Percolation on random networks with proliferation

Shang, Yilun (2018) Percolation on random networks with proliferation. International Journal of Modern Physics B, 32 (32). p. 1850359. ISSN 0217-9792

[img]
Preview
Text
ws_ijmpb_final.pdf - Accepted Version

Download (214kB) | Preview
Official URL: https://doi.org/10.1142/s0217979218503599

Abstract

The literature on growing network models, exemplified by the preferential attachment model and the copying model, has followed an exponential growth in the last few years. In many real-life scenarios, however, the adding of new nodes and edges is not an exogenous process, but involves inheritance and sharing of the local environment of the existing ones. In this paper, we develop a mathematical framework to analytically and numerically study the percolation properties of the random networks with proliferation. We compare random attack (RA) and localized attack (LA) on benchmark models, including Erdős–Rényi (ER) networks, random regular (RR) networks, and scale-free (SF) networks, with proliferation mechanism. Our results highlight the nonmonotonic connections with robustness and growth, and unravel an intriguing opposite effect for RA and LA. In particular, it is shown that unbalanced proliferation enhances robustness to RA while it mitigates robustness to LA, both independent of the network degree distribution.

Item Type: Article
Uncontrolled Keywords: Complex network, growth model, robustness, attack, inheritance
Subjects: G400 Computer Science
Depositing User: Elena Carlaw
Date Deposited: 05 Feb 2019 10:56
Last Modified: 30 Dec 2019 03:30
URI: http://nrl.northumbria.ac.uk/id/eprint/37867

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics