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ABSTRACT Mobile edge computing (MEC) has attracted extensive studies recently due to its ability to
augment the computational capabilities of mobile devices. This paper considers a cache-enhanced multiuser
MEC system where the task can be cached in the MEC servers to avoid the transmission of duplicate
data. To further improve the energy efficiency and satisfy the users’ requirement on delay, we jointly
optimize caching, computation, and communication resources in this system. The formulated problem
is a mixed integer non-convex optimization problem that is very challenging to solve. We thus propose
an efficient iterative algorithm by jointly applying the block coordinate descent and convex optimization
techniques, which is guaranteed to converge at least a suboptimal solution. Specifically, the formulated
joint optimization problem is decomposed into two subproblems to optimize caching policy and resource
allocation, respectively, which are alternately optimized by convex optimization in each iteration. To further
speed up the algorithm convergence, an efficient initialization scheme based on the linear weighted method is
proposed for caching policy. The extensive simulation results are provided to demonstrate that the proposed
jointly optimizing caching, computation, and communication method can improve the energy efficiency with
lower time cost compared with other benchmark methods.

INDEX TERMS Mobile edge computing, edge caching, joint optimization, convex optimization, block
coordinate descent.

I. INTRODUCTION
With the rapid advancement of intelligent mobile device and
internet of things, the new type of mobile applications, such
as artificial intelligence,augmented reality and virtual reality,
are constantly emerging, which put forward higher require-
ment on the computing power, data access of mobile devices.
However, mobile devices generally have limited resources
of computation, communication, storage and energy, which
makes it face great challenge for finishing such computation-
insensitive and latency-sensitive applications [1]. To address
this challenge, several offloading based computing models
were proposed, typically including mobile cloud computing
(MCC) [2], [3], mobile edge computing (MEC) [4], [5] ect.
These computing models strengthen capability by migrating
part or all of the application from resource-hungry mobile
devices to powerful cloud servers. Especially, MEC that

deploys cloud servers at the edge of radio access networks
to avoid the large delay has received growing attentions from
both industry and academia.

However, despite being in close proximity to the servers,
mobile devices still have to consume additional delay and
energy on offloading. In addition, the massive task data trans-
mission will bring another challenges on the access network.
For further improvement, some researches proposed edge
caching [6], [7], which caches the popular contents or tasks
at the edge to reduce the delay and energy consumption by
avoiding unnecessary duplicate transmissions.

Unfortunately, on the one hand, current concerns of edge
caching are mainly on content caching, exploring the optimal
caching policy to increase the hit rate [8], [9]. But ignore
the fact that task caching actually has more extensive and
universal application scene. On the other hand, task caching is
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a complicated problem, not only depending on task popularity
but on task size and task complexity etc, which is hard to
find out a universal caching method. Besides, caching policy
will affect the allocation of computation and communication
resources and vice versa, a joint caching and resources allo-
cation policy is essential to improve the energy efficiency of
cache-enhanced MEC system.

In this paper, we propose a cache-enhanced MEC system
that caches the tasks on the edge servers. Different from previ-
ous researches that concern on caching task results, we define
the task caching as caching the application program and task
data on the edge servers. This makes it possible to deal with
the same data according to the different user requests, which
enhances the system flexibility and increases the cache hit
rate in a sense. Due to the small size and few types, it is real-
istic to assume that all the programs are cached on the edge
servers. Besides, we neglect the transmission of configuration
and request data because of its small size. Therefore, we can
consider that the cached task can be executed on the edge
servers without any data transmission. Once cached, the tasks
will surely executed on the edge servers, or it will be executed
on the mobile devices and edge servers parallel to reduce the
time and energy consumption. To further improve the energy
efficiency of proposed task caching-enhanced MEC system,
we formulate a problem that jointly optimize the caching
policy and resource allocation of computation and communi-
cation to minimize the energy consumption of mobile devices
while meet the users’ requirements on task delay. Finally,
we propose an efficient iterative algorithm by jointly applying
the block coordinate descent and convex optimization tech-
niques to solve the formulated mixed integer optimization
problem. Themain contributions to this work are summarized
as follows.

In terms of system model. We propose a cache-enhanced
MEC system that integrates task caching into MEC to reduce
the duplicate transmission. Different from researches that
caching task result, task caching in the proposed system refers
to caching the application program and related task data. Due
to the small size and few types of program, we assume that
the programs are all cached in the edge servers, and what
the caching policy decide is whether to caching the task
data. Once cached, the task will be executed on the edge
servers, or it will be executed on the edge servers and local
device parallel. Proposed model is able to reduce the time and
energy consumption by jointly using the resource of caching,
computation and communication.

In terms of formulated problem. Caching in general is a
longer process (e.g., in minutes or hours) and reflect the
statistic of the system, but resource allocation is a much
shorter process (e.g. in seconds or millisecond) and utilize the
instantaneous system state information as much as possible.
The contradiction make it impossible to optimize the caching
policy and resource allocation at the same time. To avoid
the contradiction, we consider that a caching policy can be
used in several following time slots, but the computation and
communication resources are reallocated for users in each

time slot. Thereby, we formulate a joint optimization problem
of caching policy and communication, computation resources
to minimize the energy consumption of mobile devices while
meet t he users’ requirement on delay.

In terms of solution. The formulated problem is a mixed
integer non-convex optimization problem which is hard to
solve and no well-studied optimization techniques can be
used directly. In this paper, we propose an efficient iter-
ative algorithm by jointly applying the block coordinate
descent and convex optimization techniques. Specifically, we
decompose the original problem into two subproblems and
alternately optimize them in each iteration. Besides, we give
a linear weighted method based initialization method for
caching policy to overcome the excessive number of itera-
tions and large time consumption.

