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Abstract 

A coupled continuum model incorporating size influences and geometric nonlinearity is 

presented for the coupled motions of viscoelastic nonlinear nanotubes conveying nanofluid. 

A modified model of nanobeams incorporating nonlocal strain gradient effects is utilised for 

describing size influences on the bifurcation behaviour of the fluid-conveying nanotube. 

Furthermore, size influences on the nanofluid are taken into account via Beskok-Karniadakis 

theory. To model the geometric nonlinearity, nonlinear strain-displacement relations are 

employed. Utilising Hamilton’s principle and the Kelvin-Voigt model, the coupled equations 

of nonlinear motions capturing the internal energy loss are derived. A Galerkin procedure 

with a high number of shape functions and a direct time-integration scheme are then 

employed to extract the bifurcation characteristics of the nanofluid-conveying nanotube 

with viscoelastic properties. A specific attention is paid to the chaotic response of the 

viscoelastic nanosystem. It is found that the coupled viscoelastic bifurcation behaviour is 

very sensitive to the flow velocity.    

Keywords: Nanotubes; Nanofluid flow; Internal energy loss; Coupled motion; Nonlocal strain 

gradient model 
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1. Introduction 

Fluid-conveying nanomechanical devices have a number of promising applications in 

nanotechnology involving drug delivery, cancer diagnosis and nanosensors. In fluid-

conveying nanomechanical devices such as nanofluidic-based devices [1], the interactions 

between the fluid and the fundamental structure are of high significance since it affects the 

output/input response of the nanomechanical device.  

Besides conducting experiments and molecular dynamics (MD) simulations, the 

application of continuum-based approaches to microscale and nanoscale structures has also 

been reported as these approaches pave the way for better understanding of experimental 

results [2-5]. Since the classical continuum-based approach does not have a scale parameter 

associated with molecular interactions, it should not be utilised for structures at small-scales 

[6-9]. To capture the influence of molecular interactions, the classical continuum mechanics 

has been modified in different ways [10-12], leading to a number of size-dependent theories 

such as the pure nonlocal elasticity (PNE) [13-17], couple stress models [18-22] and nonlocal 

strain gradient theory (NSGT) [23-27]. Employing MD calculations, it has recently been 

shown that the NSGT is reasonable for nanostructures [28]. In the present analysis, this 

modified continuum-based approach is employed for incorporating scale effects related to 

molecular interactions. 

A considerable effort has been made to model the mechanics of nanotubes with 

small-scale effects. For instance, Sudak [29] explored the instability of nanotubes with small-

scale effects via the nonlocal theory. In another paper, Murmu and Pradhan [30] examined 

thermo-mechanical oscillation of nanotubes resting on an elastic foundation. In addition, 

the mechanics of a system of carbon nanotubes and microtubules [31] as well as a system of 
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nanobeams and piezoelectric nanowires [32] were analysed using size-dependent beam 

models. Setoodeh et al. [33] provided an exact solution for the nonlinear buckling of 

nanotubes with small-scale effects; they applied the nonlocal theory of beams to capture 

small-scale effects. More recently, in addition to the nonlocal theory, the NSGT has been 

utilised for modelling nanotubes with small-scale effects [25, 34-36]. For example, Li and Hu 

[37] applied the NSGT so as to study wave dispersion in fluid-conveying nanotubes. 

Moreover, the large-amplitude dynamics of perfect nanotubes [38] and imperfect ones with 

geometrical imperfections [39] was studied applying the NSGT. Furthermore, Zhu and Li [40] 

employed an integral form of the NSGT to study the longitudinal dynamics of nanotubes.  

The energy loss associated with internal frictions can considerably affect the 

mechanics of fundamental structures at nanoscales. To have a better prediction of the 

mechanical behaviours, it is advised to capture the effects of this phenomenon in 

continuum-based formulations. In this study, the effects of internal frictions are taken into 

consideration via employing the Kelvin-Voigt model. 

The mechanical behaviours of fundamental nanoscale structures conveying fluid have 

been analysed in recent years via modified continuum-based approaches. An analytical 

model, for instance, was developed by Wang [41] to describe size influences on the 

vibration of fluid-conveying tubes at microscales. Employing the PNE, Lee and Chang [42] 

examined the size-dependent linear transverse vibrations of a carbon nanotube (CNT) 

containing nanofluid flow. The influences of a viscoelastic surrounding medium on the size-

dependent mechanics of fluid-conveying CNTs were also studied by Soltani et al. [43]. In 

addition, the effects of couple stresses on the linear vibrations of fluid-conveying CNTs were 

examined by Zeighampour and Beni [44] via application of a modified continuum-based 
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approach. Zhen et al. [45] also studied the influences of a temperature rise on the size-

dependent mechanics of CNTs containing nanofluid flow using a PNE-based approach. In 

another article, Khodami Maraghi et al. [46] developed a beam model incorporating size 

influences to explore the mechanical behaviours of boron nitride nanotubes conveying 

nanofluid. A PNE-based model was proposed by Liang and Su [47] for predicting the 

instability features of CNTs conveying pulsatile fluid. The influences of a nonlinear 

foundation together with thermal effects on the oscillations of fluid-conveying CNTs were 

also investigated by Askari and Esmailzadeh [48]. In another study, Ghasemi et al. [49] 

utilised the Euler-Bernoulli theory of nonlocal nanobeams for predicting size influences on 

the post-buckling of multi-walled CNTs conveying fluid at nanoscales. Moreover, Oveissi et 

al. [50] presented a PNE-based scale-dependent model to analyse the longitudinal vibrations 

and instability of fluid-conveying CNTs. In another paper, Bahaadini and Hosseini [17] have 

recently explored the influence of a magnetic field on the flutter instability of fluid-

conveying nanoscale tubes. A NSGT-based linear model has also been proposed in the 

literature for analysing wave propagations in fluid-conveying CNTs [37].            

The above-described valuable papers are limited to either linear continuum-based 

models or nonlinear elastic models incorporating only transverse deflections. To the best of 

our knowledge, the coupled chaotic motions of viscoelastic nonlinear nanotubes conveying 

fluid incorporating both axial and transverse displacements have not been explored yet. This 

motivates us to develop a size-dependent fluid-structure interaction model for examining 

this problem. A NSGT-based model of nanobeams is utilised for describing the influence of 

being at nanoscales on the mechanics of the tube. In addition, the size influence on the fluid 

is incorporated via Beskok-Karniadakis theory. The geometric nonlinearity is modelled 

through nonlinear strain components. The coupled equations of nonlinear motions 



5 
 

incorporating the internal energy loss are presented utilising Hamilton’s principle together 

with the Kelvin-Voigt model. The bifurcation characteristics of the fluid-conveying 

nanosystem with viscoelastic properties are numerically calculated by a Galerkin’s 

procedure with a high number of shape functions and a direct time-integration scheme. In 

addition to the bifurcation response, the time history, phase-plane plot and fast Fourier 

transform for both motion types are discussed and analysed.      

 

2. Modified continuum-based modelling  

A nanofluid-conveying nanotube with outer diameter do and length L is shown in Fig. 

1. The nanoscale tube is assumed to be subject to an external excitation as depicted in the 

figure. A nanofluid flow with a constant velocity U is conveyed by the nanoscale tube. Large 

deflections are incorporated through the strain-displacement relation [51-53]. Indicating the 

longitudinal displacement of the tube mid-plane by u and the transverse one by w, the 

nonlinear longitudinal strain ( )xx
 is given by  


   

    
   

22

2

1
.

