers is that the numbers of CpG biomarkers are very large (in this

study, approximately 500.000) while the number of samples are relatively small

(in this study around 700).

3.2.4.2 The GSE40279 Data Set

The GSE40279 data set provided in [145] is utilised to model the relationship

between CpG biomarkers (features) and chronological age. This data set contains

473034 Cytosine-phosphate-Guanine (CpG) biomarkers (features) from the whole

blood of 656 donors (samples) aged 19 to 101.

A pre-processing step is applied to the GSE40279 data set to map the data into

lower dimensional space so that it can be exploited by feature selection methods.

First, the standard deviation of each sample, which refers to the amount of

variation in the data samples, is calculated. A standard deviation of a data

sample can be equal to zero, if and only if, the values of all of the samples are

identical. If all of the sample for a feature are identical, then the feature is not

a discriminative one. Therefore, a pre-prosessing step is performed to eliminate

the features which have the lowest variation in the data samples. As a result,

approximately four out of five of the features are eliminated in this pre-processing
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step, and only 90000 CpG biomarkers (features) are exploited to perform feature

selection.

A general overview of the characteristics of all data sets which are exploited in

this study is presented in Table 3.9. The GSE40279 data set can be determined as

high dimensional as far as classification is concerned; however, in the regression

domain, the GSE40279 data set can be considered as ultra-high dimensional.

Table 3.9: A General Overview of all of the Data Sets Used in this Study

Datasets
Number of Sections in which the

Results are Provided
Description

Features Samples

RV144 20 100 LD

Task 1 5787 177 HD

Task 2 5144 152 HD

Task 3 5787 256 HD

GSE44763 27482 46 Very HD

GSE40279 473034 656 Ultra HD

LD:Low dimensional, HD:High dimensional

3.3 Statistical Validation and Performance Eval-

uation Metrics

In this section, the model validation technique which is used to test the effec-

tiveness of the proposed approaches, is presented. Then, statistical evaluation

metrics which are exploited to assess the capability of the predictive models are

presented.
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3.3.1 Statistical Validation of the Results

Various error estimation and validation techniques are provided in the literature.

In this study, in order to evaluate the effectiveness of the predictive models for

unseen samples, the most common and popular error estimation method [146],

cross validation (CV), is utilised.

The cross validation method splits the data into two sets: training and testing.

The training part is used to train a model, and the testing set is exploited for

evaluation. One of the advantages of CV is that it efficiently produces unbiased

error estimate because its process is repeated for different samples drawn from a

population; therefore, the average error estimates will approximate the expected

error for the designed regressors across all possible equal-sized samples [147].

In this study, k-fold cross validation is used to evaluate the performance of the

predictive models where k is an integer. Therefore, the set of size k−1
k

samples

are exploited for training and the other set of size 1
k

samples are used for testing.

The error rate of CV, called E, can be considered as the average error rate on 1
k

testing samples, called Ei. E can be expressed as:

E =
1

k

k∑
i=1

Ei (3.10)

3.3.2 Performance Evaluation Metrics

In this section, the performance evaluation metrics which are used to evaluate

the effectiveness of unsupervised feature selection methods are presented.

3.3.2.1 Root Mean Square Error (RMSE)

The Root Mean Square Error (RMSE) [148] has been utilised as a standard

statistical metric to evaluate the performance of models in different research

areas [149]. It provides a complete picture of the distribution of error. The

RMSE can be expressed as:

RMSE =

√∑n
i (yi − y

′
i)

2

n
(3.11)
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where n is the number of samples, and yi and y
′
i are the expected and predicted

output respectively.

3.3.2.2 Pearson Correlation Coefficient (PCC)

The Pearson Correlation Coefficient (PCC) is an evaluation metric that is utilised

to assess the performance of predictive models. The PCC evaluates the strength

of the relationship between two variables. It can be calculated as:

PCC =
nΣxiyi − ΣxiΣyi√

Σx2
i − (Σxi2)

√
Σy2

i − (Σyi2)
(3.12)

where x and y are vales the two quantitative variables and PCC indicates the

linear association between them. A value of PCC that is equal to 1 indicates a

perfect linear correlation.

3.3.2.3 Theil’s U Statistics

Theils U statistics [150] is an accuracy measure that evaluates the prediction

performance of a model. It can be calculated using the following formula:

U =
RMSE√
1/n

n∑
i

y2
i

× 1√
1/n

n∑
i

y
′2
i

(3.13)

where y and y’ are actual and corresponding forecasted values respectively. The

RMSE is calculated by using Eq.5.11. A value of U which is closer to 0 indicates

greater prediction performance.

3.3.2.4 Mean Absolute Deviation (MAD)

The Mean Absolute Deviation, MAD, is an average estimator of the absolute

error of the predictive model. The MAD can be calculated from the following

formula:

MAD =

∑n
i |yi − y

′
i|

n
(3.14)

where yi is the actual and y′i is the predicted value and n represents the number

of samples.
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3.3.2.5 Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error, MAPE, estimates the average of absolute per-

centage error of the predictive model. The MAPE is formulated as:

MAPE =
1

n

n∑
i

|yi − y
′
i|

|yi|
∗ 100 (3.15)

where yi is the actual and y′i is the predicted value and n represents the number

of samples.

3.3.2.6 Coefficient of Determination (q2)

The Coefficient of Determination (q2) is a statistical metric based on the pro-

portion of variability in a data set. If the value of q2 is close to 1, is means that

a model has been successfully constructed; on the other hand, negative q2 values

suggest that a model ineffectively approximates the predicted values [151]. The

q2 metric can be calculated from the following formula:

q2 = 1−

n∑
i

(yi − y
′
i)

2

n∑
i

(yi − y)2

(3.16)

where y and y
′

are actual and corresponding forecasted values respectively, n is

the number of samples and y is the mean of all actual values in the prediction

data set.

3.3.2.7 Mean Square Error (MSE)

The Mean Square Error (MSE) represents the average of predictive model esti-

mation errors, therefore, it measures the prediction performance of the model.

The MSE can be expressed as:

MSE =

∑n
i (yi − y

′
i)

2

n
(3.17)
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where n is the number of samples, and yi and y
′
i are the expected and the pre-

dicted values respectively. The MSE can also be calculated from the RMSE since

RMSE =
√

MSE.

3.4 Summary

In this chapter, the prediction methods, data sets, and statistical validation

and performance evaluation techniques which are used in this study to evalu-

ate the performance of the proposed methods are presented. The MISO and

MIMO regression tasks are performed using SVR and MSVR, respectively. The

effectiveness of unsupervised feature selection methods, including the proposed

methods, are tested with a total of six different data sets. The RV144 Vaccine

data set consists of 100 plasma samples where 20 of which are placebo and 80 are

vaccine-injected samples. Each data sample has twenty antibody features that

consist of features related to IgG subclass and antigen specificity. The goal of

exploiting this data set is to reveal the relationships between antibody features

and their effector functions. The peptide binding affinity data sets consist of

three different tasks where Tasks 1 and 3 contain nona-peptides which have a

total of 5787 amino acid descriptors and Task 2 consists of octa-peptides with a

total of 5144 amino acid descriptors. The goal of using this data set is to predict

peptide binding affinity values by using the given amino acid descriptors. The

GSE40279 data set contains 473034 CpG biomarkers (features) from the whole

blood of 656 individuals (samples) aged 11 to 101. The goal of utilising this

data set is to disclose age-related CpG dinucleotides (features) and reveal the

associations between CpG dinucleotides (features) and chronological age. In this

study, k-fold cross validation technique is utilised for model error estimation. In

addition, eight different evaluation metrics, namely RMSE, MSE, MAPE, MAD,

q2, U, and PCC are exploited to assess prediction performances of the predictive

models.



Chapter 4

K-Means Based Unsupervised

Feature Selection

In this chapter, a K-means based unsupervised feature selection framework for

regression problems is proposed. First, the K-means algorithm is described along

with its advantages and disadvantages. Then, the proposed K-Means based

unsupervised feature selection framework for particularly regression problems is

presented. Next, existing K-means based feature selection methods are reviewed.

Final section presents the results of the application of the proposed method

compared to the state-of-the-art unsupervised feature selection techniques as

well as the baseline (entire feature set) with the RV144 Vaccine, peptide binding

affinity, GSE44763, and GSE40279 data sets.

4.1 Introduction

Clustering can be defined as a way to group data naturally. The K-means [152] is

a classic unsupervised learning algorithm that aims to find user-defined number

of clusters which are represented by centroids. K means algorithm is practical,

simple and typically fast [153]. The process of the K-means algorithm consists

of the following steps:

(i) A centroid is defined for each cluster; thus, a total of k centroids are defined.

(ii) Each data point is assigned to the closest centroid.

63
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(iii) Centroid positions are recomputed.

(iv) Steps (ii) and (iii) are repeated until no more moves are possible for the

centroids.

4.2 K-Means Based Unsupervised Feature Se-

lection Method (KBFS)

Before describing the proposed K-means based unsupervised feature selection

method, the K-means algorithm is explained in detail. Its advantages and limi-

tations are presented, and then the proposed framework is described.

A K-means algorithm for two clusters is illustrated in Fig. 4.1. In Fig. 4.1(a),

two centroids are randomly placed, and in Fig4.1(b), a hyperline is generated

to differentiate between the points on the left-hand side of the hyperline which

belong to the red centroid, and the points on the right-hand side which are

assigned to the yellow centroid which is shown in Fig. 4.1(d). The positions of

the centroids are recomputed by taking the mean of all data points belonging to

the same cluster (either the yellow or the red). The same procedure is repeated

in Fig. 4.1(e), Fig. 4.1(f), Fig. 4.1(g), Fig. 4.1(h), and Fig. 4.1(i) until the

objective function has converged.

The purpose of the K-means algorithm is to classify or to group data into a set of

clusters. Grouping or classifying data is extremely useful for classification pur-

poses. However, the K-means algorithm is generally not effective for regression

problems. In this study, the K-means algorithm is modified to perform feature

selection particularly for regression tasks.

The K-means algorithm is a partitional clustering algorithm that attempts to

find k partitions of a given data, where k is a user-defined integer. Therefore:

Given a data set X = x1, . . . , xj, . . . , xn in which xj = (xj1, . . . , xjd)
T ∈ Rd,

K-Means attempts to find K clusters of X, C = C1, . . . , Cj, . . . , Ck, such that
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Figure 4.1: Basic K-Means Algorithm for Clustering purpose.
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Ci 6= ø, i = 1, . . . , k

∪ki=1 Ci = X

Ci ∩ Cj = ø, i, j = 1, . . . , k and i 6= j

(4.1)

where k is a user-defined integer. It is shown above that a pattern can only be

allowed to belong one cluster.

There is no established method found to determine optimum number of clusters

and to initialise the centroids [154] [155]. One of the most popular methods for the

initialisation of centroids is to run algorithm with random initial centers [154]. A

random sample of data points can be also be selected as an initial centroid [156].

There are plenty of K-means algorithms provided in the literature. In [157], the

authors provide an algorithm, called CCIA, to initialise the centroid data points,

and in another paper [158], a method is proposed which performs clustering

without pre-defining the exact number of clusters, in [159], a starting point for

the kth cluster centre is calculated by minimising an auxiliary cluster function,

in [160], the author used different min-max distance measure to determine the

distance between a data point and its cluster centroid. However, all of these

K-means based methods are used for clustering purposes.

There are various advantages and disadvantages of using K-means algorithm.

The advantages are that:

• The K-means is one of the most popular partitioning clustering algorithms

thanks to its superior scalability [161].

• It is a simple, practical and efficient algorithm [160], in addition, it is

generally very fast [153].

• The K-means is also very effective for processing high dimensional data

[160].

The disadvantages include that:

• If there are outliers where points are far away from the cluster centroid

in comparison to other points in that cluster, they can seriously harm the

results.
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• The K-means clusters data points according to their Euclidean distance to

the centre points, and thereby it does not consider the different densities of

each cluster. Consequently, each cluster has to consist of the same number

of data points [161].

• The K-means algorithm produces different results for different user-defined

numbers of clusters (k) [162].

• K-Means randomly initialises the centroids and different values of the initial

centroids would produce different results.

In order to exploit the advantages of K-means algorithm and mitigate some of

its disadvantages, a K-means based unsupervised feature selection framework

for regression problems is proposed. Since the K-means is very effective for

dealing with high dimensional data, and because most existing feature selection

algorithms are not suitable to directly apply to high dimensional data, a novel

K-means based unsupervised feature selection is needed.

At the starting point, a simple K-means based unsupervised feature selection

algorithm is proposed [88] to deal with high dimensional data in regression do-

main. In our earlier study [88], K-means clustering algorithm is utilised for the

quantitative prediction of peptide binding affinities being one of the most chal-

lenging post-genome regression problems of very high-dimension compared to

extremely small size of samples. The clustering algorithm is used to partition

the features into a number of clusters. The feature that is the closest to the

cluster centre is then selected to represent the cluster. Therefore, the number of

clusters determines the number of selected features. This basic K-means algo-

rithm has produced better results than some of the state-of-the-art unsupervised

feature selection methods for the peptide binding affinity prediction in [88]. This

algorithm was named KCEN, but in [88], it did not produce the best results

for the prediction of peptide binding affinities. Therefore, it needs to be further

improved so that it might produce better prediction results.

The proposed K-means based unsupervised feature selection method, KBFS,

begins by transposing the data so that features become instances and samples

become features. Then, the data is divided into k-clusters where k is a user de-

fined integer. As mentioned above, the K-means algorithm ranks features based

on their distances to centroids, and it generally utilises Euclidean or squared
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Euclidean distance measure. In KBFS, the centroids are identified via the K-

means algorithm, however, instead of using one centroid points, three centroid

points are utilised in the final stage. The distances of all features to the all

centroids are calculated and the closest two features to a centroid are selected

as other centroids. In other words, three centre points are identified based on

their distance to the centre of each cluster. Then, in order to calculate the dis-

tances among features and centroids, the most commonly used metric, which is

euclidean distance, is utilised. Euclidean distance can be calculated by:

J =
K∑
j=1

n∑
i=1

‖xi − Cj‖2 (4.2)

where xis i = 1, . . . , n are a set of features to be partitioned to K clusters and

Cjs j = 1, . . . , K are the centroid points.

One of the problems of clustering algorithms is that the results of clustering can

be profoundly affected by differences in scale among the dimension from which

the distances are computed [160]. Therefore, the proposed algorithm performs

normalisation process as the initial step of the clustering process to deal with

this problem.

Normalisation is the process of scaling the inputs so that the values of inputs lie

between set limits. This enables numerical calculations to be performed rapidly

and easily [163]. Therefore, the proposed feature selection framework starts by

normalising the raw data set. Normalisation of the input features can be achieved

by:

x′ = a+
(x− xmin) ∗ (b− a)

(xmax − xmin)
(4.3)

where x is the original value of the input, and x
′

is normalised value. The a and

b are the arbitrary points which present the limits of the values. In this study,

input data is normalised into the range [0, 1] (a=0 and b=1).

In KBFS, three centroid points are exploited for each cluster and features are

ranked based on their absolute distance values to those centroids. A feature with

the lowest distance to the any of three centroid points in a cluster is considered

as the most important one. In KBFS distance measure is calculated by:
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Ji1 =
K∑
j=1

n∑
i=1

‖xi − Cj1‖2

Ji2 =
K∑
j=1

n∑
i=1

‖xi − Cj2‖2

Ji3 =
K∑
j=1

n∑
i=1

‖xi − Cj3‖2

(4.4)

The weight of a feature is then calculated by:

WXi =
1

min(Ji1, Ji2, Ji3)
(4.5)

The purposes of identifying three centre points are minimising the randomisa-

tion error, dealing with outliers and getting a handle on upcoming features. In

K-means algorithm, the distances between two features is not influenced by up-

coming features [153]. On the other hand, in KBFS, ranking error for upcoming

features is minimised since three centroids are used to calculate feature weights.

In KBFS, even though euclidean distance measure is utilised, at the final stage,

a feature can be considered to belong to another cluster according to its distance

measure to the centroids.

As mentioned above, the K-means method randomly initialises the centroids and

this might profoundly affect the clustering results. Therefore, the process of

KBFS is repeated 100 times to minimise the randomisation error. At the end,

the mean of the distances between the centroids and the features are calculated

in order to rank features. Therefore,

1

WXi

=
1

p

p∑
t=1

min(
K∑
j=1

n∑
i=1

‖xi − Cj1‖2,
K∑
j=1

n∑
i=1

‖xi − Cj2‖2,
K∑
j=1

n∑
i=1

‖xi − Cj3‖2)

(4.6)

where p = 1, 2, . . . , 100, C represents clusters, xis are features where i = 1, 2, . . . , n,

K is the number of clusters, WXi is the weight of i − th feature, and Cjs are

centroids.
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Support Vector Regression (SVR) has been shown to be a powerful prediction

method, and it generally yields better predictive model with higher generalisa-

tion ability [46]. Therefore, in order to evaluate the performance of the proposed

K-means based unsupervised feature selection method, SVR, which is presented

in Chapter 3, is exploited. The robustness of the proposed KBFS framework is

compared with that of the state-of-the-art unsupervised feature selection meth-

ods over different high dimensional data sets, such as GSE40279 which contains

more than 450k features, and a relatively small sample size(656). The prediction

results of unsupervised feature selection methods, including KBFS, are presented

in next section.

A complete flowchart of the proposed unsupervised feature selection framework

is presented in Fig. 4.2. As mentioned above, the proposed framework begins

by normalising the input data so that the values of the input data stay between

set limits. Then, the input data is transposed so that features become samples

and samples become variables. The transposition of data enables the predictive

model to cluster features rather than instances and to use the features as part

of the feature selection process. Therefore, feature-feature dissimilarities are

revealed. Then, the transposed data is used by KBFS method to determine the

weights of each feature, and features are ranked based on their weights. The

ranked features are then forwarded to the regression model, which uses SVR to

generate a model and exploits evaluation metrics to evaluate the performance of

the predictive model. Finally, prediction results are generated as the final output

of the proposed framework.

The pseudo code of KBFS unsupervised feature selection algorithm is shown

below:

Input: dxn data matrix A(d features n samples), number of clusters (K),

for i=1:100 Randomly initialise centroids

Generate K cluster centroids randomly within the

range of the data or select K objects randomly as

initial cluster centroids. Let the centroids be C1, C2,..,CK

Compute distance of all features to these initial centroids

Identify 2 more centroids (features) which are closest to initial centroids

Calculate the distance measure by exploiting Equation 4.4

Calculate the weight of features by using Equation 4.5
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Calculate the final weights of the features by Equation 4.6

end

Calcuate the mean of the final weights of features to decide their weights.

Output: The cluster indices of each point, the distance of each feature to each

centroid, the final weights of each feature.

Figure 4.2: The Flowchart of The Proposed KBFS Framework.

The advantages and disadvantages of the proposed unsupervised feature selection

framework are listed below. The advantages are that:
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• The framework is also capable of dealing with upcoming features since it

utilises three centroid points including features.

• The proposed method can better deal with outliers than the K-means

method since it exploits three centroids, rather than utilising only one

centroid which is even not a feature.

• By applying the normalisation process as a initial step of clustering, the

proposed framework performs numerical calculations rapidly and easily,

therefore, the proposed method is computationally fast.

• Since the clustering is repeated 100 hundred times, the proposed method

produces more robust and reliable results than the K-means method.

Disadvantages:

• Since the proposed framework repeats clustering algorithm 100 times, it

might be slower than K-Means algorithm.

• The number of clusters, K, is user defined and different numbers of clusters

might produce different results.