The rest of this paper is organized as follows: Section II
gives some related work. In section III, system model and
problem formulation are introduced. Next, section IV gives
the detail problem solution. In section V, the simulation
results and analysis are shown. Finally, we conclude this
paper in section VI.

II. RELATED WORK
As a key solution for insufficient physical resources of mobile
devices, MEC has attracted extensive attentions in recent
years. However, it still faces some challenges to be more
widely and efficiently applied.

In MEC system, the efficiency of computation offloading
largely depends on the quality of communication because
data transmission is necessary. This calls for incorporat-
ing the characteristics of communication and computa-
tion, jointly optimizing communication and computation
resources. In [10], a method jointly optimizing mobile-
transmission power and CPU cycles assigned to each appli-
cation is proposed to minimize the power consumption at the
mobile side, under an average latency constraint. By Karush-
Kuhn-Tucher (KKT) condition, they get the one-to-one rela-
tionship between the transmit power and the percentage of
CPU cycles assigned to each user. In [11], Wang et al. consid-
ered a single-user scenario, they focus on partial computation
offloading by jointly optimizing the CPU cycle frequency,
transmission power and offloading ratio. In [12],
the radio resource and computational resource allocation
were jointly optimized to minimize the weighted sum energy
consumption in a MIMO system. In [13], Zhao et al.
jointly optimized the offloading selection, radio resource
allocation and computational resource allocation coordi-
nately to minimize the energy consumption of mobile device.
Reference [14] developed an online joint radio and com-
putational resource management algorithm for multi-user
MEC systems, they aimed at minimizing the long-term aver-
age weighted sum power consumption of the mobile device
and MEC server, under the task buffer stability constraint.
Reference [15] proposed a game theoretic approach to get
the computation offloading decision among multiple mobile
device users.

VOLUME 7, 2019 3337



P. Liu et al.: Jointly Optimized Energy-Minimal Resource Allocation in Cache-Enhanced MEC Systems

By jointly optimizing the computation and communica-
tion resource, the resources utilization and energy efficiency
of MEC system has been improved significantly. However,
offloading operation and content delivery during the execu-
tion will still consume additional time and energy. To further
reduce task latency and improve energy efficiency, some
researches has proposed edge caching, caching the pop-
ular contents on the edge of network to avoid duplicate
transmission.

Gu et al. [16] investigate the storage allocation problem
in MBS caching and propose a heuristic method to solve
the NP-hard problem. Bai et al. [17] proposed a caching
based D2D communication scheme that consider the social
relations among users and their interests. Traverso et al. [18]
proposed a dynamic popularity based caching model, using
a pulse with two parameters to model each content.
Ahlehagh and Dey [19] defined the user preference profile
(UPP) as the probability that a user requests video of specific
video category and propose a caching policy based on UPP.
Sengupta et al. [20] proposed a learning based caching policy
that solving the problem of distributed caching in SBSs from a
reinforcement learning view. They adopted coded caching to
reduce caching problem to a linear program that considering
the network connectivity, getting better performance than the
uncoded scheme.

These researches mainly focus on content caching,
including Where to Cache? What to cache? How to cache?
However, some researches has introduced edge caching
into MEC and proposed task caching which will be exten-
sive used with the size of task data and results increasing.
Reference [21] formulated an optimization problem that
jointly considering the offloading decision, physical spec-
trum resource, computation resource and content caching
strategy. And developed an alternating direction method
of multipliers (ADMM) based algorithm to solve the opti-
mization problem to maximize the revenue. Reference [22]
proposed an MEC enhanced adaptive bitrate (ABR)
video delivery scheme that combines content caching and
ABR streaming technology. The joint cache and radio
resource allocation (JCRA) problem is tackled into a match-
ing problem and be solved to make the cooperation between
caching and radio resources. Reference [23] proposed a
joint caching and offloading mechanism that involves task
uploading and executing for taskswith uncached computation
results as well as computation result downloading for all tasks
at the BS. Then they formulate the problem that optimally
allocate the storage resources at BS for caching computation
results as well as the uploading and downloading time dura-
tions tominimize average total energyminimization problem.
Reference [24] studied the energy-efficient resource alloca-
tion in software-defined mobile networks with mobile edge
computing and caching. They formulate a novel optimization
problem by jointly considering bandwidth provisioning and
content source selection and solve the problem by decoupling
the problem. Reference [25] introduced the concept of task
caching and investigated the problem of joint optimization of

FIGURE 1. System model. One BS, K users and N tasks.

task caching and offloading on edge cloud with computing
and storage resource constraint. They formulated the opti-
mization problem and proposed an alternating iterative based
algorithm to solve it. Reference [26] studied the conditions
under which the area power consumption is minimized with
respect to BS transmit power, while ensuring a certain quality
of service (QoS) in terms of coverage probability. Further-
more, they provide the optimal BS transmission power that
maximizes the area spectral efficiency per unit total power
spent.

III. SYSTEM MODEL AND PROBLEM FORMULATION
As illustrated in Fig.1, we consider a multi-user cache-
enhanced MEC system with one BS and K mobile devices
under its coverage, denoted by K , {1, 2, 3, ..,K }.
MEC servers directly connected with the BS, providing com-
putation and caching capability. Supposing that the time is
divided into discrete time slots with duration T and each
mobile device has a computation-insensitive and latency-
sensitive task at the beginning of each slot. MEC servers
are able to cache tasks selectively with limited storage space
to reduce the execution time. Once cached, the task will be
executed on the MEC server. Otherwise, it will be parallel
executed on the servers and local devices. Since caching
and allocation scheme of computation and communication
resources are interactive, a joint allocation scheme is nec-
essary for minimizing the energy consumption of mobile
devices.