2
xx

u w w
z

x x x
          (1) 

In the present formulation, the stress resultants associated with the total NSGT stress 

 ( )
( )( )t

xx t  are defined by 

   
( ) ( )

( ) ( ) ( ) ( ),   ,t t
xx t xx t xx t xx t

A A

N dA M z dA         (2) 

where A is the cross-sectional area. The total NSGT stress is expressed as [54] 



6 
 

     

   



 

                      

    
       

       

2 2
2 2 ( ) 2 2 2 2

0 ( ) 2

2 2 3
2 2 2 2

2

1
1 1 1

2

1 1 ,

t
n xx t g g

g g

u w w
e E zE

x x x

u w w w
z

t x x t x t x

   (3) 

in which 0e , n , 2 , E , g  and   are the calibration constant, internal characteristics 

length, Laplace operator, elasticity modulus, strain gradient parameter and viscosity 

constant, respectively [55]. The above constitutive equation includes two different size 

parameters: 1) nonlocal parameter ( 0 ne ), and 2) strain gradient parameter ( g ). In fact, the 

nonlocal parameter is associated with the size effect induced by the stress nonlocality at 

nanoscales while the strain gradient parameter accounts for the size effect due to the large 

gradient of deformations at nanoscales. These size parameters are generally obtained via 

experiments or molecular dynamics [56, 57]. Using Eqs. (1)-(3), one can obtain 

   

 

                 

   
    

     

2
2 2 2 2

0 ( )

2 2
2 2

1
1 1

2

1 ,

n xx t g

g

u w
e N EA

x x

u w w
A

t x x t x

      (4) 

     
          

    

2 3
2 2 2 2 2 2

0 ( ) 2 2
1 1 1 ,n xx t g g

w w
e M EI I

x t x
    (5) 

where I denotes the inertia moment. In the present formulation, the effects of strain 

gradients along z axis are not considered for simplification. Scale effects are usually assumed 

to be negligible along the thickness direction of nanobeams and nanoplates. Lately, NSGT-

based beam models taking into consideration the thickness effect have been reported for 

the scale-dependent mechanical analysis of nanobeams [58-60]. The elastic energy variation 

( )eU  and the viscous work variation ( vW ) can be written as  
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        
(1)

( ) ( )

0

,
L

e xx e xx xx e xx

A

U dAdx        (6) 

         
(1)

( ) ( )

0

.
L

v xx v xx xx v xx

A

W dAdx        (7) 

Here  ( )xx e  and 
(1)

( )xx e  , respectively, indicate the elastic zeroth-order and first-order 

nonlocal stresses while  ( )xx v  and 
(1)

( )xx v  denote the viscoelastic zeroth-order and first-

order nonlocal stresses, respectively; moreover,   is the gradient operator. Shear 

deformation effects are not considered in the formulation since in the present work, it is 

assumed that the thickness to length ratio of the nanotube is very small. Furthermore, 

based on the NSGT, it is assumed that the total stress is related to not only the zeroth-order 

nonlocal stress but also the first-order nonlocal stress. In fact, a higher-order stress is used 

in the NSGT in addition to the classical nonlocal stress. Taking into account this higher-order 

stress leads to a more comprehensive size-dependent model for nanotubes. The relations 

between different types of nonlocal stresses are given by [54] 

  

  

  

 

 

 

( ) (1)
( ) ( ) ( )

( ) (1)
( ) ( ) ( )

( ) (1)
( ) ( ) ( )

,    

,   

,   

t
xx t xx t xx t

t
xx e xx e xx e

t
xx v xx v xx v

         (8) 

and  

  

  

  

 

 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

(1) (1) (1)
( ) ( ) ( )

,

,   

.

t t t
xx t xx e xx v

xx t xx e xx v

xx t xx e xx v

         (9) 

In Eqs. (8) and (9), ‘e’, ‘v’ and ‘t’ stand for the elastic, viscoelastic and total stresses, 

respectively. Indicating the mass per length of the nanotube by m and that of the nanofluid 

by M, the kinetic energy variation ( )kT  of the whole nanoscale system is expressed as 



8 
 

 


 
  

 
 

    
  

    

     
     

     

     
    

     







0

0

0

,

L

k

L

BK BK BK

L

BK BK

u u w w
T m dx

t t t t

u u u u
M U U U dx

t x t x

w w w w
M U U dx

t x t x

      (10) 

where  

 
 

 
 

  
     

   

4 2
1 1 1 ,

1
BK

v

Kn
Kn

Kn
       (11) 

and 

 


  
 

12
tan ,

CA
B Kn          (12) 

in which BK
 is a correction factor incorporating the size influence on the nanofluid [61]; Kn 

indicates the Knudsen number. It should be noticed that Eqs. (11) and (12) are obtained 

using the Beskok-Karniadakis theory and assuming slip boundary conditions. The constant 

coefficients in the above relations are given as   1 ,   0.7v ,  64 15A ,  4B  and 

 0.4C . The external work related to the distributed loading ( extq ) is formulated as 

  0 d ,
L

q extW q w x            (13) 

where  

   cos .extq t F x           (14) 

Here   and F(x) stand for the excitation frequency and loading amplitude, respectively. 

