
URL: http://www.escm.eu.org/eccm15/data/assets/1097.pdf
<http://www.escm.eu.org/eccm15/data/assets/1097.pdf>

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/37376/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)
NUMERICAL ANALYSIS OF DELAMINATION GROWTH IN COMPOSITE MATERIALS USING TWO STEP EXTENSION AND COHESIVE ZONE METHODS

V. Mollón¹, J. Bonhomme², A. Elmarakbi³*, A. Argüelles², J. Viña¹

¹Dept. of Materials Science and Metallurgical Engineering. University of Oviedo. 33203 Gijón, Spain
²Dept. of Construction and Manufacturing Engineering. University of Oviedo. 33203 Gijón, Spain
³Dept. of Computing, Engineering and Technology, University of Sunderland, Sunderland SR6 0DD, United Kingdom
*e-mail: ahmed.elmarakbi@sunderland.ac.uk

Keywords: Delamination, CZM, FEM, Cohesive Elements

Abstract
The simulation of delamination using the Finite Element Method (FEM) is a useful tool to analyze fracture mechanics. In this paper, simulations are performed by means of two different fracture mechanics models: Two Step Extension (TSEM) and Cohesive Zone (CZM) methods, using implicit and explicit solvers, respectively. TSEM is an efficient method to determine the energy release rate components G_{Ic}, G_{IIc} and G_{IIIc} using the experimental critical load (P_c) as input, while CZM is the most widely used method to predict crack propagation (P_c) using the critical energy release rate as input. Both methods were compared in terms of convergence performance and accuracy to represent the material behaviour and in order to investigate their validity to predict mode-I interlaminar fracture failure in unidirectional AS4/8552 carbon fibre composite laminates. Numerical simulations are compared with experimental results performed by means of Double Cantilever Beam (DCB) in order to discuss the results and to have a full visualization of this damage. Results showed a good agreement among both FEM models and experimental results.

1 Introduction
Delamination failure is frequently found in composite structures. This kind of damage is considered one of the most critical in laminated fibre reinforced composites. Nowadays the analysis of the onset and propagation of the delamination are still being studied by composite technology researchers. The delamination process is characterized by means of the energy release rate (G), which is a measurement of the energy lost in the test specimen per unit of specimen width for an infinitesimal increase in delamination length. The onset of delamination takes place when G reaches a critical value G_c. There are several mathematical models developed in the scientific literature in order to compute G_c and to predict crack propagation for different loading modes by means of FE codes. Among these methods the Virtual Crack Closure Technique (VCCT) and the Cohesive Zone Model (CZM) are extensively used. The CZM method presents fracture as a gradual phenomenon in which separation takes place across a cohesive zone. Some of the first works in this field can be attributed to Dugdale [1] and Barreblatt [2]. Cohesive zone models are particularly attractive when interfacial strengths are relatively weak compared with the adjoining material, as is the case in composite laminates [3]. The CZM is available in all important commercial FE
packages. Nevertheless, CZM models sometimes present convergence problems with implicit solvers, so this model is usually used with explicit solvers. It is well known that explicit calculations with CZM show spurious oscillations of computed forces leading to undesirable results [4-5]. This problem is caused by an instability which occurs just after the stress reaches the peak strength of the interface. This problem can be controlled by some techniques as using a very fine mesh which, on the other hand, leads to very high computational time. Other authors have proposed artificial damping method with additional energy dissipations as those proposed by Gao and Bower [6]. Some authors have developed cohesive models specially designed to overcome this problem. For example Hu et al. [7] have developed a model named as adaptive cohesive model (ACM) with a pre-softening zone ahead of the existing traditional softening zone where the initial stiffness and the interface strengths at the integration points of cohesive elements are gradually reduced as the relative displacements at these points increase.