4.3 Remarks on previous K-Means Based Fea-

ture Selection Methods

A number of K-Means based feature selection methods have been provided in lit-

erature [164] [165] [166] [100]. The first K-means based feature weighting method

to be introduced was the SYNCLUS algorithm [164]. The SYNCLUS method be-

gins by assigning a set of initial weights to variables; then, the K-means algorithm

is utilised to partition the data into clusters. SYNCLUS assesses a new set of

optimal weights via a weighted mean-square cost function. These two stages are

iterated till an optimal set of weights is gained. The SYNCLUS method is com-

putationally expensive, and therefore it cannot be applied to high dimensional

data [166]. In [165], an entropy weighting K-means algorithm called EWKM was

proposed for subspace clustering. It jointly minimises the within-cluster distri-

bution and maximises the negative weight entropy in the clustering process. In
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EWKM, the weight of each feature in each cluster is determined by including the

weight entropy in the K-means objective function. Then, features are selected

based on their weights. In [100], another feature weighting K-means based al-

gorithm was proposed which uses a generalised Fisher ratio that minimises the

ratio of the average of within-cluster distribution over between-cluster distribu-

tion. Among several candidate clusters, the one with the minimal Fisher ratio is

selected as the ultimate cluster. This method decides the final weights of each

feature from a pre-defined set of weights that cannot be guaranteed as optimal

weights. In another study [166], a K-means based weighting algorithm called

W-k-Means is proposed. W-k-Means decides the weight of a feature according

to its variance in within-cluster distance. However, the W-k-Means algorithm

randomly initialises the weight of each feature, however, those weights may not

be guaranteed to provide an optimal solution.

All of the variations of K-means based feature selection methods use centroids,

which are not features, to determine the weights of features. In this case, feature-

feature correlation; in other words, multivariate feature selection is missing. In

KBFS, features are utilised as centroid points; therefore, multivariate feature

selection is accomplished by calculating feature-feature dissimilarity. Further-

more, since the K-means randomly identifies the centroid points, the clustering

results can dramatically change for each run. KBFS overcomes this problem

by repeating K-means for 100 times; therefore, it produces more robust results

than existing methods. What is more? KBFS does not assign initial weights

to the variables, instead, it determines the weight of each feature by solving the

equation (4.6).

4.4 Results

This section presents the results of the application of the proposed KBFS method

compared to the state-of-the-art unsupervised feature selection techniques as well

as the baseline (entire feature set) with the RV144 Vaccine, peptide binding

affinity, GSE44763, and GSE40279 data sets. These data sets are presented in

Chapter 3.
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4.4.1 Results for RV144 Vaccine Data Set

The RV144 data set provided in [119] is used in this study to model the antibody

feature-function relationship. This data set contains 100 plasma samples (20

of which are placebo and 80 are vaccine-injected) obtained from the individuals

participating in the RV144 vaccine trial at week 26. Three different cell-mediated

assays are used: Antibody Dependent Cellular Phagocytosis; Antibody Depen-

dent Cellular Cytotoxicity; and Natural Killer Cell Cytokine Release activities.

The accuracy results for the proposed KBFS framework are compared with those

presented in a previous study [119], and are also compared with results from four

different state-of-the-art unsupervised feature selection methods, namely MCFS,

InFS, LapFS, and SPFS, along with the entire feature set. In this study, the

PCC and RMSE metrics are used so as to analyse the performance of unsuper-

vised feature selection algorithms. The PCC metric is used to be able to perform

a consistent comparison with the previous study [119]. The RMSE measure is

exploited to compare the performance of the predictive models for performing

MISO and MIMO regression tasks. SVR and MSVR are utilised to perform

MISO and MIMO regression tasks respectively.

The SVR-based predictive models for the regression tasks are constructed using

feature selection methods (filtered feature set). Their performance is then eval-

uated using a five-fold cross validation method. The RV144 data set is divided

into two sets of samples. Four out of five samples, with a total of 64 samples,

are utilised for training and the rest (16 samples) for testing purposes. This pro-

cess is repeated 200 times by randomly creating subsets of the samples for the

five-fold cross validation in order to avoid a bias towards and to assess the effect

of randomisation in the cross validation. At the end, the mean performance and

its corresponding standard deviation (std) values are obtained for each of the

predictive models.

The prediction performance of unsupervised feature selection methods on three

cell-mediated assays are summarised in Tables 4.1-4.3. Table 4.1 shows the PCC

and RMSE results of predictive models for Natural Killer cell Cytokine release

activities. The predictive models aim to estimate the level of cytokine release

in order to understand its functionality for protection. The results suggest that

KBFS outperforms state-of-the-art methods with 0.52 PCC using 16 features.

SPEC yields the second-best result, at 0.51 PCC, with 16 antibody features.
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Table 4.1: Comparison of Unsupervised Feature Selection Methods for the
Antibody Features and Natural Killer Cell Cytokine Release Activity Rela-

tionship.

Metrics PCC RMSE
KBFS (16) 0.52± 0.17 1.95± 0.71
MCFS (16) 0.49± 0.17 1.93± 0.67
Laplacian (16) 0.49± 0.18 1.94± 0.70
SPEC (16) 0.51± 0.17 2.05± 0.68
InFS (18) 0.49± 0.17 2.04± 0.74
Baseline (20) 0.49± 0.17 2.04± 0.7

Table 4.2: Comparison of Unsupervised Feature Selection Methods for the
Antibody Features and Cellular Cytotoxic Activity Relationship.

Metrics PCC RMSE
KBFS(11) 0.43± 0.19 5.43± 0.99
MCFS (18) 0.39± 0.18 5.42± 0.97
Laplacian (12) 0.39± 0.18 5.42± 0.93
SPEC (18) 0.41± 0.18 5.44± 0.92
InFS (14) 0.40± 0.17 5.48± 0.98
Baseline(20) 0.38± 0.18 5.6± 0.98

Other methods produce average results. Interestingly, RMSE results of unsuper-

vised methods are profoundly different than PCC results of them. For example,

MCFS shares the worst performance with InFS, LapFS and the baseline for PCC

metric; on the other hand, it produces the best results for RMSE metric.

The prediction results of unsupervised predictive models for ADCC activities are

presented in Table 4.2. KBFS again achieves the best PCC result yielding 0.42

using only 10 antibody feature. InFS produces the second-best result with 0.40

PCC utilising 14 antibody features. Other methods produce average results.

Table 4.3 presents the prediction results of USFSMs for ADCP activities. As

can be clearly seen in the table, KBFS filtered predictive model outperforms the

predictive models implemented with the complete feature set, InFS and SPEC.

On the other hand, KBFS, Laplacian Score and MCFS produce the same PCC

results with 12, 3 and 17 antibody features respectively. It is observed that

the RMSE results of the predictive models are slightly different from their PCC

results. KBFS produces the best RMSE results for ADCP assay, at 30.8; on

the other hand, MCFS yields the best result for the Cytokine assay giving 1.93

RMSE.
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Table 4.3: Comparison of Unsupervised Feature Selection Methods for the
Antibody Features and Cellular Phagocytosis Activity Relationship.

Metrics PCC RMSE
KBFS(12) 0.65± 0.17 30.8± 3.87
MCFS (17) 0.65± 0.14 31.9± 3.86
Laplacian (3) 0.65± 0.15 31.3± 3.81
SPEC (18) 0.61± 0.14 32.7± 4.03
InFS (18) 0.64± 0.15 32.2± 3.97
Baseline(20) 0.61± 0.15 33.1± 3.62

Table 4.4: A Comparison of the Results with the Previous Study for the
Antibody Features and Cellular Phagocytosis Activity Relationship.

Regression PCC
Lars [119] 0.61±0.15
GP [119] 0.53±0.16
SVR [119] 0.56±0.19
KBFS 0.65 ±0.17

Table 4.5: A Comparison of the Results with the Previous Study for the
Antibody Features and Cellular Cytotoxic Activity Relationship.

Regression PCC
Lars [119] 0.42±0.18
GP [119] 0.24±0.21
SVR [119] 0.14±0.24
KBFS 0.43±0.19

The prediction results of the proposed method are also compared with those

of the previous study [119] where the same data set by using the same cross

validation method is utilised (5-fold with 200 replicates) and comparison results

are shown in Tables 4.4-4.6. The results appear to suggest that DFSFR has a

better quantitative accuracy than the predictive models constructed using Lars,

GP and SVR as presented in the previous study for ADCC and ADCP assays, at

0.43 and 0.65 PCC respectively. In particular, the proposed approach yields as

much as 1.16x and 3x better outcomes than the results of SVR for the ADCP and

ADCC assays respectively. KBFS has slightly lower quantitative performance as

compared to the predictive model for the Cytokine assay constructed using SVR

as presented in the previous study. However, it still has better quantitative

performance than the Lars and GP predictive models for the Cytokine assay.

Overall, the proposed KBFS framework generally achieves the best performance

on all cell-mediated assays, which thereby verifies that it is is able to select
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Table 4.6: A Comparison of the Results with Previous Study for the Anti-
body Features and Natural Killer Cell Cytokine Release Activity Relationship.

Regression PCC
Lars [119] 0.51±0.21
GP [119] 0.46±0.24
SVR [119] 0.55± 0.15
KBFS 0.52±0.17

informative antibody features.

4.4.1.1 Results for Multi-Input-Single-Output (MISO) and Multi-

Input-Multi-Output (MIMO) Regression

A comparison of prediction results of predictive models for MISO and MIMO

regression tasks is shown in Table 4.7. The results of SVR-based models for the

Cytokine, ADCC, and ADCP assays are listed in Table 4.7. The average RMSE

results of SVR-based models are calculated by taking the mean of the RMSE re-

sults for each assay. The results suggest that the MSVR-based predictive model

outperforms the SVR-based predictive model, which indicates that some correla-

tions exist amongst the target variables. In the previous study [119], these MIMO

regression correlations are not taken into account. Analysing dependencies be-

tween antibody features as well as response variables (the functional activities

of antibody features) may ultimately result in producing an effective vaccine so

that HIV or AIDS may be conquered.

Table 4.7: A comparison of Unsupervised Prediction Results for SVR and
MSVR for Anticipating Antibody Feature-Function Relationship.

Metrics KBFS MCFS LapFS SPEC InFS

SVR (Cytokine) 1.95± 0.71 1.93± 0.67 1.94± 0.70 2.05± 0.68 2.04± 0.74

SVR (ADCC) 5.42± 0.99 5.42± 0.97 5.42± 0.93 5.44± 0.92 5.48± 0.98

SVR (ADCP) 30.8± 3.87 31.9± 3.86 31.3± 3.81 32.7± 4.03 32.2± 3.97

SVR (Average) 12.72± 1.85 13.08± 1.85 12.88± 1.97 13.83± 1.85 13.24± 1.83

MSVR 11.72± 1.95 13.01± 1.77 12.07± 1.70 12.30± 1.68 12.83± 1.74
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4.4.2 Results for Peptide Binding Affinity Data Sets

Three different high dimensional peptide data sets, provided in the CoEPrA

modelling competition [129], are used. Each data set consists of training and

test data sets, therefore, there is no need for cross validation. Tasks 1 and 3

contain nona-peptides that contain a total of 5787 amino acid descriptors. Task

1 consists of 89 training and 88 testing samples, whereas Task 3 has 133 training

and 133 testing instances. Task 2 consists of octa-peptides with a total of 5144

amino acid descriptors. It contains 76 training and 76 testing samples.

The prediction performance of the proposed KBFS framework for Tasks 1, 2

and 3 are compared with five different USFSMs, namely MCFS, KCEN, EUFS,

LapFS and SPFS, along with the entire feature set (baseline). The prediction

performance of unsupervised feature selection methods over different tasks is

summarised in Tables 4.8-4.10. In order to investigate the robustness of the

USFSMs, their default parameters are exploited. The number of selected features

is initially 50 and then incremented by 50 to form feature sets of {50, 100, . . . ,

250, 300}. Table 4.10 demonstrates the performance of the USFSMs for Task 1.

The results suggest that KBFS produces the best results for MAD, MSE, RMSE,

MAPE, U and q2 metrics with 100 selected features. The second best results are

achieved by SPEC with 300 features. Other methods produce average results.

A comparative analysis of USFSMs for Task 2 is shown in Table 4.9. The results

of the experiment with the Task 2 data set confirm that KBFS generally yields

the best results for all metrics, yielding 0.28 MAD, 0.17 MSE, 0.41 RMSE, 4.05

MAPE, 0.008 U and 0.70q2 with 300 features. SPFS produces the second-best

results, with 0.28 MAD, 0.17 MSE, 0.41 RMSE, 3.9 MAPE, 0.007 U, and 0.68 q2

with 300 features. The results for SPFS are very similar to those for KBFS, but

the latter achieves the best results using 200 features while SPFS produces the

second-best results with 300 features. Other USFSMs produce average results.
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Table 4.8: Regression Results of the Unsupervised Feature Selection Meth-
ods for Task 1

Metrics MAD MSE RMSE MAPE U q2

KBFS(300) 0.48±0.03 0.34±0.05 0.59±0.04 9.65±0.8 0.017±0.03 0.61±0.7

EUFS(300) 0.49±0.0 0.53±0.0 0.73±0.0 9.86±0.0 0.024±0.0 0.46±0.0

KCEN(200) 0,51±0,04 0.48±0.07 0.69±0.05 10.1±0.76 0.023±0.0 0.44±0.82

MCFS(50) 0,57±0.0 0.54±0.0 0.74±0.0 11.4±0.0 0.025±0.0 0.37±0.0

LapFS(300) 0,58±0.0 0.61±0.0 0.78±0.0 11.3±0.0 0.027±0.0 0.30±0.0

SPFS(300) 0,50±0.0 0.37±0.0 0.61±0.0 9.7±0.0 0.020±0.0 0.57±0.0

Baseline 1,07±0.0 1.82±0.0 1.35±0.0 21±0.00 0.043±0.0 -1.0±0.0

A comparative analysis of USFSMs for Task 3 is shown in Table 4.10. The

proposed approach clearly generates the best results, yielding 0.58 MAD, 0.52

MSE, 0.72 RMSE, 8.59 MAPE, 0.19 q2 and 0.014 U. The results for EUFS

and LapFS are similar. They both produce 0.6 MAD, 0.58 MSE, 0.76 RMSE;

however, EUFS yields 9 MAPE, 0.079 q2 and 0.014 U whereas LapFS achieves

8.6 MAPE, 0.081 q2 and 0.015 U.

Given these analyses, all the results present a clear message that the SVR-based

predictive model with all the features fails. This outcome suggests the necessity

of feature selection. It is also observed that the performance of the USFSMs is

relatively sensitive to the number of selected features. The number of selected

features is provided in parenthesis located just next to the USFSM results in the

tables.
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Table 4.9: Regression Results of the Unsupervised Feature Selection Meth-
ods for Task 2

Metrics MAD MSE RMSE MAPE U q2

KBFS(200) 0.28±0.03 0.17±0.04 0.41±0.02 4.05 ±0.4 0.008±0.002 0.7±0.04

EUFS(100) 0.39±0.0 0.43±0.0 0.65 ±0.0 5.98 ±0.0 0.011±0.0 0.2±0.0

KCEN(200) 0.35 ±0.0 0.27±0.0 0.52±0.0 5±0.0 0.023±0.0 0.49±0.0

MCFS(300) 0.32 ±0.0 0.2±0.0 0.45±0.0 4.6 ±0.0 0.009±0.0 0.62±0.0

LapFS(300) 0.35 ±0.0 0.29 ±0.0 0.54±0.0 5.1 ±0.0 0.009±0.0 0.45±0.0

SPFS(300) 0.28 ±0.0 0.17±0.0 0.41±0.0 3.9±0.0 0.007±0.0 0.69±0.0

Baseline 0.29±0.0 0.16±0.0 0.4±0.0 4.02±0.0 0.007±0.0 0.7±0.0

Table 4.10: Regression Results of the Unsupervised Feature Selection Meth-
ods for Task 3

Metrics MAD MSE RMSE MAPE U q2

KBFS(150) 0.58±0.02 0.52±0.03 0.72±0.03 8.59±0.8 0.014±0.001 0.19±0.01

EUFS(150) 0.61± 0.0 0.58± 0.0 0.76± 0.0 9± 0.0 0.014± 0.0 0.07± 0.0

KCEN(300) 0.66± 0.0 0.67± 0.0 0.81± 0.0 9.7± 0.0 0.016± 0.0 −0.06± 0.0

MCFS(50) 0.7± 0.0 0.76± 0.0 0.87± 0.0 10.1± 0.0 0.017± 0.0 −0.20± 0.0

LapFS(50) 0.6± 0.0 0.58± 0.0 0.76± 0.0 8.6± 0.0 0.015± 0.0 0.08± 0.0

SPFS(300) 0.67± 0.0 0.75± 0.0 0.86± 0.0 9.9± 0.0 0.017± 0.0 −0.18± 0.0

Baseline 1.17± 0.0 2.51± 0.0 1.58± 0.0 17± 0.0 0.031± 0.0 −2.97± 0.0



81

4.4.3 Results for the GSE44763 Data Set

The GSE44763 data set [130] is utilised to model the associations among CpG

biomarkers (features), chronological age and obesity. This data set contains

27482 Cytosine-phosphate-Guanine (CpG) biomarkers from the peripheral blood

of 46 adult female donors (samples). There are 24 obese subjects and 22 lean

subjects. In this study, a subject is considered obese if his/her BMI is greater

than or equal to 30, and a subject is considered as lean if his/her BMI is less

than 25. In order to investigate the robustness of the USFSMs their default

parameters are used. The number of selected features is initially 50 and then

incremented by 50 to form feature sets of {50, 100, . . . , 250, 500}.

The performance of the proposed KBFS method is compared with the state-of-

the-art USFSMs, including EUFS, InFS, LapFS, and SPFS along with the entire

feature set. In order to evaluate the robustness of USFSMs, support vector-based

methods are used since their effectiveness has been proven and they provide bet-

ter generalisation and performance in a wide range of bioinformatics applications

[102] [14]. To observe the results for these methods using different metrics, three

different metrics are used to assess the quality of the USFSMs, which are Mean

Absolute Deviation (MAD), Root Mean Squared Error (RMSE) and Theils U-

statistics (U). The RMSE metric is utilised to calculate prediction errors for both

MISO and MIMO regression tasks. SVR and MSVR are exploited to perform

MISO and MIMO regression tasks, respectively. The prediction results of the

predictive models are calculated and averaged with the five-fold cross validation

method. Therefore, four out of five samples are used for training and the rest

of the samples are utilised for testing purposes. The five-fold cross validation

is repeated 200 times in order to gain more unbiased results. Then, the mean

performance and its corresponding standard deviation (std) values are obtained

for each of the predictive models.

In this study, Ilumina average beta values are utilised as numerical data where

the Beta-value is the ratio of the methylated probe intensity and the overall

intensity (sum of methylated and unmethylated probe intensities). Beta value

for an ith investigated CpG island is determined as follows [139]:

Betai =
max(yi,methy, 0)

max(yi,unmethy, 0) +max(yi,unmethy, 0) + α
(4.7)
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Table 4.11: The Performances of USFSMs for Prediction of Chronological
Age

Metrics MAD RMSE U

KBFS(500) 8.02±1.53 9.31±1.63 303
100000

± 52
100000

EUFS(500) 8.24±1.91 9.51±1.41 308
100000

± 42
100000

InFS(500) 8.14±1.40 9.39±1.33 306
100000

± 40
100000

SPFS(350) 8.21±1.46 9.51±1.35 309
100000

± 40
100000

LapFS(150) 8.32±1.45 9.58±1.37 311
100000

± 40
100000

Baseline 8.12± 1.43 9.41± 1.37 307
100000

± 41
100000

where yi,methy and yi,unmethy are the intensities measured by the ith methylated

and unmethylated probes respectively, and α is a constant offset which is added

to the denominator in order to regularise the Beta value if unmethylated and

methylated probe intensities are low. The default value of α is 100.

The prediction performance of USFSMs are summarised in Tables 4.11-4.13.

Table 4.11 shows the robustness of USFSMs for the prediction of chronological

age. The results suggest that the proposed method outperforms the state-of-

the-art unsupervised feature selection methods. KBFS produces the best results

yielding 8.02 RMSE, 9.31 MAD and 0.003 U with 500 features and InFS yields

the second-best results, with 8.14 MAD, 9.39 RMSE, and 0.003 U. Other feature

selection methods produce average results. Interestingly, all of the USFSMs

produce similar U results; however, the results for different metrics are consistent.

For example, DKBFS yields the best results for all different metrics.

