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ABSTRACT  

Biometric technology has emerged as a viable identification and authentication solution with 

various systems in operation worldwide. The technology uses various modalities, including 

fingerprint, face, iris, palmprint, speech, and gait. Biometric recognition often involves images 

or videos and other image impressions that are fragile and include subtle details that are 

difficult to see or capture. Thus, there is a need for developing imaging applications that allow 

for accurate feature extraction from images for identification and recognition purposes. 

Biometric modalities can be classified into two classes: physiological (i.e. fingerprint, iris, face, 

palm-print) or behavioural traits (speech, gait). This work is concerned with an investigation 

of biometric recognition at a distance and the gait modality has been chosen for various reasons. 

Gait data can be captured at a distance and is non-invasive. Additionally, it has advantages 

such as the fact that a person’s gait is hard to copy, and by trying to do so, the imitator will 

likely appear more suspicious. Although, due to covariates, for example, a change in viewing 

angle, clothes, shoes, shadow or elapsed time can make gait recognition additionally 

challenging. There are several approaches for studying gait recognition systems such as model-

based and model-free. This thesis is based on a model-free approach and proposes a supervised 

feature extraction approach capable of selecting distinctive features for the recognition of 

human gait under clothing and carrying conditions. 

In this work; to allow for the characterisation of human gait properties for individual 

recognition, a spatiotemporal gait representation technique called Gait Energy Image (GEI) has 

been used. This approach is aimed at improving the recognition performance based on the 

principles of feature texture descriptors extracted from GEI. Furthermore, as part of this work, 

the dynamic parts of the energy gait representation have been proposed as means to extract 
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more discriminative information from a gait sequence using reduction techniques in order to 

further improve the human identification rate. 

The four methods proposed were evaluated using CASIA Gait Database (dataset B) and USF 

Database under variations of clothing and carrying conditions for different viewing angles.  

The first method is based on Haralick texture feature, and use the RELIEF selection algorithm. 

This method showed that a judicious deployment of horizontal GEI features outperforms 

similar methods by up to 7.00%. In addition, this method achieved an improved classification 

rate of up to 80.00% from a side view of 90o.  

The second and third contributions are concerned with an investigation of the Gabor filter bank 

and Multi-scale Local Binary Pattern (MLBP) as an efficient feature extraction for gait 

recognition under clothing distortions. To achieve this, various dimension reduction techniques 

including Kernel Principal Component Analysis, Maximum Margin Projection, Spectral 

Regression Kernel Discriminant Analysis and Locality Preserving Projections were 

investigated. The results showed that the proposed methods outperform the state-of-the-art 

counterparts by achieving up to 93.00% Identification Rate (IR) at rank-1 using the Gabor filter 

method, and achieving up to 92.00% IR using the MLBP method, when using a k-NN classifier 

for a side view of 90o. 

 The final contribution of this work is concerned with an investigation of the Haar wavelet 

transform and its use for extracting powerful features for human gait recognition under clothing 

distortions. The experimental results using a k-NN classifier yielded attractive results of up to 

93.00% in terms of highest IR at rank-1, compared to existing and similar state-of-the-art 

methods. It should be noted that all the experiments were carried out using the MATLAB 

programming environment. 
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CHAPTER ONE: INTRODUCTION 

1.1 Scope of the Thesis 

Increased levels of crime have led to the pursuit of new technical innovations to improve the 

performance of biometric recognition systems. For instance, global crime rates have driven the 

rapid deployment of closed-circuit TV (CCTV) surveillance for crime locating and avoidance, 

in order to provide a more secure environment on a global scale. CCTV, if effectively 

positioned, can catch a criminal either entering, escaping a scene of a crime or committing a 

crime first hand. Thus, it is an indispensable aid in providing direct proof in the context of 

prosecutions or the like. 

In the last century, traditional methods of user identification and authentication included PIN 

codes, passwords and magnetic strip cards, which all have many disadvantages. The main 

drawback of these methods is that they test the validity of the password, PIN or magnetic card 

rather than the actual user. As a result, they can easily be shared with illegal users. The solutions 

used to deal with traditional access to verification or identification systems have previously 

concentrated on security. Though, more recently, this has shifted to biometric recognition 

methods being implemented as a result of their advancement. The main feature of biometrics 

is that the ID is a part of the human behaviour or physiology which is unique to each individual. 

The field of biometric technology has become extremely significant nowadays, some examples 

of its value and use are in federal state and local government, in financial transactions, personal 

data privacy and in many other commercial applications (Pousttchi et al., 2004), (Kim et al., 

2004). These technologies are already being used for network security, IDs, banking, police 

investigations, healthcare, mobile devices and social services (A. Jain et al., 1997). Recently, 
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biometric technology is rapidly expanding as a trusted and effective technology for human 

identification through the use of unique behavioural and/or physical characteristics. According 

to (A. K. Jain et al., 2004), a biometric solution must satisfy the following properties: 

 Universality: every individual ought to have the characteristic. 

 Uniqueness: individuals are well separated by the characteristic. 

 Permanence: there is sufficient invariance with the passage of time. 

 Collectability: they are qualitatively quantifiable. 

Human characteristics cannot be stolen or lost unlike other types of authentication and 

identification using passwords or tokens. Conveniently, biometric technology allows users a 

secure admission to services via authentication and access control security systems using 

several biometric modalities like a fingerprint, the iris, face, or voice (A. Jain et al., 2007). 

Biometrics can be split into two classes: physiological and behavioural. Behavioural biometric 

modalities include a signature, gait, typing rhythm etc., whilst a face, fingerprint, iris, and hand 

geometry all fall under physiological biometrics. Historically, fingerprints were reportedly 

used in Japan as early as the eighth century and handwritten signatures were used in Europe 

and China (Anderson, 2008). More detailed descriptions of biometric based recognition using 

either physical or behavioural traits can be found in Anderson’s work (Anderson, 2008). 

Evidently, biometrics have played an important role in identity recognition throughout history 

and with the rapid evolution of technology over the past few decades, even more new 

dimensions are manifesting day-by-day. 

Developing a technology that provides users with secure access to a service, is a great 

challenge. There are several conventional means for personal identification or authentication 

including passports, keys, passwords, access cards for physical access control at building 
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entrances or even a time attendance system for employee management. The disadvantages of 

conventional means of personal identification and/or authentication are losing or forgetting 

passwords, keys or passports; leading to potentially significant losses. Conversely, human 

characteristics cannot be lost or stolen and that is why systems using biometrics are proving to 

be an efficient solution to such problems. 

Table 1-1 presents a timeline of the biometric pattern developments that resulted in 

improvements in the technology and an increase in the amount of biometric data available. 

Approaches based on computer vision have been widely researched in order to build automatic 

biometric recognition systems. According to (A. K. Jain et al., 2004); systems based on 

physiological biometrics such as fingerprints or the iris, have already been developed and are 

currently in use in real-world applications (A. K. Jain et al., 2004). 

Table 1-1. Biometric Modality development.

 

The recognition system introduces automatic evaluation of the iris, fingerprint and face images 

of current subjects and their stored images in the system database. The average time for a 

traveller check process is then reduced whilst also expanding the nature of security within the 

airport. As traveller numbers keep on increasing rapidly and on a considerably vast scale, 

biometric technology is needed imminently. Recently many researchers have tried to tackle 

this matter both by enhancing and developing currently existing biometric modalities or by 
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starting to explore other new biometric modalities. As an example, iris recognition technology 

has been developed a couple years ago to enable a convenient biometric and fast authentication 

process (Matey et al., 2006). 

Radu et al. proposed a 2D Gabor filter bank to be used for iris recognition systems (Radu et 

al., 2013). The proposed approach is suitable for both near infrared and visible spectrum iris 

images. Also, Trokielewicz et al. proposed a unique analysis of post-mortem human iris 

recognition in (Trokielewicz et al., 2016). The findings of this proposed analysis showed that 

the dynamics of post-mortem changes to the iris that are important for biometric identification 

are much more moderate than previously believed (Trokielewicz et al., 2016). 

On the other hand, gait recognition has the potential to satisfy many of the performance 

requirements. This non-invasive biometric modality can be extracted from a distance. 

Examples of common biometrics used now are shown in Figure 1.1. 

 

A biometric recognition system is essentially a pattern recognition system which recognises 

users by matching their behavioural or physiological characteristics with stored templates. The 

users must be enrolled in the system in order that their biometric template or reference can be 

captured. This template is securely stored in a central database. The template is used for 

matching when an individual needs to be identified for a particular purpose. Suitably, a 

Figure 1-1. Personal identification with different biometric systems, (A. K. Jain et al., 2004). 
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biometric system can function in either identification mode or verification (authentication) 

mode. 

• In identification mode (Who am I?): the system performs 1: N match between the probe 

template and all the N templates stored in the database. 

• In the verification mode (Am I who I claim to be?): the system has to perform 1:1 

matches between the stored template and the probe template to reject or confirm the 

identity. Figure 1-2 and Figure 1-3 represent gait identification and verification modes 

respectively. 

 The third application in biometric recognition is a watch list: this mode which has been 

defined by Phillips (Phillips et al., 2003), aims to compare a suspected person against 

a database of known persons (Watchlist). In this system, the person does not claim any 

Figure 1-2. Block diagram of a gait identification system. 
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identity; it is an open-universe test. The test person may or may not be in the system 

database (Bouridane, 2009). Figure 1-4 shows biometric systems using fingerprints and 

the iris at Heathrow airport, London, in December 2006. 

 

 

Figure 1-4. Automated Biometric recognition using iris and fingerprint recognition from 

 (Heathrow, 2006). 

Figure 1-3. Block diagram of a gait verification system. 



Chapter One: Introduction 

7 

1.2 Human Identification based on Gait Recognition  

Jain et al. (A. K. Jain et al., 2004) summarised gait recognition by stating “it is impossible to 

miss the way an individual walks”. Gait is a complex spatiotemporal biometric modality and 

is not extremely unique but is adequately biased to permit checks in some low-security 

applications. It is a behavioural biometric and may not remain invariant, particularly over a 

long period of time. Examples of this, in body weight or the acquisition of significant wounds. 

1.2.1 Motivations  

Gait recognition is an appealing and complementary form of recognition compared with other 

biometric modalities such as fingerprints, face or palm-print recognition as it has many 

advantages. Unlike other biometric modalities gait data can be captured from a distance and 

has a low resolution. Moreover, a person’s gait is hard to imitate and by trying to do so the 

person will probably appear more suspicious than with other biometric techniques, such as face 

recognition, as the face can easily be hidden. Additionally, when face recognition is not 

possible, gait as a biometric parameter becomes invaluably useful. 

1.2.2 Challenges of Gait Recognition 

Gait recognition, as is the case with numerous computer vision systems, faces challenges that 

are extrinsic to the image acquisition process e.g. noise, lighting conditions, etc. In particular, 

extracting features from a gait video sequence requires the extraction of the moving individual 

from the background, as shown in Figure 1-5. Image noise and changing lighting conditions 

specifically influence the capacity of algorithms to segment the moving individual from the 

background effectively, hence, bringing missing body parts and the incorporation of 

background e.g. shadows, as shown in Figure 1-6.  



Chapter One: Introduction 

8 

To reduce the effect of noise and changing lighting conditions, a pre-processing stage is usually 

required in a gait recognition system. 

Pre-processing aims to remove some of these issues. It can be seen from the pre-processed 

silhouettes (shown in Figure 1-7) that, even after pre-processing, the extracted silhouettes are 

still noisy. This means that a gait recognition system has to deal with a large degree of noise 

before the feature level. 

In addition to image noise, lighting condition changes and occlusions, there are many other 

aspects that limit the performance of gait recognition such as the effects of clothes, shoes, 

shadows, carrying conditions and the uncontrolled environment. 

 

 

Figure 1-5. Extract all the image frames from the video file (TUM database). 

Figure 1-6. Silhouette images include missing body parts, noise, and shadows. 
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1.2.3 Objectives 

The overall objective of this work is to investigate and propose methods for robust gait 

recognition under covariate conditions across various viewing angles. The project aims to 

investigate and develop gait recognition approaches with improved recognition performances 

to handle covariate factors, which are perceived to adversely affect recognition performances. 

Hence, one of the major goals of this work is to improve the execution of existing gait 

recognition methods in the presence of variable covariate conditions in the probe set. Such a 

set-up diligently mimics practical environments and truly tests the effectiveness of gait as a 

biometric modality in unconstrained conditions. Another objective of this work is to address 

the limitations of existing cross view gait recognition methods to improve recognition 

performance across viewing angle changes. 

Therefore, this thesis investigates novel gait identification methods to improve the recognition 

performances by better understanding: 

 How covariate factors behave while an individual is in motion. 

 The impact covariate factors have on different gait conditions. 

Figure 1-7. Example for pre-processed silhouettes (TOTON database). 
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Four supervised feature extraction methods have been proposed in this thesis for gait 

recognition based on texture descriptors extracted from the Gait Energy Image (GEI). These 

methods are the Haralick features, Gabor filter bank, Local Binary Pattern and Wavelet 

transform. 

The proposed methods described below are capable of extracting the most discriminative 

features from the GEI under different covariates or conditions, thus improving recognition 

performances: 

 Haralick texture descriptors via RELIEF selection algorithm. 

 Multi-scale Local Binary Pattern descriptor via Spectral Regression Kernel 

Discriminate Analysis (SRKDA) reduction algorithm. 

 Gabor filter bank descriptor via several reduction algorithms (SRKDA, Kernel 

Principal Component Analysis (KPCA) and Maximum Margin Projection (MMP)). 

 Wavelet transforms approach via SRKDA reduction algorithm. 

1.3 The Structure of the Thesis 

This thesis consists of seven chapters including chapter 1 and is summarised as follows: 

 Chapter Two discusses existing research on gait recognition with an emphasis on robust 

recognition under variable covariate conditions. In addition, the chapter gives some 

background on the different types of gait representation including the most commonly 

known gait databases and approaches related to this research investigation. 

 Chapter Three describes the principles of gait recognition based on the concept of GEI. 

It explains the basic procedure of gait recognition approach and all techniques applied 

to gait identification (e.g. feature extraction, feature selection, feature reduction and 

classification). 
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 Chapter Four proposes a gait recognition method based on the Haralick texture features 

using RELIEF algorithm to select relevant features generated by GEI.  The algorithm 

is validated using available datasets (CASIA and USF); an analysis of the results is then 

given to gauge the effectiveness of the proposed technique. 

 Chapter Five discusses a gait recognition technique based on a set of Multi-Scale 

Descriptors for feature extraction using Multi-Scale Local Binary Pattern (MLBP) and 

Gabor filter bank. The validation approach is based on CASIA and USF datasets and 

the results obtained are evaluated and contrasted against some existing methods. 

 Chapter Six proposes a gait recognition technique based on the wavelet coefficients 

using the Haar wavelet transform with SRKDA algorithm. Experiments are carried out 

using the CASIA dataset and the obtained results are then evaluated. 

 Chapter Seven gives a summary of the contributions of the research, including future 

work. 
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CHAPTER TWO: LITERATURE REVIEW  

2.1 Introduction 

A biometric system involves recognising a pattern from a person. Such a system is based on a 

unique feature, derived from either a physiological or behavioural characteristic. Biometric 

technology, including behavioural and physiological modalities of humans, has been discussed 

earlier in the previous chapter. 

Gait is a behavioural biometric that has become an important behavioural characteristic to 

identify people by the way they walk, however, the human gain may not remain invariant, 

especially over long periods of time. This is due to fluctuations in body weight, major injuries 

involving joints or brain or due to the effect of various other covariates which include variations 

in clothing and carrying conditions (briefcase, handbag, etc.). 

Therefore, this research investigates a gait recognition system that can utilise useful and 

reliable attributes to operate under the conditions mentioned above. 

A survey of person gait as a biometric technology can be found in the work of Boyd and Little 

(Boyd et al., 2005). Nixon and Carter introduced general surveys of human gait from a 

computer vision point of view (M. S. Nixon et al., 2004), (M. S. Nixon et al., 2006), (Mark S 

Nixon et al., 2012) and Liu et al. (L.-F. Liu et al., 2009). A more approach-centred survey of 

gait recognition from a model-based perspective is provided by Yam (Yam et al., 2015) and 

Nixon (Chew-Yean Yam, 2009). The work of Gafurov (Gafurov, 2007) goes beyond the 

boundaries of basic visual approaches and, along with vision-based methods, also surveys the 

use of other sensors in gait literature. 
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It makes sense to first define and review the human walking style and feature extraction 

techniques before providing a review of the state-of-the-art approaches in gait recognition 

research. Then, a review of related topics of motion recognition, which are related to the larger 

field of person motion analysis and gait representation through different types of gait database, 

is discussed. Finally, the challenges of covariate factors and standardised datasets used for 

validation are discussed. 

2.2 What is Human Gait? 

A gait cycle is a time taken between successive instances of first foot-to-ground contact for the 

same foot, also called the walking phase (see Figure 2-1). Each foot has two stages: a standing 

stage and a swing phase. When the foot is in touch with the ground, it is called the stance or 

standing phase. On the other hand, when the foot is lifted and moved forwards, this is classified 

as the swing phase. The phase begins with the heel strike of one foot marking the start of the 

stance cycle. The lower leg flexes to bring the foot level on the floor and the body weight is 

moved onto it. The other leg swings through in front as the heel lifts off the ground. The body 

weight is transmitted onto the other foot, making the knee to bend. The foot, which is behind, 

then lifts off the ground, finishing the stance phase. (Cunado et al., 2003). 

Figure 2-1. The style walking (Cunado et al., 2003). 



Chapter Two: Literature Review 

14 

2.3 Gait Representation 

The relative motion between different body parts during walking characterises the human gait. 

However, researchers have previously proposed gait representation approaches by extracting 

silhouettes images such as GEI (Ju et al., 2006), self-similarity images (Ben Abdelkader et al., 

2004), Gait Entropy Images (GEnI) (K. Bashir et al., 2009) and Shape Variation-Based Frieze 

Pattern (SVB Frieze pattern) (Lee et al., 2007). In addition, four directional variations of 

Gradient GEI have been used for gait recognition by Guru et al (Guru et al., 2016). The 

proposed based on feature level fusion of four directional vector’s (i.e. horizontal, vertical, 

forward and backward diagonal). Verlekar proposed a system to identify the walking direction 

using a perceptual hash (PHash) computed over the leg region of the GEI in order to solve 

some of the challenges encountered by gait recognition (Verlekar et al., 2017). Chaurasia 

proposed a gait feature representation (i.e., PRW DF GEI), where the RW-based method is used 

for image segmentation and the segmentation problem is solved using Poisson’s equation, and 

where the resulting feature, called PRW GEI. DF GEI, is a discrete Fourier transform (DFT)-

based gait feature (Chaurasia et al., 2017). 

2.3.1 Extraction of Silhouettes Image 

Research on gait recognition has been conducted to enable the recognition of the gait of an 

individual from a video footage by extracting and processing the information related to the 

motion using the concept of GEI. A typical scheme for a GEI includes the following steps: 

 Firstly, the video stream or video data is a series of consecutive images. The aim of 

this step is to convert the video into images, also called frames. 
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 Secondly, a silhouette image i.e. a binary image of an individual, is generated using 

an appropriate image segmentation algorithm e.g. thresholding, background 

modelling, foreground modelling etc. 