Taking augmented reality(AR) as a typical example of
proposed system model. Some mobile devices require to run
augmented reality application and the application program is
cached on the MEC server. For the mobile devices, they may
need to deal with the same task data according to different
requirements within a certain scope of time and space. If the
task data is cached, the task can be executed on the edge server
without any data transmission under the premise of ignoring
the configuration and request data. Therefore, the cached task
will be executed on the edge servers, and the others will be
executed on the edge server and local device parallel.
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A. TASK MODEL
Supposing that a task set with N computation-incentive and
latency-sensitive tasks, denoted by N , {1, 2, 3, . . . ,N }.
Each task n ∈ N is characterized by two parameters,
i.e the size of task input dn (KB) and the computational
complexity cn (Megacycle). Besides, each task must be com-
pleted within one time slot T . Note that we neglect the size of
computation result, because it is much smaller than the input
data.

At the beginning of each time slot, mobile devices request
a task randomly from setN , where one task may be requested
by multiple users simultaneously. Without loss of generality,
each mobile user has different preference on the tasks and
hence we model the task popularity. Specifically, the mobile
k need to execute the task Nk ∈ N . Defined that PNk (n) =
Pr[Nk = n] denotes the probability that the mobile k execute
the task n, where n ∈ N and

∑
n∈N

PNk (n) = 1, ∀k ∈ K.

Note that the task variables Nk , k ∈ K are independently
distributed, and the probability distribution function PNk (n)
may be different. For one time slot, the tasks executed by
all the mobile devices construct the task state, defined by
Y , (N1,N2, . . . ,NK ). Supposing that we consider M time
slots in total, m ∈ [1, 2, 3, . . . ,M ] denotes the sequence
number of time slot and the corresponding task state denoted
by Ym. Besides, Sn(m) ⊆ K denotes the set of mobile devices
that execute the task n in the time slot m and |Sn(m)| denotes
size of the set.

B. COMPUTATION MODEL
Consider that tasks could be partitioned into two parts of
any size, executing on the mobile devices and edge servers
parallel. Therefore, the computation model including two
parts, i.e. local execution and edge execution. Note that the
next descriptions all take the mobile device k execute task n
as an example.

1) LOCAL EXECUTION MODEL
For local execution, the CPU computing power of mobile
device k is denoted by f lock . Thus, the time consumption for
local execution can be given by:

T lock =
cn
f lock

. (1)

The energy consumption for one computing cycle can be
given by κf lock

2
where κ is the effective switched capacitance

that depends on the chip architecture, and thus the total energy
consumption for local execution are as follows:

E lock = κf
loc
k

2
cn, (2)

where we set κ = 10−26 in this paper.

2) MEC SERVER EXECUTION MODEL
For edge execution, the computation resources are reallocated
at the beginning of each time slot. The CPU computing power
that edge servers allocate to mobile device k in the m-th time

slot is denoted by f edgek,m . The time consumption of mobile
device k in the m-th time slot can be expressed as follows:

T edgek,m =
cn

f edgek,m

. (3)

Previous researches usually consider that mobile device
does not consume any energy when edge execution, but the
energy of edge servers. However, they neglect the fact that the
energy consumption and computation time is directly propor-
tional, longer waiting time brings more energy consumption.
In this paper, the energy consumed by the mobile device k
when edge execution is considered and can be given by:

Eedgek,m = Pwaitk T edgek,m , (4)

where Pwaitk represents the power in waiting state. Note that
the computation resource of edge server can not be infinite,
it will be reallocated at each time slot. By F denotes the
total computation resource, and hence have the following
constraints in each time slot as:∑

n∈N

∑
k∈Sn(m)

f edgek,m ≤ F, m ∈ {1, 2, . . . ,M}. (5)

C. COMMUNICATION MODEL
For the edge execution, the tasks need to be offloaded to the
edge server with the uplink. And thus the communication
resources are also allocated at the beginning of each time
slot. Note that we assumes that each mobile device will be
assigned one or more subchannels for offloading and the
subchannels assigned to each mobile device are homoge-
neous (i.e., the channel power gain and transmission power
of different subchannels are the same for a mobile device,
but different for different mobile device [27]). Let pk denotes
the transmission power of mobile device k , and hk,m denotes
the channel power gain from mobile device k to the BS in the
m-th time slot, θk,m denotes the number of subchannels
assigned to mobile device k in the m-th time slot. Based on
the definition, the data rate between mobile device k and the
BS in the m-th time slot can be given as follows:

rk,m = θk,mB log2(1+
pkhk,m
σ 2 ), (6)

where B denotes the channel bandwidth, and σ 2 denotes the
noise power. For simplicity, we consider both B and σ 2 are
constant. The transmission power pk is constant for each
mobile device, but may be different from each other. Note that
the channel state is usually changing in different moments,
thus we define H = {1, 2, 3, . . . ,H} as the channel state
set, from which the channel power gain of mobile device is
selected and keep unchanged in one time slot. The channel
power gain of mobile device k denoted by Hk and pHk (h) =
Pr[Hk = h] denotes the probability that Hk takes the value
h ∈ H. Supposing that each mobile device has the inde-
pendently distributed pHk , and

∑
h∈H

pHk (h) = 1 ∀k ∈ K.
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The offloading time for mobile device k to execute task n in
the time slot m can be given by:

T trank,m =
dn
rk,m

. (7)

The energy consumption can be given by:

E trank,m = pkT trank,m , (8)

by L denotes the total number of subchannels, we have the
following constraints on communication model:∑

n∈N

∑
k∈Sn(m)

θk,m ≤ L, m ∈ {1, 2, . . . ,M}. (9)

D. CACHE MODEL
Based on previous definition of task caching, the application
programs are all cached in the MEC servers and caching
policy is used to decide whether to cache the task data. There
is no doubt that task caching can reduce task latency and
energy consumption because of no data transmission under
the premise of ignoring the configuration and request data.
However, how to assign the limited caching capacity is a
complicated problem, which depends on the task popularity,
size and computation complexity etc. Assume that the size
of caching capacity is D, by an denotes the caching decision
of task n, we define the cache model. Specifically, an = 1
denotes that the task n is cached in the MEC server and
an = 0 otherwise. Note that if task n is cached, owing to
there is no task data transmission and we ignore the result
transmission latency, the task latency only depends on edge
execution time. Meanwhile, edge execution is usually much
faster and consume less energy of mobile device than local
execution. Therefore, we consider that if the task executed by
mobile device k is cached, the whole task is executed by the
edge servers. Otherwise, it will be executed on edge server
and local device parallel to further reduce the latency and
energy consumption. For the uncached tasks, let αk,m ∈ [0, 1]
denotes the offloading ratio of mobile device k in the
m-th time slot,αk,m = 1means the completed task is executed
on the edge server and αk,m = 0 means the completed task is
executed on the local device, otherwise, the task is partitioned
into two parts, αk,m for edge execution and (1 − αk,m) for
local execution. Based on above model, if the mobile device
k executes the cached task n, the time consumption T cachek,m is
equal to the time consumption of edge execution (i.e.T cachek,m =

T edgek,m ), and the energy consumption Ecachek,m is equal to the

consumption of edge execution. (i.e.Ecachek,m = Eedgek,m ). While
the executed task n is not cached, the task will be executed on
the edge server and local device at the same time and thus the
time consumption can be given by:

T uncachek,m = max
(
(1−αk,m)T lock , αk,m(T trank,m + T

edge
k,m )

)
. (10)

Besides, the energy consumption can be given by:

Euncachek,m = (1− αk,m)E lock + αk,m(E
edge
k,m + E

tran
k,m ). (11)

Then, the total energy consumption of mobile devices in the
m-th (m ∈ {1, 2, 3, . . . ,M}) time slot can be given by:

Em =
∑
n∈N

∑
k∈Sn(m)

(1− an)Euncachek,m + anEcachek,m . (12)

E. PROBLEM FORMULATION
Note that caching is in general a long process and reflect
the statistic of system, but resource allocation is usually an
instant process and utilizes the real-time states. Therefore,
we consider the scenery that the task states in the continuous
multiple time slots share the same caching policy, i.e. the
resource allocation changes in different time slots but the
caching policy remains unchanged. The goal of this paper is
to minimize the total energy consumption of continuous M
time slots by jointly optimizing caching policy, computation,
communication resources (J3C), formulating the J3C prob-
lem as:

P1 :

min
a,f ,θ,α

M∑
m=1

Em

subject to : C1 : anT cachek,m + (1− an)T uncachek,m ≤ T

∀n ∈ N , m ∈ {1, 2, . . . ,M}, k ∈ Sn(m)
C2 :

∑
n∈N

andn ≤ D

C3 :
∑
n∈N

∑
k∈Sn(m)

αk,mcn ≤ F · T ∀m ∈ {1, 2, . . . ,M}

C4 :
∑
n∈N

∑
k∈Sn(m)

f edgek,m ≤ F ∀m ∈ {1, 2, . . . ,M}

C5 :
∑
n∈N

∑
k∈Sn(m)

θk,m ≤ L ∀m ∈ {1, 2, . . . ,M}

C6 : an ∈ {0, 1} ∀n ∈ N
C7 : αk,m ∈ [0, 1] ∀k ∈ K (13)

where a, f,α, θ denotes the optimal solution of P1. a =
(a1, a2, . . . , an) is a n dimensions vector, denotes the caching
policy consist of caching decision of each task. f is k×m solu-
tion matrix of computation resources allocation, representing
the allocated computation power of mobile device k in the
m-th time slot.Similarly θ ,α denotes the solution matrix of
communication resources and offloading ratio. The objective
function denotes the minimal energy consumption of mobile
devices in M time slots. Constraint C1 requires that the
mobile device must finish its task in one time slot, no matter
the executed task is cached or not. Constraint C2 requires
that the total size of cached tasks can’t exceed the caching
capacity D. Constraints C3 denotes that the total size for
edge execution is limited, because of the MEC server has
limited computing power. Constraints C4 denotes the com-
puting power allocated to the mobile devices can’t exceed the
computing power of MEC servers. Constraints C5 denotes
the sum of allocated subchannels for mobile devices can’t
exceed the total number L. C6 denotes the caching policy is
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binary variable, and C7 denotes the offloading ratio is a
continuous variable between 0 and 1. Note that the resource
is reallocated at the begging of each time slot and thus the
corresponding constraints should be meet in any time slot.

It can be seen that P1 is a mixed discrete-continuous
optimization problem with two types of variables, i.e. the
discrete variable (caching policy) and continuous variable
(CPU frequency, the number of subchannels and offloading
ratio), which is NP-hard and very challenging for solving.
Remark: It is well known that caching policy is in general

a long process, and depends on the task popularity, task size
and computing complexity. Thus, we assume that a caching
policy is used in several successive time slots, but the resource
is allocated at each time slot. Besides, P1 shows that the task
with greater popularity, larger size and higher complexity will
be cached to minimize the objective function, which coincide
with the real scene.