Surprisingly, the complete feature set (baseline) produces 8.12 MAD, 9.41 RMSE

and 0.00307 U, and thereby yields better results than LapFS, SPFS, and EUFS.

This outcome implies that most of the CpG biomarkers are related to aging. It

is also observed that the performance of the USFSMs is relatively sensitive to

the number of selected features. The number of selected features are shown in

parenthesis in the tables.

A comparison of USFSMs for BMI prediction is shown in Table 4.12. The out-

comes of the experiments clearly emphasise that the proposed KBFS outperforms

state-of-the-art USFSMs. KBFS produces the best results with 500 features for
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Table 4.12: The Performances of USFSMs for the Prediction of BMI

Metrics MAD RMSE U

KBFS (500) 6.90±1.55 7.44±1.48 87
10000
± 19

10000

EUFS (400) 6.93±1.09 7.75±1.17 9
1000
± 17

10000

InFS(400) 6.93±1.09 7.75±1.16 9
1000
± 17

10000

SPFS (450) 6.99±1.52 7.52±1.51 89
10000
± 21

10000

LapFS (450) 6.98±1.56 7.5±1.55 88
10000
± 2

1000

Baseline 7.04± 1.62 7.62± 1.59 89
10000
± 21

10000

MAD, RMSE and U yielding 6.90, 7.44, and 0.0087 respectively. Other feature

selection methods produce average results.

Table 4.13: The Performances of USFSMs for MSVR and SVR

Metrics MSVR SVR

KBFS(500) 8.45± 0.95 8.37± 1.55

LapFS(150) 8.69± 0.85 8.54± 1.46

SPFS(350) 9.4± 0.83 8.51± 1.43

InFS(400) 9.05± 0.81 8.57± 1.24

EUFS(400) 8.45± 0.77 8.63± 1.29

4.4.3.1 Results for Multi Input-Single Output (MISO) and Multi

Input-Multi Output (MIMO) Regression

In this study, in addition to MISO regression, MIMO regression is performed to

examine whether or not there is a relationship between age and obesity based

on CpG biomarkers. A comparison of MISO and MIMO regression results is

presented in Table 4.13. The results suggest that there is no strong correlation

between obesity and aging based on the selected CpG dinucleotides (features).
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Therefore, most of the age-related CpG islands are not related to obesity. Inter-

estingly, only the MSVR result for EUFS are better than its result for SVR. This

result appears to suggest that some of the CpG biomarkers which are selected

by EUFS are related to both aging and obesity.

4.4.4 Results for the GSE40279 Data Set

The GSE40279 data set provided in [145] is used to model the relationship be-

tween CpG biomarkers and chronological age. This data set contains 473034

CpG biomarkers (features) from the whole blood of 656 donors (samples) aged

19 to 101.

A pre-processing step is applied to map the data into lower dimensional space so

that feature selection methods can be applied to the data set. First, the standard

deviations of the samples, which refer to the amount of variation in data samples,

are calculated. The standard deviation of a sample can only be zero if, and only

if, the samples are identical. If a feature is identical in all samples, then the

feature is not discriminative. Therefore, before applying feature selection, the

features which have the lowest variation in the data are eliminated. As a result,

approximately four out of five of the features are eliminated in this pre-processing

step.

Then, unsupervised feature selection methods are applied to identify discrimi-

native CpG biomarkers (features). The number of selected features starts from

900 in order that a subset of features contains at least 1% of the entire feature

set. A set of 90000 features is assessed using six different USFSMs along with

the entire feature set.

The performance of the proposed KBFS method with the GSE40279 data set is

compared with that of state-of-the-art unsupervised feature selection methods,

including EUFS, LapFS, and Term Variance (TV) along with the entire feature

set.

Support vector based models [167] are exploited to assess the quantitative pre-

diction performances of unsupervised feature selection methods since they have

achieved superior generalisation and performance in a large variety of bioinfor-

matics applications [102] [16]. Support vector based predictive models for regres-

sion tasks are constructed using USFSMs (filtered feature set) and the complete



85

Table 4.14: A Comparison of USFSMs for The Prediction of Chronological
Ages of Individuals using CpG Dinucleotides

Metrics MAPE q2 U MAD

KBFS(900) 13.93± 0.91 0.09± 0.02 0.0032± 0.0002 11.08± 0.78

EUFS(9000) 14.47± 0.69 0.003± 0.009 0.0034± 0.0001 11.69± 0.61

LapFS(6300) 14.43± 0.84 0.01± 0.01 0.0034± 0.0002 11.63± 0.73

TV(900) 14.16± 0.90 0.06± 0.02 0.0033± 0.0002 11.34± 0.79

Baseline(90000) 14.61± 0.88 0.003± 0.01 0.0034± 0.0002 11.86± 0.79

feature set. As there is no separate training and test data sets 8-fold cross vali-

dation is used to evaluate the performance of the predictive models. The cross

validation is repeated 50 times by randomly creating subsets of the instances for

the 8-fold cross validation to avoid bias towards and alleviate the impact of the

random split. The means and standard deviations of the metrics are calculated

over these 50 runs and presented in Table 4.14. The number of selected features

for each predictive model is shown in parenthesis in the tables.

The results appear to suggest that the proposed method yields better results

than those of other USFSMs over different metrics. KBFS yields 13.93 MAPE,

0.09 q2, 25.5 MAD and 0.0032 U with only 900 features. TV produces 14.16

MAPE, 0.06 q2, 0.0033 U, and 11.34 MAD with 900 features and outperforms

LapFS and EUFS. LapFS and EUFS which produce average results.

Given this analysis, all of the results present a clear message that the SVR-

based predictive model with all of the features fails. This outcome suggests the

necessity of feature selection. It also proves that the majority of CpG biomarkers

are not related to the determination of an individual’s chronological age.

4.4.4.1 An Aggressive Research of Features from GSE40279 Data Set

The experimental results of the experiment conducted with the GSE4079 data

set suggest that the proposed DFSFR, KBFS, DKBFS frameworks produce bet-

ter results than other USFSMs for all different metrics. However, even though

the number of features are drastically reduced from 473034 to 900, the number
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of CpG biomarkers (features) are still too high to be easily analysed in real bi-

ology laboratories. In this case, an aggressive research study is been conducted

with different subset of CpG dinucleotides selected by KBFS. The purpose of

this aggressive process is to obtain the minimum number of dinucleotides which

represent the whole data set with the same or higher accuracy so that they can

be further analysed in real biology labs.

The number of features used starts from 1 and is then incremented by 1 until

900 is reached to make an aggressive reduction of the selected CpG biomark-

ers. As shown in Table 4.15, the final predictive model of KBFS yields 10.69

MAD, 0.0031 U, 0.11 q2 error rate for age prediction with only 41 dinucleotides,

which corresponds to only 0.00867% of the entire dinucleotide range. These 41

dinucleotides are listed in Table 4.16.

The smallest subset is found by KBFS (41 features) and it achieves better perfor-

mance than existing feature selection methods. Those features are listed in Table

4.16. Further research can be carried out to investigate the 41 CpG biomarkers

listed in Table 4.16 in biological laboratories to establish their biological rele-

vance.

Table 4.15: Detailed Assessment of CpG Dinucleotides Using the Proposed
KBFS framework

Method MAPE q2 U MAD

KBFS (41) 13.65± 0.77 0.11± 0.03 0.0031± 0.0002 10.69± 0.59

KBFS (900) 13.93± 0.91 0.09± 0.02 0.0032± 0.0002 11.08± 0.78
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Table 4.16: List of 41 CpG Dinucleotides

cg13869341 cg17149495 cg15174812 cg05662829

cg12045430 cg16162899 cg11422233 cg16047670

cg14008030 cg17866181 cg17501828 cg14057946

cg00381604 cg17308840 cg03344490 cg01070250

cg20826792 cg15394630 cg10037654 cg07264491

cg20253340 cg22802167 cg27534567 cg18761878

cg03130891 cg24159721 cg05001044 cg08858441

cg24335620 cg08477687 cg00645010 cg23917638

cg21870274 cg24669183 cg21996134 cg00168193

cg00034556 cg15560884 cg22394869 cg05597748

cg03348902

4.5 Summary

In this chapter, a novel K-means based unsupervised feature selection framework,

KBFS, is proposed. The advantages of the proposed method compared to exist-

ing K-means based methods are that it takes advantages of utilising features as

centroids to determine feature-feature dissimilarity and to rank features, it pro-

duces more robust results by reducing randomisation error, and is also able to

deal with upcoming features since KBFS is capable of updating feature weights.

The disadvantages of the proposed framework include that the number of clus-

ters, k, is still defined by the user and different numbers of clusters would produce

different prediction results. The proposed framework might also be slower than

the K-means method since it repeats the clustering algorithm 100 times. Exper-

imental results with different high dimensional data sets, which are presented in

previous section, have shown that the proposed framework produces better re-

sults than the state-of-the-art unsupervised feature selection methods with fewer
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features. There are a number of K-means based feature selection algorithms pro-

vided in the literature, however, they are generally utilised for classification or

clustering. On the other hand, the literature appears to suggest that there is a

lack of studies in regression based problems for K-Means based feature selection.

Experimental studies conducted on the RV144 Vaccine, peptide binding affinity,

GSE44763 and GSE40279 data sets to show the effectiveness of the proposed

KBFS method its results are compared with those of state-of-the-art feature se-

lection methods as well as with those of previous studies. The RV144 vaccine data

set consists of 20 antibody features and 100 plasma samples that are obtained

from the individuals participating in the RV144 vaccine trial week 26. Three dif-

ferent cell-mediated assays are used: Antibody Dependent Cellular Phagocytosis,

Antibody Dependent Cellular Cytotoxicity and Natural Killer Cell Cytokine Re-

lease activities. The goal of exploiting the RV144 data set is to reveal antibody

features that take action against HIV; in other words, to disclose the relation-

ship between antibody features and their effector functions. In the previous study

[119], only the MISO regression task was considered; however, MIMO regression

was not taken into account. On the other hand, in this study, in addition to

performing MISO regression analysis, MIMO regression analysis is applied so

that associations among target variables can be revealed. The results of the ex-

periments conducted with the RV144 data set indicate that there are not only

correlations among variables, but also there are some correlations among the

target variables. The accuracy results of the proposed KBFS approach indicate

that it generally outperforms state-of-the-art USFSMs as well as the previous

study [119]. From the experimental results for the RV144 Vaccine data set, it

can be concluded that the proposed DFSFR framework can reveal discriminative

antibody features that fight against HIV.

In this study, three different peptide binding affinity data sets are exploited.

Tasks 1 and 3 contain nona-peptides that contain a total of 5787 amino acid de-

scriptors and 89 samples. Task 1 consists of 89 training and 88 testing samples,

whereas Task 3 includes 133 training and 133 testing instances. Task 2 consists

of octa-peptides that have a total of 5144 amino acid descriptors. It has 76 train-

ing and 76 testing samples. Each descriptor contains 643 amino acids. The goal

of exploiting the peptide binding affinity data set is to predict peptide binding

affinity values by using amino acid descriptors, since these descriptors quanti-

tatively describe the physicochemical properties of the peptides [128]. Affinity



89

refers to the strength of binding or interaction. PPIs play a role in mediating sig-

nal transactions, sensing the environment, triggering immunological responses,

and monitoring gene expression [126]. Furthermore, PPIs play a crucial role in

the progression of human diseases such as viral infections. Therefore, increasing

knowledge of the underlying principles of PPIs can ultimately result in disclosing

the intrinsic biochemistry of different diseases, and thereby the development of

drug design [127]. The proposed KBFS framework generally outperforms the

state-of-the-art USFSMs for all different tasks.

The GSE44763 data set contains 27482 CpG biomarkers (features) from the pe-

ripheral blood of 46 adult female donors (samples). There are 24 obese subjects

and 22 lean subjects. The goal of exploiting this data set is to reveal the associa-

tions among CpG biomarkers, and the chronological age and BMI of individuals.

The proposed KBFS framework outperforms the other USFSMs for both age and

BMI prediction. The experimental results suggest that the proposed framework

can reveal age and obesity-related CpG biomarkers (features) from the given

data. In addition to performing MISO regression analysis, MIMO regression

analysis is also performed. From the experimental results it can be concluded

that no strong correlation exists between obesity and chronological age.

The GSE40279 data set consists of 473034 Cytosine-phosphate-Guanine (CpG)

biomarkers (features) from whole blood of 656 donors (samples) aged 19 to 101.

The goal of exploiting this data set is to reveal the relationship between CpG

dinucleotides and the chronological age of individuals from the given data. A

pre-processing step is applied to the GSE40279 data set so that the features with

the lowest variation in the sample are eliminated, and thereby the number of

features is reduced from 473034 to 90000. Then, USFSMs are applied to identify

discriminative CpG biomarkers (features). The number of selected features starts

from 900 in order that a subset of features contains at least 1% of the features.

A set of 90000 features is assessed by utilising four different USFSMs along with

the entire feature set. The proposed KBFS framework produces better results

than other USFSMs.

The promising experimental results have led to further investigations of the three

different sets of 900 CpG biomarkers which are selected by DKBFS, DFSFR, and

KBFS. An aggressive assessment is made of those CpG dinucleotides. Here, the

number of features used starts from 1 and then incremented by 1 until 900 is
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reached. KBFS produces the best results and outperforms existing USFSMs with

only 41 features.



Chapter 5

Deep Learning Based Feature

Selection for Regression

(DFSFR)

In this chapter, the proposed DFSFR method is presented. First, the concept of

a deep neural network is introduced. The advantages of exploiting deep learning

based methods are then considered. Then, existing deep learning based feature

selection methods are briefly discussed, in the Background section. Finally, a

novel deep learning based feature selection framework, particularly useful for

regression problems, is proposed.

5.1 Introduction

Deep neural networks are constructed around a deep architecture where there are

many hidden layers. Non-linear operations are performed in each layer, which

transforms the representation at one level into representation at a more abstract

level on the input data to learn very complex functions under study [168]. One

of the advantages of deep learning is that the layers of features are not designed

by human intervention: instead, they are learned from data, by exploiting a

general-purpose learning procedure.

Deep learning methods are capable of handling the following problems [169]:

91
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• Deep learning architectures are able to learn complex and highly varying

functions where the number of variations are profoundly greater than the

number of training samples.

• Deep learning methods are capable of learning with little human interven-

tion (input).

• Deep learning architectures can learn from a large set of examples, and the

computational complexity is almost linearly associated with the number of

samples.

• Deep learning provides for robust unsupervised learning, that is capable of

computing most of the statistical structure in the observed data.

Deep learning has been shown to be capable of representing data at multiple

levels of abstraction. It is able to derive discriminative features resulting in en-

hanced accuracy [170]. Although most of the applications of the deep learning

concept are in this direction, there is a recent study where this concept is primar-

ily adapted to the refinement of the features extracted by using deep learning in

the classification domain [170]. However, although this concept has been shown

to be a powerful learning approach, it has not been explored for feature selec-

tion from naturally-collected feature sets in a regression domain. Therefore, a

novel unsupervised feature selection method has been developed by adapting a

deep learning concept in the regression domain. To the best of our knowledge,

the proposed feature selection framework is the first, unsupervised, deep belief

network based feature selection algorithm to perform regression tasks.

5.2 Background

In line with the technological developments, the terminology of deep learning

has gained more attention as the deep learning-based architectures have been

shown to be able to tackle more complex systems and to better learn data rep-

resentations in an unsupervised manner . The deep learning architectures are a

special case of artificial neural networks but with quite large number of layers

and neurons in each layer. Therefore, in order to avoid classic artificial neural

networks, deep learning terminology has been preferred instead. Therefore, this
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study has taken account deep learning terminology. A literature search using the

keywords “ ‘deep learning’ and ‘feature selection’ ” on both Web of Science and

Scopus yielded a total of 75 studies as of 3 December 2016. They can be divided

into 3 main categories;

(i) There has been a wide range of studies on general deep learning architec-

tures for feature learning for characterisation and classification of objects,

but there does not seem to have been any exploration of the feature selection

concept.

(ii) Hybrid models where deep learning is first employed for feature learning

and extraction. A feature selection method is then used to select more rele-

vant features from the feature set derived by the deep learning architecture

for classification purposes. This approach is expected to further refine the

deep learning-based feature set. For example, sparse group LASSO and

multi-modal deep neural networks were utilised for image classification in

which the LASSO-based feature selection is adapted [171]. Random Forest

method is another method used along with the deep learning architecture

to train input data and rank features [172] in which types of credit risks

were predicted and the number of features was reduced by 21%. Based on

the cross-validation assessment, the next best features are selected accord-

ing to their median score, average score and standard deviation of features.

In [173] Stacked Denoising Auto Encoder and t-test are exploited to iden-

tify non-linear information in morphological features for pulmonary nodule

classification in CT scans and their method achieved 2.1 % better accuracy

than that of original raw features. The features with the highest p-values

above a desired threshold (p > 0.001) are then eliminated. In [170] Deep

Belief Network (DBN), a feature selection method (e.g., t-test, relief-f) and

unsupervised active learning are used to select genes/MiRNAs, and then,

Support Vector Machine (SVM) and Random Forest are used for cancer

diagnosis. This method achieved better classification results than classical

feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung

cancer by 6% and breast cancer by around 10%.

(iii) Feature selection embedded in to deep learning architecture is an approach

where the deep learning method is used to identify relevant features. This

proposes another feature selection technique based on the deep learning
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concept. Due to its complexity and novelty, there have appeared only

three main algorithms in the literature, but they are only for classifica-

tion purposes [174] [175] [176]. In [174], feature selection is carried out

at input level of deep learning structure to select features for multi-class

data. This feature selection method is called Deep Feature Selection, and

has recently been applied in the supervised prediction of active positions of

cis-Regulatory regions [177]. In [175], the Deep Belief Network (DBN) and

supervised fine-tuning are utilised to select temporal ultrasound features to

detect prostate tissues, and then, a Support Vector Machine (SVM) with

Radial Basis Kernel (RBF) is used for the detection of prostate cancer. In

[176], an iterative feature learning algorithm is developed by using Deep

Belief Network for the classification of remote sensing scenes.

As presented, the literature review appears to suggest that the deep learning

approach is very popular for feature extraction and learning, particularly in image

and video processing applications, but is still at a very early stage of feature

selection, mainly for classification tasks. The literature review also reveals the

fact that there is no deep learning based feature selection explored or developed

for regression analysis. Therefore, to the best of our knowledge, the proposed

method is the first of its kind in which a deep learning based feature selection

method in regression domain is developed and presented.

5.3 Deep Learning Based Feature Selection for

Regression (DFSFR)

DBN has generally been regarded as one of the best known deep leaning mod-

els [178]. It has proven its ability to discover better discriminative features and;

consequently, to improve accuracy [170]. Furthermore, DBN has been shown out-

standing performances on visual object recognition and image denoising [179].

However, the idea of DBN for feature selection for regression has not been ap-

plied yet. The novel unsupervised feature selection framework, DFSFR, utilises

deep belief network to select discriminative antibody features and then applies

SVR to perform regression task. Therefore, DFSFR is a multi-level feature selec-

tion framework that incorporates deep learning and SVR in order to select most

discriminative features from high dimensional data. The proposed unsupervised
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Figure 5.1: DFSFR Framework (a) multi-output (b) single-output. h repre-
sents hidden neurons.

feature selection framework, DFSFR, is demonstrated in Fig. 5.1. DFSFR takes

input variables and feeds them into the deep belief network, then, DBN uses the

weights provided from hidden nodes to produce weights for features. Next, fea-

tures are prioritised according to their weights. Then SVR takes ranked features

to generate a predictive model and produce estimated output variables. Finally

evaluation metrics are exploited to assess effectiveness of proposed method.

