
Northumbria Research Link

Citation:  Rosnan,  Rosmahidayu,  Murad,  Muhamad  Nasir,  Azmi,  Azwan  Iskandar  and
Shyha, Islam (2019) Effects of minimal quantity lubricants reinforced with nano-particles
on  the  performance  of  carbide  drills  for  drilling  nickel-titanium  alloys.  Tribology
International, 136. pp. 58-66. ISSN 0301-679X 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.triboint.2019.03.029
<https://doi.org/10.1016/j.triboint.2019.03.029>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/38445/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Accepted Manuscript

Effects of minimal quantity lubricants reinforced with nano-particles on the
performance of carbide drills for drilling nickel-titanium alloys

Rosmahidayu Rosnan, Muhamad Nasir Murad, Azwan Iskandar Azmi, Islam Shyha

PII: S0301-679X(19)30149-5

DOI: https://doi.org/10.1016/j.triboint.2019.03.029

Reference: JTRI 5671

To appear in: Tribology International

Received Date: 25 November 2018

Revised Date: 19 February 2019

Accepted Date: 11 March 2019

Please cite this article as: Rosnan R, Murad MN, Azmi AI, Shyha I, Effects of minimal quantity lubricants
reinforced with nano-particles on the performance of carbide drills for drilling nickel-titanium alloys,
Tribology International (2019), doi: https://doi.org/10.1016/j.triboint.2019.03.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.triboint.2019.03.029
https://doi.org/10.1016/j.triboint.2019.03.029


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 1

Effects of Minimal Quantity Lubricants Reinforced with Nano-Particles on the 
Performance of Carbide Drills for Drilling Nickel-Titanium Alloys 

 
Rosmahidayu Rosnan1, Muhamad Nasir Murad1,  

Azwan Iskandar Azmi2, Islam Shyha3 
 

1School of Manufacturing Engineering, 
Universiti Malaysia Perlis (UniMAP), Pauh Putra Campus, 026000 Pauh 

Arau, Perlis, Malaysia. 
 

2Faculty of Engineering Technology,  
Universiti Malaysia Perlis (UniMAP), UniCITI Campus, 021000, Sg Chuchuh 

Pdg. Besar, Perlis, Malaysia. 
 

3Department of Mechanical and Construction Engineering,  
Northumbria University, Newcastle Upon Tyne 

United Kingdom 
 

Corresponding Author’s Email: azwaniskandar@unimap.edu.my  
 

 

ABSTRACT:  

Drilling of NiTi alloys under two lubricant-coolant strategies; namely flood and minimal 

quantity nanolubricant; two types of carbides drills, and three cutting speeds was investigated. 

Progressive tool wear, tool-life, drilling thrust force, surface finish quality, and dimensional 

accuracy were considered. Experimental results suggest that the application of minimal quantity 

nanolubrications with coated carbide drills outperformed the flood lubrications with uncoated 

carbide drills. These results were pronounced for cutting speed of 10 to 20 m/min, whereas, 

accelerated tool wear, high thrust force, and low tool life were experienced for 30 m/min cutting 

speed. Despite of some promising results obtained from the supply of minimal quantity 

nanolubricants, this approach was found to be ineffective towards improving surface roughness 

and hole diameter accuracy. 
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1.0  INTRODUCTION  

Recognitions of shape memory alloys (SMAs) among reseachers and industry players 

have been steadily up surging in the last few decades. Unique properties of SMAs suited them as 

excellent materials for several noteworthy applications. This includes sensors and actuators for 

automotive parts; vibration dampers and retractable landing gear for aerospace components; as 

well as implants and stents for biomedical domains or applications [1–3]. Research and 

development of this unique material cover from high temperature shape memory alloys, 

magnetic shape memory alloys, thin film shape memory materials, and shape memory polymers. 

Basic working condition of these alloys is relatively simple, in which, the metal alloys can be 

readily deformed through applications of external forces, as claimed by Jaronie et al. [1]. The 

authors also explained that SMAs can contract or recover to its original form after being heated 

beyond a certain temperature level either by external or internal heating; or through other 

relevant stimuli such as magnetic fields [1]. These intrinsic properties, along with the shape 

memory effect and the pseudoelasticity behaviours have made these materials highly exclusive 

than other engineering alloys counterparts [2]. 

 

Among many existing SMAs, NiTi alloys are most demandable materials and gain a 

substantial attention by a number of researchers. This is mainly due to their remarkable 

mechanical properties, which include high superelasticity, shape-memory effects, good corrosion 

resistance and high ductility with excellent mechanical strength [1,4,5]. Besides, these alloys also 

hold a unique capabilities of “remembering” and “returning” to their original conditions [1,5]. 

These properties provide benefits for biomedical engineering applications, especially in human 

body such as artificial organs and implants, since human body experiences stress changes during 

daily activities. Nonetheless, Hsieh et al. asserted that impediments toward a comprehensive 

development of NiTi alloys are attributed to difficulties in manufacturing process, particularly 

during machining or cutting processes [6]. Many of previous approaches through non-

conventional machining processes such as laser forming, electro-discharge machining, waterjet 

machining, and electronic chemical machining have been successfully studied and implemented 

for cutting and shaping of the NiTi components [3,6–9]. Despite of these research outputs, 

Kaynak et al. stressed that industrial implementation of non-conventional processes for every 
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component made from NiTi alloys may not always be achievable due to cost implications and 

lack of technological capabilities [10,11]. In that sense, conventional machining is still inevitably 

for material removal of these alloys into a range of geometrical shapes and sizes as well as 

dimensions.  

 

Previous experimental studies on conventional turning of NiTi alloys showed that rapid 

tool wear and low cutting tool life expectancy are dominant machinability factors that need to be 

fully addressed [10,12]. For example, Kaynak et al. demonstrated that cryogenic cooling had a 

profound effect on controlling and reducing the accelerated tool wear rate as compared to 

minimal quantity lubrication (MQL) and dry cutting [10,11]. Similar authors further explained in 

Refs. [13,14] that in cryogenic machining, the grain boundaries of NiTi alloy were deformed into 

martensitic state, in which onset of deformation occured at a relatively low stress. Work material 

hardening was small or negligible for the first couple percent strain due to twinning mechanisms. 

The reseachers also claimed that these properties along with extremely low cryogenic 

temperature were favourable toward a proper chip formation due to smaller tool-chip contact 

length [13]. Kaynak et al. emphasised that, unlike in cryogenic machining, chip deformation 

behaviours in dry and MQL cutting were highly complex. It was also stressed that a combination 

of slip, deformation twinning, and unrecoverable stress-induced martensite formation existed, 

which were less favourable toward a proper chip forming processes [13,14].  

 

Even though tool wear alone can be considered as one of the parameters affecting 

machining processes, it has a notable and direct impact on overall machining performance and 

product quality such as surface roughness and surface integrity. For instance, Weinert and 

Petzoldt [2] claimed on surface hardness integrity improvements of the NiTi alloys through the 

application of optimum cutting speed and tool coating in drilling the alloys despite a rapid tool 

wear that occured. As asserted by the authors, a reduction of cutting force in the shear cutting 

zone was substantiated since friction between tool and workpiece was alleviated by the hard 

coating on tool substrate [2]. However, a contradicting result was later reported by Guo et al., 

when the researchers studied the influence of cutting speed and feed rate on surface integrity 

characteristics of NiTi alloys during milling process [15]. The results showed that there was a 

lower hardness near the machined surface (which was attributed to the surface roughness) as 
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compared to that of the white subsurface layer (which was resulted from changes in the austenite 

phase of cubic hard and rigid geometry) [15]. In a recent reported literature, machinability of 

nickel–titanium (Nitinol) shape memory alloy was discussed in term of optimum cutting speed 

that led to the minimum Von Mises and shear stresses criteria [16]. ANSYS/LS-DYNA R15 was 

applied in the finite element simulation through the implementation of SOLID164 3D element. 

The authors reported that resultant stress was in the lowest amount of 3.6 x 109 N/m2, when the 

cutting speed reached 109 m/min. As claimed by the researchers, that a slight difference of 9% 

between finite element simulations with experimental data existed, which was a clear indication 

of a very good fit [16].   

