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Abstract 

A nonlinear viscoelastic model is developed for the dynamics of nanotubes conveying fluid. 

The influences of strain gradients and stress nonlocality are incorporated via a nonlocal 

strain gradient theory (NSGT). Since at nanoscales, the assumptions of no-slip boundary 

conditions are not valid, the Beskok-Karniadakis theory is used to overcome this problem. 

The coupled nonlinear differential equations are derived via performing an energy/work 

balance. The derived equations along the transverse and axial axes are simultaneously 

solved to obtain the nonlinear frequency response. For this purpose, Galerkin’s technique 

together with a continuation method are utilised. The frequency response is investigated in 

both subcritical and supercritical flow regimes.  
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1. Introduction 

Nanoscale structures conveying fluid have many interesting applications in different 

nanomechanical systems such as nanoscale sensors, nanosystems for tumour targeting and 

nanodevices for the early diagnosis of serious diseases. Understanding the interactions 

between the fluid and fundamental structure is important in these nanosystems, especially 

when there are large external forces.  

Fluid-conveying nanoscale structures can have a large number of molecules, which 

make molecular dynamics simulations computationally costly and time-consuming. On the 

other hand, since these systems have very small dimensions, it is formidable to 

experimentally analyse the mechanical response. As a result, a considerable amount of 

attention has been directed toward the continuum-based modelling of fluid-conveying 

micro/nanoscale structures (Atashafrooz et al., 2018; Mohammadimehr et al., 2017; 

Hosseini et al., 2018; Kural and Özkaya, 2017). Classical continuum mechanics can 

reasonably describe the mechanics of macroscale structures (Ghayesh and Moradian, 2011; 

Kazemirad et al., 2013; Farokhi et al., 2018). However, from physical point of view, the 

classical continuum mechanics is not reasonable as it is not able to describe size influences 

(Farajpour et al., 2018a; Aydogdu, 2015; Arda and Aydogdu, 2018; Gholipour et al., 2015; 

Farokhi and Ghayesh, 2015). To overcome this problem, a few size-dependent theories 

involving the couple stress model (Akgöz and Civalek, 2012; Park and Gao, 2006; Ghayesh et 

al., 2013; Farokhi and Ghayesh, 2018; Nejad et al., 2017; Farokhi and Ghayesh, 2017), pure 

nonlocal elasticity (PNE) (Malekzadeh and Shojaee, 2015; Zenkour, 2018; Farajpour et al., 

2018b; Asemi and Farajpour, 2014) and nonlocal strain gradient theory (NSGT) (Li and Hu, 
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2015; Farajpour et al., 2019; Numanoğlu et al., 2018) have been suggested. In this study, the 

second one (i.e. NSGT) is used for describing size influences.   

A notable amount of effort has lately been made in order to understand the 

mechanics of micro/nanoscale tubes conveying fluid via use of size-dependent theories of 

elasticity. Wang (Wang, 2010) extracted the oscillation characteristics of fluid-conveying 

microscale tubes; he modelled size influences on the oscillation characteristics by employing 

a couple stress theory. Moreover, Lee and Chang (Lee and Chang, 2008) employed the PNE 

in order to explore the linear oscillation of nanotubes conveying fluid incorporating 

transverse deflections. Soltani et al. (Soltani et al., 2010) also examined the effects of a 

viscoelastic foundation on the oscillation and stability  of fluid-conveying nanotubes via use 

of a size-dependent model. In another study, Zeighampour and Beni (Zeighampour and 

Beni, 2014) developed a linear continuum model for a system of two nanoscale tubes 

conveying fluid incorporating the influences of couple stresses. In addition, thermal 

influence on the oscillation and stability of fluid-conveying nanotubes was examined in Ref. 

(Zhen et al., 2011) by employing the PNE. A continuum model incorporating size effects was 

also proposed by Maraghi et al. (Maraghi et al., 2013) for examining the oscillation and 

stability characteristics of a particular type of fluid-conveying nanotubes with piezoelectric 

properties. The influences of stress nonlocality as well as the effects of fluid pulsation on the 

instability of nanotubes were also explored by Liang and Su (Liang and Su, 2013). In another 

study, Askari and Esmailzadeh (Askari and Esmailzadeh, 2017) proposed a continuum model 

for analysing the effects of a nonlinear medium on the forced vibration response of 

nanoscale tubes conveying fluid; thermal effects were also taken into consideration. The 

nonlocal version of the Euler-Bernoulli theory was also used by Ghasemi et al. (Ghasemi et 

al., 2013) for capturing size effects on the nonlinear stability of a system of nanotubes 
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conveying fluid. Moreover, the wave propagation characteristics (Li and Hu, 2016), axial 

vibration (Oveissi et al., 2016), flutter instability (Bahaadini and Hosseini, 2016) of fluid-

conveying nanoscale tubes have recently been studied via several size-dependent models of 

elasticity.  