DBN incorporates simple learning modules: Restricted Boltzman Machines (RBMs),

which consist of visible and hidden layers that represent features. These hidden

and visible layers are connected by symmetrical weights. Input layer is repre-

sented by h0 and last hidden layer, hl, computes the output by utilising the

output of previous layer hl − 1. Therefore, output can be calculated from the

following formula [169]:

hl = ϕ(bl +W l + hl−1) (5.1)
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where bl a vector of offsets, W k a matrix of weights, and ϕ is the activation

function. The output layer is appropriate to make predictions. For quantitative

prediction or regression tasks the output is:

hl = α0k + αkϕ(bliW
l
ih

l−1) (5.2)

where W l
i is the ith row of W l, α0k is the bias, and αk represents a set of weights

between the last and next to last layers. The probability of visible and hidden

neuron vectors for DBN can be calculated by:

P (v, h1, ..., hl) = P (hl−1, hl)(
l−2∏
k=0

P (hk|hk+1) (5.3)

where P (hk−1|hk) is a conditional probability for the visible units conditioned

on the hidden units of the RBM at level k, v is vector of visible units, and

P (hl−1, hl) represents joint distribution in the top level which is RBM. A general

representation of a DBN with an input and l hidden neurons is demonstrated

in Fig. 5.2. The last two layers comprise an RBM. Weight updates for a single

RBM are performed with a gradient descent or accent; the difference is the sign

which is plus or minus, utilised to perform update.

∆Wij(t+ 1) = Wij(t) + ε
∂logp(v)

∂Wij

(5.4)

where p(v) is probability of a visible vector, ε is a parameter with a small value

, and ∂logp(v)
∂Wij

is the gradient which can also be calculated as [180]:

ε
∂logp(v)

∂Wij

= ε< xi, hj >data −< vi, hj >model (5.5)

where <>p represents averages with respect to distribution p.

In RBM, weight updates are defined by Equation (5.4). The probability of visible

vector, p(v), can be calculated from:

p(v) =
1

Z

∑
h

e−E(v,h) (5.6)
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where Z is the partition function and E(v, h) is the energy function assigned to

the state of the network. Therefore, probability of each pair of hidden and visible

vectors can be defined as:

p(v, h; θ) =
1

Z(θ)

∑
h

e−E(v,h;θ) (5.7)

where Z(θ) =
∑

h

∑
v(−E(v, h; θ)) and the energy function is:

E(v, h) = aTh− bTv − vTwh = −
∑
i

bivi −
∑
j

ajhj −
∑
i,j

wijvihj (5.8)

where ai and bi are bias of visible inputs, vi and hidden variables, hj, respectively

and wij are weights between units of layers. By utilising Equation (5.8) Equation

(5.7) can be rewritten as [181]:

p(v, θ) =
∑
h

e−E(v,h;θ)∑
v,h e

−E(v,h;θ)

=
1

Z(θ)

∑
h

exp(vTwh+ bTv + aTh)

=
1

Z(θ)
exp(bTw)

F∏
j

∑
hj∈0,1

exp(ajhj +
D∑
1

wijvihj)

=
1

Z(θ)
exp(bTw)

F∏
j

(1 + exp(aj +
D∑
1

wijvi))

(5.9)

By utilising the energy function the following equations can be defined:

p(v|h; θ) =
∏

P (vi|h) and P (vi = 1|h) = ϕ(bj +
∑

hiwij) (5.10)

p(h|v; θ) =
∏

P (hj|v) and P (hj = 1|v) = ϕ(aj +
∑

vjwij) (5.11)

where ϕ is the sigmoid function which can be calculated from:

ϕ(x) =
1

1 + exp(−x)
(5.12)
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However, the energy function is not applicable for regression tasks where con-

tinuous data is used. Therefore, RBM needs to be modified in order to deal

with regression tasks. The energy function can be revised by replacing binary

inputs with linear units with independent Gaussian noise, so that RBM can han-

dle continuous-valued data [182]. This method is called as Gaussian-Bernoulli

Restricted Boltzmann Machines (GBRBMs) [183]. The energy function for real-

valued data can be calculated from:

E(v, h; θ) =
∑
i

(vi − bi)2

2σ2
i

−
∑
j

ajhj −
∑
i,j

wijvihj
σi

(5.13)

where θ = {W,a, b, σ2} is a vector and σi is the variance of visible or input

variable vi.

After modifying RBM, DBN is capable of handling real-valued data. The pro-

posed model takes given data as input to DBN, and DBN generates RBM weight

matrix, W, of dimension (number of hidden units, number of inputs). Then,

DFSFR assigns feature weights, G, according to following formula:

Gj =

∑d
i=1Wi

h
(5.14)

where d is number of features, h is number of hidden neurons, and W represents

a weight vector. Finally, SVR or MSVR takes the vector G, performs regression

and calculates the prediction performance of the model by utilising evaluation

metrics, e.g., RMSE.

5.4 A Hybrid Unsupervised Feature Selection

Method (DKBFS)

In Chapter 4, the KBFS framework is presented. In this chapter, a novel deep

learning based unsupervised feature selection method, DFSFR, is proposed. Ex-

perimental results, which are shown in next section, conclude that the proposed

methods produced better results than the state of the art unsupervised feature se-

lection methods. The KBFS method is utilised for the GSE44763 and GSE40279

data sets, which are considered to be ultra high dimensional. However, since

GSE44763 and GSE40279 data sets are considered to be ultra high dimensional,
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Figure 5.2: General Representation of DBN.

(The top two layers constitute an RBM. Ws represent weights between units of
layers and W ′s are the transpose of Ws).

KBFS is utilised as a pre-processing step of DFSFR method. Therefore, a hy-

brid method that combines both KBFS and DFSFR is proposed and abbreviated

as DKBFS, is generated. This hybrid method has achieved the best results on

GSE40279 data set and produced the second best result on GSE44763 data set

(the best result is achieved by DFSFR). The experimental results are conducted

on the GSE44763 and GSE40279 data set and presented in next section.

DKBFS integrates KBFS and DFSFR methods where KBFS is used as a pre-

filtering step for KBFS. User defined number of features are eliminated by using

KBFS and selected features are exploited as input variables for DFSFR. Then,

DFSFR generates the weights of features. Weighted features are then used as

input variables of SVR to construct a predictive model.
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Figure 5.3: The Flowchart of DKBFS.

(DKBFS is a hybrid unsupervised feature selection method where KBFS is em-
bedded into DFSFR)
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5.5 Results

This chapter presents the results of the application of the proposed DFSFR

framework compared to the state-of-the-art unsupervised feature selection tech-

niques as well as the baseline (entire feature set) with the RV144 Vaccine, pep-

tide binding affinity, GSE44763, and GSE40279 data sets. DKBFS method is

compared with the state-of-the-art unsupervised feature selection methods for

GSE44763 and GSE4027 data sets because this method is developed to deal only

with ultra high dimensional data.

5.5.1 Results for RV144 Vaccine Data Set

As mentioned in chapter 3, the RV144 data set provided in [119] is used in

this study to model the antibody feature-function relationship. This data set

contains 100 plasma samples (20 of which are placebo and 80 are vaccine-injected)

obtained from the individuals participating in the RV144 vaccine trial at week

26. Three different cell-mediated assays are used: Antibody Dependent Cellular

Phagocytosis; Antibody Dependent Cellular Cytotoxicity; and Natural Killer

Cell Cytokine Release activities. The accuracy results for the proposed DFSFR

framework are compared with those presented in a previous study [119], and

are also compared with results from four different state-of-the-art unsupervised

feature selection methods, namely MCFS, InFS, LapFS, and SPFS, along with

the entire feature set. In this study, the PCC and RMSE metrics are used so as to

analyse the performance of unsupervised feature selection algorithms. The PCC

metric is used to be able to perform a consistent comparison with the previous

study [119]. The RMSE measure is exploited to compare the performance of the

predictive models for performing MISO and MIMO regression tasks. SVR and

MSVR are utilised to perform MISO and MIMO regression tasks respectively.

The SVR-based predictive models for the regression tasks are constructed using

feature selection methods (filtered feature set). Their performance is then eval-

uated using a five-fold cross validation method. The RV144 data set is divided

into two sets of samples. Four out of five samples, with a total of 64 samples,

are utilised for training and the rest (16 samples) for testing purposes. This pro-

cess is repeated 200 times by randomly creating subsets of the samples for the

five-fold cross validation in order to avoid a bias towards and to assess the effect
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of randomisation in the cross validation. At the end, the mean performance and

its corresponding standard deviation (std) values are obtained for each of the

predictive models.

The prediction performance of unsupervised feature selection methods on three

cell-mediated assays are summarised in Tables 5.1-5.3. Table 5.1 shows the PCC

and RMSE results of predictive models for Natural Killer cell Cytokine release

activities. The predictive models aim to estimate the level of cytokine release

in order to understand its functionality for protection. The results suggest that

DFSFR outperforms state-of-the-art methods with 0.54 PCC using 16 features.

SPEC yields the second-best result, at 0.51 PCC, with 16 antibody features.

Other methods produce average results.

The prediction results of unsupervised predictive models for ADCC activities are

presented in Table 5.2. DFSFR again achieves the best PCC result yielding 0.48

using only 1 antibody feature. InFS produces the second-best result with 0.40

PCC utilising 14 antibody features. Other methods produce average results.

Table 5.3 presents the prediction results of USFSMs for ADCP activities. As can

be clearly seen in the table, the predictive models that have used the other USF-

SMs yielded poorer results than the DFSFR filtered predictive model. Moreover,

the DFSFR filtered predictive model outperforms the predictive models imple-

mented with the complete feature set. DFSFR achieves the best prediction accu-

racy, yielding 0.66 PCC with 13 antibody features. Laplacian Score and MCFS

produce the same PCC results with 3 and 17 antibody features respectively. It

is observed that the RMSE results of the predictive models are slightly different

from their PCC results. DFSFR produces the best RMSE results for ADCP and

ADCC assays, at 27.8 and 5.42, respectively; on the other hand, MCFS yields

the best result for the Cytokine assay giving 1.93 RMSE.

The prediction results of the proposed method are also compared with those

of the previous study [119] where the same data set by using the same cross

validation method is utilised (5-fold with 200 replicates) in order to carry out

realistic and consistent comparison. The results are shown in Tables 5.4-5.6. The

results appear to suggest that DFSFR has a better quantitative accuracy than

the predictive models constructed using Lars, GP and SVR as presented in the

previous study for ADCC and ADCP assays, at 0.48 and 0.66 PCC respectively.

In particular, the proposed approach yields as much as 1.17x and 3.4x better
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Table 5.1: Comparison of Unsupervised Feature Selection Methods for the
Antibody Features and Natural Killer Cell Cytokine Release Activity Rela-

tionship.

Metrics PCC RMSE
DFSFR (16) 0.54± 0.15 1.96± 0.69
MCFS (16) 0.49± 0.17 1.93± 0.67
Laplacian (16) 0.49± 0.18 1.94± 0.70
KBFS (16) 0.52± 0.17 1.95± 0.71
SPEC (16) 0.51± 0.17 2.05± 0.68
InFS (18) 0.49± 0.17 2.04± 0.74
Baseline (20) 0.49± 0.17 2.04± 0.7

Table 5.2: Comparison of Unsupervised Feature Selection Methods for the
Antibody Features and Cellular Cytotoxic Activity Relationship.

Metrics PCC RMSE
DFSFR (1) 0.48± 0.17 5.42± 0.87
MCFS (18) 0.39± 0.18 5.42± 0.97
Laplacian (12) 0.39± 0.18 5.42± 0.93
KBFS(10) 0.39± 0.19 5.47± 0.99
SPEC (18) 0.41± 0.18 5.44± 0.92
InFS (14) 0.40± 0.17 5.48± 0.98
Baseline(20) 0.38± 0.18 5.6± 0.98

Table 5.3: Comparison of Unsupervised Feature Selection Methods for the
Antibody Features and Cellular Phagocytosis Activity Relationship.

Metrics PCC RMSE
DFSFR (13) 0.66± 0.14 27.8± 3.65
MCFS (17) 0.65± 0.14 31.9± 3.86
Laplacian (3) 0.65± 0.15 31.3± 3.81
KBFS(12) 0.65± 0.17 0.30± 3.84
SPEC (18) 0.61± 0.14 32.7± 4.03
InFS (18) 0.64± 0.15 32.2± 3.97
Baseline(20) 0.61± 0.15 33.1± 3.62

outcomes than the results of SVR for the ADCP and ADCC assays respectively.

DFSFR has slightly lower quantitative performance as compared to the predictive

model for the Cytokine assay constructed using SVR as presented in the previous

study. However, it still has better quantitative performance than the Lars and

GP predictive models for the Cytokine assay. Furthermore, DFSFR produces the

best result with the least standard deviation (0.14) that means that proposed

method produces more stable results than those of previous study.

Overall, the proposed DFSFR framework achieves the best performance on all



104

Table 5.4: A Comparison of the Results with the Previous Study for the
Antibody Features and Cellular Phagocytosis Activity Relationship.

Regression PCC
Lars [119] 0.61±0.15
GP [119] 0.53±0.16
SVR [119] 0.56±0.19
DFSFR 0.66 ±0.14

Table 5.5: A Comparison of the Results with the Previous Study for the
Antibody Features and Cellular Cytotoxic Activity Relationship.

Regression PCC
Lars [119] 0.42±0.18
GP [119] 0.24±0.21
SVR [119] 0.14±0.24
DFSFR 0.48±0.17

Table 5.6: A Comparison of the Results with Previous Study for the Anti-
body Features and Natural Killer Cell Cytokine Release Activity Relationship.

Regression PCC
Lars [119] 0.51±0.21
GP [119] 0.46±0.24
SVR [119] 0.55± 0.15
DFSFR 0.54±0.15

cell-mediated assays, which thereby verifies that it is is able to select informa-

tive antibody features. In order to develop an effective HIV vaccine, specific

antibodies which fight against HIV should be identified.

5.5.1.1 Results for Multi-Input-Single-Output (MISO) and Multi-

Input-Multi-Output (MIMO) Regression

A comparison of prediction results of predictive models for MISO and MIMO

regression tasks is shown in Table 5.7. The results of SVR-based models for the

Cytokine, ADCC, and ADCP assays are listed in Table 5.7. The average RMSE

results of SVR-based models are calculated by taking the mean of the RMSE re-

sults for each assay. The results suggest that the MSVR-based predictive model

outperforms the SVR-based predictive model, which indicates that some correla-

tions exist amongst the target variables. In the previous study [119], these MIMO

regression correlations are not taken into account. Analysing dependencies be-

tween antibody features as well as response variables (the functional activities
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of antibody features) may ultimately result in producing an effective vaccine so

that HIV or AIDS may be conquered.

Table 5.7: A comparison of Unsupervised Prediction Results for SVR and
MSVR for Anticipating Antibody Feature-Function Relationship.

Metrics DFSFR MCFS LapFS SPEC InFS

SVR (Cytokine) 1.96± 0.69 1.93± 0.67 1.94± 0.70 2.05± 0.68 2.04± 0.74

SVR (ADCC) 5.42± 0.87 5.42± 0.97 5.42± 0.93 5.44± 0.92 5.48± 0.98

SVR (ADCP) 27.8± 3.65 31.9± 3.86 31.3± 3.81 32.7± 4.03 32.2± 3.97

SVR (Average) 11.72± 1.78 13.08± 1.85 12.88± 1.97 13.83± 1.85 13.24± 1.83

MSVR 10.42± 1.65 13.01± 1.77 12.07± 1.70 12.30± 1.68 12.83± 1.74

5.5.1.2 Additional Results and Discussion

A summary of the results of predictive models for three cell-mediated assays is

presented showing comparative analyses of USFSMs for results for the Cytokine,

ADCC and ADCP assays in Figs 5.4, 5.5, and 5.6, respectively. They share

5 antibody features, namely, IgG2.gp41, IgG3.gp140, IgG3.p24, IgG4.p24 and

IgG4.p120 in their filtered sets.

In this study, antibody features which are mutually selected by unsupervised

feature selection methods are also examined. The antibody features which are

commonly selected by unsupervised feature selection methods for the Cytokine,

ADCC, and ADCP assays are shown in Table 5.8. There is only one common

feature selected by USFSMs for each of the ADCC and ADCP assays, which are

IgG1.gp41 and IgG3.p24 respectively. On the other hand, USFSMs share seven

antibody features for the Cytokine assay, namely, IgG1.p2, IgG3.p24, IgG4.gp41,

IgG4.gp41, IgG4.gp140, IgG4.p24, IgG4.gp120, IgG3.V1V2. The antibody fea-

ture IgG3.p24 is selected by unsupervised feature selection methods for the Cy-

tokine and ADCP cell-mediated assays. Interestingly, none of the individual

antibody feature is selected in all assays. Each effector function performs dif-

ferent tasks to fight against antigens, and specific antibodies provide specific

protection against specific antigens. This might be one reason why no single

antibody feature is selected by all USFSMs. Another reason for this might be

that the DFSFR method achieves the best performance for the ADCC assay by

utilising only one antibody feature. If any unsupervised method does not select
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this feature, then there will be no universally selected feature for the Cytokine

assay.

The best subset of antibody features, which provides the best predictive per-

formance for all cell-mediated assays, is identified in this study. These antibody

features are listed in Table 5.9. A distribution of antibody features based on their

importance is provided in Fig. 5.7. Antibody features are given scores ranging

from 5-100 based on their importance. The set of antibody features with values

greater than 20 constitutes the best feature subset.

Table 5.8: Selected Mutual Features for Unsupervised Learning.

Cytokine ADCC ADCP

IgG1.p24 IgG1.gp41 IgG3.p24

IgG3.p24 - -

IgG4.gp41 - -

IgG4.gp140 - -

IgG4.p24 - -

IgG4.gp120 - -

IgG3.V1V2 - -

(There is only one common feature selected by unsupervised feature selection

methods for ADCP and ADCC assays. Seven different antibody features are

mutually selected by unsupervised methods for cytokine assay).
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Table 5.9: The Best Subset of Features for all of the Cell-Mediated Assays.

Antibody Features

IgG1.gp41

IgG3.gp140

IgG4.gp120

IgG3.p24

IgG3.V1V2

IgG2.V1V2

IgG4.p24

IgG2.gp140

IgG2.gp41

IgG4.gp41

IgG4.gp140

IgG2.p24

IgG1.gp120

IgG1.p24

IgG1.gp140

IgG4.V1V2

Figure 5.4: Selected Number of Features and Their Corresponding PCC
Results for the Cytokine Assay
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Figure 5.5: Selected Number of Features and Their Corresponding PCC
Results for the ADCC Assay

Figure 5.6: Selected Number of Features and Their Corresponding PCC
Results for ADCP Assay

Figure 5.7: Distribution of Antibody Features Based on Their Importance
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5.5.2 Results for Peptide Binding Affinity Data Sets

As mentioned in chapter 3, three different high dimensional peptide data sets,

provided in the CoEPrA modelling competition [129], are used. Each data set

consists of training and test data sets, therefore, there is no need for cross valida-

tion. Tasks 1 and 3 contain nona-peptides that contain a total of 5787 amino acid

descriptors. Task 1 consists of 89 training and 88 testing samples, whereas Task

3 has 133 training and 133 testing instances. Task 2 consists of octa-peptides

with a total of 5144 amino acid descriptors. It contains 76 training and 76 testing

samples.

The prediction performance of the proposed DFSFR framework for Tasks 1, 2

and 3 are compared with five different USFSMs, namely MCFS, KCEN, EUFS,

LapFS and SPFS, along with the entire feature set (baseline). The prediction

performance of unsupervised feature selection methods over different tasks is

summarised in Tables 5.10-5.12. In order to investigate the robustness of the

USFSMs, their default parameters are exploited. The number of selected features

is initially 50 and then incremented by 50 to form feature sets of {50, 100, . . . ,

250, 300}. Table 5.10 demonstrates the performance of the USFSMs for Task

1. The results suggest that DFSFR produces the best results for MAD, MSE,

RMSE, MAPE, U and q2 metrics with 100 selected features. The second best

results are achieved by SPEC with 300 features. Other methods produce average

results.