 

Among many conventional machining processes, drilling on NiTi alloys is an equally and 

increasingly important for fabrications of biomedical components. Holes are required on spinal 

rods, spinal vertebral spacers, implants, extension springs, etc [3]. These components are 

typically assembled to other main parts, and hence, drilled holes should not have any burrs for 

such applications. However, a previous study reported that while machining nickel titanium 

alloys, a large amount of materials were not separated from the workpiece and appeared as 

several layers of material or burrs [17]. Shyha and his colleagues also found in their study that a 

large exit burr was formed as a result of drilling an unsupported specimen of Kovar shape 

memory alloys [18]. Optimum burr size was obtained when smaller tool diameters and lower 

feed rates were used, whereas very limited impact was observed when increasing the cutting 

speed [18]. The exit burr heights were reported to be within the values of 0.44 – 2.42 mm and 

0.14 – 0.75 mm, respectively for unsupported and supported Kovar shape memory plates. From 

these results, it is obvious that smaller burrs were obtained when the Kovar shape memory alloys 

were supported at the back-end during drilling process. 

 

Due to temperature dependent and stress induced phase transformation of the NiTi alloys 

during machining, it must be stressed that cooling and lubricating conditions; apart from 

machining parameters and tooling factors, should be carefully considered due to rapid tool wear. 

Our previous studies have reported a significant and positive effects of minimal quantity 

nanolubrication on progressive tool-wear, tool life, and surface roughness during machining of 

AISI 1050 and titanium alloys, Ti-6Al-4V [19,20]. Apart from these studies, Dambatta et al. 
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showed that the application of MQL with silicon dioxide suspended nanoparticles had a 

profound effect in reducing grinding forces, workpiece surface roughness, surface damage, and 

wheel wear [21]. The authors attributed these results to a formation of thin tribo-film on the 

surface of grinding, which allowed better slewing action and material removal. Therefore, it is 

hypothesised that similar effect for the nickel-titanium alloys can be attained. However, scientific 

experimental data on drilling of these NiTi alloys under minimal quantity nanolubrication are 

still lacking or underreported. In this current study, the focus lies in the experimental 

investigation on the effects of lubricating conditions such as flood and minimal quantity 

nanolubrication on the progressive tool-wear growth of coated and uncoated carbide drills, as 

well as drilling thrust force. Surface roughness and dimensionally accuracy of the drilled hole 

were subsequently determined for evaluation of the drilling quality of the NiTi alloys. 

 

2.0  EXPERIMENTAL PROCEDURE 

2.1 Workpiece material 

 The material used in this experiment was NiTi alloy of 50.2 and 49.8 (at%) from Nickel 

and Titanium elements, respectively. The alloy was acquired from Kellog’s Research Lab, USA 

and it was received as a plate of 500 x 150 x 10 mm in length, width and thickness, respectively. 

A wire electrical-discharge cutting process was used to trim the plate into drilling specimens 

with approximate size of 94 x 70 mm. This was done so that the sample can accommodate the 

working space of the cutting force dynamometer and can be securely fixed in a specially 

fabricated channel jig. The alloy was used or drilled as received without any heat treatment 

carried out on it. 

 

2.2 Cooling and lubricating conditions 

A number of research studies have reported on the suitability of adding nanoparticles in a 

base fluids for various machining processes such as grinding, milling and turning. Frequently 

used nanoparticles, as reported in the literature, include molybdenum disulphide, copper oxide, 

silicon dioxide, and aluminium oxide. In this study, aluminum oxide (Al2O3) nanoparticles of < 

50 nm particles size were chosen. 0.4 wt% of the particles were prepared and mixed with a water 

soluble cutting oil (SolCut). The mixing of the cutting oil with the nanoparticles was performed 

at a temperature of 18-23 ºC using an ultrasonic liquid processor for a duration of 4 hours. 1% of 
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sodium dodecyl benzene sulfonate (SDBS) was included into the nanolubricant in order to 

alleviate any agglomeration in the mixture. This was found in our previous studies when turning 

AISI 1050 hardened steel and titanium alloys as stated in Refs. [19,22]. To ensure a uniform 

mixing, the ultrasonic processor was set at 100 kW output power with an amplitude frequency of 

25%. The prepared nanolubricants were delivered to cutting or drilling area under near dry 

condition using a UNIST Minimal Quantity Lubrication system at a flow rate of 50 ml/hr, which 

was a typical setting used and recommended in several studies reported earlier [19,22–24]. One 

nozzle was placed near the tip of the drill, wheras the other one was close to the drill cutting 

edges so that the lubricants can be deliverd efficiently near the tool-chip interface. For 

comparison purposes, flood lubrications using Solcut (water soluble fluids) were also considered 

in the experimentation. 

 

2.3  Setup and drilling parameters 

A three-axis CNC milling machine was used for the drilling experimentations. As 

depicted in Figure 1, each of the through holes were drilled on a rectangular NiTi plate. To 

avoid any vibration or chatter, the plate was securely and tightly clamped onto a specially 

designed channel jig. Drilling process was carried out under three cutting speeds of 10, 20 and 

30 m/min with a constant feed of 0.02 mm/rev. A preliminary test revealed that cutting speed of 

higher than 30 m/min led to a rapid failure of the drill bit due to excessive chipping and loss of 

the main cutting, chisel edges as well reaching the tool wear criteria or limit of within the first 

two drilled holes. Lower speed than 10 m/min was deemed unsuitable with respect to machining 

productivity. A constant feed was used due to smaller or negligible influence of this parameter 

towards the growth of tool wear. Uncoated tungsten carbide drills and coated tungsten carbide 

with TiAlN coatings were used for performance purposes. It is imperative to be noted that these 

two typical tool coatings are commonly tested and compared in previous research studies of 

drilling titanium, nickel based alloys as well as NiTi [12,25]. With respect to the drilling 

performance evaluative factors; the tool wear growth, surface roughness, and induced thrust 

force were measured in this study.  

 

The growth of wear on the drills was monitored using Xoptron XST60 stereomicroscope 

at 35x optical magnifications. The measurement of flank wear was made for every hole that was 
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drilled until the flank wear length has reached an average value of 0.2 mm wear limit or criteria, 

as recommended by Rival [26]. The IMT Mini image processing software assisted in measuring 

the wear length and it was determined from the average value of each of the drill cutting edges. 

As far as the surface roughness is concerned, this output parameter was measured using a 

portable surface roughness measurer, after all drilling experimentations have completed. 

Measurements were made at four equi-distant locations along the hole surface and average value 

was taken. A traverse speed of 8 mm/min was employed for the stylus pick-up. The trend of 

surface roughness for all of the drilled holes were reported, so that the effects of tool wear on the 

surface roughness can be elucidated. Dimensional accuracy of the drilled hole diameter was 

evaluated using Mitutoyo coordinate measurement machine. An average dimensional accuracy 

was obtained from the measurements of hole diameter at the entrance, middle and exit locations. 

Finally, a stationary Kistler® dynamometer was used to acquire the induced thrust force at 

sampling rate of 1–2kHz. This sampling rate was taken so that any minor variation in the force 

signals can be detected. 

3.0 RESULTS AND DISCUSSION 

3.1  Tool wear progress and tool life 

Progress of flank wear on both uncoated and coated carbide drills for feed rate of 0.02 

mm/rev and cutting speeds of 10, 20, and 30 m/min against drilling time and number of drilled 

holes are depicted in Figure 2 and 3, respectively. In this study, the flank wear growth on both 

of the main cutting edges of the drills were measured at several locations and an average flank 

wear length was determined. It is evident that the average wear length for uncoated carbide drills 

were initially very high, with flank wear reaching 0.1 mm within only a few seconds of drilling 

or within the first two holes, especially for the speed of 20 and 30 m/min. Whereas, the wear rate 

for the coated carbide drills displayed a consistent run-in period and was lightly stabilised after 

drilling 10 holes. These general observations revealed that the coated drills exhibited superior 

performance than the uncoated ones in terms of wear resistance due to presence of harder 

coatings of TiAlN on the carbide drills. This result is in agreement with the findings obtained by 

Weinert et al. [12] when the researchers investigated the drilling of NiTi alloys with Titanium 

Carbo-Nitride/Titanium Nitride (TiCN/TiN) multicoating tools. The authors claimed that an 

optimum cutting speed of 30 m/min was suitable for the aforementioned drilling investigations. 

Machining surface quality was also reported to improve with a measured surface roughness of up 
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to 5.9 µm. 