Regarding implicit solvers, the most extended method to solve delamination problems is the VCCT method [8] that was first formulated by Rybicki and Kanninen [9]. This method has been successfully used to predict delamination initiation in flat laminates with an embedded delamination [10]. The VCCT model has evolved from the Finite Crack Extension Method and the Virtual Crack Extension Method [11] and is based on Irwin’s crack closure integral [12]. In this work the Two Step Extension Method (TSEM) has been used as an alternative to the VCCT method. The TSEM is based on the calculation of the forces and displacement at the crack tip in two steps. Other studies have demonstrated that TSEM is a good candidate, similar to VCCT, to model the delamination process [13]. In this paper, mode I delamination tests have been modelled by means of the TSEM (implicit solver) and CZM (explicit solver) in order to compare both procedures. Finally, an experimental program has been performed in order to obtain GIC experimentally by means of Double Cantilever Beam (DCB) specimens. Numerical results were compared with experimental results in order to demonstrate the validity of both methods in terms of convergence performance and accuracy to represent the material delamination behaviour.

2 Experimental and numerical methods

2.1 Experimental procedure

Five samples of Hexcel AS4/8552 laminates were tested in mode I interlaminar fracture test following the ASTM Standard D 5528-01 [14]. This material is a unidirectional carbon fibre-epoxy composite that has been modified in order to improve toughness. The mechanical properties of this laminate are taken as $E_{11} = 144$ GPa, $E_{22} = 10.6$ GPa, $G_{12} = 5.36$ GPa, $\sigma_{11} = 1.703$ GPa, $\sigma_{22} = 30.8$ MPa, $\sigma_s = 67.7$ MPa. Figure 1 shows the DCB specimen.

As it can be seen in figure 1, opening forces are applied to the Double Cantilever Beam (DCB) specimens to produce mode I delamination fracture. The DCB specimen is composed of 32 unidirectional plies and it contains a non-adhesive insert at the mid-plane to act as a...
delamination starter. The structure of the laminates was $[0^\circ_{16}/\text{insert}/0^\circ_{16}]$. The DCB specimen was 150 mm in total length, 50 mm in crack length, 25 mm width and 6 mm thickness (nominal dimensions). The specimens were tested on a MTS testing machine with a 5 kN load cell, applying a constant displacement velocity of 1 mm/min. The load-displacement response was obtained and a travelling optical microscope (100×) was used to measure the crack length during the test. The Modified Beam Theory (MBT) (eq. 2) and the Compliance Calibration (CC) (eq. 3) data reduction methods were used to calculate the strain energy release rate, G_{IC}:

$$G_{IC} = \frac{3P_c \delta}{2B(a + |\Delta|)}$$ \hspace{1cm} (2)

$$G_c = \frac{nP \delta}{2Ba}$$ \hspace{1cm} (3)

Where P_c is the critical load, δ, B, h and a are the load point displacement, specimen width, specimen thickness and delamination length respectively while Δ and n are calibration parameters [14]. According to ASTM Standard D 5528-01 [14], the critical value of $P_c (P_c)$ is calculated from the load-displacement curve (see figure 2) as the onset of the crack growth. This parameter may be calculated as the point of deviation from linearity (NL), the point at which delamination is visually observed (VIS) and the point at which the compliance has increased by 5% or the load has reached a maximum value ($5%\text{/max}$).

2.2 Numerical methods

In this work, simulations of mode I interlaminar fracture toughness tests of composite material were conducted by means of two different fracture mechanics methods: Two Step Extension and Cohesive Zone methods, using ANSYS® (implicit) and LS-DYNA® (explicit) packages respectively.

2.2.1 Two Step Extension Method

In this numerical method, the crack path is modelled using pairs of coincident nodes. The forces at the crack tip are calculated in a first step when the load reaches the critical value. The imposed displacement in the sample is then held and the coupled DOFs (degrees of freedom) of the nodes at the crack tip are released in a second step. Displacements are then calculated in this second step (see figures 3a and 3b).

The DCB specimens were modelled by means of four node 2D solid elements in plane strain with two degrees of freedom at each node (translations in the nodal x and y directions). The element length was set to 0.33 mm near the crack tip, so the ratio of the crack increment length over the initial crack length was $\Delta a/a_0 = 0.0066$. Finite element calculations were
performed by means of an ANSYS® implicit package. Material behaviour was implemented as orthotropic.