A comparative analysis of USFSMs for Task 2 is shown in Table 5.11. The results

of the experiment with the Task 2 data set confirm that DFSFR achieves the best

results for all metrics, yielding 0.27 MAD, 0.16 MSE, 0.39 RMSE, 3.8 MAPE,

0.006 U and 0.71q2 with 250 features. SPFS produces the second-best results,

with 0.28 MAD, 0.17 MSE, 0.41 RMSE, 3.9 MAPE, 0.007 U, and 0.68 q2 with

300 features. The results for SPFS are very similar to those for DFSFR, but

the latter achieves the best results using 250 features while SPFS produces the

second-best results with 300 features. Other USFSMs produce average results.
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Table 5.10: Regression Results of the Unsupervised Feature Selection Meth-
ods for Task 1

Metrics MAD MSE RMSE MAPE U q2

DFSFR(100) 0.39±0.0 0.27±0.0 0.52±0.0 7.84±0.0 0.017±0.0 0.69±0.0

EUFS(300) 0.49±0.0 0.53±0.0 0.73±0.0 9.86±0.0 0.024±0.0 0.46±0.0

KCEN(200) 0,51±0,04 0.48±0.07 0.69±0.05 10.1±0.76 0.023±0.0 0.44±0.82

MCFS(50) 0,57±0.0 0.54±0.0 0.74±0.0 11.4±0.0 0.025±0.0 0.37±0.0

LapFS(300) 0,58±0.0 0.61±0.0 0.78±0.0 11.3±0.0 0.027±0.0 0.30±0.0

SPFS(300) 0,50±0.0 0.37±0.0 0.61±0.0 9.7±0.0 0.020±0.0 0.57±0.0

Baseline 1,07±0.0 1.82±0.0 1.35±0.0 21±0.00 0.043±0.0 -1.0±0.0

A comparative analysis of USFSMs for Task 3 is shown in Table 5.12. The

proposed approach clearly generates the best results, yielding 0.54 MAD, 0.48

MSE, 0.69 RMSE, 7.96 MAPE, 0.24 q2 and 0.013 U. The results for EUFS

and LapFS are similar. They both produce 0.6 MAD, 0.58 MSE, 0.76 RMSE;

however, EUFS yields 9 MAPE, 0.079 q2 and 0.014 U whereas LapFS achieves

8.6 MAPE, 0.081 q2 and 0.015 U.

Given these analyses, all the results present a clear message that the SVR-based

predictive model with all the features fails. This outcome suggests the necessity

of feature selection. It is also observed that the performance of the USFSMs is

relatively sensitive to the number of selected features. The number of selected

features is provided in parenthesis located just next to the USFSM results in the

tables.

One of the most important observations is the consistency of the results over six

different metrics. For example, the proposed DFSFR method produces the best

results on all different tasks over different metrics. These results indicate that

the performance of USFMs does not seem to differ that much.

The results of proposed DFSFR framework are also compared with those of our

earlier study [88] which was conducted on the same peptide data sets. Tables
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5.13-5.15 show the prediction results of both the proposed method and our earlier

study for Tasks 1-3.

Table 5.11: Regression Results of the Unsupervised Feature Selection Meth-
ods for Task 2

Metrics MAD MSE RMSE MAPE U q2

DFSFR(250) 0.27±0.0 0.16±0.0 0.39±0.0 3.8 ±0.0 0.006±0.0 0.71±0.0

EUFS(100) 0.39±0.0 0.43±0.0 0.65 ±0.0 5.98 ±0.0 0.011±0.0 0.2±0.0

KCEN(200) 0.35 ±0.0 0.27±0.0 0.52±0.0 5±0.0 0.023±0.0 0.49±0.0

MCFS(300) 0.32 ±0.0 0.2±0.0 0.45±0.0 4.6 ±0.0 0.009±0.0 0.62±0.0

LapFS(300) 0.35 ±0.0 00.29 ±0.0 0.54±0.0 5.1 ±0.0 0.009±0.0 0.45±0.0

SPFS(300) 0.28 ±0.0 0.17±0.0 0.41±0.0 3.9±0.0 0.007±0.0 0.69±0.0

Baseline 0.29±0.0 0.16±0.0 0.4±0.0 4.02±0.0 0.007±0.0 0.7±0.0

Table 5.12: Regression Results of the Unsupervised Feature Selection Meth-
ods for Task 3

Metrics MAD MSE RMSE MAPE U q2

DFSFR(200) 0.54±0.0 0.48±0.0 0.69±0.0 7.96±0.0 0.013±0.0 0.24±0.0

EUFS(150) 0.61± 0.0 0.58± 0.0 0.76± 0.0 9± 0.0 0.014± 0.0 0.07± 0.0

KCEN(300) 0.66± 0.0 0.67± 0.0 0.81± 0.0 9.7± 0.0 0.016± 0.0 −0.06± 0.0

MCFS(50) 0.7± 0.0 0.76± 0.0 0.87± 0.0 10.1± 0.0 0.017± 0.0 −0.20± 0.0

LapFS(50) 0.6± 0.0 0.58± 0.0 0.76± 0.0 8.6± 0.0 0.015± 0.0 0.08± 0.0

SPFS(300) 0.67± 0.0 0.75± 0.0 0.86± 0.0 9.9± 0.0 0.017± 0.0 −0.18± 0.0

Baseline 1.17± 0.0 2.51± 0.0 1.58± 0.0 17± 0.0 0.031± 0.0 −2.97± 0.0
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Table 5.13: Regression Results of DFSFR and the Previous Study for Task
1

Metrics (DFSFR (100)/Previous (300))

MAD 0.39/0.50

MSE 0.27/0.37

RMSE 0.52/0.61

MAPE 7.84/9.7

q2 0.693/0.575

U 0.017/0.02

(The prediction performance of the DFSFR and a previous study. Number of

selected features are shown in parenthesis just next to the feature selection

method.)

Table 5.14: Regression Results of the Proposed DKBFS Method and the
Previous Study for Task 2

Metrics (DFSFR (250)/Previous (300))

MAD 0.27/0.28

MSE 0.16/0.17

RMSE 0.39/0.41

MAPE 3.8/3.9

q2 0.71/0.69

U 0.006/0.007

(The prediction performance of the DFSFR and the previous study. Number of

selected features are shown in parenthesis just next to the feature selection

method.)
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Table 5.15: Regression Results of DKBFS and Previous Study for Task 3

Metrics (DFSFR (200)/Previous (50))

MAD 0.54/0.60

MSE 0.48/0.58

RMSE 0.54/0.6

MAPE 7.96/8.6

q2 0.24/0.081

U 0.013/0.017

It can be seen from the Tables 5.13-5.15 that the proposed method produces

better results than those of the previous study for all different tasks over all of

the different metrics.

5.5.3 Results for the GSE44763 Data Set

As mentioned in chapter 3, the GSE44763 data set [130] is utilised to model the

associations among CpG biomarkers (features), chronological age and obesity.

This data set contains 27482 Cytosine-phosphate-Guanine (CpG) biomarkers

from the peripheral blood of 46 adult female donors (samples). There are 24

obese subjects and 22 lean subjects. In this study, a subject is considered obese

if his/her BMI is greater than or equal to 30, and a subject is considered as

lean if his/her BMI is less than 25. In order to investigate the robustness of the

USFSMs their default parameters are used. The number of selected features is

initially 50 and then incremented by 50 to form feature sets of {50, 100, . . . , 250,

500}.

The performance of the proposed DFSFR and DKBFS methods are compared

with the state-of-the-art USFSMs, including EUFS, InFS, LapFS, and SPFS

along with the entire feature set. In order to evaluate the robustness of USF-

SMs, support vector-based methods are used since their effectiveness has been

proven and they provide better generalisation and performance in a wide range

of bioinformatics applications [102] [14]. To observe the results for these methods

using different metrics, three different metrics are used to assess the quality of

the USFSMs, which are Mean Absolute Deviation (MAD), Root Mean Squared
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Error (RMSE) and Theils U-statistics (U). The RMSE metric is utilised to cal-

culate prediction errors for both MISO and MIMO regression tasks. SVR and

MSVR are exploited to perform MISO and MIMO regression tasks, respectively.

The prediction results of the predictive models are calculated and averaged with

the five-fold cross validation method. Therefore, four out of five samples are used

for training and the rest of the samples are utilised for testing purposes. The

five-fold cross validation is repeated 200 times in order to gain more unbiased

results. Then, the mean performance and its corresponding standard deviation

(std) values are obtained for each of the predictive models.

In this study, Ilumina average beta values are utilised as numerical data where

the Beta-value is the ratio of the methylated probe intensity and the overall

intensity (sum of methylated and unmethylated probe intensities). Beta value

for an ith investigated CpG island is determined as follows [139]:

Betai =
max(yi,methy, 0)

max(yi,unmethy, 0) +max(yi,unmethy, 0) + α
(5.15)

where yi,methy and yi,unmethy are the intensities measured by the ith methylated

and unmethylated probes respectively, and α is a constant offset which is added

to the denominator in order to regularise the Beta value if unmethylated and

methylated probe intensities are low. The default value of α is 100.

The prediction performance of USFSMs are summarised in Tables 5.16-5.18. Ta-

ble 5.16 shows the robustness of USFSMs for the prediction of chronological

age. The results suggest that the proposed DFSFR and DKBFS methods out-

perform the state-of-the-art unsupervised feature selection methods. DKBFS

produces the best results yielding 7.81 MAD, 9.14 RMSE and 0.003 U with only

50 features. DFSFR achieves the second-best results, yielding 7.97 MAD, 9.17

RMSE and 0.003 U with 450 features. From these experimental results it can

be concluded that the proposed DFSFR and DKBFS frameworks are able to

disclose age-related CpG biomarkers (features) from the given data. Table 5.16

also indicates that the proposed DKBFS framework outperforms state-of-the-art

USFSMs as well as DFSFR method. Other feature selection methods produce

average results. Interestingly, all of the USFSMs produce similar U results; how-

ever, the results for different metrics are consistent. For example, DKBFS yields

the best results for all different metrics.



115

Table 5.16: The Performances of USFSMs for Prediction of Chronological
Age

Metrics MAD RMSE U

DFSFR(450) 7.97±1.39 9.17±1.36 3
1000
± 4

10000

DKBFS(50) 7.81±1.29 9.14±1.24 3
1000
± 39

100000

EUFS(500) 8.24±1.91 9.51±1.41 308
100000

± 42
100000

InFS(500) 8.14±1.40 9.39±1.33 306
100000

± 40
100000

SPFS(350) 8.21±1.46 9.51±1.35 309
100000

± 40
100000

LapFS(150) 8.32±1.45 9.58±1.37 311
100000

± 40
100000

Baseline 8.12± 1.43 9.41± 1.37 307
100000

± 41
100000

Table 5.17: The Performances of USFSMs for the Prediction of BMI

Metrics MAD RMSE U

DFSFR(200) 6.43±1.04 7.23±1.06 85
10000

± 13
10000

DKBFS (150) 6.58±1.05 7.34±1.15 8
1000
± 1

1000

EUFS (400) 6.93±1.09 7.75±1.17 9
1000
± 17

10000

InFS(400) 6.93±1.09 7.75±1.16 9
1000
± 17

10000

SPFS (450) 6.99±1.52 7.52±1.51 89
10000
± 21

10000

LapFS (450) 6.98±1.56 7.5±1.55 88
10000
± 2

1000

Baseline 7.04± 1.62 7.62± 1.59 89
10000
± 21

10000

Surprisingly, the complete feature set (baseline) produces 8.12 MAD, 9.41 RMSE

and 0.00307 U, and thereby yields better results than LapFS, SPFS, and EUFS.

This outcome implies that most of the CpG biomarkers are related to aging. It

is also observed that the performance of the USFSMs is relatively sensitive to

the number of selected features. The number of selected features are shown in

parenthesis in the tables.

A comparison of USFSMs for BMI prediction is shown in Table 5.17. The

outcomes of the experiments clearly emphasise that the proposed DFSFR and

DKBFS methods outperform state-of-the-art USFSMs. DFSFR produces the

best results for MAD and RMSE yielding 6.43 and 7.23, respectively. However,
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it produces the second-best result for U which is 0.0085. DKBFS achieves the

second-best results for RMSE and MAD, which are 7.43 and 6.58 respectively.

On the other hand, it achieves the best U results, yielding 0.008. DFSFR and

DKBFS produce the best results by using 200 and 150 CpG biomarkers (features)

respectively. Other feature selection methods produce average results.

It is observed that the results using different metrics are generally consistent.

For example, DFSFR produces the best results and DKBFS achieves the second-

best results with the RMSE and MAD metrics. Nevertheless, the results of the

USFSMs for age prediction are slightly different than those for BMI prediction.

For example, the baseline produces better results than EUFS, InFS, SPFS and

LapFS for age prediction; however, it yields the worst results for BMI prediction.

Furthermore, DFSFR achieves the best results for BMI prediction, but on the

other hand produces the second-best results for age prediction. These results

appear to suggest that, if a data set is multi-targeted, then USFSMs might

produce different results for different targets especially if there is no correlation

between the targets.

5.5.3.1 Results for Multi Input-Single Output (MISO) and Multi

Input-Multi Output (MIMO) Regression

In this study, in addition to MISO regression, MIMO regression is performed to

examine whether or not there is a relationship between age and obesity based

on CpG biomarkers. A comparison of MISO and MIMO regression results is

presented in Table 5.18. The results suggest that there is no strong correlation

between obesity and aging based on the selected CpG dinucleotides (features).

Therefore, most of the age-related CpG islands are not related to obesity. Inter-

estingly, only the MSVR result for EUFS are better than its result for SVR. This

result appears to suggest that some of the CpG biomarkers which are selected

by EUFS are related to both aging and obesity.
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Table 5.18: The Performances of USFSMs for MSVR and SVR

Metrics MSVR SVR

DFSFR(50) 8.55± 0.75 8.2± 1.21

DKBFS(150) 8.7± 1.85 8.24± 1.25

LapFS(150) 8.69± 0.85 8.54± 1.46

SPFS(350) 9.4± 0.83 8.51± 1.43

InFS(400) 9.05± 0.81 8.57± 1.24

EUFS(400) 8.45± 0.77 8.63± 1.29

5.5.4 Results for the GSE40279 Data Set

As mentioned in chapter 3, the GSE40279 data set provided in [145] is used to

model the relationship between CpG biomarkers and chronological age. This

data set contains 473034 CpG biomarkers (features) from the whole blood of 656

donors (samples) aged 19 to 101.

A pre-processing step is applied to map the data into lower dimensional space so

that feature selection methods can be applied to the data set. First, the standard

deviations of the samples, which refer to the amount of variation in data samples,

are calculated. The standard deviation of a sample can only be zero if, and only

if, the samples are identical. If a feature is identical in all samples, then the

feature is not discriminative. Therefore, before applying feature selection, the

features which have the lowest variation in the data are eliminated. As a result,

approximately four out of five of the features are eliminated in this pre-processing

step.

Then, unsupervised feature selection methods are applied to identify discrimi-

native CpG biomarkers (features). The number of selected features starts from

900 in order that a subset of features contains at least 1% of the entire feature

set. A set of 90000 features is assessed using six different USFSMs along with

the entire feature set.
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Table 5.19: A Comparison of USFSMs for The Prediction of Chronological
Ages of Individuals using CpG Dinucleotides

Metrics MAPE q2 U MAD

DKBFS(900) 13.27±0.9 0.59±0.03 0.002±0.0001 7.3±0.58

DFSFR(900) 13.41± 0.9 0.4± 0.04 0.0027± 0.0002 8.91± 0.66

EUFS(9000) 14.47± 0.69 0.003± 0.009 0.0034± 0.0001 11.69± 0.61

LapFS(6300) 14.43± 0.84 0.01± 0.01 0.0034± 0.0002 11.63± 0.73

TV(900) 14.16± 0.90 0.06± 0.02 0.0033± 0.0002 11.34± 0.79

Baseline(90000) 14.61± 0.88 0.003± 0.01 0.0034± 0.0002 11.86± 0.79

The performance of the proposed DFSFR and DKBFS methods with the GSE40279

data set is compared with that of state-of-the-art unsupervised feature selection

methods, including EUFS, LapFS, and Term Variance (TV) along with the entire

feature set.

Support vector based models [167] are exploited to assess the quantitative pre-

diction performances of unsupervised feature selection methods since they have

achieved superior generalisation and performance in a large variety of bioinfor-

matics applications [102] [16]. Support vector based predictive models for regres-

sion tasks are constructed using USFSMs (filtered feature set) and the complete

feature set. As there is no separate training and test data sets 8-fold cross vali-

dation is used to evaluate the performance of the predictive models. The cross

validation is repeated 50 times by randomly creating subsets of the instances for

the 8-fold cross validation to avoid bias towards and alleviate the impact of the

random split. The means and standard deviations of the metrics are calculated

over these 50 runs and presented in Table 5.19. The number of selected features

for each predictive model is shown in parenthesis in the tables.

The results appear to suggest that the proposed DFSFR and DKBFS methods

achieve better results than those of other USFSMs over different metrics. DKBFS

produces the best results achieving 13.27 MAPE, 0.59 q2, 0.002 U and 7.3 MAD

with only 900 CpG biomarkers (features). DFSFR achieves the second-best re-

sults, yielding 13.41 MAPE, 0.4 q2, 0.0027 U and 8.91 MAD with 900 CpG

dinucleotides. TV produces 14.16 MAPE, 0.06 q2, 0.0033 U, and 11.34 MAD
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with 900 features and outperforms LapFS and EUFS. LapFS and EUFS which

produce average results.

Another important observation is that the results over four different metrics are

consistent. For example, DKBFS produces the best results and DFSFR yields

the second best results for all different metrics.

Given this analysis, all of the results present a clear message that the SVR-

based predictive model with all of the features fails. This outcome suggests the

necessity of feature selection. It also proves that the majority of CpG biomarkers

are not related to the determination of an individual’s chronological age.

5.5.4.1 An Aggressive Research of Features from GSE40279 Data Set

The experimental results of the experiment conducted with the GSE4079 data

set suggest that the proposed DFSFR, and DKBFS frameworks produce better

results than other USFSMs for all different metrics. However, even though the

number of features are drastically reduced from 473034 to 900, the number of

CpG biomarkers (features) are still too high to be easily analysed in real biology

laboratories. In this case, an aggressive research study is been conducted with

three different subsets of CpG dinucleotides selected by DKBFS and DFSFR.

The purpose of this aggressive process is to obtain the minimum number of

dinucleotides which represent the whole data set with the same or higher accuracy

so that they can be further analysed in real biology labs.

The number of features used starts from 1 and is then incremented by 1 until

900 is reached to make an aggressive reduction of the selected CpG biomarkers.

As shown in Table 5.20, DFSFR achieves 0.57 q2, 0.0022 U and 7.41 MAD with

501 CpG dinucleotides (features), and DKBFS yields 0.61 q2, 0.002 U and 7.2

MAD with 669 CpG biomarkers (features).

It is observed that the performance of the feature selection methods is readily

affected by the number of selected features. The number of selected features

is provided in parenthesis located just next to the USFSM results in the table.

For example, DKBFS achieves the best performance by utilising MAD, U and q2

metrics with a dimensionality of 669.
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Table 5.20: Detailed Assessment of CpG Dinucleotides Using the Proposed
KBFS framework

Method MAPE q2 U MAD

DKBFS (669) 13.39± 1.46 0.61± 0.03 &0.002± 0.00001 7.2± 0.52

DKBFS (900) 13.27± 0.9 0.59± 0.03 0.002± 0.0001 7.3± 0.58

DFSFR (501) 13.58±1.22 0.57±0.03 0.0022±0.0001 7.41± 0.38

DFSFR (900) 13.41± 0.9 0.4± 0.04 0.0027± 0.0002 8.91± 0.66

5.6 Summary

In this chapter, a deep learning based unsupervised feature selection method,

DFSFR, and a hybrid method, DKBFS, for regression tasks are proposed. To

the best of our knowledge, the proposed DFSFR method is the first deep learn-

ing based feature selection method which selects features at input level. The

proposed framework is capable of handling both MISO and MIMO regression

tasks. The DKBFS method is a hybrid method that embeds KBFS into DFSFR

algorithm to rank features. The KBFS method is used as a pre-filtering step for

DFSFR. The flowchart of the proposed DKBFS method is shown in Fig. 5.3.

Experimental studies have been conducted on different data sets and the results

are presented in this chapter. Experimental results are used to demonstrate

the robustness of the proposed methods. This results suggest that the proposed

DFSFR and DKBFS methods outperform the -state-of-the-art USFSMs over dif-

ferent data sets.