Substituting Eqs. (6), (7), (10) and (13) into the following principle 

       
2

1

d 0,
t

k q e vt
T W U W t         (15) 

one derives two motion equations as follows 

   
   

   
    

2 2 2
( ) 2 2

2 2
2 ,xx t

BK BK

N u u u
m M M U M U

x t x t x
      (16) 
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   

 



 

   
   

   

  
  

   

2
( )

( )2

2 2 2
2 2

2 2

cos

2 .

xx t

xx t

BK BK

M w
N t F x

x x x

w w w
m M M U M U

t x t x

       (17) 

Substituting Eqs. (4) and (5) into Eqs. (16) and (17), the coupled nonlinear equations in 

terms of axial and transverse displacements are derived as 

 

   

 

 





  
  

   

   
     

    

        
       

        

     
   

        


 

2 2 2
2 2

2 2

2 2 2
2 2 2 2

0 2 2

2 2 2 2
2 2

2 2 2 2

3 3 2 2

2 2 2

3
2 2

2

2

BK BK

n BK BK

g

g

u u u
m M M U M U

t t x x

u u u
e m M M U M U

t t x x

u w w u w w
EA EA

x x x x x x

u w w w w
A

t x x t x t x x

u
A

    
   

        

3 2 2

2 2 2
0,

w w w w

t x x t x t x x

     (18) 
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         

    

 

 

 

 



   
     

     

  

      
        

      

    
    

    

   
   

     

4 4 5 5
2 2 2 2

4 4 4 4

2 2
0

22
2 2 2 2

0 2

2 2
2 2

2 2

2 2 2
2 2

2

cos cos

1
1 1

2

1

1

g g

n

n g

g

g

w w w w
EI EI I I

x x t x x t

t F x e t F x

w u w
e EA

x x x

w u w w
EA

x x x x

w u w w
A

x x t x x

 

   

   

 



 

 



 
 
 

      
     

         

    
    

      

     
     

       

 
  



3 2 2 3
2 2

2 2 2

2 3 3 3
2 2 2

0 2 2 2 3

4 4 4
2 2 2

0 2 2 3 4

2

2

1

2

2

2

g

n BK BK

n BK BK

BK

t

w u w w w w
A

x x t x t x x t x

w u u u
e m M M U M U

x x t x t x

w u u u
e m M M U M U

x x t x t x

w
m M M U

t

   



 




  

   
     

    

2 2
2 2

2

2 2 2
2 2 2 2

0 2 2
2 .

BK

n BK BK

w w
M U

x t x

w w w
e m M M U M U

t x t x

    (19) 

in which F1 denotes a constant loading amplitude (i.e. F(x)=F1). 

 

3. Numerical solution   

In this section, a numerical solution approach is developed via employing the Galerkin 

and direct time-integration methods. For convenience, first of all, a set of non-dimensional 

parameters is used as follows 
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 

 

 


  

 

  



 

 



    

  


  
 

 
   



2

0
4

4

4

4 2 2
2

2

,   ,   ,   ,   ,   

,   ,   ,   

,   ,   ,

,   ,   .