Silhouette images are extracted from original human walking sequences. A silhouette pre-

processing procedure (A.K. Jain, 1989) is then applied on the extracted silhouette sequences. 

This pre-processing step includes size normalisation (i.e. proportionally resizing each 

silhouette image so that all silhouettes have the same height) and horizontal alignment (i.e. 

centring the upper half silhouette part with respect to its horizontal centroid). 

2.3.2 Average Silhouettes 

According to Liu and Sarkar, the research community started to shift towards static signature 

due to the increased computational cost of temporal matching. Liu and Sarkar have proposed 

the use of an average image of a silhouette called a gait energy image (Z Liu et al., 2004). This 

concept has been proposed against some algorithms such as the baseline one. A GEI is a 

compact representation of gait (a gait cycle is represented using just one image), is easy to 

compute, and is insensitive to noise. A GEI can be seen as the sum of images of the walking 

extracted silhouettes divided by the number of images of the video stream and can be defined 

as follows: 

 𝐺(𝑥, 𝑦) =
1

𝑁 
∑ 𝐼(𝑥, 𝑦, 𝑡)𝑁

𝑡=1      (2.1) 

where N and t are the number of frames within a complete gait cycle and the frame number in 

the gait cycle, respectively. I is the silhouette image whose pixel coordinates are located at 

𝑥 𝑎𝑛𝑑 𝑦 positions. Figure 2-2 shows an example of the silhouette of an individual. 
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2.3.3 Gait Entropy Image 

Bashir et al. proposed to differentiate between the dynamic and static areas of the GEI by 

calculating the Shannon entropy at each pixel location of a GEI (K. Bashir et al., 2009). 

Shannon entropy measures the uncertainty associated with a random variable. The pixel values 

of a silhouette image in the dynamic areas are more obscure having the highest values of the 

entropy, which is clearly shown in Figure 2-3. The legs and arms show more motion compared 

to other body parts and are represented by higher intensity values. A GEnI can be used to select 

the information gait features from the GEI. Figure 2-3 shows Gait Entropy Images from the 

CASIA database in (K. Bashir et al., 2009). 

2.3.4 Flow Field 

(Khalid Bashir et al., 2009) proposed the use of the optical flow as a feature extraction method 

for gait recognition. The optical flow was displayed in four directions framing four templates 

portraying the movement (see Figure 2-4). Another template was additionally framed 

Figure 2-2. Silhouette image (Z. Liu et al., 2004). 

Figure 2-3. Giat Entropy Images (K. Bashir et al., 2009). 
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representing the static body parts. For the recognition purposes, a score was computed for every 

four templates (the template for negative y-axis was disregarded), and finally, a final 

recognition score was computed by using these individual scores. Although the algorithm is 

slightly computationally costly, it performs well against covariates and noise distortions. Their 

proposed method achieved recognition results of 79.50%, 83.60% and 48.80% for walking 

normal, carrying a bag and wearing a coat, respectively. 

2.3.5 Symmetry 

Given the symmetrical nature of the gait (Hayfron-Acquah et al., 2003); a symmetry operator 

to extract the features of the cycle is suggested. The operator works well against noise and low-

resolution data and this is in accordance with the fact that the operator gives more importance 

to the symmetric nature of moving object’s description by temporal symmetry. Although the 

algorithm is marginally computationally expensive, it provides a quite strong signature from a 

small amount of training data. This method uses the Generalised Symmetry Operator, which 

locates features according to their symmetrical properties by using the symmetry operator, the 

Discrete Fourier Transform and a k-nearest neighbour approach. The results produced 

encouraging recognition rates on a small SOTON database. Furthermore, the larger database 

had almost the same results as those obtained from the smaller database.  Figure 2-5 shows the 

Figure 2-4. Example of the 5 motion descriptors proposed in (Khalid Bashir et al., 2009). 
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symmetry image from SOTON data. Following this, an overview of the steps involved in 

extracting symmetry from silhouette information is given. 

First, the image background was computed from the median of five image frames and 

subtracted from the original image (Figure 2-5a) to obtain the silhouette image (Figure 2-5b). 

This was possible because the camera used to capture the image sequences was static and there 

was no translational motion. Additionally, the subjects were walking at a constant pace. The 

Sobel operator was then applied to the image in (Figure 2-5b) to derive its edge-map, as shown 

in (Figure 2-5c). To remove edges and reduce weak strength noise, the edge-map was 

thresholded to set all points beneath a chosen threshold to zero. These processes reduce the 

amount of computation in the symmetry calculation. The symmetry operator was then applied 

to give the symmetry map, as shown in Figure 2-5d. For each image sequence, the gait signature 

was obtained by averaging all the symmetry maps. 

2.3.6 Silhouette Similarity 

Using the NIST/USF baseline approach Sarkar et al. (Sudeep Sarkar et al., 2005) performed 

gait recognition by using a temporal correlation of the silhouettes extracted. The aim was to 

develop a technique to improve the recognition performances. The proposed approach is 

evaluated on the Mobo data and on the NIST/USF data. Sarkar et al. extracted a silhouette 

image in two steps: 

Figure 2-5. Image from the SOTON data showing the concept of symmetry 

 (Hayfron-Acquah et al., 2003). 
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 Compute the background statistics of the RGB values at each image location, and then 

calculate the mean and the covariance of the RGB values at each pixel location. The 

last point in this step is to compute the Mahalanobis distance in RGB-space for the 

pixel value from the estimated mean background value. 

 Scale and centre the silhouette image. 

In this approach, some covariates can affect the recognition result rates such as time and 

different surfaces. For the remaining conditions e.g. view, briefcase and shoe, the results were 

acceptable compared to a selection of other methods (see Figure 2-6). 

2.3.7 Skeletal Image  

Blum (1967) has used skeletons to represent shapes for numerous computer vision tasks. 

However, skeleton representations are not used frequently for human gait recognition because 

of their sensitivity to boundary noise causes imperfect extraction of the features. This 

sensitivity relates to the following: 

1) Walking activity causes the body to self-occlude. 

Figure 2-6. Sample image of USF data as viewed the top row (a) to (e) with shows sample silhouette in 

the bottom row (f) to (j), (S. Sarkar et al., 2005). 
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2) Silhouette quality has a direct effect on skeleton precision. 

Previously, (Whytock et al., 2014) has presented a model-free skeleton approach based on 

smooth distance functions generated from a Poisson equation using a Skeleton Variance Image 

(SVIM) for human gait recognition. The smooth distance function reduces the sensitivity to 

boundary noise and yields a robust skeleton as shown in Figure 2-7. In this approach, 

experimental results using the Nearest Neighbour classifier yielded noteworthy results of 

98.4% and 64.2% for normal walking and carrying a bag, respectively. 

2.4 Gait Recognition Approaches 

Human gait recognition techniques can be split into two approaches: model-based approaches 

and model-free approaches. 

 2.4.1 Model-based Approaches 

These approaches are derived from the movement of the torso and/or the legs of a person. The 

distinction of a structural approach is one, which uses static body parameters for recognition, 

such as stride length (Ben Abdelkader et al., 2002). A model can be the motion of the angles 

Figure 2-7. The distance function generated by the Euclidean metric demonstrates the retention of 

boundary noise across cool and hot colours. The skeleton extracted by the medial axis transform. Using 

TUM GAID Dataset (Whytock et al., 2014). 



Chapter Two: Literature Review 

21 

between the limbs or hip rotation etc. One such model-based approach was proposed by Yam 

(C. Yam et al., 2004), where the authors extended the existing model-based approaches and 

differentiated between running and walking. 

Lu proposed a Layered Deformable Model (LDM) for the human body to enhance human gait 

analysis (Haiping et al., 2006). The model of LDM determines the body part lengths, widths 

and the positions and joint angles of the human body using 22 parameters. The LDM model 

consists of four layers and allows for limb deformation. The proposed method recovers its 

parameters (and thus the human body pose) from automatically extracted silhouettes. The 

experiments show that an average error rate of 7.00% is achieved for the lower limb joint 

angles, which is important for model-based gait recognition. 

Although the feature space extracted from these algorithms has significant discriminatory 

power and is more robust to clothing changes and a slight change in viewpoint, usually this 

approach tends to be computationally intensive than the model-free counterpart. For example, 

Zhao et al. (Guoying et al., 2006) suggest performing a 3D gait recognition using multiple 

cameras. Nevertheless, the registration of gait images across the camera view is nontrivial, 

even in a well-controlled environment with a clean background and little noise. 

A model-based approach for gait recognition employing a five-link biped locomotion human 

model has been proposed by Zhang in (R. Zhang et al., 2007) which introduces the idea of a 

Sagittal plane (plane bisecting the human body) in which most gait movements are carried out. 

More recently, the problem of gait recognition has been approached from a control systems 

perspective (Tao, 2008). 

Kusakunniran in (Kusakunniran et al., 2009) and (Kusakunniran et al., 2010) have proposed 

two multi-view gait recognition methods, referred to as View Transformation Model (VTM). 

The proposed approach in (Kusakunniran et al., 2009) is based on spatial domain GEI by 
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adopting Singular Value Decomposition (SVD) technique while the approach in 

(Kusakunniran et al., 2010) is based on creating a VTM from a different point of view using 

Support Vector Regression (SVR). 

Arora in (Arora et al., 2016) has proposed a technique for human identification based on the 

body structure and gait. The gait features extracted are height, hip, neck and knee trajectories 

of the human silhouette from the body structure. The proposed method includes two new 

parametric curves, a Bezier curve and a Hermit curve, based on gait pattern. The projected 

approach has been applied on the SOTON covariate database. Nevertheless, existing model-

based approaches mostly require high-resolution images to correctly extract the model 

parameters from a gait sequence. 

2.4.2 Model-free Approaches 

A model-free approach employs the features of the gait which are derived from the moving 

shape of the subject. In this method, the gait signature is derived from the spatiotemporal 

patterns of a walking person (Niyogi et al., 1994), or the 2-D optical flow of the individual (J. 

Little et al., 1995) and (James Little et al., 1998). 

The variation of the area within a particular region (Foster et al., 2003) and extraction of the 

gait features from an enhanced human silhouette image are then performed. The gait features 

are generated from a human silhouette by determining the skeleton from body segments (Ng et 

al., 2011). 

In the following, a review of the representative works of gait recognition is presented by 

following the flow of information through a gait recognition system from a model-free 

approach. 
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 For example, in (Kumar et al., 2014), the authors proposed a method of gait recognition system 

using GEI and LBP techniques to extract features from the gait representation. The LBP 

operator is applied to extract the features from the entire GEI and the Region Bounded by Legs 

(RBL). The process was implemented in instances (covariate factors) of a gait data, such as a 

changes in clothing, carrying a bag and different normal walking conditions. This technique 

achieves a performance of 85.66% in terms of Correct Classification Rate (CCR) for a side 

view 90o with the CASIA database. Above all, the input to the system is a sequence of binary 

silhouettes that are acquired using a background subtraction method. These silhouettes are used 

to calculate the gait cycle. Once the silhouettes are aligned, they are subjected to a Radon 

Transform to generate a Radon template, from which a set of features is extracted using Linear 

Discriminant Analysis (LDA). 

Hu in (Hu et al., 2013) proposed incremental learning for video-based gait recognition with 

LBP flow. The proposed method is based on optical flow including dynamics learning, pattern 

retrieval and recognition. The LBP is employed to describe the texture information of optical 

flow. The proposed achieved 60.70% in terms of CCR using the CASIA Dataset B. 

Recently, some studies have tried to strengthen the model-free approach against covariates. 

The authors in (Whytock et al., 2014) proposed to use a screened Poisson equation with 

tuneable smooth distance functions using SVIM. The method uses the SVIM from time-based 

sequences given that gait motion is more consistent over time compared to the appearance. 

Rida in (Rida et al., 2016) proposed a gait recognition method based on Modified Phase-Only 

Correlation computed from GEI. In this approach, a bandpass spectral weighting function of 

the well-known phase only correlation matching technique was employed to deal with the small 

texture features; resulting in improved performances. The algorithm achieved 81.40% in terms 
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of CCR using the CASIA database under the effect of clothing and carrying conditions for a 

side view of 90o. 

Dupuis in (Dupuis et al., 2013) proposed an interesting feature selection method based on 

random forest rank features algorithm for gait recognition. The proposed feature selection has 

reduced the computational cost while achieving a recognition performance of up to 85.6% 

when using CASIA Dataset B. 

Zhao suggested in (Zhao et al., 2016) the use of the Sparse Tensor Discriminative Locality 

Alignment (STDLA) algorithm for gait feature recognition. The STDLA algorithm consists of 

two sections; one is tensor manifold learning and the other is sparse projection. The proposed 

algorithm effectively avoids the dimensionality dilemma and overcomes the small-sample-size 

problem. Additionally, a sparse projection is able to control the weights of the original variables 

and decrease the variance brought by the possible over-fitting resulting from the least increment 

of the bias. The experiment was carried out on the USF human-ID Gait database. 

Wang in (X. Wang et al., 2017) proposed a gait recognition technique based on Gabor wavelets 

and (2D)2 PCA. The proposed technique consists of three steps; firstly, the GEI is formed by 

extracting different orientation and scale information from the Gabor wavelet. Secondly, a two-

dimensional principal component analysis (2D)2 PCA method is employed to reduce the feature 

space dimension. The (2D)2 PCA method minimises the within-class distance and maximises 

the between-class distance. Finally, the multi-class SVM is adapted to recognise different gaits. 

Experimental results performed on the CASIA gait database showed that the proposed gait 

recognition algorithm is generally robust, and provides up to 93.29% of higher recognition 

accuracy. One limitation of the proposed approach is that the generated GEI lose some dynamic 

information, since they are calculated by averaging a series of images. 
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 2.5 Gait Databases 

There was a need to make consistent datasets in order to help researchers evaluate and compare 

their results and to identify any potential limitations in order to help enhance the performances 

including their robustness. The validation of proposed algorithms and techniques using various 

datasets is an important aim to guarantee that the approaches or parameters are not biased. 

2.5.1 Database needs 

A database should satisfy the following points:  

     High individual/activity class numbers for between class and intra-class variety.  

 Real environment differential i.e., not choreography. 

 Manifold image sequences for individuals/ action classes. 

 The sequences of training and testing of the dataset should be separate with agreed 

standards. 

 Real Environment single changeable factors and coupled variable factors. 

The following sections discuss the databases used in gait recognition. Only two have been used 

in this thesis for the purpose of consistent comparative studies of the proposed algorithms. 

2.5.2 NIST/USF Database 

This database relates to the Human ID challenge problem and consists of 452 images from 75 

persons using a video collected for each person from two camera views having different surface 

conditions and shoe types (Phillips et al., 2002). The data was gathered in an outdoor 

environment reflecting the additional confusion of shadow and sunlight movement in the 

background and moving shadows because of use of cloud cover. This database is the largest 
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available in terms of the number of people, video sequences and the variety of conditions under 

which a person’s gait has been recorded. 

Later, the database was extended to be 1,870 sequences from 122 subjects (Z. Liu et al., 2004) 

(see Figure 2-8). Each subject walked around two similar sized elliptical courses, one on a grass 

lawn and the other on concrete. Two cameras viewed each course. The cameras were positioned 

nearly 15 meters from each end of the ellipse with lines of sight adjusted to view the whole 

ellipse. Information recorded in addition to the video includes sex (75 % male), age (19 to 54 

years), weight (43.1 kg to 122.6 kg), height (1.47m to 1.91m), foot dominance (mostly right), 

type of shoe (sandal, sneakers, etc.) and heel height. A little over half of the subjects walked in 

two different shoe types. Thus, for each subject, there were up to eight video sequences: 

concrete (C) or grass (G)*, there were two cameras, R or L * and Shoe A or Shoe B.  

The dataset is quite demanding for other biometric modalities since gait is the only biometric 

trait that can be captured where the lighting is uncontrolled. At the University of South Florida, 

Tampa, about 33 subjects were used to collect the data which was partitioned into 32 subsets 

based on the various combinations of five covariates as listed below: 

 Surface type concrete (C) or grass (G). 

 Shoe type (A or B). 

 Viewpoint right camera (R) or left camera (L). 

 Carrying conditions of with briefcase (BF) or no briefcase (NB). 

 Time (tags sequences from May and those from new subjects in November 

collections, tags sequences from November repeat subjects). 
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Table 2-1 below lists the 12 possible experiments A through L. The gallery set is G, A, R, NB 

based on 122 subjects (71 subjects from May data).  

Table 2-1. Probe dataset USF. 

 

Figure 2-8. Beginning, middle, and another frame of the example gait sequence in (Liu et al., 2004). 
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2.5.3 CASIA Database 

To promote the research gait recognition, the Institute of Automation at the Chinese Academy 

of Sciences (CASIA) has constructed several Gait Databases. The databases are available from 

the Centre for Biometrics and Security Research (CBSR, 2005). The CASIA Gait Database has 

three types of datasets: A, B (multi-view dataset) and C (infrared datasets). 

2.5.3.1 CASIA Dataset A 

 In December 2001, Database-A was created and includes 20 individuals where each has 12 

image sequences; four sequences for each of the three directions - parallel, 45 degrees and 90 

degrees - to the image plane (see Figure 2-9). The length of each sequence is not identical for 

variation in the walker’s speed, but it ranges from 37 to 127. The size of Dataset A includes 

19,139 images (see Figure 2-9). 

2.5.3.2 CASIA Dataset B 

This is a large multi-view gait database created in January 2005. It consists of 124 subjects, 

and the gait data was taken from 11 angles using 11 cameras on the left-hand side of the person 

as they were walking, with the angle between the nearest view directions at 18°. When a person 

walks into the scene, they were first asked to walk normally along a straight line six times, and 

Figure 2-9. The sequence for each of the three directions. 
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thus 11×6 = 66 normal walking video sequences were captured for each person. Walking with 

clothing, normal walk, and the carrying condition is shown in Figure 2-10.  

2.5.4 TUM GAID Database 

The Technical University Munich GAID database was created in 2012 (M. Hofmann et al., 

2012). The database currently consists of colour video, depth and audio with 305 individuals 

under different walking conditions. This dataset is one of the biggest to date. To further 

evaluate challenges of time variation, a subset of 32 people was recorded a second time (See 

Figure 2-11). The TUM GAID database was captured in different sessions, one in January 2012 

at a lower temperature (-15°) and one in April 2012 at a temperature higher (+15°). A Microsoft 

Figure 2-10. Different conditions of walking at different angles, CASIA Dataset B. 



Chapter Two: Literature Review 

30 

Kinect sensor was used to record a video stream, a depth stream and four-channel audio. Video 

and depth have the same resolution 640×480 pixels at a frame rate of nearly 30 frames per 

second (Martin Hofmann et al., 2014). 

2.5.5 Southampton Database (SOTON Gait Data) 

The SOTON database contains one small and one large dataset. The small database (with 11 

subjects) was created with the aim of probing the robustness of gait recognition for imagery 

using the same subject in various covariate conditions (carrying items, wearing different 

clothing or footwear). The small dataset was designed to investigate the robustness of gait 

recognition techniques under changing covariate conditions, including carrying objects and 

clothing. Moreover, the small dataset contains one normal sequence for each subject, four 

carrying-bag sequences and one coat-wearing sequence. 