It is observed that the results using different metrics are generally consistent.

For example, DFSFR produces the best results and KBFS achieves the second-

best results with the RMSE and MAD metrics. Nevertheless, the results of the

USFSMs for age prediction are slightly different than those for BMI prediction.

For example, the baseline produces better results than EUFS, InFS, SPFS and

LapFS for age prediction; however, it yields the worst results for BMI prediction.

Furthermore, DFSFR achieves the best results for BMI prediction, but on the

other hand produces the second-best results for age prediction. These results

appear to suggest that, if a data set is multi-targeted, then USFSMs might

produce different results for different targets especially if there is no correlation

between the targets.
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In this study, in addition to MISO regression, MIMO regression is performed to

examine whether or not there is a relationship between age and obesity based

on CpG biomarkers. A comparison of MISO and MIMO regression results is

presented in Table 5.18. The results suggest that there is no strong correlation

between obesity and aging based on the selected CpG dinucleotides (features).

Therefore, most of the age-related CpG islands are not related to obesity. Inter-

estingly, only the MSVR result for EUFS are better than its result for SVR. This

result appears to suggest that some of the CpG biomarkers which are selected

by EUFS are related to both aging and obesity.

This chapter presents experimental studies conducted on the RV144 Vaccine,

peptide binding affinity, GSE44763 and GSE40279 data sets. In order to show

the effectiveness of the proposed DFSFR, and DKBFS methods, their results

are compared with those of state-of-the-art feature selection methods as well as

with those of previous studies. The RV144 vaccine data set consists of 20 an-

tibody features and 100 plasma samples that are obtained from the individuals

participating in the RV144 vaccine trial week 26. Three different cell-mediated

assays are used: Antibody Dependent Cellular Phagocytosis, Antibody Depen-

dent Cellular Cytotoxicity and Natural Killer Cell Cytokine Release activities.

The goal of exploiting the RV144 data set is to reveal antibody features that

take action against HIV; in other words, to disclose the relationship between

antibody features and their effector functions. In the previous study [119], only

the MISO regression task was considered; however, MIMO regression was not

taken into account. On the other hand, in this study, in addition to performing

MISO regression analysis, MIMO regression analysis is applied so that associ-

ations among target variables can be revealed. The results of the experiments

conducted with the RV144 data set indicate that there are not only correlations

among variables, but also there are some correlations among the target variables.

In this study, three different peptide binding affinity data sets are exploited.

Tasks 1 and 3 contain nona-peptides that contain a total of 5787 amino acid de-

scriptors and 89 samples. Task 1 consists of 89 training and 88 testing samples,

whereas Task 3 includes 133 training and 133 testing instances. Task 2 consists

of octa-peptides that have a total of 5144 amino acid descriptors. It has 76 train-

ing and 76 testing samples. Each descriptor contains 643 amino acids. The goal

of exploiting the peptide binding affinity data set is to predict peptide binding
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affinity values by using amino acid descriptors, since these descriptors quanti-

tatively describe the physicochemical properties of the peptides [128]. Affinity

refers to the strength of binding or interaction. PPIs play a role in mediating sig-

nal transactions, sensing the environment, triggering immunological responses,

and monitoring gene expression [126]. Furthermore, PPIs play a crucial role in

the progression of human diseases such as viral infections. Therefore, increasing

knowledge of the underlying principles of PPIs can ultimately result in disclosing

the intrinsic biochemistry of different diseases, and thereby the development of

drug design [127]. The proposed DFSFR framework outperforms the state-of-

the-art USFSMs for all different tasks. In addition, the proposed DFSFR method

dramatically reduces the number of features: for Task 1 from 5787 to 100; for

Task 2 from 5144 to 250; and for Task 3 from 5787 to 200.

The GSE44763 data set contains 27482 CpG biomarkers (features) from the pe-

ripheral blood of 46 adult female donors (samples). There are 24 obese subjects

and 22 lean subjects. The goal of exploiting this data set is to reveal the associa-

tions among CpG biomarkers, and the chronological age and BMI of individuals.

The proposed DFSFR and DKBFS frameworks outperform the other USFSMs

and reduce the number of features by as much as 99.45%. The experimental

results suggest that the proposed frameworks can reveal age and obesity-related

CpG biomarkers (features) from the given data. In addition to performing MISO

regression analysis, MIMO regression analysis is also performed. From the ex-

perimental results it can be concluded that no strong correlation exists between

obesity and chronological age.

The GSE40279 data set consists of 473034 Cytosine-phosphate-Guanine (CpG)

biomarkers (features) from whole blood of 656 donors (samples) aged 19 to 101.

The goal of exploiting this data set is to reveal the relationship between CpG

dinucleotides and the chronological age of individuals from the given data. A

pre-processing step is applied to the GSE40279 data set so that the features with

the lowest variation in the sample are eliminated, and thereby the number of

features is reduced from 473034 to 90000. Then, USFSMs are applied to identify

discriminative CpG biomarkers (features). The number of selected features starts

from 900 in order that a subset of features contains at least 1% of the features.

A set of 90000 features is assessed by utilising four different USFSMs along with

the entire feature set. The proposed DFSFR, DKBFS, and KBFS frameworks

produce better results than other USFSMs.
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A general overview of the characteristics of all data sets which are exploited in

this study is presented in Table 5.21. The GSE40279 data set can be determined

as high dimensional as far as classification is concerned; however, in the regression

domain, the GSE40279 data set can be considered as ultra-high dimensional.

Table 5.21: A General Overview of all of the Data Sets Used in this Study

Datasets
Number of Sources of the Data

Sets
Description

Features Samples

RV144 20 100 [119] LD

Task 1 5787 177 [129] HD

Task 2 5144 152 [129] HD

Task 3 5787 256 [129] HD

GSE44763 27482 46 [130] Very HD

GSE40279 473034 656 [145] Ultra HD

LD:Low dimensional, HD:High dimensional



Chapter 6

Discussion

In this chapter, the experimental results for the RV144 Vaccine, the peptide

binding affinity, the GSE44763, the GSE40279 data sets are discussed. Then,

the findings from those experiments are presented. In this section, methods are

discussed based on their results for different high dimensional data sets since

each data set contains different number of features (dimensionality).

6.1 Discussion of the Results for RV144 Data

In Chapter 4 and 5 experimental studies conducted on RV144 Vaccine data set

are presented. This data set is used to test the predictive capability of the

proposed DFSFR and KBFS models for the given data set and to provide better

generalisation and performance compared to a recent study conducted on the

RV144 data set [119]. This data set contains 20 antibody features and 100

plasma samples (80 samples are vaccine injected and 20 samples are placebo).

The goal of the study is to disclose associations among antibody features and

their effector functions. The effector functions can be described as actions of

the immune system to fight against HIV. Therefore, the identification of specific

antibody features involved in fighting against HIV is crucial in neutralising the

virus.

Experimental results conducted on RV144 Vaccine data set suggest that the pro-

posed frameworks, DFSFR and KBFS, outperform state-of-the-art unsupervised

feature selection methods as well as the method used in the previous paper on

124
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the same data set. DFSFR has a better quantitative accuracy performance than

the predictive models constructed using Lars, GP and SVR presented in the data

set paper for ADCC, and ADCP assays. DFSFR has a little less quantitative

performance as compared to predictive model for Cytokine assay constructed

using SVR presented in the data set paper. However, it still has better quan-

titative performance than the Lars and GP predictive models for the Cytokine

assay. By utilising DFSFR framework, number of features are reduced to 1 for

ADCC assay, 13 for ADCP assay and 16 for Cytokine assay. However, in data

set paper, the number of selected features are not indicated; instead, filtered set

is mentioned without providing the number of selected features.

Experimental results conclude that the proposed unsupervised framework, DFSFR,

achieves the best performance on all assays, which thus verifies that it is able to

reveal discriminative antibody features that provide protection against HIV.

Furthermore, in previous study [119], only MISO regression is considered where

correlations among output variables are not taken into account. In this study,

in addition to the MISO regression, MIMO regression is performed to deter-

mine whether associations exist among target variables. By exploiting MIMO

regression, the prediction performance of the predictive model is increased ap-

proximately by 12 percent. This concludes that there are not only associations

among antibody features, but also there are associations among effector func-

tions. Analysing dependencies between antibody features as well as response

variables may ultimately result in producing an effective RV144 vaccine so that

HIV or AIDS may be conquered.

There is only one common feature selected by unsupervised feature selection

methods for ADCC and ADCP assays IgG1.gp41 and IgG3.p24, respectively.

On the other hand, seven different antibody features are mutually selected by

unsupervised methods for the Cytokine assay: IgG1.p24, IgG3.p24, IgG4.gp41,

IgG4.gp140, IgG4.p24, IgG4.gp120, IgG3.V1V2. In this study, distribution of

antibody features based on their importance is also provided so that the most

important antibody features might be further analysed in real word biology lab-

oratories.



126

6.2 Discussion of the Results for Peptide Bind-

ing Affinity Data Sets

The experimental studies conducted on three different high dimensional peptide

binding affinity data sets are presented in chapter 4 and 5. These data sets

generally contain over 5000 descriptors for each peptide and they are used to

evaluate the prediction performance of the proposed DFSFR framework for the

given data sets.

The purpose of the study is to predict peptide binding affinity values by using

amino acid descriptors. As mentioned previously, affinity refers to the strength

of binding or interaction. Identification of peptide binding affinity values is im-

portant due to the fact that protein-protein interactions (PPIs) play a role in

mediating signal transactions, sensing the environment, triggering immunologi-

cal responses, and monitoring gene expression [126].

The outcomes of the experiments clearly emphasise the strengths of DFSFR and

KBFS compared with the state-of-the-art unsupervised feature selection methods

as well as the approaches used in a previous study [88] which were conducted on

the same peptide data sets. DFSFR produces better performance than the state-

of-the-art feature selection methods and our earlier study [88] for all three tasks.

Six different metrics, namely MAD, MSE, RMSE, MAPE, U, and q2, are used

to examine the robustness of USFSMs. DFSFR achieves the best performance

on all different tasks over different metrics. Furthermore, DFSFR dramatically

reduces the number of features for all tasks: for Task 1 from 5787 to 100; for Task

2 from 5144 to 250; and for Task 3 from 5787 to 200. Based on the RMSE metric,

which is the most popular evaluation metric, the prediction error achieved in this

study compared to the previous study [88] is decreased by approximately 15%

for Task 1, 5% for Task 2, and 10% for Task 3.

6.3 Discussion of the Results for GSE44763 Data

Set

The experimental studies conducted on the GSE44673 data set are presented

in chapter 4 and 5. This data set contains 27482 Cytosine-phosphate-Guanine
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(CpG) biomarkers from peripheral blood of 46 adult female donors. There are

24 obese subjects and 22 lean subjects. Predictive modelling of such data is one

of the most challenging problems in many feature selection applications since

the dimensionality of data is extremely high, while the sample size is very small.

[184].

Circulatory disease, cancers, and respiratory disease are three main causes of

mortality [132] [133]. Obesity can increase the risk of these three fatal diseases

as well as other diseases, such as diabetes and depression. According to the

World Health Organization (WHO) there were over 600 million obese people

worldwide in 2014 [134]. Most of the time, the risks associated with obesity

related diseases are also increased by aging [130]. Consequently, aging and obesity

contribute to fatal diseases including cancers, circulatory and respiratory disease.

The GSE44763 data set is used to test the performances of the proposed KBFS

and DKBFS frameworks as well as to determine the CpG dinucleotides related

to the age and obesity from the data.

The affirmative results show the effectiveness of the proposed DFSFR, KBFS and

DKBFS frameworks. They are compared with the state-of-the-art unsupervised

feature selection methods and three different metrics are used to examine the

robustness of USFSMs. DKBFS, DFSFR and KBFS produced better prediction

performance than the state-of-the-art feature selection methods. The best results

are achieved by DKBFS which is a hybrid feature selection framework that com-

bines DFSFR and KBFS. When compared with InFS which produces the best

results among existing methods, DKBFS decreases the MAD of the predictive

model approximately by 4% and the RMSE of the model is reduced by approx-

imately 3% for the prediction of chronological age, and it reduces the MAD of

the model by approximately 8% and the RMSE of the model is also reduced by

approximately 7% percent for the prediction of BMI.

Experimental results on the GSE44763 data set conclude that the proposed

DFSFR, KBFS and DKBFS methods are capable of handling high dimensional

data and can reveal CpG dinucleotides (features) related to age and obesity.

There are two different outputs in the GSE44763 data, which are BMI and

chronological age. Therefore, the GSE44763 data set is suitable for perform-

ing MIMO tasks. MIMO task is performed by using MSVR. The MVSR results
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on different USFSMs over GSE44763 data set suggest that there is not a strong

correlation between aging and obesity based on selected CpG biomarkers.

6.4 Discussion of Results for GSE40279 Data

Set

The GSE44763 data set is used to disclose age-related CpG dinucleotides (fea-

tures). The GSE40279 data set contains approximately 16 times more features

than the GSE44763 data set; therefore, developing a predictive model using the

GSE40279 data set is more difficult than building a predictive model using the

GSE44763 data set. The GSE40279 data set contains 473034 CpG dinucleotides

(features) from whole blood of 656 donors aged 19 to 101.

The purpose of this study is to reveal the associations between age and CpG

biomarkers or to identify age-related CpG biomarkers from the GSE40279 data

set. Age prediction of individuals from molecular biomarkers is crucial for foren-

sics, disease prevention and the extension of life. Therefore, the GSE40279 data

set is exploited to evaluate the performance of the proposed DFSFR, DKBFS

and KBFS frameworks as well as to identify age-related CpG dinucleotides from

the given data.

The experimental results suggest that the proposed DFSFR, DKBFS and KBFS

methods produce better performance than the state-of-the-art unsupervised fea-

ture selection methods. Four different evaluation metrics are used to analyse the

effectiveness of USFSMs. The DKBFS method achieves the best results for all

different metrics and DFSFR produces the second best performance. One in-

teresting observation is that USFSMs generally produced very similar U results

including baseline. When compared with the other USFSMs, DKBFS decreased

the U statistics results by approximately 38%, which indicates the outstanding

performance of this DKBFS framework.

It is observed that the performance of the feature selection methods is easily

effected by the number of selected features. The number of selected features are:

900 for DKBFS, KBFS and TV, 6300 for LapFS, and 9000 for EUFS. Therefore,

DKBFS produces the best performance by exploiting the minimum number of

CpG dinucleotides.
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The experimental results suggest that our proposed methods produce better re-

sults than other USFSMs for all different metrics. However, even though number

of features are extremely reduced from 473034 to 900, the number of biomarkers

are considerably high to be analysed in real biology labs. In this case, an aggres-

sive research on three different feature subset of 900 CpG dinucleotides which

are selected by DKBFS, KBFS, and DFSFR. The goal of this aggressive research

is to obtain minimum number of dinucleotides which represent the whole data

set with the same or higher accuracy so that those dinucleotides can be further

analysed in real biology labs. The number of features are started from 1 and incre-

mented by 1 till 900 to make an aggressive research on selected CpG biomarkers.

KBFS produces better very good results with 41 features corresponding to only

0.00867% of the entire features.

6.5 General Discussion and Findings

In this section, the experimental results on different data sets are discussed and

the findings based on these results are presented.

Extensive experiments have been designed and conducted to objectively assess

the proposed DFSFR, KBFS and DKBFS models. In order to evaluate the per-

formance of the DFSFR framework, the RV144 Vaccine, the peptide binding

affinity, the GSE44763 and the GSE40279 data sets are used. Then, the per-

formance of the DFSFR method is compared with the state-of-the-art USFSMs

as well as methods used in previous studies [119] [88]. The KBFS and DKBFS

frameworks are tested by exploiting GSE44763 and GSE40279 data sets because

these frameworks are developed for very high dimensional data. To the best

of our knowledge, this is the first study that presents exploration and compre-

hensive comparison of USFSMs in very high dimensional regression problems,

particularly in biomedical domain.

Experimental results conducted on different high dimensional data sets appear to

suggest that deep learning based methods, DFSFR and DKBFS outperform the

state-of-the-art USFSMs. This might be because deep learning based methods

benefit from deep structures to model non linearity. Furthermore, DBN consists

of multiple layers of RBM might reach more abstract concepts through layer-wise

learning in order to discover the data structure. However, deep learning has not
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been widely exploited for feature selection especially in bioinformatics field. Even

though various feature selection methods have been proposed in the literature,

however, no deep learning based feature selection method exists particularly for

regression tasks. To the best of our knowledge DFSFR is the first deep learning

based feature selection method particularly for regression problems.

In addition to MISO regression, MIMO regression is exploited to examine associ-

ations among effector functions of antibodies (ADCP, ADCC, Cytokine), and to

identify relationships between aging and obesity from the given data. The exper-

imental results show that there are some correlations among effector functions:

ADCP, ADCC, and Cytokine; however, no strong correlation exists between ag-

ing and obesity based on selected CpG biomarkers (features).

RV144 Vaccine data set contains three cell-mediated assays which are target

variables. Therefore, the data set can be exploited for both MISO and MIMO

regression purposes. In previous study [119], MIMO regression was not taken

into account. However, there might be not also feature-target or feature-feature

associations, but there may be also associations among target variables. In order

to observe that MSVR is used. Experimental results conducted on RV144 data

set conclude that there are correlation among target variables because the results

which were obtained by performing MSVR was slightly better than the results

that were produced by single SVR.

Overall, feature selection is effective and necessary. The selected features can not

only reduce computational cost, but also improve the prediction performance of

a learning model.

It is also observed that selection of features from very high dimensional data

sets in regression domain seems to have been understudied. Therefore, it is

important to explore existing and new methods to be adapted and devised for

such an important domain as new data sets are being generated, which require

such quantitative assessments.

6.6 Discussion of SVR and MSVR

In this study, default parameters of USFSMs are used to evaluate the robustness

of USFSMs. However, the effects of SVR parameters are investigated. There are
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three primary parameters in SVR for regression tasks: C, γ and ε. C is the cost

parameter which is used to avoid overfitting, ε refers to error tolerance where

errors less than ε will be tolerated. γ sets the value of gamma in the kernel

function. The best parameters are not known beforehand; therefore, to find

optimal parameter sets, ”grid search” method can be used. The goal is to select

the best (C, ε, γ) parameter set so that the model can accurately predict unknown

data. It is observed that using even numbers to determine the C parameter is

practical (for example, C=2,4,6,8). For the γ parameter, the default parameter

is γ = 1/n, where n is the number of selected features. However, it is observed

that γ = 0.1 can be used as a starting point and then this can be increased

progressively by 0.1 to find the best value of γ. It is also observed that the

default value of the ε parameter (ε = 0.1) is good. To perform a grid search, it

can be incremented by 0.1 to identify the best ε parameter.

For MSVR there are crucial parameters, namely, C, σ, and ε. C is the regularisa-

tion parameter which regulates the trade off between minimising the error on the

training data and minimising the norm of the weights. Optimisation problems

of SVR and MSVR is provided on Chapter 3 which are Eq.(3.3) and Eq.(3.7),

respectively. If C is too large; then, objective function will attempt to decrease

w as much as possible so that the model function appropriately shows relation-

ship between features and target. On the other hand, if C is too small, then,

the model function will increase w that can ultimately be result in extremely

large training error. Therefore, optimisation of C parameter is crucial. For high

dimensional data sets, such as GSE44763, it is observed that if C is small (such

as C=1), predictive model produces good results on MIMO regression. On the

other hand, for low dimensional data sets, such as RV144 Vaccine, even numbers

of C parameter is practical (for example, C=2,4,6,8).

6.7 Final Remarks

In this section, the strengths and weaknesses of unsupervised feature selection

methods, which are exploited in this study, are presented.

It is observed that SPFS and LapFS usually produce similar results although

SPFS generally achieves better results than LapFS. This might be because they

both attempt to preserve the data similarity of the original features, however,
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LapFS cannot handle feature redundancy. It is also observed that MCFS method

performed well when the number of features is small (RV144 Vaccine data set);

however, its performance declined as the dimensionality of data increases (pep-

tide binding affinity data sets). In addition, MCFS is inefficient for application

to very high dimensional data, such as the GSE40279 because this method em-

ploys the computation of a normalised Laplacian matrix, l1 norm regularisation,

and eigenvalue decomposition. LapFS computes a Laplacian matrix, and eigen

value decomposition; however, it is still able to perform feature selection on the

GSE40279 data set.

Another interesting point is that even though EUFS is an embedded method,

and thus is computationally more expensive than filter methods, it is able to

perform feature selection on ultra high dimensional GSE40279 data set.

Due to the extremely high run time and memory consumption, InFS, MCFS,

SPFS could not be applied to the GSE40279 data set; instead, TV is used. Even

though TV is a very simple unsupervised feature selection method, it produces

good results on GSE40279 data set. Furthermore, because of its simplicity, it is

the most computationally effective method compared to EUFS, LapFS, KBFS,

and DKBFS.

The proposed KBFS method is a simple K-means based unsupervised method;

however, it produces the second best results on ultra high dimensional GSE44763

and GSE40209 data sets. This might be due to the fact that unlike existing K-

means based feature selection methods, which are capable of performing univari-

ate feature selection, KBFS performs multivariate feature selection by exploiting

feature-feature dissimilarity measure. It is observed that KBFS should be used

to select features from very high dimensional data.

The proposed DFSFR method achieves the best results for the RV144 Vaccine,

peptide binding affinity, the GSE44763 (for the prediction of BMI) data sets

and it yields the second best results for the GSE44763 (for the prediction of

chronological age), and the GSE40279 data sets. Therefore, DFSFR method

can be utilised for low dimensional, high dimensional, very high dimensional and

ultra high dimensional data.

The proposed DKBFS method produces the best results for the GSE44763 (pre-

diction of chronological age), and GSE40279 data sets. Therefore, it is concluded

that DKBFS method is useful when it is applied to extremely high dimensional
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data. In summary, it is beneficial to exploit MCFS, LapFS and SPEC methods

for low dimensional data sets. KBFS and DKBFS can be used for very high di-

mensional data sets. DFSFR method can be exploited for both low dimensional,

and high dimensional data sets. The results of EUFS and InFS over different

data sets are generally not consistent; thereby, the performances of these are

highly dependent on data set.



Chapter 7

Conclusions and Future Works

This chapter concludes the research, and presents possible future works.

7.1 Conclusions

In line with the technological developments, there is almost no limit to collect

data of high dimension in bioinformatics. These high dimensional data sets

usually contain many redundant or noisy features which need to be filtered out

to find a small but biologically meaningful set of attributes. Feature selection

aims at identifying a subset of original features by eliminating redundant and

noisy ones and this is an effective dimensionality reduction method that is widely

used in machine learning and data mining. In fact, feature selection enables

regressors to achieve better performance in terms of regression. There are mainly

two different types of feature selection methods: unsupervised and supervised.

Supervised feature selection methods can identify relevant features as well as

noisy ones; however, unsupervised methods do not tend to identify features that

can act as noise.

After conducting an intensive literature review, it is observed that selection of

features from very high dimensional data sets in regression domain seems to have

been understudied. The reason for this might be due to the fact that regression

problems are more difficult than classification tasks [185].

In this study, a taxonomy of feature selection methods for regression problems

is provided. To the best of our knowledge this is the first study that provides a

134
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feature selection review as well as a taxonomy of feature selection methods for

particularly regression tasks.

Two novel unsupervised feature selection frameworks are provided in this study,

namely, KBFS and DFSFR. KBFS is a simple K-means based feature selection

framework where features are selected according to a feature-feature dissimilarity

measure. In K-means, one centroid point for each cluster is used, however, in

KBFS, three centroids are exploited to determine weights of features. Indeed,

the centroids of K-means are even not a feature. DFSFR is a deep learning

based feature selection framework that selects features at the input level of DBN

which is, to the best of our knowledge, the first deep learning based feature

selection method in regression domain. This framework is capable of handling

both multi-input single-output and multi-input multi-output regression tasks. A

hybrid method, which combines DFSFR and KBFS, is also proposed and named

as DKBFS. In DKBFS, KBFS is exploited as a pre-filtering method for DFSFR

framework. Therefore, KBFS prioritises features according to their importance

and identifies relevant features. Previously identified relevant features are then

evaluated by DFSFR that attempts to decide an optimal feature subset. KBFS

and DKBFS are proposed to deal with extremely high dimensional data.

To show the effectiveness of the proposed frameworks, experiments are conducted

on different high dimensional biomedical data sets. Four different case studies

are considered. In the first case study, the proposed methods are used to reveal

the associations between antibody feature and their functional activities (ADCC,

ADCP, NK Cell Cytokine Release) from the RV144 Vaccine data set. The pur-

pose of this case study is to identify the most discriminative antibody features

that fight against HIV.

In the second case study, proposed methods are applied to high dimensional

peptide binding affinity data sets. Three different peptide binding affinity data

sets are used. Each amino acid in the peptide sequences is then described by

643 physico-chemical descriptors. Tasks 1 and 3 contain nona-peptides that have

a total of 5787 descriptors (=643x9) whereas Task 2 consists of octa-peptides

that were characterised using a total of 5144 descriptors (=643x8). The goal

of this study is to predict binding affinity values for peptides using amino acid

descriptors. The purpose of this study is to predict affinity values of peptide

binding since affinity refers the strength of binding.
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In the third case study, very high dimensional GSE44763 data set, which consists

of 27842 Cytosine-phosphate-Guanine (CpG) dinucleotides from peripheral blood

of 46 adult female individuals, is exploited. There is a total of 46 subjects where

the subjects are obese and 22 of them are lean. The aim of this study is to reveal

age and obesity related CpG biomarkers from the given data.

In the fourth case study, ultra high dimensional GSE40279 data set which con-

tains 473034 CpG biomarkers (features) from whole blood of 656 donors (sam-

ples) aged 19 to 101, is used. The goal of this study is to disclose the associations

among CpG dinucleotides and aging from the given data.

The proposed methods obtain better or at least comparable results compared

to other the state-of-the-art feature selection methods in the literature and it is

shown that the proposed methods are robust and effective in identifying discrim-

inative features from biomedical data.

In this thesis, in addition to providing novel feature selection frameworks, a

comprehensive overview of feature selection methods for regression problems is

also provided where feature selection methods are shown along with their types,

references, sources, and code repositories. Finally, a taxonomy of feature selec-

tion methods for regression problems is proposed to assist researchers to select

appropriate feature selection method for their research.

7.2 Contributions to the Literature

The main results and contributions of this research are briefly summarised as

follows:

• The DFSFR method is proposed and applied to different high dimensional

benchmarks: (i) RV144 Vaccine data set is used to disclose functional re-

lationship between immune system and HIV (ii) Peptide binding affinity

data sets are exploited to estimate binding affinity values of peptides from

given data (iii) GSE44763 data set is used to reveal associations among

CpG dinucleotides(features), and BMI and chronological age of individu-

als from given data (iv) GSE40279 data set is utilised to understand the

relationships between chronological age and CpG dinucleotides from given
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data. The results suggest that DFSFR yields an improvement in the pre-

diction accuracy. As far as the literature is concerned, to the best of our

knowledge, this novel deep learning based feature selection method in the

regression domain, the first of its kind, has been shown to be better than

other the state of the art methods by not only selecting smaller number of

the features but also helping increase the predictive performances for both

the single and multi-output regression models (journal article is under re-

view [18]).

• The KBFS method is proposed and applied to very high dimensional GSE44763

and GSE40279 data sets. To the best of our knowledge, KBFS is the first K-

means based unsupervised feature selection method that consider feature-

feature dissimilarity measure to select features rather than ranking each

feature individually. Therefore, KBFS can be determined as a multivariate

filter selection method. Experimental results suggest that KBFS produces

better predictive results than state of the art unsupervised feature selection

methods (Published work [16] and a work is under review [17]).

• The DKBFS method, which combines DFSFR and KBFS, is proposed and

applied to GSE44763 and GSE40279 data sets. In DKBFS, KBFS is ex-

ploited as a pre-filtering step. The results conclude that DKBFS achieves

better prediction accuracy than state of the art unsupervised feature selec-

tion methods.

• A comprehensive overview of existing feature selection methods particularly

for regression tasks. These methods are provided along with their types,

references, sources, and code repositories. To the best of our knowledge,

this review is first of its kind since there is no such review provided in

the literature; therefore, this review will fill the research gap and assist

researchers to select appropriate feature selection method for their research

(under review).

• A taxonomy of exiting feature selection methods for regression problems

is proposed which categorise feature selection methods according to their

types, strategies, and intrinsic learning structure (This work is under re-

view).
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7.3 Future Works

This research study suggests new perspectives for a future work. The following

suggestions could be explored as future works:

• This study addresses the problem of unsupervised feature selection from

extremely high dimensional biomedical data. Data streams are rapidly and

constantly growing. Analysis of rapidly changing data streams is quite

difficult since the amount of data increases in timely manner [186]. We

envision that current development of scientific research will soon lead to

the need for development of feature selection methods which can learn

from streams of data. Therefore, the research can be further extended by

modifying DFSFR so that it would be able to process streams of constantly

incoming data.

• In this study, in order to evaluate the robustness of unsupervised feature

selection methods, default parameters of them have been utilised. Another

direction of research might be to examine how the various parameters of

USFSMs affect prediction results. Further research is now being geared

towards further refinement of the feature selection and prediction methods

by developing and fine-tuning the algorithms.

• In this study, multi-targeted GSE44763 and RV144 Vaccine data sets are

exploited. However, more multi-targeted high dimensional regression data

sets are required to test the effectiveness of the proposed frameworks for

performing MIMO regression. Unfortunately, in some areas, such as bioin-

formatics the vast majority of data sets are single targeted; furthermore, a

large number of data sets are not publicly available.

• In this research, SVR is utilised as a consecutive part of USFSMs; however,

different types of regression techniques have been proposed in the literature,

such as Gaussian Process Regression and Least Angle Regression, which

can also be considered for exploitation to design the consecutive part of

USFSMs.

• Another direction of future research might be revealing the biological rel-

evance of selected antibody features, CpG dinucleotides, and amino acid

descriptors, therefore, selected features can further be analysed in real bi-

ology labs.



Appendix A

CoEPrA Peptide Binding

Affinity Data Sets

CoEPrA contains publicly available peptide binding affinity data sets. These

data sets are used in the experimental studies of this thesis. The peptide binding

affinity data sets are obtained from a modeling competition [129]. Each task has

a separate training (Tables A.1-A.3) and test data set (Tables A.4-A.6). The

columns correspond to peptide no, peptide residue, and expected real value of

binding affinity.
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Table A.1: List of peptides for CoEPrA Task 1 (Training).

No. Peptide ExpectedNo. Peptide Expected
1 ILDPFPVTD 2.94 46 IYDPFPVTV 5.41
2 ILDPFPVTY 3.19 47 YLSPGPVTA 5.44
3 ILDPFPVTH 3.6 48 LLFGYPVYV 5.45
4 SLHVGTQCA 3.79 49 YLFDGPVTA 5.5
5 HLLVGSSGL 3.91 50 ILDPFPVTT 5.54
6 NLQSLTNLL 3.96 51 RLWPLYPNV 5.57
7 SLNFMGYVI 4 52 YLFPGPVWA 5.59
8 ITSQVPFSV 4.06 53 YAIDLPVSV 5.63
9 VCMTVDSLV 4.2 54 YLFNGPVTV 5.65
10 LLMGTLGIV 4.21 55 ILDPFPVTF 5.67
11 ALIHHNTHL 4.3 56 YLWPGPVTV 5.7
12 MLDLQPETT 4.36 57 RLWPFYHNV 5.72
13 YVITTQHWL 4.39 58 YLAPGPVTA 5.74
14 ITFQVPFSV 4.42 59 IADPFPVTV 5.76
15 KTWGQYWQV 4.43 60 YLYPGPVTA 5.77
16 ITDQVPFSV 4.48 61 YLFPGPETA 5.81
17 LLAQFTSAI 4.51 62 ILDPFPVTP 5.82
18 VLHSFTDAI 4.54 63 FLWPFYPNV 5.89
19 ILDPFPVTK 4.59 64 FLDQVPFSV 5.98
20 YMNGTMSQV 4.67 65 FLWPFYHNV 5.99
21 ILDPFPVTW 4.71 66 ILWPLFHEV 6.03
22 FTDQVPFSV 4.76 67 ILWPLYPNV 6.06
23 KLHLYSHPI 4.77 68 ILDQVPFSV 6.09
24 ILDPFPVTS 4.78 69 ILNPFYPDV 6.11
25 YTDQVPFSV 4.8 70 FLWPLYPNV 6.14
26 IFDPFPVTV 4.89 71 FLNPFYPNV 6.16
27 CLTSTVQLV 4.93 72 FLNPIYHDV 6.16
28 YLWQYIFSV 4.94 73 YLFPGTVTA 6.16
29 IHDPFPVTV 4.96 74 YLCPGPVTA 6.18
30 RLMKQDFSV 4.97 75 YLFPPPVTV 6.19
31 VMGTLVALV 5.03 76 ILFPGPVTA 6.23
32 ILYQVPFSV 5.06 77 IIDPFPVTV 6.31
33 IPDPFPVTV 5.1 78 ILDPFPVTA 6.32
34 GLLGWSPQA 5.13 79 FLWPIYHNV 6.37
35 GLYSSTVPV 5.15 80 ILFPFVHSV 6.58
36 IISCTCPTV 5.17 81 ILDPFPVTG 6.66
37 FLCKQYLNL 5.21 82 YLFPFPITV 6.68
38 YLFPGPVTG 5.22 83 ILFPFPVEV 6.8
39 GTLGIVCPI 5.23 84 ILDDFPPTV 7.08
40 RLWPFYPNV 5.24 85 ILDPLPPTV 7.15
41 YLKPGPVTA 5.26 86 IMDPFPVTV 7.21
42 YLMPGPVTA 5.27 87 ILDPFPPPV 7.44
43 YMLDLQPET 5.28 88 ILDPFPITV 8.14
44 PLLPIFFCL 5.32 89 ILDPFPVTV 8.65
45 RLNPLYPNV 5.37



141

Table A.2: List of peptides for CoEPrA Task 2 (Training).

No. Peptide Expected No. Peptide Expected
1 FESTGNLD 5.01 39 FESTNNLI 7.748
2 FKSTGNLI 5.026 40 FDSTGNLI 7.814
3 FESTGNLR 5.232 41 FESTSNLI 7.821
4 FFSTGNLI 5.421 42 FESTWNLI 7.832
5 FESTGNLQ 5.687 43 FGSTGNLI 7.846
6 FESTGNLH 6 44 FESTGWLI 7.872
7 FESTGNLG 6.051 45 FESTINLI 7.887
8 FISTGNLI 6.329 46 FESDGNLI 7.89
9 QTFVVGCI 6.796 47 FESTLNLI 7.898
10 NEKSFKDI 6.91 48 FESTVNLI 7.912
11 FQSTGNLI 7.013 49 LEILNGEI 7.921
12 FLSTGNLI 7.088 50 FESTGKLI 7.927
13 FESTGNKI 7.159 51 DGLGGKLV 7.959
14 FESTGNLM 7.212 52 FESEGNLI 7.972
15 FESTGNDI 7.29 53 FESKGNLI 7.978
16 FESTGNLW 7.293 54 FEHTGNLN 7.982
17 KESTGNLI 7.308 55 FESWGNLI 7.989
18 FESTGNPI 7.41 56 FESTANLI 7.994
19 PESTGNLI 7.426 57 FEFTGNLN 8
20 FESTGNLA 7.455 58 FESTGVLI 8.023
21 FESTGNNI 7.521 59 FESAGNLI 8.031
22 FESTGNLS 7.525 60 FESPGNLI 8.042
23 FESTGNEI 7.541 61 FESTGNFI 8.044
24 VESTGNLI 7.545 62 FESTGNLI 8.046
25 FESTGNII 7.551 63 FESFGNLI 8.085
26 FESTGELI 7.593 64 FESRGNLI 8.095
27 HESTGNLI 7.607 65 FESYGNLI 8.099
28 FESTGNQI 7.612 66 FESTPNLI 8.141
29 AESTGNLI 7.624 67 FEATGNLN 8.178
30 SESTGNLI 7.641 68 FEDTGNLN 8.199
31 GESTGNLI 7.665 69 FEQTGNLN 8.217
32 FESTGDLI 7.683 70 FESTGRLI 8.222
33 IESTGNLI 7.715 71 FENTGNLN 8.224
34 MESTGNLI 7.716 72 FESVGNLI 8.23
35 QESTGNLI 7.727 73 FESIGNLI 8.239
36 NESTGNLI 7.736 74 FEGTGNLN 8.265
37 WESTGNLI 7.74 75 FERTGNLN 8.3
38 FESTGNHI 7.742 76 FELTGNLN 8.343
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Table A.3: List of peptides for CoEPrA Task 3 (Training)

No. Peptide Expected No. Peptide Expected
1 VVHFFKNIV 4.301 68 VLLDYQGML 7.095
2 VCMTVDSLV 5.146 69 LMIGTAAAV 7.102
3 LLGCAANWI 5.301 70 TVLRFVPPL 7.114
4 SAANDPIFV 5.342 71 NLGNLNVSI 7.119
5 TTAEEAAGI 5.38 72 ILHNGAYSL 7.127
6 LTVILGVLL 5.58 73 SIISAVVGI 7.159
7 LVSLLTFMI 5.716 74 VLAKDGTEV 7.174
8 QMTFHLFIA 5.778 75 YLEPGPVTI 7.187
9 ALPYWNFAT 5.82 76 FLYNRPLSV 7.212
10 FVTWHRYHL 5.869 77 FLWGPRALV 7.215
11 SLNFMGYVI 5.881 78 ILDQVPFSV 7.284
12 GIGILTVIL 6 79 ILSSLGLPV 7.301
13 IVMGNGTLV 6.001 80 LLFLGVVFL 7.301
14 SLSRFSWGA 6.041 81 YLVAYQATV 7.304
15 TVILGVLLL 6.072 82 YLEPGPVTV 7.342
16 WTDQVPFSV 6.145 83 ILSPFMPLL 7.347
17 AIAKAAAAV 6.176 84 YLSPGPVTA 7.383
18 ITSQVPFSV 6.196 85 IIDQVPFSV 7.398
19 ALAKAAAAI 6.211 86 YMNGTMSQV 7.398
20 GLGQVPLIV 6.301 87 FLCWGPFFL 7.415
21 LLSSNLSWL 6.342 88 LLFRFMRPL 7.447
22 SIIDPLIYA 6.342 89 ITWQVPFSV 7.457
23 YLVTRHADV 6.342 90 LLAVLYCLL 7.478
24 LIGNESFAL 6.38 91 GIRPYEILA 7.481
25 FLLPDAQSI 6.415 92 GLFLTTEAV 7.509
26 CLALSDLLV 6.447 93 YTYKWETFL 7.538
27 LLGRNSFEV 6.447 94 ALVGLFVLL 7.553
28 LLAVGATKV 6.477 95 SLDDYNHLV 7.583
29 MLLAVLYCL 6.478 96 FLLRWEQEI 7.592
30 AIYHPQQFV 6.504 97 SLLPAIVEL 7.62
31 ALAKAAAAL 6.511 98 YLSPGPVTV 7.642
32 FVNHRFTVV 6.523 99 GLIMVLSFL 7.658
33 WILRGTSFV 6.556 100 SLYADSPSV 7.658
34 TLDSQVMSL 6.58 101 RLLQETELV 7.682
35 GLYGAQYDV 6.602 102 IMDQVPFSV 7.719
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36 MLASTLTDA 6.602 103 YLLPAIVHI 7.745
37 AIIDPLIYA 6.623 104 FLLLADARV 7.747
38 FLGGTPVCL 6.623 105 ALMDKSLHV 7.767
39 LMLPGMNGI 6.623 106 YLYPGPVTA 7.772
40 RLMIGTAAA 6.644 107 HMWNFISGI 7.818
41 LLFLLLADA 6.663 108 YLAPGPVTV 7.818
42 GTLGIVCPI 6.666 109 MLGTHTMEV 7.845
43 KLFPEVIDL 6.693 110 MTYAAPLFV 7.86
44 IAGGVMAVV 6.708 111 YLSQIAVLL 7.917
45 GLYRQWALA 6.733 112 YLMPGPVTV 7.932
46 MLQDMAILT 6.777 113 WLDQVPFSV 7.939
47 VILGVLLLI 6.785 114 SLYFGGICV 7.975
48 CLTSTVQLV 6.832 115 YLLALRYLA 8
49 ILLLCLIFL 6.845 116 SLLTFMIAA 8.027
50 DMWEHAFYL 6.879 117 GLMTAVYLV 8.051
51 ALTVVWLLV 6.893 118 FLLSLGIHL 8.053
52 LLPSLFLLL 6.903 119 FVVALIPLV 8.119
53 WMNRLIAFA 6.914 120 YLWPGPVTV 8.125
54 PLLPIFFCL 6.926 121 FLYGALRLA 8.149
55 ALAKAAAAA 6.947 122 LLLEAGALV 8.174
56 FLPWHRLFL 6.95 123 YLFPGPVTV 8.237
57 SLAGFVRML 6.954 124 ILFTFLHLA 8.268
58 TLGIVCPIC 6.964 125 RLPLVLPAV 8.292
59 KLTPLCVTL 6.991 126 YMDDVVLGV 8.301
60 LLCLIFLLV 6.996 127 GILTVILGV 8.342
61 RIWSWLLGA 7 128 NMVPFFPPV 8.403
62 SLLEIGEGV 7.009 129 FLYGAALLA 8.469
63 RLLDDTPEV 7.017 130 YLWPGPVTA 8.495
64 LLAGLVSLL 7.021 131 FLYGALALA 8.62
65 IAATYNFAV 7.032 132 FLDQVPFSV 8.658
66 YTDQVPFSV 7.066 133 ILWQVPFSV 8.77
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Table A.4: List of peptides for CoEPrATask 1 (Testing)