A

o o o

gn
n g

o

x u w AL L
x u w r s

L d d I d

e EI

L L E L m M

M EI FL
M t t F

M m L m M d EI

L m M ML
U U

EI EI x

      (20) 

Using Eq. (20), the coupled motion equations given by Eqs. (18) and (19) can be rewritten in 

a non-dimensional form. According to the Galerkin scheme of decomposition, one can 

express the displacement components as  

     


 
1

, ,
xN

j j
j

u x t r t x          (21) 

     


 
1

, ,
zN

j j
j

w x t q t x          (22) 

where rj and qj, respectively, indicate the longitudinal and transverse generalised 

coordinates whereas  j  and  j  are the longitudinal and transverse shape functions, 

respectively. Employing the non-dimensional motion equations as well as Eqs. (21) and (22), 

one obtains 
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 (24) 

Asterisk notations are dropped for the sake of convenience. Equations (23) and (24) are 

simultaneously solved employing a direct time-integration scheme of solution  for obtaining 

the nonlinear size-dependent motion characteristics of fluid-conveying tubes at nanoscales. 

As seen from the above equations, using the Galerkin approach, the partial differential 

equations of motion are reduced into a set of time-dependent ordinary equations. Then, a 

direct time-integration scheme is implemented to accurately solve this set of time-

dependent equations. The direct time integration is performed by applying a variable step-

size modified Rosenbrock approach. This approach gives the amplitude of motion of the 

nanotube in terms of time. It is worth pointing out that ten shape functions are considered 

for each displacement, resulting in a system of twenty shape functions.   
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4. Results and discussion 

A nanofluid-conveying nanotube with length-to-diameter ratio L/dout=20, thickness 

h=70.0 nm, outer radius Rout =230.0 nm, elasticity modulus E=610 MPa, density 1024 kg/m3 

and Poisson’s ratio v=0.3 is considered. The non-dimensional parameters of the above-

described nanosystem are as Kn=0.02, BK =1.1595, M =0.4780, rA= 4312.8662,   0.03g  

and   0.09n . For all cases, which are studied in the following, it is supposed that ω 

/ω1=1.0. In total, 20 degrees of freedom are considered (10 for w and 10 for u). The critical 

flow velocity corresponding to buckling is 4.7817.  

Figure 2 shows the bifurcation behaviour of Poincaré sections of the viscoelastic 

nanotube conveying nanofluid flow for the transverse displacement at x=0.50 as well as the 

longitudinal displacement at x=0.65; the natural frequency and flow velocity are ω1= 3.1201 

and U = 4.70, respectively. The flow velocity is smaller than the critical velocity, leading to a 

subcritical bifurcation behaviour. It is found that period-1 motions govern the nonlinear 

behaviour of the nanofluid-conveying nanotube with viscoelastic properties for very small 

loading amplitudes. By further changing the loading amplitude, other motion types such as 

period-5, period-3 and period-2 are obtained for the viscoelastic system. Another important 

finding is that the viscoelastic nanoscale tube does not exhibit any chaotic motion at this 

flow velocity. For instance, the dynamical characteristics of the viscoelastic system of Fig. 2 

at F1=14.0 and F1=40.2 are shown in Figs. 3 and 4, respectively. It is concluded that the 

motion type is period-3 and period-2 at F1=14.0 and F1=40.2, respectively.  

Figure 5 depicts the subcritical bifurcation behaviour of Poincaré sections of the 

viscoelastic nanotube conveying nanofluid flow for the transverse displacement at x=0.50 

and the longitudinal displacement at x=0.65; ω1= 1.9306 and U = 4.75. Comparing Figs. 2 and 
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5 indicates that a slight increase in the flow velocity at nanoscales leads to a dramatic 

change in the subcritical bifurcation behaviour of viscoelastic nanotubes. Several chaotic 

regions are observed in Fig. 5 while there is no chaos in Fig. 4. The dynamical characteristics 

of the motion of the viscoelastic system of Fig. 5 at F1=38.0 are depicted in Fig. 6; it is seen 

that the motion is periodic for this loading amplitude.   

The supercritical bifurcation behaviour of Poincaré sections of the viscoelastic 

nanotube conveying nanofluid flow is plotted in Fig. 7 for the transverse motion at x=0.50 

and the longitudinal motion at x=0.65; the natural frequency and flow velocity are as 

ω1=2.0656 and U=4.80, respectively. It is found that the viscoelastic nanosystem exhibits a 

variety of motions at this flow velocity. Compared to the subcritical response plotted in Fig. 