In real situations, the linear assumption, which is made in many of the above-

mentioned articles, is not valid for large deformations. Although the vibration of fluid-

conveying nanotubes with large deformations has been investigated in a few investigation, 

no nonlinear viscoelastic models have been presented for the frequency response of 

nanotubes conveying nanofluid incorporating both transverse deflections and axial 

displacements. This encourages us to analyse this problem in this paper. Both strain 

gradients and stress nonlocality are captured employing a NSGT model. To model the 

occurrence of slip in the interface between the fluid and nanotube, the Beskok-Karniadakis 

theory is used. The Kelvin-Voigt model is also employed for describing the effects of 

viscoelastic properties on the nonlinear frequency response. To derive the coupled 

equations of motions, an energy/work balance is performed according to Hamilton’s 

principle. A numerical solution is presented via application of Galerkin’s technique and a 

continuation scheme. The present results could be useful for the fabrication of 

nanomechanical devices using fluid-conveying nanotubes.  

 

2. A NSGT-based modelling  

Figure 1 illustrates a viscoelastic nanoscale tube conveying fluid subject to an 

externally applied load; the tube length and outer diameter are indicated by L and do, 
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respectively; moreover, the velocity of the fluid is indicated by U. Utilising the Euler–

Bernoulli model of beams, the strain is (Reddy, 2010) 


   

    
   

22

2

1
.

2
xx

w w u
z

x x x
         (1) 

Here w and u stand for the centre-line transverse and axial displacements, respectively. In 

the present NSGT-based modelling, the stress resultants are given by 
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where ( )xx tt  and A are the total stress and cross-sectional area. The NSGT-based constitutive 

relation is (Ghayesh and Farajpour, 2018a) 
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where 

       l      
2 2

0 ,n ne          (4) 

     l      2 2 ,g g          (5) 

where g  and n  stand for the strain gradient and nonlocal operators, respectively; 2 , lg

, e0,  , ln  and E represent the Laplacian operator, strain gradient parameter, a coefficient 

for calibrating the model, viscosity coefficient, internal characteristics length and Young’s 

modulus, respectively (Ghayesh and Farajpour, 2018b). In general, the nonlocal and strain 

gradient parameters are obtained from experimental data or the results of molecular 

dynamics (MD). In the literature, MD simulations were performed to determine these scale 

parameters for both nanotubes and fluid-conveying nanotubes (Mohammadi et al., 2018; 



6 
 

Mehralian et al., 2017a; Mehralian et al., 2017b). The values of nonlocal and strain gradient 

parameters, which are taken in the present paper, are in the recommended range obtained 

by MD simulations. Employing Eqs. (2) and (3), one obtains the stress resultants as 
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in which I is the nanotube moment of inertia. The energy and work associated with the 

elastic and viscous parts of the constitutive equation are formulated by   
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where Wv and Ue denote the viscous work and elastic energy of the NSGT nanoscale tube, 

respectively;  , 
(1)
( )ij k  and  ( )ij k  represent the gradient operator, first-order and zeroth-

order nonlocal stresses, respectively; “v” and “e” are used to indicate the viscoelastic and 

elastic parts, respectively . The stress components satisfy the following relations (Lim et al., 

2015) 
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For the kinetic energy of the NSGT nanoscale tube, one has 
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where M and m stand for the fluid and nanotube masses per length, respectively;  1nf  

indicates the velocity correction factor (Beskok and Karniadakis, 1999). The following 

relation is obtained for this factor by employing the Beskok-Karniadakis theory  
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Here Kn stands for the Knudsen number;  ,  v  and i  are constant coefficients, which are 

equal to   1 ,   0.7v  and     0 1 2, , 64 15 ,4,0.4 , respectively. For the work 

done by the externally applied load, one has 

  0 d ,
L

q FW q w x            (15) 

where  

    cos .Fq F x t           (16) 

In the above equation, F and   represent the loading amplitude and excitation frequency 

respectively. Substituting Eqs. (8), (9), (12) and (15) into Hamilton’s principle described by 
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the motion equations in terms of ( )xx tN  and ( )xx tM  are derived as  
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Assuming a constant loading amplitude (F(x)=F1) and substituting Eqs. (6) and (7) into Eqs. 