  

The findings from this study clearly exhibited that coated drills outperformed those 

uncoated drills in terms of the tool life criteria. This was assessed in term of the wear length 

reaches a maximum flank wear of VBmax < 0.2 mm after a certain drilling duration (which is 

measured in seconds or certain number of holes). Drilling time to attain this specific tool wear 

criteria was estimated to be 1965 and 785 seconds, respectively for the speed of 10 m/min and 20 

m/min. It is to note that these results were attained when using TiAlN coated drills under 

minimal quantity nanolubrications. However, when flood lubrications were employed, a slightly 

lower drilling time of 1800 and 725 seconds were recorded, respectively for the same drilling 

speeds. It appears that Al2O3 nanoparticles play an important role to enhance lubricity and 

improve friction coefficients of the base fluids compared to that of the flood conditions. These 

results are in agreement with Park et al. [27], in which the authors reported that nanographene-

enhanced vegetable oil fluids provided superior results in terms of wettability and a reduced 

friction coefficient, which improved tool wear and edge chipping resistance. In addition, Sharma 

et al. explained that the nano-sized particles in nanolubricant have a tendency to interact with 

friction and they are deposited on the contact surface to form a physical tribo-film that 

compensates for the loss of mass due to friction [28]. Hence, it can be concluded that the 

nanoparticles inclusion in the SolCut base fluids was equally beneficial in improving the coolant 

properties with that of the flood conditions. The use of minimal quantity lubrication for the 

nanolubricants adds to the advantage of a cleaner production or machining environment.  

 

However, as depicted in Figure 2 and 3, it is evident that the development of flank wear 

progressed highly rapid, especially for the highest cutting speed of 30 m/min when using the 

TiAlN coated drill. This was observed from the 1st hole until the failure of drill at the 6th hole. 

Drilling time of only 118 seconds was recorded to reach the aforementioned number of holes. 

This concludes that speed of 30 m/min could be the threshold to drill the NiTi alloys under the 

minimal quantity nanolubrications. Surprisingly, coated drill sustained a longer tool life of 338 

seconds or 16 holes for the same cutting speed when flood lubrication was employed. This 

shows that the water soluble cutting fluids under flood conditions was able to penetrate closer or 

nearer to the drilling cutting zone to alleviate friction and tool wear for the highest cutting speed 
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employed in this study. As far as uncoated drills are concerned, results shown in Figure 2 and 3 

depicted that the uncoated carbide drills were unsuitable for drilling these extremely hard NiTi 

alloys due to aggressive tool wear. For the cutting speeds of 20 and 30 m/min, the uncoated drills 

can only be used for less than 180 seconds, which was equivalent to less than 6 drilled holes. 

This was discovered regardless of whether flood or minimal quantity nanolubrication was 

employed.  

 

Nevertheless, drilling time can reach 870 seconds with 13 drilled holes when the lowest 

cutting speed of 10 m/min was employed. This is consistent with common understanding that 

low cutting speed will lead to longer tool life. With respect to the tool wear mechanisms, it was 

observed that abrasion was the main mechanism for both types of carbide drills, Figure 4(a-b). 

This can be identified by parallel grooves or scratches in the direction of the material flow during 

drilling process. On the other hand, Figure 4(c-d), revealed a large built-up layer or edge (BUE) 

on each of the drill cutting edges, apart from some severe chipping and cracking on the main and 

chisel edges. All of these phenomenon contributed to the tool failure mode and these observation 

are in good agreement with the results in Refs [13,14]. It is to note that the measurement of the 

flank wear was extremely difficult and could led to possible measurement errors with the 

presence of BUE and chipping on the cutting edges. As a consequence, measurement of flank 

wear was repeated to ensure consistency and validity.  

3.2  Taylor’s tool life equation 

A tool life in drilling process is often described by the number of holes produced or 

drilled prior to the tool failure. A tool life can also be described as the time a drill reaches a 

predefined wear criterion. Previous section discussed the growth of flank wear that leads to an 

estimation of tool life with respect to drilling time. Figure 5 shows a comparison of the tool life 

values obtained for the two lubricating and cooling conditions investigated under the given 

drilling parameters depicted in Table 2. It is clear that coated drills and minimal quantity 

nanolubrications outperformed the uncoated drills in term of the tool life. For instance, when 

drilling at an intermediate cutting speed of 20 m/min, an increment of 88% in tool life was 

achieved by the coated carbide drills as compared to that of uncoated drills with minimal 

quantity nanolubrication. In a meantime, the well established Taylor’s tool life equation was 

subsequently employed to determine the relationships between tool life and the considered 
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machining parameters. The development of this equation also allows prediction of tool life while 

drilling the NiTi alloys.  