1 YLFNGPVTA 5.8 45 IWDPFPVTV 5.13
2 IMDQVPFSV 5.71 46 YLFPGPSTA 5.69
3 RLLQETELV 4.83 47 KIFGSLAFL 4.4
4 HLESLFTAV 3.79 48 YLFPDPVTA 6.09
5 ILDPFPPTV 8.17 49 TLHEYMLDL 4.94
6 ILDPFPVTL 7.03 50 GILTVILGV 4.57
7 FLLSLGIHL 5.17 51 YLFPPPVTA 5.75
8 LQTTIHDII 3.9 52 RLWPIYHDV 5.55
9 IQDPFPVTV 6.05 53 SLDDYNHLV 5.27
10 VLLDYQGML 4.52 54 LLWFHISCL 4.13
11 FLWPIYHDV 6.16 55 VLIQRNPQL 5.06
12 TLGIVCPIC 4.68 56 YLFPGPMTA 5.98
13 YLFPGPVQA 6.14 57 HLYSHPIIL 5.41
14 FVTWHRYHL 4.21 58 WILRGTSFV 4.06
15 FLFPLPPEV 6.53 59 ILDPIPPTV 7.3
16 YLFPGPVTA 6.31 60 VTWHRYHLL 4.38
17 NLSWLSLDV 4.75 61 YLFPCPVTA 6.63
18 YLAPGPVTV 6 62 FLLTRILTI 4.95
19 ALPYWNFAT 4.66 63 IGDPFPVTV 3.92
20 ILDPFPVTE 3.13 64 MLGTHTMEV 5.37
21 ILDPFPVTQ 5.28 65 YLFPGVVTA 6.17
22 IDDPFPVTV 4.36 66 ILDPFPVTI 6.69
23 GLGQVPLIV 4.76 67 ILWPIYHNV 6.24
24 ALMPLYACI 5.08 68 YLEPGPVTL 5.41
25 GLSRYVARL 4.78 69 YLFPGPFTA 5.65
26 ILDDLPPTV 7.14 70 KLPQLCTEL 4.5
27 ILNPFYHNV 6.16 71 ILDPFPVTN 5.29
28 YLFDGPVTV 4.96 72 YLWDHFIEV 6.36
29 YLFQGPVTA 5.21 73 YLWQYIPSV 5.17
30 SLYADSPSV 5.24 74 ILKEPVHGV 5.59
31 YLNPGPVTA 5.53 75 ILKPLYHNV 5.25
32 RLWPIYHNV 5.77 76 ITAQVPFSV 4.43
33 RLNPFYHDV 4.24 77 YLFPGPFTV 5.81
34 FLKPFYHNV 5.73 78 YLFPGPMTV 5.85
35 ILDPFPVTM 6.13 79 TTAEEAAGI 3.39
36 IVDPFPVTV 6.21 80 FLFPGPVTA 6.18
37 LMAVVLASL 3.99 81 WLDQVPFSV 5.23
38 ITDPFPVTV 6.08 82 FLDDHFCTV 6.68
39 ILWQVPFSV 5.91 83 SVYDFFVWL 5.12
40 ITWQVPFSV 5.01 84 ILDPFPVTC 5.65
41 ICDPFPVTV 5.45 85 ILDPFPPEV 7.68
42 ALCRWGLLL 4.91 86 NMVPFFPPV 5.6
43 ILDDFPVTV 7.16 87 ISDPFPVTV 5.5
44 SIISAVVGI 4.47 88 INDPFPVTV 4.78
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Table A.5: List of peptides for CoEPrA Task 2 (Testing)

1 YESTGNLI 7.74 39 FESTGHLI 7.997
2 FESTRNLI 7.679 40 FYSTGNLI 5.592
3 FESTGFLI 8.267 41 FPSTGNLI 8.113
4 FESTGTLI 7.922 42 DESTGNLI 7.712
5 FESTQNLI 7.819 43 FESQGNLI 8.094
6 FEKTGNLN 7.904 44 FESTKNLI 7.304
7 FEWTGNLN 8.225 45 FESTGNLL 7.737
8 FESTGQLI 7.92 46 FEVTGNLN 8.223
9 FASTGNLI 7.429 47 FLHPSMPV 7.149
10 FMSTGNLI 6.863 48 FESTMNLI 7.888
11 FESLGNLI 8.403 49 FEITGNLN 8.197
12 FNSTGNLI 6.244 50 FWSTGNLI 5.325
13 FESTGNSI 7.612 51 FEPTGNLN 8.043
14 RESTGNLI 7.544 52 FESTGNLN 7
15 FESTGPLI 8.302 53 FHSTGNLI 5.122
16 FESTDNLI 7.743 54 FEETGNLN 8.028
17 FESTGGLI 7.946 55 TESTGNLI 7.535
18 FTSTGNLI 7.547 56 FESTGNLK 5.01
19 FESTGNLT 7.293 57 FESTGSLI 7.992
20 FESTGNWI 7.974 58 FAFWAFVV 7.523
21 FESTGNLF 7.848 59 FESTGNRI 8.004
22 EESTGNLI 7.732 60 FESTGALI 7.964
23 FESTYNLI 7.46 61 LESTGNLI 7.716
24 FESTGNLP 5.919 62 FEYTGNLN 8.176
25 FESTGNGI 7.209 63 FEMTGNLN 8.222
26 FESTGILI 8.098 64 FESTGYLI 8.215
27 FESTGNVI 7.421 65 HAIHGLLV 7.319
28 FESTGMLI 7.979 66 FESTTNLI 7.821
29 FETTGNLN 8.232 67 FESTENLI 7.583
30 FESSGNLI 8.046 68 FAFPGELL 7.022
31 FESTGNLY 6.01 69 FESTGNLV 7.626
32 FESTHNLI 7.836 70 FESTGNYI 7.793
33 FESTGNTI 7.652 71 FESMGNLI 8.04
34 FESTGNAI 7.602 72 FESTGNMI 7.612
35 FVSTGNLI 7.216 73 FESHGNLI 8.248
36 FESTFNLI 7.895 74 FESTGLLI 8.079
37 FESNGNLI 7.88 75 FESGGNLI 7.985
38 AESKSVII 6.648 76 FSSTGNLI 7.718
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Table A.6: List of peptides for CoEPrA Task 3 (Testing)

No. Peptide Expected No. Peptide Expected
1 GLYSSTVPV 7.577 68 AMVGAVLTA 7.122
2 FTDQVPFSV 7.212 69 ITAQVPFSV 7.02
3 VLIQRNPQL 7.644 70 ILLSIARVV 6.342
4 LLWFHISCL 6.682 71 FLYGALLAA 8.201
5 FMGAGSKAV 6.2 72 ALMPLYACI 8
6 FVWLHYYSV 7.821 73 GLYYLTTEV 7.682
7 ALAKAAAAM 7.398 74 GLLGWSPQA 8.027
8 LLLCLIFLL 7.585 75 LLWQDPVPA 7.343
9 YAIDLPVSV 7.801 76 MLGNAPSVV 6.644
10 GLSRYVARL 7.174 77 SLADTNSLA 6.342
11 QVMSLHNLV 6.025 78 HLYSHPIIL 7.131
12 MMWYWGPSL 7.921 79 ALVLLMLPV 7.506
13 YLFPGPVTA 8.495 80 RMPAVTDLV 6.903
14 VLLPSLFLL 7.444 81 LLWSFQTSA 7.818
15 KIFGSLAFL 7.478 82 YLEPGPVTL 7.058
16 AVIGALLAV 7.747 83 ALAKAAAAV 6.597
17 ALLAGLVSL 7.117 84 YMLDLQPET 7.373
18 ALSTGLIHL 6.505 85 HLAVIGALL 6.986
19 YALTVVWLL 6.924 86 AMKADIQHV 6.777
20 YLDQVPFSV 8.638 87 RMFAANLGV 7.447
21 YVITTQHWL 6.877 88 IVGAETFYV 8.456
22 FLLTRILTI 8.073 89 LQTTIHDII 5.501
23 YMIMVKCWM 6.663 90 KLAGGVAVI 6.447
24 RLMKQDFSV 7.338 91 LLPLGYPFV 6.477
25 FLAGALLLA 6.223 92 ITFQVPFSV 7.179
26 FLEPGPVTA 6.898 93 GLYLSQIAV 7.017
27 LLAQFTSAI 7.301 94 LLVFACSAV 6.342
28 AVAKAAAAV 6.495 95 AMLQDMAIL 7.009
29 GLCFFGVAL 5.38 96 ILAGYGAGV 6.937
30 VIHAFQYVI 5.914 97 YLAPGPVTA 8.032
31 ILYQVPFSV 8.31 98 SLHVGTQCA 5.842
32 DLMGYIPLV 7.097 99 ILAQVPFSV 7.939
33 NLQSLTNLL 6 100 YLVSFGVWI 8.721
34 SVYVDAKLV 6.991 101 ALYGALLLA 8.143
35 RLLGSLNST 6.778 102 GLQDCTMLV 7.638
36 WLLIDTSNA 6.447 103 VLTALLAGL 7.086
37 KTWGQYWQV 7.957 104 FLYGALVLA 7.409
38 FLYGGLLLA 8.959 105 VLHSFTDAI 6.17
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39 ITDQVPFSV 6.947 106 ILTVILGVL 6.419
40 FAFRDLCIV 6.963 107 ITMQVPFSV 7.398
41 YLYPGPVTV 8.051 108 LLFGYPVYV 7.886
42 WLSLLVPFV 8.164 109 HLESLFTAV 5.301
43 TLLVVMGTL 5.58 110 RLTEELNTI 6.06
44 LLDVPTAAV 7.77 111 VMGTLVALV 7.547
45 YLYVHSPAL 8.268 112 SVYDFFVWL 7.289
46 AMFQDPQER 5.74 113 YLMPGPVTA 8.367
47 VVLGVVFGI 7.845 114 ITYQVPFSV 7.48
48 MALLRLPLV 7.279 115 ILSQVPFSV 7.699
49 HLYQGCQVV 6.832 116 RLVSGLVGA 6.818
50 IISCTCPTV 6.58 117 LLLLGLWGL 7.658
51 DPKVKQWPL 6.176 118 NLYVSLLLL 7.114
52 QLFEDNYAL 7.764 119 RMYGVLPWI 7.538
53 LMAVVLASL 6.954 120 FVNHDFTVV 6.523
54 LLSCLGCKI 5.342 121 ALIHHNTHL 6.623
55 VVMGTLVAL 7.069 122 ALCRWGLLL 7
56 VALVGLFVL 5.079 123 GLVDFVKHI 6.663
57 LLACAVIHA 6.602 124 ILDEAYVMA 6.623
58 VLAGLLGNV 7.721 125 GLLGNVSTV 7.62
59 YLSEGDMAA 6.532 126 HLLVGSSGL 5.792
60 KILSVFFLA 8.301 127 ILMQVPFSV 8.125
61 IMPGQEAGL 7.188 128 VLVGGVLAA 6.732
62 FLYGALLLA 8.585 129 AAAKAAAAV 6.398
63 ALLSDWLPA 7.025 130 VLLLDVTPL 7.301
64 GLACHQLCA 6.38 131 YLDLALMSV 8.26
65 YMDDVVLGA 6.699 132 WLEPGPVTA 6.082
66 QLFHLCLII 6.886 133 LLVVMGTLV 5.869
67 FVDYNFTIV 6.62



Appendix B

Learning in Restricted Bolzman

Machines

This appendix explains the leaning mechanism of Restricted Bolzman Machines

(RBM).

Let X the input data and P (X|Θ) is the model to be learned, and Θ is a set

of parameter which need to be estimated. Assume S = x1, x2, . . . , xn is the

data vector. Then the maximum likelihood can be calculated from the following

formula:

logL(Θ|S) = log

l∏
1

P (xi|Θ) =
l∏
1

logP (xi|Θ) (B.1)

This is equivalent to minimising of the distance between Q underlying S and P,

which are unknown distribution and the true distribution respectively, in relation

to the Kullback-Leibler divergence [187]. Therefore,

KL(Q||P ) =
∑
x∈Ω

Q(x)log
Q(x)

P (x)
=
∑
x∈Ω

Q(x)logQ(x)−
∑
x∈Ω

Q(x)logP (x) (B.2)

and the update rule is:

Qt+1 = Q(t) + η
∂

∂Qt
(logL(Qt|S))− λQt + µδQt−1 = Qt + δQt (B.3)
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where µ, Ω, and λ, are the learning, weight decay regularisation, momentum

parameters, respectively. By exploting the Equation(4.6), the gradiant of log

likelihood can be calculated from:

∂logL(Θ|v)

∂Θ
=

∂

∂Θ
(log

∑
h

e−E(v,h))− ∂

∂Θ
(log

∑
v,h

e−E(v,h))

= −
∑
h

P (h|v)
∂E(v, h)

∂Θ
+
∑
v,h

P (h|v)
∂E(v, h)

∂Θ

=

〈
∂E(v, h)

∂Θ

〉
d

+

〈
∂E(v, h)

∂Θ

〉
m

(B.4)

where
〈
∂E(v,h)
∂Θ

〉
d

and
〈
∂E(v,h)
∂Θ

〉
m

expectations for the data and model distribu-

tion, respectively.
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tavo Camps-Valls. Multioutput support vector regression for remote sens-

ing biophysical parameter estimation. IEEE Geoscience and Remote Sens-

ing Letters, 8(4):804–808, 2011.

[106] Saheli Sadanand, Todd J Suscovich, and Galit Alter. Broadly neutralizing

antibodies against hiv: New insights to inform vaccine design. Annual

review of medicine, 67:185–200, 2016.

[107] Angela S Clem et al. Fundamentals of vaccine immunology. Journal of

global infectious diseases, 3(1):73, 2011.

[108] Morgane Rolland, Paul T Edlefsen, Brendan B Larsen, Sodsai Tovanabu-

tra, Eric Sanders-Buell, Tomer Hertz, Chris Carrico, Sergey Menis, Craig A

Magaret, Hasan Ahmed, et al. Increased hiv-1 vaccine efficacy against

viruses with genetic signatures in env v2. Nature, 490(7420):417–420, 2012.

[109] Hussein S Bagalb. Cellular and Molecular Biological Studies of a Retroviral

Induced Lymphoma, Transmitted via Breast Milk in a Mouse Model. PhD

thesis, University of Toledo, 2008.

[110] AS Perelson, P Essunger, and DD Ho. Dynamics of hiv-1 and cd4+ lym-

phocytes in vivo. AIDS (London, England), 11:S17–24, 1996.

[111] Charlotta Nilsson, Said Aboud, Muhammad Bakari, Eligius F Lyamuya,

Merlin L Robb, Mary A Marovich, Patricia Earl, Bernard Moss, Christina

Ochsenbauer, Britta Wahren, et al. Potent functional antibody responses

elicited by hiv-i dna priming and boosting with heterologous hiv-1 recom-

binant mva in healthy tanzanian adults. PloS one, 10(4):e0118486, 2015.

[112] Georgia D Tomaras and Barton F Haynes. Strategies for eliciting hiv-1

inhibitory antibodies. Current Opinion in HIV and AIDS, 5(5):421, 2010.

[113] Harriet L Robinson. Non-neutralizing antibodies in prevention of hiv in-

fection. Expert opinion on biological therapy, 13(2):197–207, 2013.

[114] Yongjun Guan, Marzena Pazgier, Mohammad M Sajadi, Roberta Kamin-

Lewis, Salma Al-Darmarki, Robin Flinko, Elena Lovo, Xueji Wu, James E

Robinson, Michael S Seaman, et al. Diverse specificity and effector function

among human antibodies to hiv-1 envelope glycoprotein epitopes exposed



Bibliography 161

by cd4 binding. Proceedings of the National Academy of Sciences, 110(1):

E69–E78, 2013.

[115] Rasheed Ahmad, Sardar TAK Sindhu, Emil Toma, Richard Morisset, Jean

Vincelette, Jose Menezes, and Ali Ahmad. Evidence for a correlation be-

tween antibody-dependent cellular cytotoxicity-mediating anti-hiv-1 anti-

bodies and prognostic predictors of hiv infection. Journal of clinical im-

munology, 21(3):227–233, 2001.

[116] Margaret E Ackerman, Anne-Sophie Dugast, and Galit Alter. Emerging

concepts on the role of innate immunity in the prevention and control of

hiv infection. Annual review of medicine, 63:113–130, 2012.

[117] Margaret E Ackerman and Galit Alter. Opportunities to exploit non-

neutralizing hiv-specific antibody activity. Current HIV research, 11(5):

365–377, 2013.

[118] Stanley A Plotkin. Correlates of protection induced by vaccination. Clinical

and Vaccine Immunology, 17(7):1055–1065, 2010.

[119] Ickwon Choi, Amy W Chung, Todd J Suscovich, Supachai Rerks-

Ngarm, Punnee Pitisuttithum, Sorachai Nitayaphan, Jaranit Kaewkung-

wal, Robert J O’Connell, Donald Francis, Merlin L Robb, et al. Machine

learning methods enable predictive modeling of antibody feature: func-

tion relationships in rv144 vaccinees. PLoS computational biology, 11(4):

e1004185, 2015.

[120] Wen Shi Lee, Matthew Sidney Parsons, Stephen John Kent, and Marit

Lichtfuss. Can hiv-1-specific adcc assist the clearance of reactivated latently

infected cells? Frontiers in immunology, 6, 2015.

[121] RA Freitas Jr. Human body chemical composition (section 3.1).

Nanomedicine: Basic Capabilities, 1.

[122] J.M. Berg, J.L. Tymoczko, and L. Stryer. Biochemistry, Fifth Edition.

W.H. Freeman, 2002. ISBN 9780716730514. URL https://books.google.

co.uk/books?id=uDFqAAAAMAAJ.

https://books.google.co.uk/books?id=uDFqAAAAMAAJ
https://books.google.co.uk/books?id=uDFqAAAAMAAJ


Bibliography 162

[123] M Jesus Perez de Vega, Mercedes Mart́ın-Mart́ınez, and Rosario González-
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