Figure 2-11. Database of Technical University Munich ((M. Hofmann et al., 2012). 
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On the other hand, the large database (with 116 subjects) consists of six subsets named A to F. 

In the literature, set A has been most widely used, and in it, all subjects were captured under 

both normal and fixed covariate conditions. This dataset is aimed to facilitate two inquiries: 

whether the gait is single across an important number of subjects in normal cases, and the need 

for research to be directed toward biometric techniques. Figure 2-12 shows Southampton 

Human ID: a small but more detailed database and a large but basic database (M. S. Nixon, 

2002). Note: “The databases (TUM GAID and SOTON) had not be used because these could 

not be obtained from the source”. 

2.6 Summary 

As introduced; the principle of human gait, gait representation and gait recognition approaches 

consist of two aspects: model-based/model-free and gait databases. The preceding review has 

covered essential techniques and works in the literature regarding gait recognition and in 

particular gait representation. Most of the literature in gait revolves around a gait recognition 

approach which is capable of selecting information characteristics for human identification 

under different conditions. Table 2-2 presents a summary of the work related to the GEI 

representation. 

Figure 2-12. Southampton Human ID. 
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Table 2-2. Summary of related work. 

 

Author 

 

Year 

 

Datasets 

 

Approach 

 

Gait 

representation 

 

Technique  used 

 

Han, et al. 

 

2006 

 

USF 

Human ID 

 

Model-based 

 

GEnI 

 

Synthetic templates and 

a statistical with PCA 

and MDA 

 

K Bashir et al. 

 

2009 

 

CASIA + 

SOTON 

 

Model-free 

approach 

 

Contour of a 

silhouette image 

 

Feature selection with an 

Adaptive CDA 

 

K Bashir et al. 

 

2010 

 

CASIA + 

SOTON 

 

Model-free 

approach 

 

GEnI 

 

Feature selection mask 

and CDA. 

 

Rida et al 

 

2014 

 

CASIA 

 

Model-free 

approach 

 

GEnI 

 

Modified Phase Only 

Correlation. 

 

Kumar 

 

2014 

 

CASIA 

 

Model-free 

approach 

 

GEnI 

 

LPB 

 

Dupuis et al 

 

2013 

 

CASIA 

 

Model-free 

approach 

 

GEI 

 

Random Forest rank 

features algorithm. 

 

Whytock et al 

 

2014 

 

TUM  

GAID 

 

Model-free 

approach 

 

SVIM 

 

The Screened Poisson 

distance Function. 

 

Based on the findings of the literature review, GEI was adopted in this study because GEI 

representation explicitly captures the shape of the subject in question and implicitly captures 

the dynamic parts of body. Pixels with high-intensity values in GEI correspond to body parts 

that show little movement during a walking cycle (e.g. torso), while pixels with low-intensity 

values correspond to body parts that move constantly (e.g. legs and head). In addition, the GEI 

representation is less sensitive to silhouette noise in individual frames. 
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CHAPTER THREE: GEI-BASED GAIT 

RECOGNITION  

3.1 Introduction 

Although some gait recognition approaches have been proposed in the literature, the algorithms 

share the common goal of ensuring the best trade-off between the recognition performance and 

computational complexity. After an investigation of the state of the art and early works; we 

decided to use GEI approaches. This work is divided into two parts: the first part relates to a 

review of some existing methods based on GEI and their evaluation using the two databases 

(CASIA, USF), as presented in Chapter 2. The second part is based around a familiarisation 

process and uses the results in the validation and evaluation of the proposed methods that are 

described in Chapters 4, 5 and 6. The aim of this chapter is to give an introduction to human 

gait recognition approaches including feature extraction, feature selection data reduction and 

classification. 

 3.2 Gait Energy Image 

A GEI is one of the most widely used methods for extracting the relevant feature descriptors 

of human gait and has proven to be one of the most effective techniques. A GEI is a 

representation of a human walking; using a single grey scale image obtained by averaging the 

silhouettes extracted over one gait cycle (Ju et al., 2006). A GEI can be seen as the average 

of images of the walking silhouette and is defined as shown by Equation (2.1). Figure 3-1 

shows an example GEI of an individual under different conditions. Pixels with low intensity 

correspond to the dynamic parts of the body which are widely used for recognition and are 
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usefully not affected by the carrying and clothing conditions commonly referred to as 

covariate factors. Conversely, pixels with high intensities correspond to the static parts of the 

body containing the body shape information used for identification, but these can be affected 

by covariate conditions (e.g. carrying a bag, wearing a coat) (Bashir et al., 2010). Figure 3-2 

shows examples GEI in USF Human ID database under different condition presented on the 

many Probes for example, carrying a briefcase, without the briefcase, different surfaces and 

different directions. A GEI is used to select informative gait features in our proposed 

approach. 

 

Figure 3-1. An example of the GEI of an individual under different conditions (CASIA database). 

Figure 3-2. An example of the GEI of an individual under different conditions in USF Human ID 

database. 
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3.3 Gait Recognition 

Human gait recognition refers to verifying and/or identifying persons using their walking style 

under covariate factors (i.e. carrying and clothing conditions). GEI-based gait recognition is 

one of the most recent effective biometric systems, having high recognition rates with low 

computational complexity. Such a system includes the following four steps: 

1. Feature extraction- extracts the discriminating features from the gait representation 

(GEI in this case) to characterise the gait under variations of covariate factors such as 

clothing and carrying conditions. 

2. Feature selection- selects a subset of relevant features from the GEI representation. 

3. Feature reduction- aims to reduce the feature data into a much lower dimensional space. 

4. Classification process- makes a decision about the recognition of the gait in question 

using a classification process with the selected feature vector.  

Illustrates Figure 3-3 illustrates the human gait recognition system diagram. 

The information contained in GEI was investigated and a number of feature extraction methods 

under various clothing and carrying conditions were proposed. The main idea is to exploit the 

locally discriminating features that characterise these conditions by dividing the GEI 

horizontally and/or vertically in three (top, medium and bottom) and/or two equal (left and 

right) parts where each part, also called Region of Interest (ROI), represents the discriminative 

information for clothing and carrying conditions from different viewing angles. An illustrative 

example is shown in Figures 3-4, 3-5 and 3-6. Furthermore, we exploit locally discriminating 

features that characterise these conditions by dividing the GEI horizontally in two (top, and 

bottom). For example, in chapter 4, the GEI from CASIA database is divided horizontally 

and/or vertically in three (top, medium, and bottom) and/or two equal (left and right) parts. In 

or 
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chapters 5 and 6, the GEI of CASIA and USF gait databases are divided horizontally into two 

parts top and bottom where each side is known as the region of interest (ROI). 

In this investigation, we focus on the dynamic area which can be defined between rows 161 to 

240 in the bottom region and rows 1 to 30 in the top region in the case of the CASIA database. 

In the case of the USF database, rows between 1 and 27 in the top region and rows 88 to 123 

in the bottom region define these two parts. For example, in the case of carrying conditions, 

the bag appears most often in the medium part of the horizontal division or the right part of the 

vertical split. In addition, in the case of clothing conditions, the clothes appear most often in 

the top part of the horizontal division or the right part of the vertical split. 

Figure 3-3. Human gait recognition system. 
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Figure 3-4. An example of ROIs extracted from a vertical division of the GEI of an individual from the side 

view 90o under three different covariates: Normal walking (1st column), Carrying a bag (2nd column) and 

Wearing a coat (3rd column), from the image of CASIA data. 

Figure 3-5. An example of ROIs extracted from a horizontal division of the GEI of an individual from the 

side view 90o under three different covariates: Normal walking (1st column), Carrying a bag (2nd column) 

and Wearing a coat (3rd column), from the image of CASIA data. 

Figure 3-6. An example of ROIs extracted from a horizontal division of GEI of an individual from the 

side view 90o (Dynamic area), from the image of CASIA data. 
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3.4 Feature Extraction  

The feature extraction consists of algorithms responsible for encoding the image content in a 

concise and descriptive way. Typical features include measures of colour (or intensity) 

distribution, texture and shape of the most relevant (previously segmented) objects within the 

image. These features are created into a feature vector that can then be used as a numerical 

descriptor of the image which needs to recognised (Marques, 2011). The texture extraction 

approaches can be divided into four methods as shown in the following subsection. 

3.4.1 Model-based Methods: 

These approaches describe the texture of the image to computer image texture model using a 

stochastic and/or fractal model, such as Markov Random Field Texture Models (Cross et al. 

1983), Fractal-Based Description of Natural Scenes (Pentland, 1984), Unsupervised Texture 

Segmentation using Markov Random Fields (Manjunath et al., 1991) and Markov Random 

Fields as Models of Textured Biomedical Images (Strzelecki et al., 1997). However, a 

stochastic model usually leads to an increased computational complexity of the feature 

extraction phase. The advantage of the fractal model is that it is helpful for modelling some of 

the natural textures and can be applied for texture analysis identification, however, it lacks 

orientation selectivity and it may not be suitable for characterising local image structures 

(Materka et al., 1998). 

3.4.2 Structural Approaches 

Structural approaches aim to define the rules of grammar that can be used to represent the 

texture (Morse, 1998; Sevilla, 2006). This approach is useful for providing a perfect symbolic 

description of the image. Another advantage results from a synthesis compared to the analysis 

task (Materka et al., 1998). 
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However, it may be unsuitable when image data is noisy or of a low contrast (Olowoyeye et 

al., 2009). Additionally, structural approaches supported by psychological evidence which 

suggest that a structure based description and classification, which are related human 

perceptual and cognitive processes, have not yet been improved to their fullest effectiveness 

due to inherent complication associated with implementing structural pattern recognition 

systems (Olszewski, 2001). 

3.4.3 Transform Methods. 

These approaches represent an image in a transform domain in which the definition of the 

coordinate system is closely correlated to the characteristics of texture (Materka et al., 1998). 

For example, a  Fourier Transform of the image can be computed before the transform 

coefficients are grouped to extract a feature vector of the image data (Nixon Mark, 2008). Also, 

it analyses the texture images by disintegrating the image into orientation and frequency 

components (Tuceryan et al., 1993). Several algorithms have been applied in the transform 

domain including Wavelet transforms (Materka et al., 1998), Gabor filtering and Fourier 

Transform (D. Zhang et al., 2000), (Anil K Jain et al., 1997) and (Daugman, 1985) where Gabor 

filters provide means for better spatial localisation. 

3.4.4 Statistical Methods. 

The statistical method for analysing the texture deploys the statistical properties of the intensity 

histogram (Morse, 1998), (Gonzalez et al., 2002). This statistical data is usually based on the 

second-order statistics and has achieved attractive rates of discrimination (Materka et al., 

1998). In addition, other statistical approaches include autocorrelation of features (Tuceryan et 

al., 1993). The most popular second order statistical features for texture analysis are derived 

from the so-called co-occurrence matrix (Robert M Haralick, 1979). The methods are based on 

second-order statistics such as (D. Zhang et al., 2012), (Qurat-Ul-Ain et al., 2010) and 



Chapter Three: GEI-based Gait Recognition 

40 

(Thangavel et al., 2005). The co-occurrence matrix method is based on the study of the statistics 

of pixel intensity distributions (Mirmehdi, 2008) by sampling the way certain grey-levels occur 

in relation to other grey levels (Morse, 1998). Nevertheless, this texture feature is hard to 

capture effectively with a large number of grey levels within a small region (Asheer Kasar 

Bachoo, 2005). 

In this thesis, we present different techniques based on the use of features extracted from the 

GEI. The proposed feature extraction method in combined with RELIEF selection algorithm 

to select relevant and most discriminative Haralick texture features as will be described in 

Chapter 4. We also propose a second supervised feature extraction method based on Multi-

scale descriptors (LBP, MLBP and a Gabor filter bank) using the SRKDA reduction algorithm 

described in Chapter 5. The last proposed feature extraction method based on Wavelet domain 

is described in Chapter 6. The proposed methods are able to extract and capture the relevant 

features from the GEI for human gait recognition under different conditions. In addition, we 

will focus on which parts of the body are better for recognition performance. 

These methods will be introduced in more detail in the next chapters. 

3.5 Feature Selection and Reduction  

The objective of this section is to give an overview of feature reduction and data selection in 

relation to feature extraction. In almost all pattern recognition approaches, one often goes for 

data reduction or subspace mapping, which is done primarily to reduce the dataset or the 

extracted feature vectors. The feature vectors extracted from the GEI often has a high 

dimensionality which may hamper the use of conventional classification algorithms. 

Consequently, the feature selection or reduction algorithms are important to extract only the 

helpful and informative features for classification. 
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3.5.1 Feature Selection  

Feature selection is a broad subject in machine learning and many types of research have been 

carried out in this area. There exist a plethora of works on this topic, and, the works of  Jennifer 

Dy (Dy et al., 2004) and Rohn Kohavi (Kohavi et al., 1997) are very useful. Feature selection 

aims to determine and select the most significant or discriminative features from a high 

dimensional space. It is one of the most frequently used and essential techniques in pattern 

recognition problems. In this case, a learning algorithm is confronted with the problem of 

selecting a significant subset of features while disregarding the remaining redundant set. To 

achieve this, a feature subset selection strategy ought to consider the calculation and the 

preparation of the feature data. We investigate the connection between ideal component subset 

selection and feature significance selection, which can apply in both supervised and 

unsupervised learning. Feature selection in unsupervised learning is a much harder problem, 

due to the absence of class labels. In supervised learning, feature selection aims to maximise 

classification accuracy (Kohavi et al., 1997). The feature selection approach for unsupervised 

learning aims to find a small subset of features that best detect the clusters from data according 

to the preferred criterion (Dy et al., 2004). Feature selection algorithms can be classified into 

three basic approaches (Dalal et al., 2005). The first is called the wrapper approach, in which 

the selection of features is wrapped within a learning algorithm. The second approach is 

referred to as the filter approach where the features are selected according to intrinsic data 

values such as information, dependency or consistency measures. The RELIEF technique is an 

established case of the multivariate filter. Most multivariate techniques rank subsets of features 

as opposed to individual features. The last approach is called embedded, and in this method, 

the feature selection procedure; described as embedded technique, searches for an ideal subset 

of features that are incorporated into the classifier construction. It can be seen as a search in 

the combined space of feature subsets and hypotheses. Much the same as wrapper approaches, 
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embedded techniques are in this way impossible to miss to a given learning algorithm. Saeys 

et al. have defined an advantage and disadvantage for each class of feature selection in (Saeys 

et al., 2007) such as the following: 

3.5.1.1 Filter Approach 

The advantages of filter methods are that they effectively scaled to high-dimensional data, they 

are computationally easy and fast, and, are autonomous of the classification algorithm (C. Liu 

et al., 2017). Hence, the feature selection can be performed just once so that a distinctive 

classifier can be used. On the other hand, there are limitations when deploying a filter method 

where the technique does not consider the interaction with the classifier (the search in the 

feature subset space is separated from the search in the hypothesis space) and most proposed 

techniques are univariate. This means that each feature is independent, thereby ignoring feature 

dependencies which may lead to a decrease in classification performance when compared to 

different types of feature selection methods. To overcome the issue of ignoring feature 

dependencies some multivariate filter techniques have been presented, pointing to the 

incorporation of feature dependencies to some degree. 

3.5.1.2 Wrapper Approach 

Although filter techniques treat the problem of finding a good feature subset autonomously of 

the model selection step, Wrapper methods insert the model hypothesis search within the 

feature subset search. In this setup, a search methodology in the space of possible feature 

subsets is characterised, and different subsets of features are created and evaluated. The 

evaluation of a particular subset of features is acquired via the training and testing of a 

particular classification model rendering this methodology custom fitted to a particular 

classification algorithm (C. Liu et al., 2017). To search the space of all feature subsets, a search 

algorithm is then ‘wrapped’ around the arrangement model. However, as the space of feature 
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subsets becomes significantly large with the number of features, search heuristic techniques 

are used to control the search for an ideal subset. These search techniques can be partitioned 

into two classes; deterministic and randomised search algorithms. The advantages of wrapper 

methodologies incorporate the association between feature subset search and model selection 

and the capacity to check feature conditions. A common disadvantage of these methods is that 

they are very computationally intensive, particularly if building the classifier has a high 

computational cost and are at higher risk of over-fitting than filter methods. 

3.5.1.3 Embedded Approach 

This method, which has only recently been suggested, aims to combine the advantages of both 

previous methods and is referred to as an embedded method (C. Liu et al., 2017; Mistry et al., 

2017). The technique ascertains the features which contribute to the model best whilst the 

model is being created. Embedded techniques have the advantage of incorporating the 

interaction with the classification model. They also have the disadvantage of being more 

computationally intensive than wrapper approaches. 

3.5.2 Feature Reduction 

Feature reduction is also a common topic in machine learning and is a field of research in itself. 

Several works have been done in this field and, here, we try to make an overview based on the 

work of (Blum et al., 1997) and (Kohavi et al., 1997). 

Feature reduction is a procedure used to decrease the dimensionality of the feature by analysing 

data and the relationship between arrangements of connected variables. Dimensionality 

reduction is essential for recognition purposes because the size of the data can be substantial 

and computationally costly. Starting in 1997, when a few papers on feature selection were 

proposed (Blum et al., 1997; Kohavi et al., 1997), the topic evolved significantly through the 

introduction of several techniques to efficiently reduce dimensionality of the data by examining 
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the relationship between a set of correlated variables. For example, Principal Component 

Analysis (PCA) (Yu et al., 2017; Zhao et al., 2016), Kernel Discriminate Analysis (KDA), 

LDA (Munif Alotaibi, 2017), MMP and Locality Preserving Projections (LPP) (Zhao et al., 

2016) have been used as dimensionality reduction methods by the research community in 

pattern recognition problems. Feature reduction techniques can be classified into two classes 

as follows: 

3.5.2.1 Geometry-based Methods 

 The objective of this approach is to entrench the data into some low-dimensional space such 

that the inherent geometry contained in the dataset is conserved. Representative methods 

include PCA (Jolliffe, 2002) which is a typical technique exploiting global data structure to 

recognise a subspace where the sample variance is maximised. While PCA uses the global data 

features in the Euclidean space, the local data manifold structure is disregarded. 

 3.5.2.2 Discrimination-based Methods 

 The goal of this approach is to extract a discriminative subspace from the dataset in which the 

data from various classes can be better discriminated. Representative methods include Margin 

Maximising Discriminant analysis, abbreviated as MMD, (Kocsor et al., 2004), (Tsang et al., 

2008) and MMP (F. Wang et al., 2011). These methods will be addressed in the following 

chapters. More recently, numerous dimensionality reduction techniques have been proposed 

and these can be classified into two methods. 

3.6 Classification  

Classification is an important task in machine learning and is a process that allows decision 

making with regards to recognition patterns through the use of a classification function for the 
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selected feature set. In this section, we will introduce some classification methods and focus 

on the basics of classifier techniques. 

3.6.1 Principles of Classification 

A feature vector generated by a feature extraction process is used by a classifier to carry out 

the recognition from the gait captured. Various classification approaches have been proposed 

in the literature such as supervised and unsupervised classification methods. In supervised 

learning, the output datasets are used to train the machine learning algorithm in order to make 

a decision. In the case of unsupervised learning, datasets are not provided, but rather, the data 

is grouped into various classes automatically. 