5, the first chaotic region of the supercritical behaviour of Fig. 7 starts at a lower loading 

amplitude. To give more details, the dynamical characteristics of the size-dependent motion 

of the viscoelastic system of Fig. 7 at F1=28.0 are depicted in Fig. 8; both motions along x 

and z axes are highly chaotic for this loading amplitude. In addition, Fig. 9 shows the 

dynamical characteristics of the period-3 motion of the system of Fig. 7 at F1=58.0.  

Figure 10 depicts the supercritical bifurcation behaviour of Poincaré sections of the 

viscoelastic nanotube conveying nanofluid flow for the transverse motion at x=0.50 and the 

axial motion at x=0.65; ω1= 3.9731 and U = 4.85. The dynamical characteristics of the chaotic 

motion of the system of this figure at F1=36.0 are also shown in Fig. 11. Comparing Figs. 7 

and 10 indicates that the number of chaotic regions for the coupled motion is significantly 

reduced by a small increase in the flow velocity after the critical point corresponding to 

buckling.  
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In general, it is observed that the number of chaotic regions is greatly affected by the 

flow velocity. In the subcritical regime, increasing the flow velocity increases the number of 

chaotic regions whereas increasing the flow velocity in the supercritical regime reduces this 

number. The mechanics reason for these phenomena is that when the flow velocity 

increases in the subcritical regime, the nanotube approaches the instability state, which is 

determined by the critical speed. By contrast, the nanotube approaches this state by 

decreasing the flow velocity in the supercritical regime.   

In order to compare various scale-dependent theories involving strain gradient, 

nonlocal, classical and nonlocal strain gradient, Figs. 12 and 13 are plotted. The results of 

the nonlocal model are shown in Fig. 12(a) while the results of the strain gradient model are 

illustrated in Fig. 12(b). Moreover, the NSGT and classical theory (CT) are compared in Fig. 

13. For the nonlocal, strain gradient, NSGT and CT, the size parameters are set to 

  ( 0, 0)n g ,   ( 0, 0)n g ,   ( 0, 0)n g  and   ( 0, 0)n g , respectively. It is 

found that the critical fluid velocity decreases with increasing n  while g  has an increasing 

effect on the critical velocity. This is rooted in the fact that increasing n  leads to a 

reduction in the structural stiffness whereas g  has an increasing effect on the structural 

stiffness at nanoscales.  

 

5. Conclusions  

A coupled nonlinear NSGT-based model was proposed for the bifurcation behaviour of 

nanofluid-conveying nanotubes with viscoelastic properties. Size influences on the 

bifurcation behaviour of the nanotube were incorporated via a modified viscoelastic model 
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of nanobeams. Furthermore, for incorporating size influences on the nanofluid, the Beskok-

Karniadakis theory was used. Also, nonlinear strain-displacement relations were employed 

for modelling the geometric nonlinearity. The coupled differential equations of axial and 

transverse motions incorporating the internal energy loss were derived via the Kelvin-Voigt 

model and Hamilton’s principle. Finally, the Galerkin procedure and a direct time-

integration scheme were applied for extracting the bifurcation characteristics of the 

viscoelastic nanosystem. It was concluded that the bifurcation behaviour is very sensitive to 

the flow velocity. In both supercritical and subcritical regimes, chaotic motions were found 

for the viscoelastic nanotube. The number of chaotic regions depends on the flow velocity. 

In the subcritical regime, the number of chaotic regions increases with increasing flow 

velocity whereas this number reduces with increasing flow velocity in the supercritical 

regime.  