 

Consistent with the existing metal cutting theory, tool wear was found to increase 

substantially with a higher cutting speed as shown in the Taylor’s tool life model, VTn = C, 

where V is the cutting speed (in m/min), T is the tool life (in seconds), n and C are empirical 

constants. Using statistical analysis, the Taylor’s tool life equations derived as a function of 

cutting speed, V are given as: 

 

VT -0.661 = 1455, R2 = 0.99   ………………… (1) (Coated drill under flood condition) 

 

VT -0.363 = 182 , R2 = 0.88    ………………… (2) (Coated drill under MQL nano) 

 

The Taylor’s tool life equations derived herein were specifically for the coated drills. 

This is due to the fact that performance of coated carbide drills was significantly better than the 

uncoated ones in terms of drilling time as well as the number of drilled holes, as explained 

earlier. From the two equations shown above and judging from the R2 values of 0.99 and 0.88, it 

can be concluded that the derived empirical equations can describe experimental trend highly 

well. Empirical constant, n, for both equations are also very close to the reported values in the 

literature for similar type of tool/ work material combination, i.e. titanium or nickel alloys with 

tungsten carbide cutting tool [29,30]. 

 

3.3  Drilling thrust force 

Effects of cutting speed on the development or growth of the thrust force against drilling 

time and number of drilled holes are denoted in Figure 6 and 7, respectively. Within the early 

stage of drilling experiment, i.e. from the first to the fifth holes, induced thrust forces were in the 

range of 160 N to 250 N under the minimal quantity nanolubrications and coated carbide drills. 

Further drilling of above the fifth hole led to a fairly gentle increment in the induced thrust force 

for all considered drilling speeds. Under the lowest cutting speed of 10 m/min, the TiAlN coated 

carbide drills induced a maximum drilling thrust force of 327 N. However, unlike the result from 

10 m/min of cutting speed, a lower drilling thrust force of 255N was generated when highest 
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cutting speed of 30 m/min was tested. Apparently, the induced thrust force exhibits a declining 

trend of about 22% when cutting speed was raised. These results are in-agreement with previous 

research of machining nickel-based alloys [31] and titanium alloys [32]. In Ref [31], the authors 

claimed that the results were attributed to the low heat dissipation in the cutting zone, which 

indirectly reduced the hardness of the material to enhance material removal process. Meanwhile, 

authors in Ref. [32] conceived that a thin boundary film was formed between the tool–workpiece 

interfaces when MQL was used, which presented a significant thrust force reduction.   

 

In our case, application of minimal quantity nanolubricants contributed towards a 

reduced coefficient of friction between the tool-workpiece interface. As a matter of fact, the 

presence of nanoparticles in the base fluids could facilitate the polishing or rolling effects of the 

nanoparticles between two contact surface, apart from the formation of thin protective film, 

similar to the claim by Sayuti et al. [33]. This mechanism leads to lesser friction between surface 

of the drill and NiTi workpiece. Hence, it attributed towards a significant reduction in the thrust 

force, as depicted in Figure 6 and 7, for the cutting speed of 30 m/min. This is despite the 

accelerated tool wear under this cutting speed, as shown earlier in Figure 2 and 3. Contrary to 

the preceding discussions, application of flood conditions in drilling the NiTi alloys for the same 

drilling speeds has resulted in a significantly high induced thrust force. The magnitude of thrust 

force was in the order of 2 to 4 times higher than those from minimal quantity nanolubricants. It 

is believed that the flood coolants were not be able to ease extreme heat generation in the cutting 

zone, which was the main cause for the high thrust force. Likewise, similar trends of high thrust 

force were observed for the uncoated drills as compared to the coated ones, regardless of 

whether minimal quantity nanolubricants or flood coolants were applied. 

 

3.4  Surface roughness and dimensional accuracy 

Condition of machined component surface is vital as it can directly influence fatigue 

and functional performances of the component during in-service. Very often, drilling process 

can induce surface and subsurface alterations on the finished part. Whereas, impact of the 

aforementioned progressive tool-wear towards dimensional accuracy of the NiTi (i.e. hole 

diameter and hole roundness) is equally important aspect to be fully understood. Figure 8 

represents average surface roughness values over the number of drilled holes for flood and 
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minimal quantity nanolubrications. As apparent, uniform and consistent roughness values in 

the range of 0.7 µm to 1.2 µm were observed regardless of the drilling speeds, cooling and 

lubricating conditions, as well as the type of coating on the drills. However, it was quite a 

surprise that the values of surface roughness were marginally or slightly high under minimal 

quantity nanolubrications as compared to that of the flood conditions, Figure 8. This is 

incongruent with results from past researchers that employed MQL conditions to cut NiTi 

alloys and other materials. For instance, Kaynak et al. claimed that MQL machining of NiTi 

alloys had resulted into smallest variation of Ra values over some machining duration [13]. 