Supervised learning: a machine learning process of deriving a function from training data, 

which includes both the input and the desired outcomes. For example, the correct outcomes 

(targets) are known and are given as input to the model during the learning process. These 

methods are usually fast and accurate (Pandey et al., 2016). 

Unsupervised learning: there is not any prior knowledge of the output for the application at 

hand and the classification algorithm aims to differentiate correctly between the different gaits 

of the subjects (clustering of data). 

It is worth noting that feature selection in the unsupervised learning process is a more difficult 

problem when compared to supervised learning, where the feature selection aims to maximise 

classification accuracy (Cristianini et al., 2000). This is due to the absence of class labels. In 

this work, some classifications will be investigated e.g. Support Vector Machines (SVM), K-

nearest neighbours (k-NN) and Decision trees etc. In this chapter, the focus is on k-NN and 

SVM techniques. 
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3.6.1.1 K-Nearest Neighbour 

A K-NN classifier is a widely used classifier in pattern recognition applications and can be 

useful in both classification and regression predictive problems. The following example 

illustrates this type of classifier. 

We store all training samples Gallery (G) and give a new sample Testing (T) to be classified, 

search for the training sample (xi, yi) where xi is most similar, or closest in distance, to 𝑇 and 

predict 𝑦𝑖 (see Figure3-7). The following equations explain how we measure the similarity or 

distance between two samples. The most commonly used measure is the Euclidean distance 

𝐷(𝑇, 𝑥𝑖) (Pandey et al., 2016) 

𝐷(𝑇, 𝑥𝑖) = ‖𝑇 − 𝑥𝑖‖   =  √(𝑇 − 𝑥𝑖)(𝑇 − 𝑥𝑖) =      √∑ (𝑥𝑗 − 𝑥𝑖𝑗)2
𝑗    (3.1)  

Where j is the number of variables, K is a parameter used to increase value when we need to 

make the boundary of classes’ smoother (see Figure 3-8). 

Figure 3-7. Example of a K-NN classifier. 

Figure 3-8. Comparison of ranks describes how the boundary of the classes has changed. 
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3.6.1.2 Support Vector Machine (SVM)  

The SVM approach has proven to be a powerful and popular tool for pattern classification. 

SVM can be used to analyse data and identify patterns, in order to classify the data into two 

classes in the case of a binary classification. We can extend the two-class SVM further into 

two main categories; Hard-Margin SVM and Soft-Margin SVM, depending on the learning 

used. 

Hard-Margin SVM uses N training data where the data is linearly separable. Raining a Hard-

Margin SVM classifier using the N training data consists of determining the best (optimal) 

hyperplane which separates the training data in the input space and having the maximum 

distance to its neighbouring data points of both classes (Kecman et al., 2006) (see Figure 3-9). 

This can be measured using Hard-Margin SVM by Equation (3.2), given by (Gunn, 1998): 

    𝑚𝑎𝑥𝑤
2

‖𝑤‖
     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑇𝑥𝑖 + 𝑏 {

≥    1 𝑖𝑓 𝑦𝑖 =  +1
≤ −1 𝑖𝑓 𝑦𝑖 =  −1

 for i =1...N  (3.2) 

Figure 3-9. Hard-margin SVM. 
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Where 𝑥𝑖 is an m-dimensional column vector and 𝑦𝑖 is the class label associated with xi (yi ∈

 {1, -1}). This is called an optimal hyperplane. The margin is defined as the distance between 

the closest points, also known as support vectors, and the separating hyperplane, (Gunn, 1998), 

(Abe, 2005) and (Kecman et al., 2006). 

Soft-Margin SVM is depicted in Figure 3-10 (Kecman et al., 2006). This classifier type is used 

if the training data is not linearly separable as there will be no hyperplane linearly separating 

the data. This leads us to define the problem as given in Equation (3.3), known as the primal 

representation of a Quadratic Programming (QP) optimisation problem, (Gunn, 1998). 

  𝑚𝑖𝑛𝑤,𝑏Φ(𝑤) =
1

2
𝑤𝑇𝑤 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤𝑇 + 𝑣𝑖 + 𝑏) ≥ 1, ∀𝑖   (3.3) 

To solve this problem, a soft-margin SVM is proposed (Gunn, 1998) and (Abe, 2005), where 

the training data points are allowed to violate the hard constraints in the Equation above (3.3). 

Mathematically, a new set of non-negative variables {𝜉𝑖} = 1, … 𝑁 are introduced. They are 

called the slack variables and measure the amount of violation of the hard constraints of the 

Equation (3.3). Essentially, during the training of a soft-margin SVM classifier, one must solve 

the following problem (Gunn, 1998). 

   𝑚𝑖𝑛𝑤,𝑏,𝜉Φ(𝑤, 𝜉) = 𝑤𝑇𝑤 + 𝜇 ∑ 𝜉𝑖
𝑁
𝑖       (3.4) 

Subject to 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  for ∀ i = 1…N 

where 𝜉 = (𝜉1, … … . . , 𝜉𝑁,) and 𝜇 a are parameters that describe the cost constraints violation 

and must be chosen beforehand. Parameter 𝝁 defines the trade-off between a large margin, i.e. 

the minimisation of the term 
1

2
𝑊𝑇𝑊 𝑖𝑛 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3.4, and the minimisation of classification 

error, i.e. minimisation of term ∑ 𝜉𝑖 shown in Equation 3.4. Also, there is the extension to a 2-
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class classification called multi-class classification (Deng et al., 2006). In this case, the original 

multi-class problem is divided into multiple two-class sub tasks which are solved using several 

two-class SVMs. This method is applied with regard to linear data. 

However, if the data is non-linear, it is preferable to employ a kernel function. Moreover, the 

extension to more complex, nonlinear decision functions is relatively straightforward and is 

carried out by mapping the input variables into a new feature space and by working with linear 

classification in the new space. More specifically, if we have data 𝑥, 𝑧 𝜖 𝑋 and a map 𝜙: 𝑋 ⟶

 𝑅𝑑, (Gunn, 1998) and (Wahba, 1990) then; 

K(x, z) =〈ϕ(x), ϕ(x) 〉       (3.5) 

is a kernel function where Rd is feature space. The Kernel function K in Equation 3.5 is defined 

by (Aronszajn, 1950) and (Wahba, 1990). 

Finally, an SVM is used for classification, and it constructs in a high dimensional space a 

hyperplane or set of hyperplanes. A hyperplane that has the biggest distance to the closest 

Figure 3-10. Soft-margin SVM. 
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training data point of any class has achieved good separation, in general, and the larger the 

margin, the lower the generalisation error of the classifier. 

3.6.2 Performance Criteria 

A confusion matrix demonstrates the quantity of right and wrong predictions made by the 

classification algorithm in order to contrast the genuine results (or target value) in the 

information. A lattice is N×N matrix where N is the number of target qualities (classes). The 

execution of such models is ordinarily assessed using the information as a part of the 

framework. Table 3-1 shows a 2×2 disarray grid for two classes (Positive and Negative). 

Across the top is the observed class labels and down the side are the predicted class labels. 

Table 3-1. Truth Table Confusion Matrix 

 

Each cell contains the number of predictions made by the classifier that falls into that cell. R. 

Strickland in (Strickland, 2002) has described a decision made into one of four possible 

categories as follows: 

 TP (true positive) a detection that corresponds to an actual abnormality. 

 FP (false positive) error occurs when detection corresponds to a normal region. 

 TN (true negative) the decision simply means a normal region was correctly labelled as 

being normal. 

 FN (false negative) the error implies that a true abnormality was not detected. 

Accuracy indicates the percentage of correct predictions in all instances. 

   ACC =  
(TP+TN)

(TP+TN+FP+FN)
× 100     (3.7) 
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3.6.3 Evaluation Cross-Validation (CV) 

Cross-validation or (sometimes-called rotation estimation) is a statistical analysis process used 

for comparing and assessing the performance of classification algorithms by partitioning data 

into two portions. One is used to train or teach a model whose class labels are known and the 

other is used to validate the model so that the classifier can accurately predict unknown datasets 

i.e. testing data (Kohavi, 1995). 

Estimating the accuracy of a classifier produced by supervised learning algorithms is 

significant for assessing its future prediction accuracy, however, it is also key in selecting a 

classifier from combining classifiers or a given set or model selection (Wolpert, 1992). In a 

typical cross-validation process, the validation and the training sets must crossover in 

sequential rounds so that every data point has a chance of being validated. This allows a cross-

validation to be determined as a prediction error or “error rate”. A low error rate is indicative 

of a good model meaning that of course. The cross-validation can be split into four types: Hold 

Out method, K-Fold cross-validation, Leave-One-Out cross-validation (LOOCV) and the 

Bootstrap method. Srivastava introduces the cross-validation types as described below 

(Srivastava, 2013). 

3.6.3.1 Holdout Method 

This type of cross-validation is simple. In this method, the dataset is split into two groups, and 

each group is designated up to 50-70 % of the data as the training sample with the remaining 

50-30 % as the test sample. These groups are as follows: 

 Training sample: the data is used to train the classifier. 

 Test sample: the data is used to estimate the error rate of the trained classifier. 
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Figure 3-11 illustrates the holdout method and how the data is split. The Holdout method has 

two main disadvantages and these are as follow: 

 In problems where there are sparse datasets, it may not be feasible to spare a portion of 

the dataset for testing. 

 With regards to the one train-and-test experiment, the Hold Out estimate of error rate 

will be misleading if there happens to be an “unfortunate” split. 

Having said this, the advantage of this method is that it is usually preferable to the residual 

method and does not take any longer to compute. 

3.6.3.2 K-Fold Cross-Validation 

In this method, the dataset is randomly split into K mutually exclusive subsets (the folds) of 

approximately equal size in order to create a K-fold partition of the dataset. Here, each of the 

K experiments used K-1 folds for training and the remaining for testing. Figure 3-12 shows an 

example of a K-fold cross-validation method. The advantage of K-Fold cross-validation is that 

all the examples in the dataset are eventually used for both testing and training. The true error 

E is estimated as the average error rate 𝐸𝑖 (Anguita et al., 2005): 

  𝐸 =
1

𝐾
∑ 𝐸𝑖

𝐾
𝑖=1        (3.8) 

Figure 3-11. Hold out data spilled 
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On the other hand, the disadvantage of this method is that the training algorithm has to be rerun 

from scratch K times, meaning it will take K times as much computation to make an evaluation. 

3.6.3.3 Leave-One-Out Cross-Validation (LOOCV) 

This method is the degenerative case of K-Fold cross-validation, where K is chosen as the total 

number of examples. For a dataset with N examples, where N is a number of experiments to 

be performed, each experiment uses N-1 examples for training and the remaining ones for 

testing. The true error in this method is estimated as the average error rate on test examples.  

Figure 3-13 shows the LOOCV. 

This method has two advantages; firstly, it makes the best utilisation of the data for training, 

leading to an increase in the chance of building more classifiers that are accurate. Secondly, it 

Figure 3-13. Schematic view of the LOOCV method. 

Figure 3-12. Schematic view of a K-fold cross-validation method. 
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does not involve any random subsampling. On the other hand, it has some disadvantages 

including a high computational cost. 

3.6.3.4 Bootstrap Methods 

The last type of cross-validation, Bootstrap, is a method which randomly draws a dataset from 

the training sample. Each sample is the same size as the training sample. This means it can be 

seen as a selection with replacement whereby the data point can be selected more than once. 

3.7 Summary 

This chapter has discussed human gait recognition approaches under covariate distortions e.g. 

carrying and clothing conditions. Also, the chapter introduces a comprehensive description of 

widely used techniques related to methods proposed in this research. The next chapter will 

describe an investigation of Haralick features using RELIEF algorithm to generate more 

discriminative features extracted by GEI including a validation and evaluation approach using 

two well-known datasets. 
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CHAPTER FOUR: GAIT RECOGNITION BASED 

ON HARALICK FEATURES 

4.1 Introduction 

This chapter discusses a supervised feature extraction approach that is capable of selecting 

distinctive features for the recognition of a person under clothing and carrying conditions. The 

principle of the suggested approach is based on the Haralick features extracted from Gait 

Energy Images. 

First, the proposed method considers Haralick features which are extracted locally by 

horizontally dividing the GEI into three ROIs. The proposed method is evaluated using CASIA 

Gait Database under variations of clothing and carrying conditions for different viewing angles. 

The experimental results using SVM classifier have provided attractive results of up to 83.00% 

in terms of highest Identification Rate (IR), (A. O. Lishani et al., 2014). 

Secondly, the proposed method is further extended to include Haralick features with the 

RELIEF feature selection algorithm. The RELIEF algorithm is used in order to select the most 

relevant features only with a minimum redundancy. Again, the proposed extended method is 

evaluated using the CASIA and USF gait databases under variations of clothing and carrying 

conditions for different viewing angles. The experimental results using the k-NN classifier 

yielded striking results of up to 80% in terms of the highest IR at rank-1 (Ait O. Lishani et al., 

2017). 

As discussed previously, gait recognition refers to verifying and/or identifying a person by 

his/her walking style under covariate factors. The main idea behind such a technology is to 
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determine the discriminating features that characterise the walking styles using various viewing 

angles where each view represents the discriminative information for clothing and carrying 

conditions considered in our research. 

4.2 The Proposed Method 

The Haralick paper, published in 1973, has been cited thousands of times and Haralick texture 

analysis has become one of the most common and efficient methods for capturing and 

extracting texture features. The method is very useful and very powerful in texture analysis and 

is comprehensive for most texture features. Haralick can be calculated from GLCM, which is 

one of the best-known tools for texture analysis, to estimate image properties related to second-

order statistics. 

In this proposed method, we visually analyse the information contained in GEI and define a 

feature extraction method for gait recognition under varying conditions relating to clothing and 

carrying. The main idea is to exploit the locally discriminating features that characterise these 

conditions by horizontally and/or vertically dividing the GEI into three (top, medium and 

bottom) and/or two (left and right) equal parts, whereby, each part (also called ROI) represents 

the discriminative information for clothing and carrying conditions under different viewing 

angles considered in our study. For example, in the case of a carrying a bag, the bag appears 

most often in the medium part of the horizontal division or the right part of the vertical division. 

Additionally, in the case of clothing conditions, the clothes appear most often in the top part of 

the horizontal division or the right part of the vertical division. 

The original size of the GEI is 240×240 in the CASIA database while the original size of the 

GEI is 88×128 in the USF gait databases. In chapter 3, an illustrative example showing the 

proposed method has been shown in figures 3-4 and 3-5. Figure 4-1, illustrates the diagram of 
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the proposed feature extraction and selection method based on Haralick texture features with 

RELIEF selection techniques. 

4.2.1 Haralick Texture Feature Extraction 

The discriminative features proposed in our feature extraction method include the Haralick 

texture features (R. M. Haralick et al., 1973) extracted and computed from the GEI. To the best 

of our knowledge, no one has attempted to implement this method before.  For each GEI, a 

feature vector is formed by converting the generated grey-level co-occurrence matrix (GLCM) 

to a vector for use later in the classification stage. Furthermore, Haralick features containing 

Figure 4-1. Diagram of the proposed feature extraction and selection method based on GEI Haralick 

texture features with RELIEF selection algorithm. 
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14 statistical features can be extracted from the GLCM to form a new feature vector with 14 

features. 

4.2.1.1 Grey-level Co-occurrence Matrix 

A useful technique for characterising an image texture is to consider statistical moments of 

intensity histogram of an image (Rafael C. Gonzalez, 2008). Using histograms of the GLCM 

will enable a quantification of texture, conveying information about the distribution of 

intensities.  

In using a statistical approach, for example, the co-occurrence matrix gives important 

information about the relative position of the neighbouring pixels in an image. These features 

are calculated from the GLCM of GEI, denoted 𝑃, with dimension Ng ×Ng where Ng is the 

number of grey levels in the GEI. The co-occurrence matrix 𝑃𝑑,𝜃 can be defined as (R. M. 

Haralick et al., 1973): 

𝑃𝑑,𝜃(𝑖, 𝑗) = ∑ ∑ {
1, 𝑖𝑓 𝐺 (𝑥, 𝑦) = 𝑖

𝑎𝑛𝑑 𝐺(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝐽
0,                  otherwise

𝑁𝑔

𝑦=1

𝑁𝑔

𝑥=1     (4.1) 

where 𝑑 and 𝜃 are the offset and direction (phase) respectively. Selecting an offset vector, such 

that the rotation of the image is not equal to 180 degrees, will result in a different GLCM for 

the same rotated image. This can be avoided by forming the co-occurrence matrix using a set 

of offsets sweeping through 180 degrees at the same distance parameter (𝑑𝑥, 𝑑𝑦) to achieve a 

degree of rotational invariance, for example: 

𝜃 = 0◦: P horizontal, 𝜃 = 45◦: P right diagonal, 𝜃 = 90o: P vertical and 𝜃 = 135o: P left diagonal. 

𝑑𝑥  𝑎𝑛𝑑 𝑑𝑦 denote the distance between the pixel of interest and its neighbour along the x-axis 

and the y-axis of an image respectively. Haralick texture features are statistical entities defined 

to emphasise certain texture properties calculated from 𝑃. 
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Table 4.1 describes the proposed Haralick features allowing a description of the textures in the 

GEI in order to recognise the observed human gait. These features comprise of 14 statistics 

calculated from GLCM. However, F14 (Maximal Correlation Coefficient) is not used in this 

study as it can cause computational instabilities if the co-occurrence matrix has ill-conditioned 

statistical formulations (Rafael C. Gonzalez, 2008). In this study, only the {F1, F2…F13} 

features are considered. 

4.2.2 RELIEF Based Feature Selection 

RELIEF is a feature selection algorithm (Kira et al., 1992) which can be used to select only the 

most discriminative gait features extracted using the Haralick method. Algorithm 4.1 

summarises the proposed method. RELIEF, proposed by (Kira et al., 1992), is used in the data 

processing stage as a feature selection method. RELIEF-based algorithms can be divided into 

three principal parts: 

1. Compute the nearest miss M and nearest hit H. 

2. Compute the weight of a feature by using Eq. 4.2. 

3. Return a ranked list of features or the top k-features according to a given threshold. 

RELIEF is a feature weight-based algorithm inspired by instance-based learning (Kira et al., 

1992). Given training data R, sample size m and a threshold 𝜏; RELIEF detects those features 

which are statistically relevant to the target concept where 𝜏 encodes a relevance threshold (0, 

≤ 𝜏 ≤ 1). The algorithm begins by initialising the weight vector and tuning the weight for 

every feature to 0. Then it randomly picks a learning sample X and computes the H and M from 

the same subfamily H and one from the opposite subfamily M. 

The weight W can be calculated using Eq. 4.2: 
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Table 4-1. Describes how Haralick texture features are calculated. 