IV. PROBLEM SOLUTION
Since P1 is a mixed discrete-continuous problem and evi-
dently non-convex due to the discrete caching policy a and
the multiplicative terms of two variables in objective function
and constraints. In this section, we propose a block coor-
dinate descent and convex techniques based iterative opti-
mization method. Specifically, we decompose P1 into two
subproblems, one for the optimization of computation and
communication resource by supposing the caching policy is
given and the other for the optimization of caching policy by
supposing the resource allocation scheme is given. These two
optimization problems are solved alternately in each iteration
until convergence condition is achieved.

A. OPTIMIZATION OF COMPUTATION AND
COMMUNICATION RESOURCE
In this section, by supposing the caching policy is
given, we formulate the first subproblem to optimize the
computation and communication resources. Specifically, this
subproblem jointly optimize CPU frequency, the number of
subchannels and offloading ratio for each mobile device to
get the optimal resource allocation scheme.

Given the initial caching policy a = a(0), the energy
consumption in the m-th time slot can be obtained by the
following function:

h(f , θ, α) =
∑
n∈N

∑
k∈Sn(m)

(1− a(0)n )Ek,m + a(0)n Eedgek,m

=

∑
n∈N

∑
k∈Sn(m)

(1− a(0)n )((1− αk,m)κf lock
2
cn

+αk,m(Pwaitk
cn

f edgek,m

+ pk
dn
rk,m

))

+ a(0)n Pwaitk
cn

f edgek,m

(14)

Next, by substituting a(0)n into constraint C1 and then
replacing it with two equal constraints C8 and C9.

The problem of optimization of computation and communi-
cation resource can be described as follows:

P2 : min
f ,θ,α

M∑
m=1

h(f , θ, α)

subject to :

C8 : a(0)n
cn

f edgek,m

+ (1− a(0)n )(1− αk,m
cn
f lock

) ≤ T

C9 : a(0)n
cn

f edgek,m

+ (1− a(0)n )αk,m(
dn
rk,m
+

cn

f edgek,m

) ≤ T

C3,C4,C5,C7 (15)

To avoid divided-by-zero exception, we first introduce two
constant variable ε1 and ε2 and then define two auxiliary
variables that βk,m = (θk,m+ε1)−1 and γk,m = (f edgek,m +ε2)

−1.
As a result, h(α, β, γ ) can be converted to h′(α, β, γ ) as:

h′(α, β, γ ) =
∑
n∈N

∑
k∈Sn(m)

(1− a(0)n )((1− αk,m)κf lock
2
cn

+αk,m(Pwaitk cnγk,m +
pkdnβk,m

B log2(1+
pkhk,m
σ 2

)
))

+ a(0)n Pwaitk cnγk,m (16)

Furthermore, by substituting βk,m,γk,m into corresponding
constraints in P2, we get the converted problem P3:

P3 : min
α,β,γ

M∑
m=1

h′(α, β, γ )

subject to :

C10 : a(0)n cnγk,m + (1− a(0)n )(1− αk,m)
cn
f lock

≤ T

C11 : a(0)n cnγk,m + (1− a(0)n )αk,m(
dnβk,m

B log2(1+
pkhk,m
σ 2

)
+ cnγk,m) ≤ T

C12 :
∑
n∈N

∑
k∈Sn(m)

1
γk,m
− ε1 ≤ F

C13 :
∑
n∈N

∑
k∈Sn(m)

1
βk,m
− ε2 ≤ L ∀m∈{1, 2, . . . ,M}

C3,C7 (17)

Obviously, P3 is still a non-convex problem because of
the second order terms of αk,m · βk,m and αk,m · γk,m. Thus,
we adopt Reformulation-Linearization Technique (RLT) to
linearize the second order terms [28], [29] that included in
the objective function and corresponding constraints. Specif-
ically, to eliminate the second order term αk,m ·βk,m, we intro-
duce an auxiliary variable µk,m = αk,m · βk,m where 0 ≤
αk,m ≤ 1 and 0 ≤ βk,m ≤

1
L+ε1

. We can obtain the
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RLT bound-factor product constraints for µk,m as:

{[αk,m − 0] · [βk,m −
1

L + ε1
]}LS ,

{[1− αk,m] · [βk,m −
1

L + ε1
]}LS ,

{[αk,m − 0] · [
1
ε1
βk,m]}LS ,

{[1− αk,m] · [
1
ε1
βk,m]}LS

(18)

where {·}LS denotes the linearization setp underµk,m = αm,k ·
βk,m. By substituting µm,k into (18), we can get:

µk,m −
1

L + ε1
≥ 0,

βm,k −
1

L + ε1
− µk,m −

1
L + ε1

αk,m ≥ 0,

1
L+ε1

αk,m − µk,m ≥ 0,
1

L + ε1
− βk,m −

1
L + ε1

αk,m + µk,m ≥ 0

(19)

Similarly, for the second order term αm,k ·γm,k , we defined
ωm,k = αm,k · γm,k , where 0 ≤ αk,m ≤ 1 and 0 ≤ γ ≤ 1

F+ε2
,

the RLT bond-factor product constraints for ωm,k are:

ωk,m −
1

F + ε2
≥ 0,

γm,k −
1

F + ε2
− ωk,m −

1
F + ε2

αk,m ≥ 0,

1
L + ε2

αk,m − ωk,m ≥ 0,

1
L + ε2

− γk,m −
1

L + ε1
αk,m + ωk,m ≥ 0

(20)

Substituting µk,m and ωk,m into the h′(α, θ, γ ), we can get
h′′(α, β, γ, µ, ω) defined as follows:

h′′(α, β, γ, µ, ω)

=

∑
n∈N

∑
k∈Sn(m)

(1− a(0)n )((1− αk,m)κf lock
2
cn

+Pwaitk cnωm,k +
pkdnµk,m

B log2(1+
pkhk,m
σ 2

)
)

+ a(0)n Pwaitk cnγk,m (21)

Furthermore, substituteµk,m and ωk,m into constraint C11,
we can get the problem P4 as:

P4 : min
α,β,γ,ω,µ

M∑
m=1

h′′(α, β, γ, ω,µ)

subject to :

C14 : a(0)n cnγk,m + (1− a(0)n )(
dnµk,m

B log2(1+
pkhk,m
σ 2

)
+ cnωk,m) ≤ T

C3,C7,C10,C12,C13

C15 : (19)

C16 : (20) (22)

Obviously, P4 is a convex optimization problem and thus
can be solved by the well-studied optimization techniques
such as interior point method and Lagrange method. etc.
After solving P4, we can get five k × m solution
matrix α,β, γ ,µ,ω by which we can get an suboptimal
solution of P2.

B. OPTIMIZATION OF CACHING POLICY
With the obtained resource allocation scheme (f (0), α(0), θ (0))
by initial a(0), we can reformulate problem P1 to a caching
policy optimization problem, the total energy consumption
in time slot m can be obtained by the following function with
variable a:

g(a) =
∑
n∈N

∑
k∈Sn(m)

(1− an)Euncachek,m + anEcachek,m . (23)

Considering the caching constraint in problemP1, the optimal
caching policy for the given resource allocation scheme can
be given by problem P5 as:

P5 : min
a

M∑
m=1

g(a)

subject to :

C17 : an
cn

f edgek,m
(0) + (1− an)(1− α

(0)
k,m

cn
f lock

) ≤ T

C18 : an
cn

f edgek,m
(0) + (1− an)α

(0)
k,m

× (
dn

θ
(0)
k,mB log2(1+

pkhk,m
σ 2

)
cnf

edge
k,m

(0)
) ≤ T

C2,C6 (24)

P5 is a 0-1 integer programming, a straightforward method
is to enumerate all the 2N possible caching policy and find
the optimal one that has the minimum objective value. How-
ever, the time complexity of the exhaustion method is O(n!),
it can be acceptable when N is smaller, but quickly becomes
impossible to compute as N increase. It can be mainly used
as a benchmark to evaluate the performance of actually used
low-complexity algorithm. Consider the subsequent overall
optimization, we adopt convex optimization based method to
solve problem P5 in this section.

However, P5 is not a convex optimization problem because
of the discrete variable a. Therefore, we first relax it by
0 ≤ a ≤ 1, then P5 is transformed to the problem P6 as:

P6 : min
a

M∑
m=1

g(a)

subject to :

C19 : an ∈ [0, 1]

C2,C17,C18 (25)

Obviously, P6 is a convex optimization problem, and thus
can be solved by several well-studied method.
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Algorithm 1 Block Coordinate Descent Based Overall
Algorithm

1: Initialize the caching policy a(0). Let r = 0.
2: repeat
3: Solve problem P4 for given {a(r)}, and denote

the optimal solution as {α(r+1),β(r+1), γ (r+1),

µ(r+1),ω(r+1)}.
4: Solve problem P6 for given

{α(r+1),β(r+1), γ (r+1),µ(r+1),ω(r+1), a(r)}, and denote
the optimal solution as {a(r+1)}.

5: Update r = r + 1.
6: until The fractional increase of the objective value is

below a threshold ε.

C. OVERALL ALGORITHM DESIGN
Based on the previous two sections, optimal caching policy
and allocation scheme both can be obtained by optimizing
one block of optimization variables while keeping the other
variables fixed, what’s more, two subproblems are both able
to converted to the convex optimization problem. Therefore,
we propose a block coordinate descent based alternately algo-
rithm to solve the original problem P1.

Specifically, we first give an initial caching policy a(0).
By given a(0), problem P1 is reformulated to the optimization
problem of computation and communication resource and
can be solved by solving converted problem P4 instead. Fur-
thermore, the optimal resource allocation scheme obtained
by previous step is used as input to get next optimal caching
policy by solving P6. The iterative process will go on, alter-
nately optimizing caching policy and allocation scheme in
each iteration until the fractional increase of the objective
values is below a threshold ε ≥ 0. By r denotes the iteration
number, the details of the overall algorithm are summarized in
Algorithm 1. Note that P2 and P6 are both convex optimiza-
tion problem, and thus P2 and P6 construct a multi-convex
problem, which has been proved to be convergence [30].
The solving process and transformation relationship from
problem P1 to P6 can be described as Figure 2.

Since we relaxed the discrete variable a, we get a continu-
ous value in the range of [0, 1]. But caching policy is a binary
variable, representing caching or not (1 or 0). Therefore,
we propose a simple and effective method to transform the
obtained value to binary variable. Specifically, let an = 1
when the continuous variable is greater than 0.7 and an = 0
when it is less than 0.3. Besides, we add the value between
0.3 and 0.7, and then divide the sum value by 1 to get the task
number that can be continuous cached. Following, cache the
tasks with smallest size until reaching the obtained number.
0.3 and 0.7 in this method is determined by experiments.
In fact, how to reconstruct the binary variable is still an open
issue, some researches proposed their solutions according to
their specific problems. We had also tried some existed solu-
tions to reconstruct the binary variable in caching policy deci-
sion, but there still exists certain errors. Although proposed

method also has errors, its effect is similar to the better
methods we have tried and it almost has less time cost.