2.2.2 Cohesive Zone Method (CZM).
These calculations were performed by means of LS-DYNA® explicit software. The main solution methodology is based on explicit time integration. This code is one of the most widely used to model impact and crash situations in layered composites. Cohesive elements are implemented in the code. In this method, the delamination surface is modelled between individual laminas by interface elements of cohesive strengths which exhibit the approximate behaviour of delamination cracks (see figure 4).

![Figure 4. Cohesive model](image)

Compared to VCCT, CZM has the advantage of being able to predict the onset and propagation of a crack without the need to implement a pre-existing crack [15]. The combined effects of the damage processes are well defined by unique models called Cohesive Zone Models. By implementing these models, one may take the delamination into account by finite element analysis.

In a cohesive element, a maximum opening normal stress is associated with an initial crack opening and a maximum crack length is associated with zero bond strength (see figures 5a and 5b). One of the most widely used constitutive equations is the bilinear law [16] as shown in figures 6a and 6b. The initial slope of both curves is the penalty stiffness \(k \). This value is usually high in order to reproduce the crack behaviour. In pure modes I or II, when the normal or shear traction reach the critical value \((\sigma^0 \text{ or } \tau^0) \) the stiffness is progressively reduced to zero. The discontinuity at maximum load shown by the bilinear law can be avoided by means of a smooth nonlinear law. Different laws developed in the scientific literature can be reviewed in ref [17]. In a real structure, more than one pure load mode is usually present at the crack front, so it is necessary to define a general formulation for mixed mode delamination. For pure modes I and II, the onset of delamination can be determined by comparing \(G_I \) or \(G_{II} \) with their critical values \((G_{Ic} \text{ or } G_{IIc}) \). In this work this issue is not relevant as only pure mode I is developed in DCB specimens. The DCB model was performed by two beams or sublaminates. Every sublamine was modelled by means of fully integrated S/R-8 node solid elements, with two elements across the thickness. Material behaviour was
simulated as orthotropic by means of the MAT_002 (*MAT_ORTHOTROPIC_ELASTIC) option. On the other hand, a cohesive interface was performed between the beams with one element across the thickness. The cohesive element thickness was 0.01 mm. This layer was implemented by means of the MAT_138 (*MAT_COHESIVE_MIXED_MODE) model, based on the bilinear law. This option requires the independent material parameters as follows:

\[k_I = 3 \times 10^4 \text{N/mm}, \quad k_{II} = 3 \times 10^4 \text{N/mm}, \quad G_{IC} = 0.250 \text{N.mm/mm}^2, \quad G_{HC} = 0.791 \text{N.mm/mm}^2, \quad \sigma_0^0 = 45 \text{N/mm}^2, \quad \tau_0^0 = 45 \text{N/mm}^2, \quad \eta = 1. \]

The parameters \(G_{IC} \) and \(G_{HC} \) values have been obtained from previous numerical studies [18]. There is no general agreement in the scientific literature about the stiffness of the cohesive zone and interfacial strengths for carbon/epoxy composites. Turon et al. [19] have proposed that the interfacial stiffness \(k \) can be calculated by \(tE/3\alpha \), where \(\alpha >> 1 \) (Turon et al. proposed \(\alpha > 50 \)), \(E \) is the transverse elastic modulus and \(t \) the sublaminate thickness. Other authors have proposed values between \(10^4 \) and \(10^7 \) [20].

Regarding the interfacial strength, Alfano and Crisfield [21] have found that variations in this parameter do not affect too much the final results, and a decrease in the interfacial strength tended to improve convergence. Even more, the reduction of the interfacial strength has the effect of enlarging the cohesive zone so the softening behaviour ahead the crack tip could be better captured for a given mesh [19]. In this work a value of \(k_I = k_{II} = 3 \times 10^4 \) and \(\sigma_0^0 = 45 \text{MPa} \) has been taken according to [7]. In this model, the mixed mode damage initiation displacement \((\delta_m^0) \) is given by:

\[
\delta_m^0 = \delta_I^0 \delta_{II}^0 \sqrt{1 + \beta^2 \left(\frac{\delta_I^0}{\delta_{II}^0} + (\beta \delta_I^0) \right)}
\]