 

Feature                                          Formula 

Angular second 

moment 
     𝐹1 = ∑ ∑ 𝑃(𝑖, 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

Contrast      𝐹2 = ∑ 𝑟2 {∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1|𝑖−𝑗|=𝑟

𝑁𝑔

𝑖=1
}

𝑁
𝑔−1

𝑟=0
 

Correlation 

     𝐹3 =  
∑ ∑ (𝑖𝑗)𝑃(𝑖,𝑗)−𝜇𝑥𝜇𝑦

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

𝜎𝑥𝜎𝑦
      Where μₓ, μᵧ, σₓ, σᵧ are the means and standard 

deviations as follows: 𝜇𝑥  = ∑ 𝜄𝑝𝑥(𝜄),  𝜇𝑦 = ∑ 𝜄𝑝𝑦(𝜄),
𝑁𝑔

𝜄=1

𝑁𝑔

𝜄=1    𝜎𝑥 =

√∑ (𝜄 − 𝜇𝑥)2𝑝𝑥(𝜄)        
𝑁𝑔

𝜄=1    and    𝜎𝑦 = √∑ (𝜄 − 𝜇𝑦)
2

𝑝𝑦(𝜄)
𝑁𝑔

𝜄=1       Where 𝑝𝑥 and 𝑝𝑦 

are the partial PDFs dened by𝑝𝑥 = ∑ 𝑃(𝑥, 𝑦)
𝑁𝑔

𝑗=1
 &  𝑝𝑦 = ∑ 𝑃(𝑥, 𝑦)

𝑁𝑔

𝑖=1
, 

respectively. 

Variance 
     𝐹4 = ∑ ∑ (𝑖 − 𝜇)2𝑃(𝑖, 𝑗)       𝑤ℎ𝑒𝑟𝑒       𝜇 = ∑ ∑ 𝑖𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

Inverse difference 

moment 
     𝐹5 = ∑ ∑

𝑃(𝑖, 𝑗)

1 + (𝑖 − 1)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

Sum average 

 𝐹6 = ∑ 𝑟𝑃𝑥+𝑦(𝑟)
2𝑁

𝑔−2

𝑟=0  where 𝑥 and 𝑦 are the coordinates (row and column) of an 

entry in the co-occurrence matrix, and 𝑃𝑥+𝑦(𝑟) is the probability of co-occurrence 

matrix coordinates summing to x + y dened as follows:  

𝑃𝑥+𝑦(𝑟) = ∑ ∑ 𝑃(𝑖, 𝑗) 
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
where 𝑟 = 𝑖 + 𝑗 with 𝑟 = 2,3, … ,2𝑁𝑔 − 2 

Sum variance      𝐹7 = ∑ (𝑟 − 𝐹6)2𝑃𝑥+𝑦(𝑟)
2𝑁

𝑔−2

𝑟=0
 

Sum entropy      𝐹8 = − ∑ 𝑃𝑥+𝑦(𝑟)log (𝑃𝑥+𝑦(𝑟))
2𝑁

𝑔−2

𝑟=𝑜
 

Entropy      𝐹9 = − ∑ ∑ 𝑃(𝑖, 𝑗)log (𝑃(𝑖, 𝑗))
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

Difference variance 

     𝐹10 =  ∑ (𝑟 − ∑ 𝜄𝑃|𝑥−𝑦|(𝜄)
𝑁

𝑔−1

𝜄=0
)

2𝑁
𝑔−1

𝑟=0
𝑃|𝑥−𝑦|(𝑟) 

Where 𝑃|𝑥−𝑦| = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 and 𝑟 = |𝑖 − 𝑗| with 𝑟 = 𝑜, 1, … , 𝑁𝑔−2  

Difference entropy      𝐹11 = ∑ 𝑃|𝑥−𝑦|(𝑟)

𝑁
𝑔−1

𝑟=0 log (𝑃|𝑥−𝑦|(𝑟)) 

Information 

measure 1 

𝐹12 =
𝐹9−𝐻

𝑥𝑦1

max {𝐻𝑥,𝐻𝑦}
 where 𝐻𝑥 and 𝐻𝑦  are entropies of  𝑝𝑥 and 𝑝𝑦, respectively; and 

𝐻
𝑥𝑦1=− ∑ ∑ 𝑃(𝑖,𝑗)𝑙𝑜𝑔 (𝑝𝑥(𝑖)𝑝𝑦(𝑗))

𝑁𝑔
𝑗=1

𝑁𝑔
𝑖=1

 

Information 

measure 2 

   𝐹13 = √1 − exp (−2(𝐻𝑥𝑦2 − 𝐹9))  where 

𝐻𝑥𝑦2 = − ∑ ∑ 𝑃𝑥(𝑖)𝑃𝑦(𝑗)log (𝑃𝑥(𝑖)𝑃𝑦(𝑗))
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
  

Maximal 

correlation 

coefficient 

     𝐹14 = √2𝑛𝑑𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄 where 𝑄(𝑖, 𝑗) = ∑
𝑃(𝑖,𝑟)𝑃(𝑗,𝑟)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)𝑟  
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Algorithm 4-2. Pseudo-code of the RELIEF algorithm. 

Pseudo-code of the RELIEF algorithm 

Input: S learning instances X described by N features; K iterations 

Initialise: ∀i, W[i] = 0 

for k = 1 to K do 

   Randomly select an instance X 

   Find nearest hit HX and nearest miss MX of X 

   for i = 1 to N do 

   Compute weight W[i] using Eq.4.2 

    end for 

end for 

return W  

Output: W Features ranking (for each feature Fi a quality weight within −1 ≤ W [i] 

≤ 1) 

  [ 𝑊𝑖] = [𝑊𝑖] +
𝑑𝑖𝑓𝑓(𝑥𝑖,𝑁𝑀

𝑥𝑖)

(𝑆×𝐾)
−

𝑑𝑖𝑓𝑓(𝑥𝑖,𝑁𝐻
𝑥𝑖)

(𝑆×𝐾)
    (4.2) 

where S is the number of learning instances X described by N features, and K is a number of 

iterations. The function diff is the difference between feature values between 2 cases defined 

as follows: 

Algorithm 4-1. Haralick textures descriptors with RELIEF selection algorithm.  

Feature extraction and selection method for gait recognition based on GEI Haralick 

texture descriptors with RELIEF selection algorithm 

Input: Silhouette images extracted over one gait cycle: S (x, y, t); t = 1, 2, ......, N 

       To compute a GEI using Eq.2.1: G (x, y) 

       Switch (GEI division type) 

   Case Horizontal: 

     Divide GEI horizontally into 3 equal parts:  G(H1) (x, y), G(H2) (x, y) and G(H3) (x, y) 

     For each G(Hi), i = 1, ......,3 

    Compute Haralick features defined in Table 4.1: F(Hi) 

    Generate feature extraction set: F(H) = {F(H1), F(H2), F(H3)} 

Case Vertical: 

     Divide a GEI vertically into 2 equal parts: G(V1) (x, y), and G(V2) (x, y) 

     For each G(Vi), i = 1, 2 

     Compute Haralick features defined in Table 4.1: F(Vi)  

     Generate feature extraction set: F(V) = {F(V1), F(V2)} 

 End Switch 

Apply RELIEF selection algorithm on F(H) or F(V) 

Output: Relevant features set F 
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  𝑑𝑖𝑓𝑓(𝑎, 𝑏) =
𝑎−𝑏

𝑢
         (4.3) 

where u is a normalisation unit to normalise the values of diff into the interval [0;1]. Algorithm 

4.2 summarises the pseudo-code of the RELIEF algorithm used in Algorithm 4.1. 

 4.3 Experimental Results and Discussion 

To validate and evaluate the performance of our proposed methods CASIA and USF datasets 

were used. The first and second experiments were carried out using CASIA database with 

different chosen subset sequences in the gallery and the test while the third experiment used 

USF database. In the following section, an analysis is carried out based on the results obtained, 

including a comparative study of some existing and similar state-of-the-art methods. 

4.3.1 Experiment 1 using CASIA Database  

4.3.1.1 Database and Evaluation Criteria 

We have evaluated the proposed method using on CASIA gait dataset B which is a multi-view 

gait database (Shiqi et al., 2006). This database was constructed from 124 subjects (93 men 

and 31 women) and 11 cameras around the left-hand side of the subject when they were 

walking. Thus, the data was captured from 11 different angles starting from 0o to 180o (i.e. the 

angle between two nearest view directions would be 18o in the range of [0o, 180o]). Each subject 

has two carrying-bag sequences (Set-A), two wearing-coat sequences (Set-B) and six normal 

walking sequences (Set-C). 

In first experiments, we have selected from this database the first sequence from Set-A, SetB, 

and Set-C to evaluate the performance of the proposed method under the following three 

conditions: normal, carrying bag and wearing a coat. These experiments are carried out only 

under viewing angle 90o. The selected data were split randomly into two parts. 50% of the data 
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was used for training and the remaining 50% was used for testing the effect of the above three 

conditions.  

To examine the efficiency of the proposed approach, we used LOOCV with the SVM classifier. 

LOOCV was adopted in order to find an optimal model for predicting and estimating the 

performance. According to Marcos (Marcos 2017) and Z-Y. HE et. al (Z.-Y. He et al., 2008), 

LOOCV has a higher variance than K-fold cross-validation. This is because LOOCV is a 

special case of K-fold cross-validation where the number of folds is the same as the number of 

observations, in other words, K = N. There is one fold per observation, and therefore, each 

observation by itself gets to play the role of the validation set with the other n-1 observations 

playing the role of the training set. 

As in previous experiences (e.g. as in (Dobrovidov et al., 2013)), the optimal kernels were 

obtained for the Gaussian kernel for gamma = 0.25, and so, the one-against-one SVM classifier 

using the radial basis function kernel (with 𝛾  = 0:25) was used with the Correct Classification 

Rate (CCR) parameter, defined in Eq.3.7, in order to evaluate the classification performance. 

4.3.1.2 Results and Analysis 

 The proposed technique was assessed based on the different covariates of the Haralick features 

with an SVM classifier on CASIA database-B in order to assess their performance to correctly 

classify the different covariates (A. O. Lishani et al., 2014). Table 4-2 shows the results 

obtained using the selected data split randomly into two parts; 50% for training and 50% for 

testing. 

By analysing these results, it can be noticed that the computation of Haralick texture feature 

locally on each ROI selected in GEI significantly improves the performance of the recognition 

system by up to 8.40% compared to a global counterpart. Also, we have noticed that, in the 
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case of "normal walking" and "carrying-bag" conditions, the results indicate an increase of up 

to 11.00% improvement in recognition when compared to a global GEI based approach. 

This leads to the conclusion that the computation of local Haralick texture features on each 

selected ROI in GEI significantly improves the performance of the gait recognition system by 

up to 9% compared to the global computation technique. 

Table 4-2. Comparison of CCR (in %) from the proposed method based on local and global feature computation 

techniques on CASIA database using the 90o view. 

4.3.2 Experiment 2 using CASIA Database 

 4.3.2.1 Database and Evaluation Criteria 

In this experiment, we have evaluated the proposed method using CASIA gait database B. 

However, we selected the three first sequences from SetC, the first sequence from SetA and 

used SetB as the probe. The remaining sequences for all the 124 subjects were assigned to the 

training set. Experiments are carried out under viewing angles of 36o, 72o, 90o and 108o under 

the following three conditions; normal, carrying bag and wearing a coat. For the evaluation 

criteria, a k-NN classifier was used to evaluate the classification performance. The highest 

Identification Rate (IR) at rank-1, which is defined as the percentage of samples with a correct 

match in the first place of the ranked list, is used to evaluate the classification performance. 

4.3.2.2 Results and Analysis 

Table 4-3 shows the results of a comparative study of the proposed method against different 

state-of-the-art methods on CASIA database B for a side view of 90o. Three covariates were 

considered - normal walking, carrying a bag and wearing a coat. These were assessed using 
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Haralick features with and without RELIEF, using horizontal and vertical GEI division against 

other existing methods proposed in (Bashir et al., 2010) (Khalid Bashir et al., 2009) (Hu et al., 

2013) and (Dupuis et al., 2013). 

The results shown in the table correspond to the classification performance in terms of at rank-

1 (%). By analysing the performance, it can be observed that the proposed method based on 

Haralick features with RELIEF using horizontal GEI division improves the recognition 

performance in terms of IR at rank-1 to 80% while vertical GEI division yields a result of 

71.67%. 

The proposed method produces comparable results in the case of "normal walking" and 

"carrying-bag" conditions while providing an improved IR at rank-1 in the case of "wearing-

coat" condition. 

The proposed method outperforms by up to 26.00%, 31.00%, 32.00% and 13.00% compared 

against the methods (Khalid Bashir et al., 2009), (Khalid Bashir et al., 2010), (Hu et al., 2013) 

and (Dupuis et al., 2013), respectively. This proposed method outperforms all the state-of-the-

art methods considered in our experiment. When compared to the best mean IR Rank-1 

provided by the state-of-the-art methods ranging from 60.70% to 77.96%, our proposed method 

achieves an improved IR at rank-1 up to 80.00% for a side view of 90o. 

Finally, the experiment clearly demonstrates that the proposed method considerably improves 

the recognition performance in the presence of the following covariates; normal walking, 

carrying bag and wearing a coat, and outperforms the state-of-the-art methods showing an 

increase of up to 2.00% compared to the method in (Dupuis et al., 2013). We have also assessed 

the performance of the proposed method using CASIA database B under four side views at 36o, 

72o, 90o and 108o. 
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Table 4-3. Comparative studies of the proposed method with different state-of-the-art methods on CASIA 

database B for a side view of 90o. Three covariates were considered in here: normal walking, carrying bag, and 

wearing a coat. 

 

Table 4-4 shows performance results obtained in terms of IR at rank-1 and rank-5. From the 

results obtained; it can be observed that the proposed method achieves an acceptable IR at rank-

1 for both horizontal and vertical GEI divisions and for different viewing angles (up to 80.00% 

and 71.67% for horizontal and vertical division respectively). The IR is increased at rank-5 to 

91.12% and 84.67% for horizontal and vertical division respectively. This demonstrates that 

the proposed method allows recognition gait under different viewing angles. 

Table 4-4. Comparison of IR (in %) from the proposed method on CASIA database (dataset B) for four side 

views 90o. 
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4.3.3 Further experiment using USF Database 

4.3.3.1 Database and Evaluation Criteria 

The proposed method was evaluated by using another database in order to assess its 

performances under other covariate factors such walking, shoe type and view. In this 

experiment only two probes (testing) were considered; Probe A (grass-walking surface + shoe 

type A + left camera viewpoint) and Probe C (grass walking surface + shoe type B + left camera 

viewpoint). The two probes are distinct and are categorised according to their covariate’ 

variations. Probe A in view and Probe C in both view and shoe type simultaneously, with the 

Gallery (training) set being (G, A, R, NB). To experiment with the rest of the probes pre-

processing is needed, as is the case with the state-of-the-art methods. This pre-processing 

procedure will be taken into account in future work. 

4.3.3.2 Results and Analysis 

Table 4-5 shows the results obtained using the proposed method. The proposed method was 

compared with the state-of-the-art methods that used the USF Human ID gait database, such 

as (Ju et al., 2006) and (Zhao et al., 2016). The results show that the proposed method provides 

encouraging results. In particular, it can be seen that the results are high for Probe A. 

 Table 4-5. Comparison of IR (in %) from the proposed method with the methods. in (Ju et al., 2006) and (Zhao 

et al., 2016) on USF Human ID gait database for Probe A and Probe C. 
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This could be due to the fact that within this method, in a local image, viewpoint variations do 

not drastically affect the performance. Whereas in Probe C, the difference in shoe type with 

the gallery set makes it a rather difficult experiment.  The results obtained can be improved by 

pre-processing the silhouette images i.e. improvement of segmentation, the effect of shadow, 

removing surface area to keep the only shoe, etc. 

4.4 Summary 

This chapter has proposed a novel gait recognition method for a human identification under 

variations of clothing and carrying conditions for different viewing angles. The proposed 

method based on Haralick with RELIEF selection features technique was evaluated on the two 

databases (CASIA & USF) and compared against some similar techniques. The results obtained 

have shown that the proposed feature extraction is relevant and is very useful for gait 

recognition under the effect of clothing and carrying conditions for different viewing angles. 

The next chapter will discuss an investigation regarding multi-scale descriptors for feature 

extraction using MLBP and Gabor filter bank with a number reduction technique. 

  



Chapter Five: Gait Recognition Based on Multi-scale Descriptors 

69 

CHAPTER FIVE: GAIT RECOGNITION BASED 

ON MULTI-SCALE DESCRIPTORS 

5.1 Introduction 

This chapter discusses a supervised feature extraction approach that relies on two feature 

extraction methods based on multiscale feature descriptors including MLBP and the Gabor 

filter bank, utilising a reduction algorithm. The first proposed method includes a Gabor filter 

bank where the features are extracted from GEI.  This method was evaluated on the CASIA 

Gait database under variations of clothing and carrying conditions for different viewing angles, 

with the experimental results analysed using an SVM classifier. Different reduction algorithms 

were used including Kernel Principal Component Analysis (KPCA), Spectral Regression 

Kernel Discriminant Analysis (SRKDA) and Maximum Margin Projection (MMP). 

We improved the proposed method by only considering the extracted local features from two 

ROIs representing the dynamic areas in GEI. The experimental evaluation using the k-NN 

Classifier produced an impressive result with the highest Identification Rate (IR) at rank-1 

when compared to similar recent state-of-the-art methods. Finally, the USF database was also 

used to evaluate our proposed method and the results clearly demonstrating that this suggested 

method outperforms a recent and similar technique (Dupuis et al., 2013). 

The second proposal in this chapter is a method based on Multi-Scale Local Binary Pattern 

(MLBP), utilising the SRKDA reduction algorithm. In addition, the features are extracted 

locally from two ROIs representing the dynamic areas in GEI. The suggested method was 

evaluated on the CASIA and USF Gait databases. The experimental results using k-NN 
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classifier produced the highest identification rate at rank-1 when compared to similar and recent 

state-of-the-art methods. 

5.2 The Proposed Method 

We have investigated the details contained in a GEI to develop a feature extraction approach 

under clothing and carrying condition variations. The aim was to exploit the local features, 

which can be discriminated by horizontally dividing the GEI into two parts; top and bottom, 

referred to as the ROIs. In this approach, we have focused on the dynamic area of the silhouette 

extracted from the GEI. An illustrative example is shown in Figure 3-6. 

5.2.1 Multi-scale Local Binary Pattern Descriptors 

LBP method has been used for different biometric applications such as facial recognition 

(Ahonen et al., 2006) (Shan et al., 2009) and gait recognition (Kumar et al., 2014). It is one of 

the most effective descriptors to efficiently capture the local structures of an image by labelling 

their pixels. Labelisation is performed by thresholding the block of the neighbourhood of every 

pixel with each central value of a square window (Ojala et al., 1996). LBP, denoted here by 

(𝑃, 𝑅), is calculated in a local circular region by subtracting the centre pixel with respect to its 

neighbours, where P is the number of the neighbours and R is the radius of the circular 

neighbourhood. The image pixels are labelled by thresholding the circular neighbourhood (P, 

R) of each pixel (i, j) with the central value and summing up the threshold values weighted by 

its power of two (see Figure 5-1). It is described as follows (Ojala et al., 2002). 

𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗)  =  ∑ 𝐶 (𝐺𝐸𝐼(𝑖𝑝, 𝑗𝑝) − 𝐺𝐸𝐼(𝑖, 𝑗)𝑃−1
𝑃=0 ) 2𝑃        (5.1) 

Where (ip, jp ) represents the neighbouring coordinates around a pixel (i, j), p is the index of the 

neighbour and C is the thresholding function defined as follows: 
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𝐶 (𝜆) =  {
1,   𝜆 ≥ 0 
0, 𝜆 < 0

       (5.2) 

In LBP-based texture classification approaches (Pietikäinen et al., 2011), the occurrences of 

LBP codes of an image are collected in a histogram h of the local binary patterns shown in 

equation 5.3. The main feature of LBP concept is that it is invariant to image translation. 