Note that although the solution obtained by proposed
block coordinate descent iterative method is suboptimal,
we proofed it effective by comparing with exhaustive method
in the following section.

D. CACHING POLICY INITIALIZATION
The block coordinate descent based algorithm usually has the
shortage that the iteration times and time cost largely depends
on the initial value, a good initial method can certainly reduce
iteration times and time cost. In this section, we propose a
linear-weighted based initial method by considering the real
characteristics of caching decision. By analyzing the objec-
tive function of P1 and combining the real caching scene,
we see that the task popularity, task size and complexity
are all the key factors that influence the caching decision.
Therefore, we define the caching income function u(n) as
follows:

u(n) = w18(
M∑
i=1

|Sn(m)|)+ w28(dn)+ w38(cn), (26)

where w1,w2,w3 denotes the weight of task popularity, task
size and complexity, respectively, and w1 + w2 + w3 = 1.
The weights are given by the principal component analysis
(PCA) [33]. Due to the variables have different units and
larger difference from each other, we normalize the variable.
8(.) denotes the max-min normalization function defined as:

8(x) =
x − min(X )

max(X )− min(X )
, (27)

where x denotes the current value to be normalized
and X represents the set of variables to be normalized,
min(X ) and max(X ) denotes the minimum and maxi-
mum value of set X , respectively. For the normalization
of task popularity, task popularity of task n is denoted
by the total execution times of task n in M time slots
(i.e.

∑M
i=1 |Sn(m)|), and the set to be normalized is X =

{
∑M

i=1 |S1(m)|,
∑M

i=1 |S2(m)|, . . . ,
∑M

i=1 |SN (m)|}, thus we
get the normalized value8(

∑M
i=1 |Sn(m)|). Similarly, the nor-

malized value of task size and complexity for each task can be
obtained by this function. Then, we calculate the variance of
each characters and determine the weight by variance ratio.

By this definition, we can get the income value φn = u(n)
of each task n. Note that the income function is used to get the
income when caching each task n, and thus larger function
value φn means it has higher chance to be cached. Next,
we obtain the income value of each task, constructing the
set S = {φ1, φ2, . . . , φN }, and sort the value of the set in
descent order (i.e. φ1 ≥ φ2 ≥ . . . ≥ φN ), the sorted set is
denoted by Ssort . From the caching policy a(0) = {0, 0, . . . , 0}
on, we fetch the task in turn according to the order of
Ssort and caching it (i.e. set the corresponding task decision
an = 1) until the caching constraints C2 is violated. As a
result, the a(0) is the initial caching policy.
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FIGURE 2. Process of problem transformation and solving.

V. SIMULATIONS
In this section, we design a simulation environment of pro-
posed caching-enhanced MEC system to confirm the effec-
tiveness of proposed joint optimization algorithm.We assume
that the MEC system has K = 20 mobile devices and task
list have N = 10 tasks. For computation model, we set
the computation frequency of edge servers F = 50GHz,
computation frequency for each mobile device f lock takes
random value in the range of [0.5, 1]GHz and have the aver-
age value 0.7GHz. For communication model, the bandwidth
B = 2MHz, the channel number L = 200, the noise power
σ 2
= 10−8 and transmission power pk is the random value

in the range of [0.6, 1.2]W , the idle power Pwaitk = 0.01W ,
besides, we neglect the influence of distance on the channel
power gain, and giveH = 10 different channel states instead,
i.e.H = {1 ∗ 10−7, 2 ∗ 10−7, . . . , 10 ∗ 10−7}. Note that
the following simulations are conducted for 20 times and
average the value to void the occasionality. The simulations
are conducted on a common PC with 4 ∗ 2.88GHz CPU,
8GBmemory and coded with Python and its tool package for
convex optimization CVXPY [31], [32].

A. EFFECT OF TASK CACHING
In this simulation, we aim at verifying the effect of intro-
ducing caching into MEC and caching policy obtained by
proposed jointly optimizing algorithm of caching policy and
resource allocation (J3C). For this purpose, we give the fol-
lowing three methods for comparison.

No Caching (NC): This method supposes that no caching
enhanced MEC system is used, i.e. a = {0, 0, . . . , 0} in prob-
lem P2. This method just jointly optimizing the computation,
communication resources and offloading ratio.

RandomCaching (RC): This method firstly gives a caching
policy randomly, then solves the corresponding resource allo-
cation scheme by solving problem P2 with the given random
caching policy.

Popularity Based Caching (PBC): This method firstly
gives a caching policy by the order of task popularity, that
is caching the task with high popularity until the caching

capacity is insufficient. And then the resource allocation is
computed with the obtained caching policy.

In this simulation, we observe the changes of energy con-
sumption with the task size and task complexity increasing,
where the average value of task size varies from 700 to
1600(KB) and the average task complexity varies from
300 to 1200 (Megacycles). From Figure. 3, we can see that
the energy consumption increases with the task size and
task complexity increasing and proposed J3C method still
has lowest energy consumption than other caching methods
in general. Obviously, NC method consumes much more
energy than other methods which demonstrates that caching
enhanced MEC system can reduce the energy consumption
significantly. Besides, RC and PBCmethods have little differ-
ence with J3Cmethod and RC is inferior to PBC, because RC
doesn’t take any task character into account but PBC consider
the task popularity. What’s more, proposed J3C method not
only considers several characters that influence the caching
effect, but also jointly optimizes the caching policy and
computation, communication resource, finding out the best
allocation combination. From Figure.3 (a), we can see that
the energy consumption increases quickly with the task size
increasing, because larger tasks consume much energy on
transmission and larger tasks lead to less task can be cached
when caching capacity is fixed. By comparison, Figure.3(b)
shows that the energy consumption increases more slowly,
because the task number can be cached is fixed and only the
computation complexity influences the energy consumption.