(4)

where \(\delta_I^0 \) and \(\delta_{II}^0 \) are the single mode damage initiation separations and are given by:

\[\delta_I^0 = \frac{\sigma^0}{k_I}, \quad \delta_{II}^0 = \frac{\tau^0}{k_{II}} \]

(5)

The cohesive element fails when the ultimate mixed mode displacement \((\delta_m^F) \) is reached. Two alternative formulations are implemented for MAT_138. The Power Law (for values of \(\eta > 0 \)):

\[
\delta_m^F = \frac{2(1 + \beta)^2}{\delta_m^0 \left[\left(\frac{\sigma^0}{G_{IC}} \right)^{\eta} + \left(\frac{\tau^0}{G_{HC}} \right)^{\eta} \right]^{-\frac{1}{\eta}}}
\]

(6)

The Benzeggagh-Kenane Law: (for values of \(\eta < 0 \)):

\[
\delta_m^F = \frac{2}{\delta_m^0 \left[\frac{1}{1 + \beta^2 \sigma^0 + \beta^2 \tau^0} \right]} \left[G_{IC} + \left(G_{HC} - G_{IC} \right) \left(\frac{\beta^2 \tau^0}{\sigma^0 + \beta^2 \tau^0} \right)^{\left| \eta \right|} \right]
\]

(7)

In this work, the power law with \(\eta = 1 \) has been used. As stated before, in DCB tests only pure mode I takes place at the crack tip, so these parameters are not so relevant. Several models were performed in order to obtain a successful FEM simulation. First of all, the element size in the different parts of the model had to be set. As it is well known, the usage of small elements give rise to a more accuracy solution. Nevertheless, as element number increases the
total CPU time to solve the problem increases. This effect is particularly important with explicit solvers where the critical time step depends on the dimensions of the smallest element. In this way, the selection of the gap thickness between both sublaminates (cohesive element thickness) must be also carefully fixed. In this work a previous study was developed in order to determine the optimum size of the elements in the cohesive zone ahead of the crack front in order to optimize the CPU time while maintaining the accuracy of the results. It was found out that cohesive element length about 2 mm near the crack front was small enough to obtain results with a good approximation to the experimental values and leads to a reasonable computational cost.

3 Results and discussion

3.1 Experimental results

Five specimens were tested following the experimental procedure described in point 2.1.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Critical Load (N)</th>
<th>Critical displacement (mm)</th>
<th>G_{Ic} (J/m2) (MBT)</th>
<th>G_{Ic} (J/m2) (CC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.0</td>
<td>1.47</td>
<td>267.88</td>
<td>266.28</td>
</tr>
<tr>
<td>2</td>
<td>130.6</td>
<td>1.73</td>
<td>293.67</td>
<td>281.91</td>
</tr>
<tr>
<td>3</td>
<td>167.0</td>
<td>1.41</td>
<td>352.78</td>
<td>318.24</td>
</tr>
<tr>
<td>4</td>
<td>123.2</td>
<td>1.50</td>
<td>247.71</td>
<td>238.76</td>
</tr>
<tr>
<td>5</td>
<td>134.1</td>
<td>1.51</td>
<td>275.79</td>
<td>265.83</td>
</tr>
<tr>
<td>Mean (\bar{x})</td>
<td>138.6</td>
<td>1.52</td>
<td>287.6</td>
<td>274.2</td>
</tr>
<tr>
<td>Standard Dev. (s)</td>
<td>16.8</td>
<td>0.12</td>
<td>40.0</td>
<td>29.1</td>
</tr>
</tbody>
</table>

Table 1. Experimental results

Experimental curves were linear up to failure, so the critical load was taken as the maximum load. Table 1 shows the critical load (P_c) and displacement (δ_c) obtained in the experimental tests. This table also shows the energy release rate G_{Ic} calculated by means of MBT and CC procedures. CC reduction method has been selected as a reference for subsequent comparisons as this was the procedure that gave the lowest standard deviation. The coefficient of variation (CV) of the experimental results was 11%. Other authors have found similar experimental dispersion in interlaboratory round robin tests [22].