 ℎ(𝑖) = ∑ 𝐵(𝐿𝐵𝑃𝑃,𝑅(𝑖, 𝑗) = 𝑛)     |    𝑛 𝜖 [0, 2𝑃
𝑥,𝑦 − 1],   (5.3) 

B (v) is a Boolean indicator defined as: 

𝐵(𝑣) {
1       𝑤ℎ𝑒𝑛 𝑣 𝑖𝑠 𝑡𝑟𝑢𝑒
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       

       (5.4) 

The histogram of GEI pixels is used as texture descriptors. Moreover, the LBP characteristics 

are computed from one scale with a 3×3 neighbourhood window. Also, 𝐿𝐵𝑃8,1 is unable to 

detect the dominant structure and its image translation invariant. A multi-scale LBP, which is 

denoted as MLBP, proposed in (Pietikäinen et al., 2011) can be a useful solution to extract 

more texture details. This idea originated from simple observation real-world objects composed 

of various structures at different scales and appearing in different ways based on the scale of 

observation. MLBP is described as an extension of basic LBP in respect of the neighbourhood 

of various sizes. 

Figure 5-1. An example illustrates circularly symmetric neighbour sets for the 

operator of LBP with various values (P, R). (P=8 and R=1 (3×3) neighbourhood). 
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Therefore, in this work, we propose a second feature extraction method based on MLBP 

descriptors computed from a GEI, where the features extracted are combined by concatenating 

the set of histograms h calculated at different scales. MLBP is extracted and computed locally 

from various ROIs, generated by dividing the GEI horizontally in two ROIs (top and bottom), 

each ROI represents the relevant information for different conditions. However, the vector of 

features extracted from the GEI using the MLBP algorithm has a higher dimension, which may 

hamper the classification process. Thus, a feature reduction algorithm is necessary to extract 

only the useful and most informative descriptors for classification. Section 5.2.3 covers the 

reduction technique used. 

5.2.2 Gabor Filter Bank-based Feature Extraction  

This section describes Gabor filters and how they are used in the feature extraction. The Gabor 

filter was initially presented in 1946 (Gabor, 1946). A one-dimensional Gabor filter is 

characterised as the multiplication of a cosine/sine (even/odd) wave with Gaussian windows 

(see Figure 5-2), as follows (Derpanis, 2007): 

𝑔𝑒(𝑥) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2cos (2𝜋𝜔0𝑥)     (5.5) 

 𝑔𝑜(𝑥) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2sin (2𝜋𝜔0𝑥)     (5.6) 

Where 𝑔𝑒 , 𝑔𝑜 are Gabor (even / odd, respectively), 𝜔0 knows the centre frequency (i.e., the 

frequency in which the filter yields the utmost response) and σ the (potentially asymmetric) 

spread of the Gaussian window. The power spectrum of the Gabor filter is given by the sum of 

two Gaussians centred at ±𝜔0 , is defined as (Willsky, 1997): 

‖𝐺(𝜔)‖ = 𝑒−2𝜋2𝜎2(𝜔−𝜔0)2
+ 𝑒−2𝜋2𝜎2(𝜔+𝜔0)2

    (5.7) 
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The power spectrum of a Gaussian is a (non-normalised) Gaussian and the power spectrum of 

a sine wave are two impulses located at ±ω0. A multiplication in the temporal (spatial) domain 

is equivalent to a convolution in the frequency domain (Oppenheim, 1997). The discriminative 

features proposed in our feature extraction method include the Gabor filter features. The Gabor 

filter bank has eight orientations and five scales. Figure 5-3 shows an example of Gabor filter 

bank. The result of the convolution process can be characterised as (Lades et al., 1993): 

  𝐺𝑣,𝑤(𝑥, 𝑦) = 𝐺𝐸𝐼(𝑥, 𝑦) ∗  𝜂𝑣,𝑤(𝑥, 𝑦)    (5.8) 

Where ∗  represents convolution, 𝜇𝑣,𝑤(𝑥, 𝑦)  is a 2D Gabor wavelet kernel function at 

orientation 𝑤  and scale v, and 𝐺𝑣,𝑤(𝑥, 𝑦) represents the convolution output. The kernel is 

defined by (Lades et al., 1993): 

Figure 5-2. An example shows One-dimensional Gabor filters, (Derpanis, 2007, p. 2). 

Figure 5-3. An example of Gabor Filter-bank with 5 Scales and 8 orientations, 

(Fischer et al., 2007, p. 234). 

https://www.researchgate.net/figure/310081625_fig1_Fig-1-Gabor-Filter-Bank-of-different-Scales-and-Orientations-29
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 𝜂𝑣,𝑤(𝑧) =
‖𝑘𝑣,𝑤‖

2

𝜎2  𝑒−(‖𝑘𝑣,𝑤‖
2

‖𝑧‖2
[𝑒𝑖𝑘𝑣,𝑤𝑧 − 𝑒

−𝜎2

2⁄ ]     (5.9) 

where 𝑧 = (𝑥, 𝑦) and ‖⦁‖  is the Euclidean norm operator, 𝑘𝑣,𝑤 = 𝑘𝑣𝑒𝑖𝜑𝑣  with 𝑘𝑣 =
𝑘𝑚𝑎𝑥

𝜆𝑣
 

where 𝜆  is the spacing factor between Gabor wavelets in the frequency domain and 

orientations. To reduce the redundancy of information resulting from the adjacent pixels in the 

image, a down-sampling of feature images were extracted from Gabor filters (Chengjun Liu, 

2002). In this work, the feature size of the vector is a size of GEI (240 × 240) multiplied by the 

number of orientations and scales (8 × 5) and divided by the row and its column down-sampling 

factors (4 × 4), which are 240 × 240 × 8 × 5 / (4 × 4) giving 144,000. A Gabor filter bank is 

used locally from various ROIs generated by dividing the GEI horizontally into two ROIs (top 

and bottom part) with each part representing the relevant information for different conditions. 

Since the feature vector extracted from the GEI has a high dimensionality, a feature reduction 

algorithm is necessary to extract only the useful and discriminative features for classification. 

Section 5.2.3 has referred to the feature reduction technique used. 

5.2.3 Feature Reduction 

This part analyses various feature vector reduction techniques with a view to select the most 

appropriate one for the application at hand. In almost all pattern recognition approaches, one 

often goes for data reduction or subspace mapping. This is done primarily to reduce or 

decorrelate the data. In this chapter, we investigate four feature reduction techniques: KPCA, 

SRKDA, MMP and LPP. The following discusses the approaches chosen in this work: 

5.2.3.1 Kernel PCA 

KPCA is a reformulation of conventional Linear PCA in a high dimensional space produced 

using a kernel function (Bernhard Schölkopf et al., 1998). KPCA calculates the principal 

eigenvectors of the Kernel matrix, as opposed to those of the covariance matrix. The 
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reformulation of PCA in a kernel space is apparent after a kernel matrix and the result of the 

data focus on the high-dimensional space that is built using the kernel function. The use of 

PCA in the kernel space gives KPCA the property of building nonlinear mapping. 

Arithmetically, the current features are transformed into a high-dimensional space and 

calculate eigenvectors in this space. The vectors with low eigenvalues are ignored and then 

learning in this transformed space. The consequence of the projection i.e. the low-dimensional 

data representation Z, is given by: 

  𝑍𝑖 = {∑ ∑ 𝛼𝑡
(𝑗)

𝑀(𝑋𝑗, 𝑋𝑖)
𝑛
𝑗=1

𝑛
𝑗=1 }     (5.10) 

where 𝛼1
(𝑗)

 refer to the 𝑗𝑡ℎ  value in the vector 𝑏1  and 𝑀  is the kernel function that was 

additionally used in the calculation of the kernel matrix. Since kernel 𝑃𝐶𝐴 is a kernel-based 

technique, the mapping performed by 𝐾𝑃𝐶𝐴 depends on the selection of the kernel function 𝑀. 

5.2.3.2 SRKDA for Feature Dimensionality Reduction  

The SRKDA algorithm (Cai et al., 2007) is an extension of the extensively used KDA (Baudat 

et al., 2000) and for extracting abstract features and to reduce the dimensionality. SRKDA has 

been successful in many classification tasks such as text, multi-class face retrieval, spoken and 

image/video letter recognition. The method combines the spectral graph analysis and 

regression for an efficient large matrix decomposition in KDA. In order to best describe the 

principle of SRKDA; suppose a set of 𝑔 samples {m1, m2… mn}∈  ℝ𝑑, belonging to 𝜈 classes. 

Some nonlinear mappingΦ: ℝ𝑑 ⟶  ℱ induces to consider the problem in a feature space ℱ. 

Let the training vectors be represented as an 𝑔 × 𝑔 kernel matrix 𝐾 such that: 𝐾(𝑚𝑖 , 𝑚𝑗) =

〈Φ(𝑚𝑖), Φ(𝑚𝑗)〉, where Φ( 𝑚𝑖) and Φ(𝑚𝑗) are the embedding of data items 𝑚𝑖 and 𝑚𝑖. If 𝜙 

denotes a projective function into the kernel feature space, then the objective function for KDA 

is: 
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 𝐾(𝜙)𝜙
𝑚𝑎𝑥 =  

𝜙𝑇𝐶𝑏𝜙

𝜙𝑇𝐶𝑡𝜙
       (5.11) 

Where 𝐶𝑏  and 𝐶𝑡  denote the between-class and total scatter matrices in the feature space, 

respectively. SRKDA only needs to solve a set of regularised regression problems and there is 

no eigenvector computation involved. This results in a significant improvement of the 

computational cost and allows the handling of large kernel matrices. After obtaining 𝛼, the 

decision function for new data item is calculated from: 

  𝑓(𝑥) = ∑ 𝛼𝑖𝐾(𝑥, 𝑥𝑖)  𝑚
𝑡=1      (5.12) 

where 𝛼 = [𝛼1 , 𝛼2,…, 𝛼m]T is the eigenvector, and K (𝑥,𝑥𝑖) = 〈Φ(𝑥), Φ(𝑥𝑖)〉. 

5.2.3.3 Maximum Margin Projection: 

An unsupervised MMP algorithm has been proposed in this work aiming to find the maximum 

margin separating hyperplanes that separate data points in different clusters, with the maximum 

margin and project input pattern into typical hyperplanes. 

We can easily determine the data points with labels and with these assigned labels, we can train 

an SVM with a particular margin. The objective of MMP is to discover such labelling together 

with the trained SVM. The associated margin is the maximum among the SVMs trained on all 

conceivable labelling. 

(X. He et al., 2008) suggested a manifold learning algorithm, called MMP, for dimensionality 

reduction. It is based on locality preserving neighbour relations and overtly exploits the class 

information for classification. It is a graph-based approach for learning a linear approximation 

to the intrinsic data manifold by making use of both labelled and unlabelled data (Belkin et al., 

2002). It is likely that both geometrical and discriminant structures of the data manifold are 

found using this algorithm. 𝐽𝑜 and 𝐽𝑣 are used to express the mean weight the matrices of the 

between-class graph 𝐹𝑜 and the within-class graph 𝐹𝑣 , respectively. 
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MMP endeavours to guarantee that the connected points of 𝐹𝑣 are as close together as possible, 

while the connected points of 𝐹𝑜 are as far apart as possible. It can be obtained by solving the 

following optimisation problem (Z. Wang et al., 2013): 

arg 𝑚𝑖𝑛𝑐 ∑ ∑ (𝑐𝑇𝑥𝑖 − 𝑐𝑇 − 𝑥𝑗)2𝐽𝑣,𝑖𝑗 = arg 𝑚𝑖𝑛𝑐 𝑐𝑇𝑋(𝑆𝑤 − 𝐽𝑣)𝑋𝑇𝑐𝑛
𝑗−1

𝑛
𝑖−1   (5.13) 

arg 𝑚𝑖𝑛𝑐 ∑ ∑ (𝑐𝑇𝑥𝑖 − 𝑐𝑇 − 𝑥𝑗)2𝐽𝑜,𝑖𝑗 = arg 𝑚𝑖𝑛𝑐 𝑐𝑇𝑋𝐿ℎ𝑋𝑇𝑐𝑛
𝑗−1

𝑛
𝑖−1    (5.14) 

With the constraint 

    𝑐𝑇𝑋𝑆𝑤𝑋𝑇𝑐 = 1       (5.15) 

Where 𝐿ℎ = 𝐷𝑚 − 𝐽𝑣  is the graph Laplacian matrix (Chung, 1997) of 𝐹𝑜 , 𝐷𝑚  is a diagonal 

matrix whose diagonal entries are the column sum of 𝐽𝑜 , 𝑖. 𝑒, 𝐷𝑚,𝑖𝑗 =  ∑ 𝐽𝑜,𝑖𝑗 , and  𝑆𝑤
𝑛
𝑗−1  is a 

diagonal matrix whose diagonal entries are the column 𝑠𝑢𝑚 𝑜𝑓 𝐽𝑣 , 𝑖. 𝑒. , 𝑆𝑤,𝑖𝑗 =  ∑ 𝐽𝑣,𝑖𝑗
𝑛
𝑗−1 . The 

definitions of weight matrices 𝐽𝑣 and 𝐽𝑜 are as per the following (X. He et al., 2008): 

𝐽𝑣,𝑖𝑗 =  {

𝛾 , 𝑖𝑓 𝑥𝑖 𝑎𝑛𝑑 𝑥𝑗  𝑠ℎ𝑎𝑟𝑒 𝑠𝑎𝑚𝑒 𝑙𝑎𝑏𝑙𝑒                                                           

1 , 𝑖𝑓 𝑥𝑖  𝑜𝑟 𝑥𝑗  𝑖𝑠 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑏𝑢𝑡 𝑥𝑖  ∈  𝐾𝑤(𝑥𝑗) 𝑜𝑟 𝑥𝑗  ∈  𝐾𝑤(𝑥𝑖)

0 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                  

 (5.16) 

𝐽𝑜,𝑖𝑗 = {
1 , 𝑖𝑓 𝑥𝑖  ∈  𝐾𝑏(𝑥𝑗) 𝑜𝑟 𝑥𝑗  ∈  𝐾𝑏(𝑥𝑖) 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        
   (5.17) 

Where 𝐾𝑏(𝑥𝑖) = {𝑥𝑖
1, … , 𝑥𝑖

𝑅} denotes the set of its 𝑅 nearest neighbours, 𝜁(𝑥𝑖) represents the 

labels of 𝑥𝑖 , 𝐾𝑏(𝑥𝑖) =  {𝑥𝑖
𝑗
 |𝜁(𝑥𝑖

𝑗
) ≠ 𝜁(𝑥𝑖), 𝐽 = 1, … , 𝑅}  contains the neighbours having 

different labels, and 𝐾𝑤(𝑥𝑖) = 𝐾(𝑥𝑖) − 𝐾𝑏(𝑥𝑖) contains the rest of the neighbours. Thereafter, 

minimising 5.13 and maximising 5.14 under the constraint 5.15, the next optimisation problem 

can be reduced to (Z. Wang et al., 2013): 

 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑐𝑇𝑋(𝜃𝐿ℎ + (1 − 𝜃)𝐽𝑣)𝑋𝑇𝑐    (5.18) 
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Where 𝜃 is a suitable constant within 0 ≤ 𝜃≤1. He et al. proposed  𝜃 to be 0.5 (X. He et al., 

2008). The projection vectors that maximises 5.18 is given by the maximum eigenvalue 

solution to the generalised eigenvalue problem: 

 𝑋(𝜃𝐿ℎ + (1 − 𝜃)𝐽𝑣)𝑋𝑇𝑐 = 𝜆𝑋𝑆𝑤𝑋𝑇𝑐    (5.19) 

As 𝑋𝑆𝑤𝑋𝑇  is non-singular, in this case, PCA is applied to remove the components 

corresponding to zero eigenvalues. The work by He et al. (X. He et al., 2008) shares common 

properties with some of the works on combining classification and metric learning, such as 

Distance-Function Alignment (Gang Wu, 2005) and Spectral Kernel Learning (Steven C. H. 

Hoi, 2006). The projection vector of MMP can be regarded as the eigenvectors of the matrix 

(𝑋𝑆𝑤𝑋𝑇)−1𝑋(𝜃𝐿ℎ + (1 − 𝜃)𝐽𝑣)𝑋𝑇 associated with the largest eigenvalues. 

5.2.3.4 Locality Preserving Projections  

LPP is a useful algorithm for using linear dimensionality reduction. It builds a graph 

incorporating the neighbourhood information of the data set. Using the notion of the Laplacian 

of the graph, it is then possible to calculate a transformation matrix which maps the data points 

to a subspace (He et al., 2003). Constructing the Neighbourhood Information (Adjacency 

Graph) to represent the topological structure of training images in the high-dimensional image 

space, the adjacency graph has been used. LPP can include both the actual topological structure 

of the data and the user-specified label. It is a simple linear dimensionality reduction method 

which can be implemented on a non-iterative optimisation. It preserves more local information 

than the global. LPP’s aim to find a map which preserves the local structure (He et al., 2005). 

Algorithm 5-1, Algorithm 5-2 and Algorithm 5-3 summarise our proposed method, and Figure 

5-8 and Figure 5-9 illustrate the diagrams of the proposed supervised feature extraction and 

reduction approach, based on LBP/MLBP and Bank Gabor filter texture features with reduction 

algorithm techniques. 
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Algorithm 5-1: Gabor filter with (SRKDA, KPCA, or MMP) for GEI-based 

human gait recognition. 

 
Feature extraction and selection method for GEI-based gait recognition based on 

Gabor filter bank descriptors via SRKDA, KPCA, or MMP reductions algorithm 

Input: Silhouette images extracted over one gait cycle:   S (x, y, t); t = 1, 2, ..., N 

To calculate a GEI using Eq.2.1: G (x, y) 

Compute Gabor filter descriptors: Fg 

Apply SRKDA or KPCA or MMP reduction algorithm on Fg 

Output: Relevant features set F 

 

Algorithm 5-2: GEI-based gait recognition based on MLBP descriptors via 

SRKDA reduction algorithm. 

Feature extraction and selection method for GEI-based gait recognition based 

on MLBP descriptors via SRKDA reduction algorithm  

Input: Silhouette images extracted over one gait cycle:   S (x, y, t); t =  1, 2, ..., N 

To compute a GEI using Eq.2.1: G (x, y) 

Divide GEI horizontally into 2 parts as illustrated Figure 3-6:  G (H1) (x, y), G 

(H2)
 (x, y)  

For each G (Hi)
, i = 1, 2. Compute MLBP descriptors: F (Hi)

 

Generate feature extraction set: F(H) = {F (H1), F (H2)
} 

Apply SRKDA reduction algorithm on F(H) 

Output: Relevant features set F 

 

Algorithm 5-3: GEI-based gait recognition based on Gabor filter bank descriptors 

via KPCA, SRKDA or LPP reduction algorithm. 