 

Appendix A. Verification study 

The critical nanofluid velocity is verified in the following by comparing it with that 

obtained in the literature using the NSGT-based beam model. An analytical solution for the 

critical fluid velocity of nanotubes conveying fluid was presented by Li et al. [36]. Neglecting 

large deflections, slip boundary conditions and external force, Eqs. (18) and (19) are reduced 

to the following equation   
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To obtain the critical fluid velocity, one can write 



18 
 





 
  

 


1

sin .k
k

k x
w W

L
          (A2) 

Substituting Eq. (A2) into Eq. (A1), the critical velocity for k=1 is obtained as 

 
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         (A3) 

It should be noted that the flow-profile-modification factor is ignored in this analysis. The 

above relation for the critical velocity is the same as that obtained by Li et al. [36] when the 

flow-profile-modification factor is zero. 
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Fig. 1. A nanofluid-conveying nanotube under distributed excitation loading. 
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(a) 

 
(b) 

 
Figure 2: Subcritical bifurcation diagrams of Poincaré sections of the viscoelastic nanotube conveying nanofluid 
flow: (a) displacement along transverse axis at x=0.50; (b) displacement along longitudinal axis at x=0.65. 
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Figure 3: Dynamical characteristics of the period-3 motion of the nanosystem of Fig. 2 at F1=14.0: time 
histories of (a) w (at x=0.5) and (b) u (at x=0.65); phase-plane plots of (c) w (at x=0.5) and (d) u (at x=0.65); 
Poincaré plots of (e) w (at x=0.5) and (f) u (at x=0.65). 
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Figure 4: Dynamical characteristics of the coupled period-2 motions of the nanosystem of Fig. 2 at F1=40.2: 
time histories of (a) w (at x=0.5) and (b) u (at x=0.65); phase-plane plots of (c) w (at x=0.5) and (d) u (at x=0.65); 
Poincaré plots of (e) w (at x=0.5) and (f) u (at x=0.65). 
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(a) 

 
(b) 

 
Figure 5: Subcritical bifurcation diagrams of Poincaré sections of the viscoelastic nanotube conveying nanofluid 
flow: (a) displacement along transverse axis at x=0.50; (b) displacement along longitudinal axis at x=0.65. 
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Figure 6: Dynamical characteristics of the periodic motion of the nanosystem of Fig. 5 at F1=38.0: time histories 
of (a) w (at x=0.5) and (b) u (at x=0.65); phase-plane plots of (c) w (at x=0.5) and (d) u (at x=0.65); FFTs of (e) w 
(at x=0.5) and (f) u (at x=0.65). 
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Figure 7: Supercritical bifurcation plots of Poincaré sections of the viscoelastic nanotube conveying nanofluid 
flow: (a) displacement along transverse axis at x=0.50; (b) displacement along longitudinal axis at x=0.65. 
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Figure 8: Dynamical characteristics of the chaotic motion of the nanosystem of Fig. 7 at F1=28.0: time histories 
of (a) w (at x=0.5) and (b) u (at x=0.65); phase-plane plots of (c) w (at x=0.5) and (d) u (at x=0.65); Poincaré 
plots of (e) w (at x=0.5) and (f) u (at x=0.65). 
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Figure 9: Dynamical characteristics of the period-3 motion of the nanosystem of Fig. 7 at F1=58.0: time 
histories of (a) w (at x=0.5) and (b) u (at x=0.65); phase-plane plots of (c) w (at x=0.5) and (d) u (at x=0.65). 
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 (a) 

 
(b) 

 
Figure 10: Supercritical bifurcation plots of Poincaré sections of the viscoelastic nanotube conveying nanofluid 
flow: (a) displacement along transverse axis at x=0.50; (b) displacement along longitudinal axis at x=0.65. 
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Figure 11: Dynamical characteristics of the chaotic motion of the nanosystem of Fig. 10 at F1=36.0: time 
histories of (a) w (at x=0.5) and (b) u (at x=0.65); Poincaré plots of (c) w (at x=0.5) and (d) u (at x=0.65). 
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(a) 

 
(b) 

 
Figure 12: Small-scale effects on static bifurcation diagrams of the nanotube conveying nanofluid; (a) effect of 


n

 when 
g

=0 (nonlocal theory); (b) effect of 
g

 when 
n

=0 (strain gradient theory). 
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Figure 13: Comparison between the static bifurcation diagrams of the nanotube conveying nanofluid obtained 

via NSGT (with 
n

=0.09 and 
g

=0.03) and CT (equivalent to 
n

= 
g

=0). 
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