3.2 Numerical results

3.2.1 Two-Step Extension Method

Each experimental specimen tested as described in 3.1 was modelled by means of an ANSYS® package. Each model was prepared as stated in 2.2.1 and loaded with the corresponding experimental load shown in table 1. The Two Step Extension Method was used as described in 2.2.1 in order to calculate the critical energy release rate G_{Ic}. The results obtained in these runs were determined for specimens 1, 2, 3, 4, and 5 as 242.6, 259.9, 341.3, 227.2, and 226.0 J/m2, respectively. As we can see comparing, there is a good agreement between experimental results and ANSYS® runs as the difference between G_{Ic} mean values obtained from both procedures were in the order of 5%. This error is low, taking into account the observed experimental dispersion.

3.2.2 Cohesive Zone Method (CZM)

As the experimental tests were performed at low velocity (1 mm/min=0.017 mm/s), the experimental time to maximum load was about 1.5 minutes. This time is too long for explicit software resulting in very high computational cost. In order to reduce the computing time, two strategies can be used. On one hand the loading speed can be increased. On the other hand
mass scaling can be applied for the lowest velocities. In both cases a sensitivity study must be
developed in order to assess the validity and accuracy of the results. In this work, the
influence of the loading speed on the critical load has been studied in order to prove the
validity of increasing that parameter. Mass scaling was also used to obtain faster solutions
with the lowest velocities. Mass scaling refers to a technique whereby nonphysical mass is
added to a structure in order to achieve a larger explicit time-step. Mass scaling reduces the
simulation time, but it may affect the results. The effect of the mass scaling can be addressed
changing this parameter and observing the sensitivity on the obtained results. The critical
loads \(P_c \) obtained in these runs for velocities of 0.25, 0.50, 5, 10, 100, and 200 mm/s are
137.7, 138.7, 137.7, 137.8, 138.7, and 137.9 N, respectively. The mass scaling factors have
been selected in order to reduce CPU time without having any significant influence on the
results. As can be seen \(P_c \) remains almost constant for loading speeds up to 100-200 mm/s.
This means that when simulating a quasi-static mode I test, the loading speed can be increased
from quasi-static values up to about 100 mm/s in order to speed up the solution procedure,
without affecting the results accuracy. Following these results, the critical load obtained with
the lowest velocity (0.25 mm/min) was taken as quasi-static and used to compare with the
experimental and TSEM methods. A good agreement was found between experimental and
CZM models as the difference between critical loads were in the order of 1% \(P_{c,exp} = 138.6 \)
N / \(P_{c,CZM} = 137.7 \) N. It is also noted that the CZM shows a linear behaviour up to maximum
load. As stated before, at this point instabilities began to occur due to the suddenly change in
stiffness after the stress reaches the peak strength of the interface. This behaviour is not
relevant for this study as only results at maximum load are compared. On the other hand TSE
model, as used in this work, do not reproduce the propagation phase. In order to study the
propagation behaviour by means of CZM, other procedures should be implemented in LS-
DYNA® as smooth traction-separation laws or the adaptive cohesive model (ACM) with pre-
softening zone [7]. By using these methods, smooth propagation behaviour would be
obtained.

4 Conclusions
The TSEM is a very efficient method to work with implicit solvers. It is easy to implement
and useful to support experimental results. This method, as presented in this work, uses as
input the critical load obtained from experimental results and furnishes the energy release rate
\(G_{II} \) and \(G_{III} \) in a generalized load state by means of simple calculations. A good
agreement was found between experimental and numerical results as errors between both
procedures were below 5%. On the other hand, CZM running on explicit solvers also
furnishes very accurate results (the critical loads obtained from experimental and numerical
results differs only by 1%). This method is very useful to study the onset and propagation of
cracks. The material model uses the critical energy release rate obtained in pure modes I, II
and III as input parameters and furnishes the critical load needed to initiate or propagate the
crack. In this work, it was found that the loading speed can be increased up to 100-200
mm/min with no significant influence on the obtained results. Finally, if crack propagation
needs to be studied, any action should be taken in order to avoid spurious oscillations after
maximum load as implementing a smooth law or an adaptative cohesive model.

References
Physics of Solids, 8, pp.100-104 (1960).