Feature extraction and selection method for GEI-based gait recognition based 

on Gabor filter bank descriptors via KPCA, SRKDA, or LPP reductions 

algorithm  

Input: Silhouette images extracted over one gait cycle:   S (x, y, t); t = 1, 2, ..., N 

To compute a GEI using Eq.2.1: G (x, y) 

Divide GEI horizontally into 2 parts as illustrated Figure 3-6:  G (H1) (x, y), G 

(H2)
 (x, y) 

For each G (Hi)
, i = 1, 2. Compute Gabor filter descriptors: F(Hi ) 

Generate feature extraction set: F(H) = {F (H1), F (H2)} 

Apply KPCA or SRKDA or LPP reduction algorithm on F(H) 

Output: Relevant features set F 
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Figure 5-5. Diagram of the proposed supervised feature extraction and reduction approach based 

on Gabor filter bank descriptors with SRKDA, KPCA, and LPP reduction techniques. 

Figure 5-4. Diagram of the proposed supervised feature extraction and reduction approach based 

on Gabor filter bank descriptors with KPCA, SRKDA, and MMP reduction technique. 
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5.3 Experimental Results and Discussion 

To evaluate the proposed algorithms described previously two databases have been used, 

CASIA and USF. This section also analyses the acquired results and compares them against 

some existing and similar state-of-the-art methods. 

5.3.1 Experiment 1 using CASIA Database 

5.3.1.1 Database and Evaluation Criteria 

The first sequence from Set-A, Set-B and Set-C of the database have been selected for the 

experimentation. The selected data was split randomly into two parts. The first part based 

around training and the other part for testing the effect of conditions, which has been 

extensively explained in a previous chapter (section 4.3.1.1). 

Figure 5-6. Diagram of the proposed supervised feature extraction and reduction approach based 

on LBP/or MLBP descriptors with SRKDA reduction technique. 
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5.3.1.2 Results and Analysis 

The proposed approach is based on the use of feature texture descriptors extracted from GEI. 

The suggested features are computed using the Gabor filter bank approach and then selected 

using different reduction algorithms i.e. SRKDA, KPCA and MMP. The proposed method is 

evaluated on the CASIA Gait database (dataset B) under variations of clothing and carrying 

conditions for different viewing angles and the experimental results are evaluated using the 

one-against-all SVM classifier.  

Table 5-1 shows the results obtained for four side views (36o, 72o, 90o and 108o) with the 

selected data split randomly into two parts; 50% for training and 50% for testing. One can 

notice that the computation of the Gabor filter bank accomplished an impressive performance 

in classifying different covariates for different viewing angles. For instance, the Gabor filter 

bank using the MMP reduction technique achieved a high result at a view angle of 90o, while 

a high result was obtained using SRKDA at a 72o angle. The proposed method therefore 

achieved substantial CCR results ranging between 87% and 91% for different viewing angles. 

Table 5-1. Comparison of CCRs (in %) from the proposed Gabor filter bank via SRKDA, KPCA AND MMP 

reduction on CASIA Database for four side views: 36o, 72o, 90o and 108o. 
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5.3.2 Experiment 2 using CASIA Database 

5.3.2.1 Database and Evaluation Criteria 

The proposed methods are evaluated using CASIA Dataset B where the gallery set consists of 

the first four sequences of each subject of Set-C (CASIA set-C1). The probe is the rest of 

sequences of Set-C (CASIA Set-C2), Set-A and Set-B. 

We assessed the performance of the planned method under the following three conditions; 1) 

normal, 2) carrying a bag and 3) wearing a coat. Experiments were conducted from viewing 

angles of 36o, 72o, 90o and 180o: As for the evaluation, k-NN classifier was used to assess the 

classification performances. The highest IR at rank-1 was used to evaluate the performance. 

5.3.2.2 Results and Analysis 

We have evaluated the performance of the computation of MLBP and Gabor filter bank texture 

features locally and globally from the whole GEI. Table 5-2 shows that the computation of the 

local features from the ROIs selected improves the performance of the suggested gait 

recognition method significantly (up to 29% using MLBP and 7% using Gabor filter bank) 

compared to global computation from the whole GEI image. 

Table 5-2. Recognition performances of proposed method based on local and global feature computation 

techniques on CASIA database using a side view of 90o. 

 



Chapter Five: Gait Recognition Based on Multi-scale Descriptors 

84 

Table 5-3. Comparison of IR rank-1 (in%) from the proposed method based on local and global feature 

computation techniques with SRKDA on the CASIA database using a side view of 90o. 

 

Looking at Table 5-3, it is clear that MLBP and Gabor filter bank with SRKDA significantly 

improves the performance of the recognition by up to 26.74% and 16.13% respectively when 

compared against global MLBP and Gabor Filter bank approaches. We have also assessed the 

performance of our proposed methods using the selected data from CASIA database for a side 

view of 90o. 

Table 5-4 compares our proposed methods based on MLBP and Gabor Filter with SRKDA 

reduction technique against four other existing and similar methods i.e. methods proposed in 

(Khalid Bashir et al., 2009), (Bashir et al., 2010), (Hu et al., 2013) and (Dupuis et al., 2013). 

This MLBP method is based on eight scales (a radius of 1, 2, 3, 4 and 8). In addition, Gabor 

filter bank use 8 orientations and 5 scales. The results shown in the table correspond to the 

classification performance in IR (%). 

The proposed methods yielded comparable results for "normal walking" but provided the best 

IR at rank-1 for the case of "wearing a coat" when compared to the works of  (Khalid Bashir et 

al., 2009), (Bashir et al., 2010), (Hu et al., 2013) and (Dupuis et al., 2013). In this MLBP 

method, results increased by up to 40.31%, 45.11%, 46.21% and 26.61% whilst the results of 
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the proposed Gabor filter bank method achieved an increase of up to 43.13%, 47.93%, 49.03% 

and 29.43% in comparison to the aforementioned works. 

Furthermore, the results attained using the MLBP method provided the best IR at rank-1 for 

the case of "carrying a bag" compared to the other methods e.g. an increase of up to 6.31%, 

11.61%, 44.71%, and 16.11% were noted. Also, in the proposed Gabor filter bank method, the 

results showed increases of up to 3.09%, 8.39%, 41.49% and 12.89% in comparison to the 

aforementioned referenced works. 

The proposed method outperforms all the state-of-the-art methods considered in our 

experiment. When compared to the best IR at rank-1 provided by state-of-the-art methods, 

which are in the range of 60.70% to 77.96%, our method achieves a better IR at rank-1 up to 

92.06% for the side view of 90o. We have assessed the performance of the proposed feature 

extraction and reduction method using CASIA database from four side views (36o, 72o, 90o and 

108o). The propositioned features are compared with LBP features, LBP features with SRKDA 

MLBP features and MLBP features with SRKDA. 

 Table 5-4. Recognition performances of the proposed method with several different state-of-the-art methods on 

the CASIA database from the side view of 90o. Three covariates were considered here: normal walking, carrying 

a bag and wearing a coat. 
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Table 5-5 shows the performance results obtained in terms of IR rank-1 for the different types 

of feature considered in our study. By analysing the results as shown in the table, we can see 

that the IR improved up to 91.52% by increasing the number of GEI in the 90o. This confirms 

that MLBP with SRKDA features has an enhanced discriminating power, leading to an IR that 

achieves the highest seen percentage. In addition, we have assessed the performance of the 

proposed feature extraction and reduction method on the CASIA database from four side views, 

as mentioned before, at angles of 36o, 72o, 90o and 108o. The proposed features compared the 

Gabor filter bank with different reduction techniques i.e. KPCA, SRKDA and LPP. 

Table 5-5. Recognition performances of proposed methods on the CASIA database from four side views: 36o, 

72o, 90o and 108o. The proposed features MLBP are compared with LBP features. 

 

Initially, the KPCA reduction technique was applied. Table 5-6 compares techniques on the 

CASIA database for four, previously noted, side views (36o, 72o, 90o and 108o). The method 

yielded comparable results for the cases of "normal walking" and provided best IR at rank-1 

on the method Gabor filter bank without KPCA under angle 36o. The IR improved up to 

94.35%, but with the KPCA, it provided a figure of 91.94%. In the case of "wearing a coat", 

the best IR at rank-1 with Gabor filter bank without KPCA is obtained for an angle of 72o. The 

IR was improved up to 93.54%. Correspondingly, it provides the best IR at rank-1 for the case 

of "carrying a bag" using the Gabor filter bank without KPCA for an angle of 72o improving it 

to 87.90%. Table 5-7 shows a summary of the results obtained with regard to the IR rank-1 

considered in our study. 
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By analysing these results, it can be seen that the IR is improved to 81.31% by increasing the 

number of GEI an angle of 90o. This clarifies that Gabor filter bank method without KPCA 

features has a more discriminating power, allowing for the attainment of the best IR. 

Additionally, we assessed the performance of the proposed Gabor filter via KPCA using 

CASIA database from different viewing angles. 

Table 5-6. Recognition performances of Gabor filter bank method using CASIA database for four side views: 

36o, 72o, 90o and 108o under normal walking, carrying a bag and wearing coat conditions. 

  

Table 5-7. Summary of recognition performances from the proposed methods using CASIA database from four 

side views: 36o, 72o, 90o and 108o Gabor Filter bank with KPCA. 

 

The second proposed (Gabor filter bank with SRKDA) extractive technique has also been 

evaluated in terms of its performance using CASIA database under four side view angles of 

36o, 72o, 90o and 108o.  Table 5-8 depicts the results obtained for the four side views. It can be 

observed that the proposed extraction method yields comparable results in the case of "normal 
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walking" and provides the best IR at rank-1 for a side view angle 90o resulting in an improved 

IR of 97.58%.  

On the other hand, in the case of "wearing a coat", the technique provides the best IR at rank-

1 under a side view angle of 72o with IR of 96.77%. Finally, in the case of "carrying a bag”, 

the technique provides the best IR at rank-1 under a side view angle of 72o giving an IR 

improved of 90.32%. 

Table 5-8. Recognition performances of Gabor filter bank method using CASIA database for four side views: 

36o, 72o, 90o and 108o under normal walking, carrying a bag and wearing coat conditions. 

 

Table 5-9 shows a summary of the performance results for the proposed feature extraction 

methods. An analysis of the results of the table above shows that the IR rank-1 has been further 

improved to 92.06 % by increasing the number of GEI at 90o. This confirms that Gabor filter 

bank with SRKDA approach yields more discriminating power. 

Finally, in considering the performance of the proposed Gabor filter bank when combined with 

the LPP algorithm using the CASIA database for different viewing angles, table 5-11, shows a 

summary the of performance results obtained in terms of IR rank-1, the results clearly show 

that the IR was improved to 90.72 % by increasing the number of GEI. 
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Table 5-9. Summary of recognition performances from the proposed methods using CASIA database from four 

side views: 36o, 72o, 90o and 108o Gabor Filter bank with SRKDA. 

 

Table 5-10. Recognition performances of Gabor filter bank method using CASIA database for four side views: 

36o, 72o, 90o and 108o under normal walking, carrying a bag and wearing coat conditions. 

 

Table 5-11. Summary of recognition performances from the proposed methods using CASIA database from four 

side views: 36o, 72o, 90o and 108o Gabor Filter bank with LPP. 

 



Chapter Five: Gait Recognition Based on Multi-scale Descriptors 

90 

5.3.3 Experiment 3 using USF Database 

5.3.3.1 Results and Analysis 

Table 5-12 and Table 5-13 depict the results obtained using the proposed method including a 

comparative against some state-of-the-art methods in (Ju et al., 2006) and (Zhao et al., 2016) 

using USF Human ID gait database (S. Sarkar et al., 2005). 

From the results obtained, it can be noted that our proposed method provides encouraging 

results, which are comparable to the results of the methods in (Ju et al., 2006), and (Zhao et al., 

2016). 

Table 5-12. Recognition performances of MLBP with the methods in (Ju et al., 2006) and (Zhao et al., 2016) on 

USF Human ID gait database for Probe A, Probe C, Probe H, and Probe J. 

 

Table 5-13. Recognition performances of Gabor filter bank with the methods in (Ju et al., 2006) and (Zhao et al., 

2016) on USF Human ID gait database for Probe A, Probe C, Probe H, and Probe J. 
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The results acquired can be improved by pre-processing the silhouette images i.e. improvement 

of segmentation, the effect of shadow and removing the surface area to keep only the shoe, etc. 

Note that Probe H, Probe I and Probe J were not considered in (Ju et al., 2006) and (Zhao et 

al., 2016). 

5.4 Summary  

This chapter has proposed a supervised feature extraction approach capable of selecting more 

discriminating features for human gait recognition under variations of clothing and carrying 

conditions in order to improve recognition performance. The suggested methods based on 

MLBP and Gabor filter bank features are evaluated using the CASIA database and compared 

against similar techniques. The results obtained have shown that the proposed feature 

extraction methods are very useful for use in gait recognition under the effect of clothing and 

carrying conditions for different viewing angles. Also, our experiments have demonstrated that 

the propositioned methods outperform recent state-of-the-art methods such as (Dupuis et al., 

2013). In particular, it is worth noting that SRKDA and LPP feature reduction techniques 

outperform KPCA counterparts using the proposed Gabor filter bank approach while the LPP 

being less computationally intensive than SRKDA. The next chapter will discuss a wavelet-

based feature extraction based on the Haar wavelet. 
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CHAPTER SIX: GAIT RECOGNITION IN THE 

WAVELET DOMAIN  

6.1 Introduction 

This chapter will investigate and discusses the potential of using a wavelet domain feature 

extraction method to use for gait recognition under clothing and carrying conditions. The 

technique is based on the wavelet coefficients of the Haar wavelet, extracted from the dynamic 

areas of GEI. The SRKDA technique is also applied to the extracted feature vector to reduce 

its dimensionality by selecting only the most relevant and discriminate features. The proposed 

method was evaluated using the CASIA Gait database under various clothing and carrying 

conditions and viewing angles. The experimental study used the k-NN classifier. 

6.2 The Proposed Method 

In this thesis, a supervised feature extraction method based on extracting feature coefficients 

from GEI has been proposed for human gait recognition. The proposed method, described in 

Figure 6-1, is capable of extracting the most distinctive features from GEI under different 

covariates and conditions hence improving the recognition performance. A discrete wavelet 

transform (DWT), based on gait features, is applied for gait recognition. The proposed method 

is based on sub-bands which are used to extract gait features. Furthermore, in this method, four 

decomposition levels are used to extract a feature vector and the feature template is generated 

by concatenating these sub-images into a single image. The main idea is to locally capture the 

discriminating features that characterise a person’s dynamic gait. To achieve this, a GEI has 
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split into a top part and a bottom part, in order to consider the dynamic portions of the human 

gait. Figure 3-6 provides an illustrative example of the aforementioned splitting process. 

6.2.1 Wavelet Transform 

Wavelet transforms (WTs) have been widely used in various fields, such as image processing, 

signal processing, biochemistry and medicine, since their first introduction by Alfred Haar in 

his thesis in 1909 (Haar, 1910). WTs have emerged as an alternative to the popular Fourier 

transform and its related transforms, such as the Discrete Cosine Transform (DCT). The main 

Figure 6-1. Diagram of the proposed supervised feature extraction and reduction approach based on wavelet 

transform with SRKDA reduction technique. 
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idea behind the popularity of WTs is their localisation property in time, scale and frequency, 

which makes them suitable for analysing finite signals. WTs can be divided into many types, 

such as the continuous wavelet transform (CWT), the discrete wavelet transform (DWT), the 

two-dimensional wavelet transforms and the wavelet packet transforms (WPT). 

More et al in (More et al., 2017) proposed a multi-view human gait recognition method which 

employs Partial Wavelet Coherence (PWC). This approach directly extracts the dynamic 

information without using any model. The proposed achieved a performance 73.26% average 

recognition accuracy when considered only PWC feature.  Further, the paper investigates Phase 

Feature (PF) which also preserves the discriminant information of dynamic phase angle 

between body parts. When PF was considered in addition to PWC features the system 

performance improved significantly and 82.52% average recognition accuracy reported. 

In this chapter, a wavelet-based 2D decomposition is introduced as a means to select the most 

discriminative features of the human gait (Mallat, 1999) and (Walker, 2002). The rationale 

behind using a wavelet transform is based on the fact that a wavelet transform can decompose 

an image at different levels of resolution. Thus, allowing images to be sequentially processed 

from low resolution to high resolution using wavelet decomposition as wavelets are localised 

in both the frequency (scale) and time (space) domains. Hence, it becomes easy to extract local 

features of an image. Wavelet descriptors have been used successfully to model the boundary 

of a moving human body. Nevertheless, it must be noted that many objects actually deform in 

some way as they move. Here we use wavelet descriptors to model not only the object’s 

boundary, but also the spatio-temporal deformations under which the object’s boundary is 

subjected (Rahati et al., 2008). According to Tong (Tong, 2010), one approach of feature 

extraction is utilising wavelet analysis, as introduced by (Papageorgiou et al., 2000). 
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6.2.1.1 Discrete Wavelet Transform. 

The discrete wavelet transform (DWT) has been extensively applied in image processing, 

texture analysis, image compression and edge detection. DWT decomposes an image into four 

sub-images as shown in Figure 6-2, where filters are applied in the row and column directions 

separately. First, a high-pass filter and a low-pass filter are used to analyse each row’s data 

then it is down-sampled by 2 in order to extract the high and low-frequency components of the 

row. The high-pass filter and low-pass filter are subsequently applied again for each of the high 

and low-frequency components of the columns, which are then down-sampled by 2. Through 

this process, four sub-bands images LL, LH, HH and LL are generated, each one having its own 

features. The low-frequency information is preserved in the LL sub-band and the high-

frequency information is preserved in the HH, HL and LH sub-bands. The LL sub-band image 

can be further decomposed, in the same way as previously discussed, to produce a second level 

sub-band image. As such, in this method, four decomposition levels are used in total to extract 

a feature vector. 

Figure 6-2. Discrete wavelet transform. 
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6.2.1.2 Detail Coefficients Wavelet Model 

In this model, the Haar function is applied in DWT. The Haar function is the simplest example 

of a wavelet. Furthermore, the Haar wavelet provides satisfactory localisation of signal 

characteristics in the time domain. The Haar wavelet is characterised by its fast computation 

time, as it has the shortest filter length in the time domain. It is also the simplest possible 

wavelet available as it allows us to appropriately select or modify the wavelet coefficients. For 

example, it can remove the vertical, horizontal or diagonal details of a given image. It is the 

only known wavelet that is compactly supported, orthogonal and symmetric. 

Discrete wavelet with Haar function was used on skeleton data and motion signals to extract 

features for gait recognition was demonstrated in (Arai et al., 2012) where the results showed 

that the best combination for classification is taken from horizontal detail and vertical detail. 

However, in (Arai et al., 2012) Haar wavelet was used at level 1 of decomposition where the 

energy for every coefficient is introduced. 

Nandini et al. in (Nandini et al., 2011) suggested another gait recognition method in which they 

combined wavelet coefficients with three silhouette geometrical features. Initially, Haar 

wavelet transform was applied on each silhouette image of the gait sequence and the 

approximation coefficients of the low frequency sub-band were stored as the first feature 

vector. Then three silhouette geometrical features were extracted, the width, height, and area 

of the silhouette. These features were extracted from each frame in the gait sequence. The mean 

feature vector was then computed for each frame sequence. All experiments were conducted 

on CASIA A gait dataset and a recognition rate of 92.24% was attained which they showed to 

be better than two other compared gait recognition methods. 

In this thesis, the proposed method aims to enhance the gait recognition accuracy by using the 

horizontal coefficient instead of using a combination of the three coefficients HL, LH and HH, 
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or a combination of (HL, LH), (HL, HH) and (LH, HH). More specifically, the Haar wavelet is 

used in this work as a function to decompose a GEI of size 240×240 pixels into four levels, 

with each level having three orientations as illustrated in figure 6-3 below. 

Figure 6-3. An illustrative example of a single level and two-level wavelet decomposition. 

The proposed feature extraction is based on the application of 2D Haar wavelet decomposition 

on ROIs, as illustrated figure 3-6 in chapter 3, to extract the detail wavelet coefficients from 

the LH, HL and HH sub-bands at different scales (Mallat, 2008). Haar transform can be defined 

by the following equation (Jahromi et al., 2003): 

𝜓(𝐼) = { 
     1        0  ≤ 𝐼 < 1/2

−1     1 2⁄  <  𝐼 ≤ 1
      0                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (6.1) 

and 𝜓𝑇𝑙(𝐼) =  𝜓(2𝑇 − 𝑙), for T a non-negative integer and 0 ≤ 𝑙 ≤  2𝑇 − 1, where 𝜓(𝐼) is 

the mother wavelet, 𝜓𝑇𝑙(𝐼)  are scaled and translated versions of 𝜓(𝐼). 𝑙  and T are the 

translation and scaling (dilation), respectively, of a factor of the wavelet.  

The coefficients generated by concatenating the selected coefficient extracted from the four 

decomposition levels resulting in a high dimensionality thus requiring a dimensionality 

reduction. Figure 6-4 demonstrates the proposed fusion technique. To reduce the resulting 

high-dimensional feature vectors. Finally, we have applied the SRKDA algorithm discussed in 

the previous chapter. Algorithm 6-1 and figure 6-1 summarise our proposed method 
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Algorithm 6-1 Wavelet transforms for human gait recognition using Haar wavelet. 

GEI-based gait recognition using Haar wavelet features with SRKDA 

Input: Silhouette images extracted over one gait cycle:  

  S (x, y, t) ; t = 1, 2..., N 

  Compute a GEI using Eq.2.1: G (x, y)  

  Divide GEI horizontally GEI into 2 parts: ROI (1), ROI (2) as illustrated Figure 3-6. 

For each ROI (i), i = 1, 2. 

    Compute detail Haar-wavelet features from HL, LH and HH sub-bands at different 

scales: F(i) 

    Generate feature extraction set: F = {F (1), F (2)} 

Reduce features vector F by applying SRKDA technique 

 Output: Reduced features set F 

6.3 Experiment Results and Discussion 

In this chapter, we used the CASIA database to evaluate our proposed method. This section 

describes the database that was used and the analysis of the results and compared them to 

existing and similar state-of-the-art methods. 

6.3.1 Database and Evaluation Criteria 

The proposed have been evaluated using the CASIA gait database B. In the experiment, the 

gallery set used for the CASIA dataset consisted of the first four sequences of each subject in 

CASIA Set-C (CASIA Set-C1). The probe was the remainder of the sequences in CASIA Set-

Figure 6-4. Coefficients vector of concatenated, Haar coefficients. 
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C (CASIA Set-C2), CASIA Set-A and CASIA Set-B. For evaluation criteria, a k-NN classifier 

was used to quantitatively evaluate the classification performance. 

6.3.2 Analysis of the Results 

Table 6-1 shows the multilevel decomposition of a GEI using the Haar transform functions. It 

is observed that beyond level 4 the increase in the recognition performance is not significant. 

Therefore, 4-level decomposition was chosen for further experimental evaluation. 

Table 6-1. Comparison of various decomposition using horizontal wavelet with SRKDA. 

 

Table 6-2 depicts the results obtained using the Haar wavelet decomposition with four levels. 

By analysing the results shown in the table, we can see that the local feature extraction using 

the HL coefficients allow the achievement of the highest recognition performance when 

compared against their LH and HH coefficients counterparts. In addition, the HL 

decomposition approach produces a performance increase of 7.22% when compared against a 

combined (HL+LH+HH) wavelet. This might be due to the fact that the human movement in 

GEI is horizontal, and so, the horizontal band is the most suitable band for characterising this 

movement. To elucidate the results that were obtained in table 6-2, a compression between all 

the previous mentioned four bands is shown in figure 6-5; where the best resolution of the 

human movement is obtained when HL detail is considered. 
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Table 6-2. Comparison of IR rank-1 (in %) from the proposed method based on local feature computation 

techniques on the CASIA database, using a side view of 90o. 

 

Figure 6- 5. A sample of level 1 decomposition with different bands. 
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Tables 6-3, 6-4, 6-5 and table 6-6 show the experiment results in terms of IR at rank-1 (%) for 

based on our method. This method was also compared to recent and comparable state-of-the-

art methods in (Khalid Bashir et al., 2009), (Bashir et al., 2010), (Hu et al., 2013), (Dupuis et 

al., 2013) and (Ait O. Lishani et al., 2017). 

Table 6-3 compares the proposed method based on global and local feature computation 

techniques. From this table, we can notice that the use of horizontal dynamic areas in the GEI 

in the proposed method significantly improves the performance of the gait recognition system 

by up to 10.00% without SRKDA and 4.00% with SRKDA, compared to the use of the whole 

GEI. This can be explained by noting that wearing a coat results in covering nearly 2/3 of the 

body, thereby reducing the variations in the features extracted from the covered part. 

Table 6-3. Comparison of IR rank-1 (in %) from the proposed method based on local and global feature 

computation techniques on the CASIA database, using a side view of 90o. Only the horizontal detail wavelet 

coefficients are used in the proposed method. 

 

Table 6-4 shows that the proposed method using only the wavelet coefficient from HL sub-

bands outperforms the state-of-the-art methods considered in this study. Indeed, the proposed 

method achieves a better IR at rank-1 by up to 93.00% and also increases the gait recognition 

for “wearing a coat” and “carrying a bag” conditions by up to 19.00% and 8.00% respectively, 

compared to the recent method in (Ait O. Lishani et al., 2017). 
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Table 6-4. Comparative analysis of the proposed method with several different state-of-the-art methods on the 

CASIA database for a side view of 90o. Three covariates are considered here: normal walking, carrying a bag, 

and wearing a coat, for horizontal, components. 

 

Table 6-5 shows that the proposed method yields comparable results for “normal walking” and 

provides the best IR at rank-1 produce the Haar transform with SRKDA from a 108o angle. In 

the case of “wearing a coat” the Haar transform with SRKDA provides the best IR at rank-1 

from an angle of 90o, with an IR of up to 93.55%. 

The results show that accuracy is increased by up to 10.58% compared with the Haar transform 

without SRKDA. Furthermore, the wavelet transform with SRKDA provides the best IR at 

rank-1 for the case of “carrying a bag” for an angle of 90o, as the IR results improve by up to 

10.49%. Finally, the “Normal walking” condition provides the best IR at rank-1 using the 

wavelet transform with SRKDA from an angle of 108o, where the IR improves by up to 

97.17%. Overall, the SRKDA reduction achieves improved results by up to 10.00% in all 

angles. Our investigations have extended the viewing angles in the dynamic areas in the human 

body to select the best viewing angles. 

A summary of the tables and results can be seen in table 6-6 for the Haar wavelet transform 

using SRKDA reduction technique able to achieve an attractive IR at rank-1 result of between 

87.00% and 92.61% for different viewing angles. 
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Table 6-5. Comparison of IR (in %) from the proposed methods on the CASIA database from four side views: 

36o, 72o, 90o and 108o. The proposed features, Wavelet transform with and without SRKDA. Only the horizontal 

detail wavelet coefficients were taken in the proposed method. Three covariates are considered here: normal 

walking, carrying a bag and wearing a coat. 

 

Table 6-6. Summary of IR (in %) from the proposed methods on the CASIA database from four side views: 36o, 

72o, 90o and 108o. The proposed features and Wavelet transform with and without SRKDA. Only the horizontal 

detail wavelet coefficients were taken in the proposed method. 

 

6.4 Summary 

This chapter has proposed a novel gait recognition approach for human identification under 

different clothing and carrying conditions from different viewing angles. The proposed method 

employs a supervised feature extraction technique based on Haar wavelet coefficients, which 

are extracted from the dynamic areas in the GEI, with SRKDA used to select the useful and 

informative features for classification. The experimental study conducted on the CASIA gait 
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database under various clothing and carrying conditions for different viewing angles compared 

the performance of the proposed method with recent and similar state-of-the-art methods. The 

experimental results using the k-NN classifier yielded an attractive performance of up to 

93.00% with regard to rank-1 IR. 

It can therefore be concluded that the wavelet transform is a very powerful technique, which 

offers a high accuracy rate and a low computation time. In our future work, we will evaluate 

our proposed method using different databases to extend the use of wavelets as a feature 

extraction method for gait recognition and to further investigate their performance. 
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CHAPTER SEVEN: CONCLUSION AND FUTURE 

WORK 

Gait recognition has become one of the most important and effective behavioural biometric 

modalities for identifying human subjects unobtrusively at a distance using low-resolution 

video sequences. However, the variation view and clothing of a subject and the presence of 

carried items are the main challenges. 

The underlying motivation of this thesis is to enhance the performance of existing methods 

under variable covariate conditions across large view angle changes. Applications of the results 

of this investigation include multi-modal biometric systems (e.g. face and gait) and human 

tagging across multiple cameras, where gait can be used on its own or as a cue to enhance the 

performance of existing methods. There is a considerable scope for performance improvement 

of gait recognition under variable covariate conditions. For this purpose, the key areas explored 

in this thesis are the development of a more discriminative feature extraction of gait against 

covariate conditions and cross view gait recognition. A number of interesting features of the 

proposed algorithms have been described and the feature methods have been shown to be 

effective and robust for feature extraction and for selection or reduction of relevant features 

from the GEI. 

This chapter provides the conclusions of this thesis and summarises its contributions, along 

with making some suggestions for future work. The main conclusion of the thesis and an 

outline of its contributions are outlined in Section 7.1. The final suggestions for the future 

research are given in Section 7.2. 



Chapter Seven: Conclusion and Future Work 

106 

7.1 Summary of Contributions 

This thesis has proposed a number of feature extraction methods for gait recognition under 

clothing and carrying conditions for different viewing angles. A GEI representation was chosen 

in this investigation by focusing on the dynamic parts of GEI data, which appear as gait cycle 

and head movement. The following summarises the main contributions of the thesis. 

• The first contribution was the development of a human gait recognition technique based 

on Haralick features extracted from GEI. These features are extracted locally by dividing 

vertically and horizontally the GEI into two or three ROIs. The RELIEF feature selection 

algorithm is then employed on the extracted features in order to select only the most 

relevant features with a minimum redundancy. 

• The second and third contributions to human identification by the proposed methods rely 

on two feature extraction techniques based on multi-scale feature descriptors and Gabor 

filter bank through the SRKDA reduction algorithm. The proposed features are extracted 

locally from two (ROIs) representing the dynamic areas in the GEI. The results are 

evaluated on the CASIA and USF Gait databases and the experimental results using the k-

NN classifier have produced remarkable results of the highest identification rate at rank-1 

when compared to the similar and recent state-of-the-art methods. 

• The fourth contribution consisted of a human gait recognition technique based on detail 

wavelet features extracted from the Haar wavelet decomposition of dynamic areas in the 

GEI. The results are evaluated on CASIA Gait Database B under variations of clothing 

and carrying conditions for different viewing angles. The experimental results using k-NN 

classifier have yielded significant results of highest Identification Rate (IR) at rank-1 when 

compared to existing and similar state-of-the-art methods. 
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7.2 Future Work 

To further improve the performance of gait recognition under various conditions, the following 

future work directions can be recommended: 

 Investigate the proposed approach under other covariate factors such as walking surface 

(Guan et al., 2015) in order to study other features capable of improving the 

performance of our proposed approaches. The first step in this approach will require 

our efficient background removal to be further developed to cope with such variation. 

 Consider and model more parts of the body and extract additional structural information 

by expanding GEI into the concept of the Structural Gait Energy Image. For example, 

a new gait recognition approach using SGEI has been proposed in (Li et al., 2013)  

which is generated by a fusion of a foot energy image (FEI) and head energy image 

(HEI). The FEI and HEI contain the moving probability information of the foot and 

head respectively without covering another part of the body. This is primarily related 

to the challenge of identification humans captured at a distance. 

 Other gait data representations such as Gait Depth Energy Image (GDEI), partial GDEI, 

Discrete Cosine Transform (DCT) GDEI and partial DGDEI need to be evaluated and 

compared to existing methods. We plan to expand the database by recruiting more 

participants with balanced gender representation and more variety of unrestricted cases. 

Features similar to those will be used for the CASIA B. 

Another area of future work relates to building/constructing an open-access database of Gait 

Images in order to experiment with these GEI-based representations i.e. GDEI, DGDEI, SGEI 

and GEI. This is widely anticipated, as there is a lack of an extended dataset containing various 
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types of data. The use of more search methods in the segmentation algorithms is another future 

direction that could be investigated. 

The variance representation of energy image can be applied and investigated to evaluate the 

possibility of improving the identification rate. 

The variance representation of energy image can be applied and investigated by carrying out 

work to evaluate the possibility of improving the identification rate. 
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APPENDIX 

Appendix A 

The Figure A-1 and Figure A-2 shows the weight and rank feature when have used RELIEF 

algorithm. 

Figure A-1. Illustrates weight feature. 

Table A-1 and Table A-2 shows the weights and ranked each feature that extracted by the 

Haralick method. 

Table A-1. Weights for each feature from RELIEF method. 
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Table A-2. Ranked features. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

20 19 6 7 1 22 18 14 12 25 17 21 13 24 5 8 4 32 9 26 
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Figures A-2. Shows ranking for the features. 

Table A-3 and Table A-4 show the results for comparison of IR (in %) from the Haralick 

proposed method on CASIA database (dataset B) for different theta angle, side view of 90o, 

horizontal and vertical division. 

Table A-3. Comparison of IR (in %) from the proposed method on CASIA database (dataset B) for different 

theta angle. Horizontal division. 

theta 

 

Covariates Mean IR 

Rank-1 

(%) Normal walking (%) Carrying a bag (%) Wearing cloth (%) 

0o 77.42 62.10 69.35 69.62 

450 82.52 69.35 77.42 76.43 

900 86.56 70.16 80.64 79.12 

1350 82.52 70.16 81.45 78.04 

Fusion  84.95 72.58 80.46 79.33 

 

Table A-4. Comparison of IR (in %) from the proposed method on CASIA database (dataset B) for different 

theta angle. Vertical division. 

theta 

 

Covariates Mean IR 

Rank-1 

(%) Normal walking (%) Carrying a bag (%) Wearing cloth (%) 

00 68.01 53.22 45.97 55.73 

450 70.16 51.61 50.80 57.52 

900 74.46 63.00 64.52 67.32 

1350 71.77 55.64 54.03 60.48 

Fusion  78.50 69.35 67.00 71.61 
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Appendix B 

Table B-1 , Table B-2 and Table B-3 shows the results for comparison of IR (in %) from the 

Gabor filter bank with different reduction techniques on CASIA database (dataset B) for 

different theta angle, side view 36o,72o,90o and 108o, with the following training-testing 

partitioning: 25% -75%, 50%-50% and 75%-25%. By analysing these results, we can notice 

that the proposed method achieves an attractive CCR result between 87.00 % and 91.00 % for 

different viewing angles. 

Table B-1 Comparison of CCRs (in %) from the proposed Gabor filter via SRKDA reduction method on CASIA 

database for four side views: 36o, 72o, 90o and 108o. The selected data are split randomly into two parts: 

Training and testing with partitioning: 25 -75%, 50% -50% and 75% -25%. 

Data partitioning 

(training–testing) 

Angle 

view 

Covariates Mean IR 

Rank-1 

(%) 
Normal walking 

(%) 

Carrying a Bag 

(%) 

Wearing a Coat 

(%) 

 

 

25 % - 75 % 

36° 86.73 75.62 89.24 83.87 

72° 91.75 82.43 89.24 87.81 

90° 89.60 85.66 91.04 88.77 

108° 88.88 56.37 88.88 88.05 

 

 

50 % - 50 % 

36° 85.48 83.87 93.54 87.63 

72° 95.70 85.48 90.32 90.50 

90° 93.55 87.63 89.24 90.14 

108° 91.93 86.56 91.40 89.96 

 

 

75 % - 25 % 

36° 89.24 83.87 90.32 87.81 

72° 90.32 88.17 90.32 89.60 

90° 90.32 89.24 88.17 89.24 

108° 91.39 90.32 87.09 89.60 
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Table B-2 Comparison of CCRS (in %) from the proposed Gabor filter via KPCA reduction on CASIA 

Database for four side views: 36o, 72o, 90o and 108o. The selected data are split randomly into two parts: training 

and testing with the partitioning: 25 %- 75 %, 50 %- 50 % and 75 %- 25 %. 

Data partitioning 

(training–testing) 

Angle 

view 

Covariates Mean IR Rank-1 

(%) 
Normal 

Walking (%) 

Carrying a 

bag (%) 

Wearing a 

coat (%) 

 

 

25 % - 75 % 

36° 83.15 69.89 87.45 80.16 

72° 90.32 78.50 87.10 85.30 

90° 83.87 81.72 84.58 83.39 

108° 90.32 79.93 86.38 85.54 

 

 

50 % - 50 % 

36° 82.25 78.49 89.78 83.51 

72° 93.54 84.40 88.71 88.88 

90° 89.78 85.48 91.39 88.88 

108° 90.32 83.33 89.24 87.63 

 

 

75 % - 25 % 

36° 84.94 79.57 86.02 83.51 

72° 89.60 77.42 88.17 85.06 

90° 86.02 82.79 83.87 84.22 

108° 89.24 84.95 86.02 86.73 

 

Table B-3 Comparison of CCRS (in %) from the proposed Gabor filter via MMP reduction on CASIA Database 

for four side views: 36o, 72o, 90o, and 108o. The selected data are split randomly into two parts: training and 

testing with the partitioning: 25 %- 75 %, 50 %- 50 % and 75 %- 25 %. 

Data partitioning 

(training–testing) 

Angle 

view 

Covariates Mean IR 

Rank-1 (%) 
Normal   

walking (%) 

Carrying a 

bag (%) 

Wearing a 

coat (%) 

 

 

25 % - 75 % 

36° 86.37 79.92 88.88 85.06 

72° 89.60 81.36 88.88 86.61 

90° 90.32 85.30 90.68 88.77 

108° 88.88 84.94 89.60 87.81 

 

 

50 % - 50 % 

36° 85.48 84.40 91.93 87.27 

72° 94.62 85.48 90.32 90.14 

90° 92.47 89.24 90.32 90.68 

108° 91.93 86.55 91.39 89.96 
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75 % - 25 % 

36° 89.24 84.94 89.24 87.81 

72° 89.24 88.17 88.17 88.53 

90° 88.17 90.32 87.09 88.53 

108° 91.39 90.32 89.24 90.32 
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