Similarly, Dambatta et al. reported an improvement of surface roughness and surface damage 

during grinding of Si3N4 ceramic materials with silicon dioxide nanoparticles suspended 

MQL [21]. Debates are still highly ignited due to mix of results produced by researchers in 

machining difficult-to-cut materials with MQL, as claimed by Boswell and his co-authors 

[34].  

 

Figure 9 further reveals the average surface roughness values for each of drilling 

speeds employed. Herein, the applications of minimal quantity nanolubrication resulted in a 

slightly higher surface roughness values as compared to the flood conditions. For example, at 

cutting speed of 10 m/min, the measured surface roughness were 0.959 µm and 0.987 µm, 

respectively for flood and minimal quantity nanolubrications. Likewise, for cutting speed of 

30 m/min, surface roughness of 0.834 µm and 0.938 µm were recorded under flood and 

minimal quantity lubrication, respectively. Although previous section has emphasised some 

encouraging effects of nanolubrications toward reducing drilling thrust force, however, 

inclusion of nanoparticles in the SolCut base cutting fluid has detrimental effect on surface 

roughness. In fact, the Al2O3 nanoparticles could probably influence the surface roughness 

due to the rubbing effects of these hard particles against the workpiece surface. Sayuti et al. 

asserted that chemical reactions occurred on the thin film Al 2O3 nanolubricants could also 

lead to the formation of welded zone on the NiTi surface [33]. It was conceived that the 

oxide welded zone has a slightly higher hardness profile, which explained why there was an 

incremenet in the surface roughness [33]. High cutting temperature generated during drilling 

process could lead to an intensive formation of Al2O3 protective film, which was then peeled 

off due to aggressive cutting action to produce rougher machined surface. As a result, the 
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drilled surfaces were inspected under a high power microscope in order to identify in detail 

any surface structure defects resulted from the application of Al2O3 nanoparticles in the base 

cutting fluids. Figure 10 depicts the poor surface qualities with a number of defects, 

specifically cracks and uneven surfaces due to material adhesions. A relatively smoother 

surface was obtained under flood condition as shown in Figure 11. 

 

Meanwhile, average hole diameter accuracies, which were measured at three depth 

locations, are shown in Figure 12 and 13. These results demonstrated that diameter accuracy 

of the drilled holes were significantly influenced by the choice of cooling and lubricating 

conditions as well as the type of drill coatings. Diameter of the drilled NiTi alloys were 

comparatively high when minimal quantity nanolubrication with coated drills was employed 

in the drilling experiments. This is fairly in-line with the outcome of surface roughness 

discussed previously. Apparently, the presence of rough surface finish attributed to a larger 

hole diameter of 6 to 103 µm variation from the nominal value of 6.0 mm. It is believed that 

similar mechanisms that was discussed for the surface roughness are valid to explain the 

deviation in hole dimensional accuracy. Unlike in the minimal quantity nanolubrications, 

flood conditions with uncoated drills contributed to a superior hole diameter accuracy with a 

variation in the range of 12 to 50 µm from the nominal diameter. 

 

 

4.0  CONCLUSIONS 

This work considered tool-wear, tool-life, thrust force, surface roughness, and dimensional 

accuracy aspects of drilling NiTi shape memory alloys. Experiments were evaluated with respect 

to minimal quantity nanolubrication and flood conditions, with two types of carbide drills; 

namely, uncoated and TiAlN coating, and under three different cutting speeds. The following 

concluding remarks can be drawn from the results discussed earlier: 

1) The nanoparticles inclusion in SolCut base cutting fluids was beneficial in improving the 

minimal quantity coolant-lubricant properties while drilling the NiTi alloys. Al2O3 

nanoparticles play an important role to enhance thermal conductivity and improve heat 

transfer coefficients of the base fluids. 
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2) In specific, coated drills exhibited superior performance than the uncoated ones in terms of 

tool progressive wear rate, especially under the application of minimal quantity 

nanolubricants. A consistent and stablised run-in period were displayed until the tool-life 

expentency has reached. However, it was showed that the minimal quantity nanolubricants 

were only deemed suitable to control the rate of tool wear within the cutting speed range of 

10 to 20 m/min. 