B. EFFECT OF RESOURCE ALLOCATION
In this simulation, we verify the effect of joint resource
allocation, and thus we give contrast method as follows:

Caching and Local Execution (CLE): Thismethod assumes
that all the tasks that aren’t cached is executed by local device,
i.e. offloading ratio α = 0. Since the task is executed by
the local device, the subchannels are not used, i.e. θ = 0.
Besides, all the computing resources of edge servers are
average allocated to mobile devices.
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FIGURE 3. Comparison of energy consumption on different caching effect
with the increasing of (a) task size (b) task complexity.

Caching and Edge Execution (CEE): This method assumes
that all the tasks that aren’t cached offloading to the edge
server, i.e. offloading ratio α = 1. Since the task is
executed by the edge server, the subchannels are aver-
age allocated to the devices. Besides, all the computing
resources of edge servers are average allocated to the mobile
devices.

Caching and Joint Execution (CJE): This method assumes
that half of the tasks that aren’t cached offloading to the edge
server, but the other executed on local devices, i.e. offloading
ratio α = 0.5. Since the task is executed by the edge server,
the subchannels are average allocated to all the devices.
Besides, all the computing resources average allocated to
mobile devices in each time slot.

We can observe from the Figure.4 that the energy con-
sumption increases with the task size and task complex-
ity increasing in general, and proposed J3C method still
has the smallest value. From Figure.4(a), we can observe
that CEE method almost has the same optimal value with
J3C method when the task size is smaller, but it is inferior
to CLE method when the task size becomes larger and the
gap between J3C and CLE tends to become larger. Besides,
the CJEmethod almost has the optimal value located between
CEE and CLE. This is due to caching is able to cache more

FIGURE 4. Comparison of energy consumption on different resource
allocation scheme with the increasing of (a) task size (b) task complexity.

tasks and offloading task consume less energy when the
task size is smaller. Conversely, the cached tasks become
less and offloading consume much energy when task size
is larger. Besides, there exists some waste of computation
and communication resources in CEE method. Therefore,
CLE method is better than CEE when exceeding an critical
value, about 1250KB in this simulation. From Figure.4(b),
we can observe that although CEE method consumes
much more energy than other methods at first, it increases
quite slowly with the complexity increasing. Conversely,
CLE method consumes less energy when the task complexity
is lower, but has the highest increasing rate, exceeding the
CEE method soon. This is because that the energy con-
sumption for CLE method depends only on the computation
complexity and is directly proportional to the square of com-
plexity, having higher increasing rate. But the energy con-
sumption of CEE method mainly depends on transmission,
and thus computation complexity has less influence.

C. EFFECT OF PROPOSED ALGORITHM
In this simulation, we verify the effect of proposed algorithm
to solve J3C problem. To this end,we give the other two
algorithms for comparison on the time cost of algorithm and
the effect of optimal value.
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FIGURE 5. Algorithm performances and energy consumption versus the
time slots number.

Exhaustive Method (EM): we discrete the continuous vari-
able and try all the possible solution to find the optimal solu-
tion. This method is usually able to get the optimal solution
but with high time complexity, and thus used as a benchmark.

GreedyAlgorithm (GA): this method constantly update the
caching policy according to the current optimal value until the
termination condition is reached.

Figure 5(a) and 5(b) shows the execution time and energy
consumption of three methods with the time slots increasing,
respectively. From Figure 5, we can see that proposed method
is able to get ideal effect with acceptable time consumption
in general. With the number of time slot increasing, although
still has the lowest energy consumption, EM method will
soon unacceptable since the high time cost. GA algorithm has
relative lower time complexity, but the solution has larger gap
with EM. Look back forward proposed J3C method, the time
consumption is smaller than other two methods and has the
slowest increasing rate. Besides, the effect is better than GA
and close to EM in general. This is because our initialization
method reduces the iteration times and the convex problem is
more efficient than local optimal method GA.

Although the decomposing based method is usually con-
sidered time-consuming, it is used quite widely because of
its ability to solve the complexity problem. What’s more,

simulations show that we can usually get the sub-optimal
solution with less iteration times in our problem.

VI. CONCLUSION
In this paper, we redefined the task caching as caching the
application program and related task data, where assumed
the program had been cached on the MEC server and what
caching policy need to decide is whether to caching the task
data. Once the task data is cached, the task will be executed
on the edge server without any data transmission, or it will
be executed on the edge server and mobile device parallel.
Then we proposed a caching enhancedMEC system that inte-
grates task caching into MEC system to reduce the duplicate
data transmission. Proposed system provides a good solution
to solve the problem that offloading task with large size
consume much time and energy. To further reduce energy
consumption, we formulated a problem that jointly optimizes
caching, computation and communication resources (J3C).
Finally, we propose a block coordinate based iterative method
to solve the formulated mixed integer non-convex optimiza-
tion problem. The simulation results show that our proposed
joint optimization method is not only superior to other single
caching policies and resource allocation methods but be able
to get an acceptable combination solution with lower time
cost, proving proposed method has wide application prospect
to further reduce the energy consumption of mobile devices
in the mobile edge computing systems.
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