3) As for the drilling thrust force, similar decreasing trends were displayed under the minimal 

quantity nanolubricants due to polishing or rolling effects and formation of thin protective 

film of the nanoparticles between contact surface of tool and NiTi alloys. 

4) Nonetheless, this minimal quantity lubrications approach was found to be ineffective 

towards surface quality and  dimensional accuracy as compared to that of the flood 

lubrications for all cutting speed employed and type of coated drills used. Microscopic 

inspection of the drilled surface revealed a number of surface structure defects which 

attributed towards poor surface roughness and high dimensional tolerance of the hole 

diameter.  
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Table 1: Experimental details 

Items Descriptions 
Machine Tool:  
CNC milling machine Tongtai EZ-5A 
Data Acquisition Equipment:  
Microscope Xoptron Stereo Microscope XST60  
Dynamometer 
 
Portable surface roughness 

Kistler Type 9129A with 9070 
Charge Amplifier 
HandySurf E-35B 

Workpiece:  
Material Nickel-Titanium (NiTi) 
Dimensions  94 mm x 70 mm x 10 mm 
Cutting Tools:  
Material Tungsten carbide (WC–Co) 
Type of drill Twist drill 
Diameter 6 mm 
Point and helix angle  30°, 135° 
Coatings  Uncoated and TiAlN coated 
No. of flutes 2 
 

 
Table 2: Drilling parameters 

Parameter level 1 2 3 
Cutting speeds (m/min) 10 20 30 

Feed rate (mm/rev) 0.02 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 1

 
Figure 1: Drilling experimental setup consists of Kistler force dynamometer, channel jig and 

lubrication nozzles 
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Figure 2: Average of flank wear on the uncoated drills against (a) time in seconds and 

(b) number of drilled holes for respected experimental conditions   
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Figure 3: Average of flank wear on the coated drills against (a) time in seconds and  

(b) number of drilled holes for respected experimental conditions 
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(a) (b) 

  
(c) 

 
(d) 

Figure 4: (a) Abrasion on uncoated carbide drill at 10 m/min under flood lubricating 
condition, (b) abrasion on coated carbide drills at 20 m/min under minimal quantity 

nanolubrication condition, (c) formation of built-up edge (BUE)  and chipping on coated 
carbide drill at 30 m/min under flood lubricating condition, and (d) catastrophic failure on 

uncoated carbide drill under flood lubricating condition  
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Figure 5: Tool life for uncoated and coated carbide drills with respect to experimental 
conditions 
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Figure 6: Development or growth of drilling thrust force for uncoated drills against (a) time in 

seconds and (b) number of drilled holes for respected experimental conditions   
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Figure 7: Development or growth of drilling thrust force for coated drills against (a) time in 

seconds and (b) number of drilled holes for respected experimental conditions 
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Figure 8: Average surface roughness of (a) uncoated drills (b) coated drills against number of 

drilled holes for respected experimental conditions 
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Figure 9: Average of surface roughness with respected experimental conditions 
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(a) uncoated drill at 10 m/min (b) coated drill at 10 m/min  
 
 
 
 
 
 
 
 
 
 

 

 

(c) uncoated drill at 30 m/min (d) coated drill at 30 m/min  
Figure 10: Surface structure defects for different drill types, cutting speed and MQL 

nanolubrication conditions 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 11: Surface morphology under flood lubricating conditions for uncoated drill and 10 
m/min 
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Figure 12: Average roundness/ hole diameter accuracy of (a) uncoated drills (b) coated drills 
against number of drilled holes for respected experimental conditions 

 
Figure 13: Average of hole diameter with respected experimental conditions 
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Highlights 

 
• Drilling performance of minimal quantity lubricants reinforced with nano-particles 

was evaluated  
• Al2O3 nanoparticles inclusion in SolCut base cutting fluids was beneficial in 

improving tool wear resistance of coated carbide drills 
• Surface finishes were substantially affected by the application of the minimal 

quantity nanolubrication 
 

 
 

 

 