(18) and (19), one obtains the nonlinear coupled motion equations in the non-dimensional 

form as  
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where  
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In Eqs. (20) and (21), asterisk superscripts are ignored for simplicity. Using a discretisation 

technique based on Galerkin’s method, one has 
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in which  j , rj,  j  and qj, respectively, represent the axial trial function, axial generalised 

coordinate, transverse trial function and transverse generalised coordinate. The boundary 

conditions of the fluid-conveying nanotube are assumed to be clamped-clamped as shown 

in Fig. 1. Substituting Eqs. (23) and (24) into Eqs. (20) and (21) leads to the following set of 

equations for the viscoelastic NSGT nanoscale tube conveying fluid  
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To predict the dynamic behaviour of viscoelastic NSGT nanotubes conveying nanofluid, a 

continuation technique is utilised. 
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3. Results and discussion 

For numerical calculations, the geometric properties of the fluid-conveying nanoscale 

tube are taken as Ro =200.5 nm, h=70.0 nm and L/do=20. Furthermore, for the material 

properties, we have E=610 MPa, v=0.3 and density=1024 kg/m3. Unless otherwise specified, 

the dimensionless parameters are as Kn=0.02, M =0.4179,   0.04g ,   0.10n , η=0.0004 

and s=20.0. The number of trial functions along each axis is set to ten. 

Figure 2 depicts the static divergence of the tube conveying nanofluid; midpoint 

transverse displacement versus the nanofluid velocity is plotted. The transverse 

displacement of the nanotube is zero until a critical point in which it starts to bifurcate. The 

critical velocity related to instability with slip boundary conditions using the NSGT is 

obtained as Ucr = 4.6932.  

The effect of the nonlocal and strain gradient parameters on the static divergence of 

the tube conveying nanofluid is depicted in Fig. 3. To better illustrate the size effects, in sub-

figure (a) χn is kept fixed and the effect of χg is studied while in sub-figure (b) χg is kept fixed 

and the effect of χn is examined. As seen in sub-figure (a), increasing χg postpones the 

occurrence of divergence and increases the critical flow velocity. Increasing χn, on the other 

hand, results in a reduction in the critical flow velocity corresponding to divergence, as 

illustrated in sub-figure (b). 

Figure 4 shows the nanosystem fundamental natural frequency in sub and 

supercritical flow regimes. It is found that in the subcritical flow regime, the fundamental 

frequency decreases with increasing the nanofluid velocity whereas it increases with 

increasing the velocity in the supercritical flow regime. Moreover, the fundamental 

frequency vanishes at the critical point corresponding to the nanosystem divergence.  
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The subcritical amplitude-frequency diagrams of the fluid-conveying tube at 

nanoscales are shown in Fig. 5 for the maximum displacement in the transverse axis at 

x=0.5, the maximum displacement in the longitudinal axis at x=0.657 and the minimum 

longitudinal displacement at x=0.344. The fluid-conveying nanoscale tube displays a 

hardening nonlinearity with strong modal interactions for both transverse and axial 

responses. There are two entirely different saddle-node points at ω/ω1 = 1.2819 and 1.0591, 

in which the fluid-conveying nanoscale system undergoes a sudden jump in both transverse 

and axial displacements. Furthermore, the transverse and longitudinal responses of the 

fluid-conveying nanoscale tube of Fig. 5 in one period of oscillation at ω/ω1 = 1.2819 are 

indicated in Fig. 6. 

Figure 7 compares the subcritical frequency-amplitude diagrams of the fluid-

conveying nanoscale tube obtained via the NSGT (χg=0.04, χn=0.10) with those of the 

classical theory (χg= χn=0) for the maximum displacement in the transverse axis at x=0.5 and 

the maximum displacement in the longitudinal axis at x=0.657. It is concluded that the 

application of the classical model results in overestimated values for the resonance 

frequency as well as the peak amplitude of the fluid-conveying nanotube. In addition, the 

classical model is not able to predict the modal interactions observed in the nonlinear 

frequency response for the longitudinal motion. 

The subcritical frequency-amplitude diagrams of the fluid-conveying nanoscale tube 

for different fluid velocities are indicated in Fig. 8 for the maximum transverse displacement 

at x=0.5 as well as the maximum longitudinal displacement at x=0.657. It is observed that 

higher fluid velocities lead to lower resonance frequencies for the nanosystem. 

Furthermore, for a sufficiently high fluid velocity (i.e. U/Ucr=0.8) in the subcritical flow 
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regime, modal interactions are observed in the frequency response, especially for the 

longitudinal motion.  

The slip effects at the nanotube-fluid interface on the subcritical amplitude-frequency 

diagrams of the fluid-conveying tube at nanoscales are shown in Fig. 9 for the maximum 

displacement in the transverse axis at x=0.5 as well as the maximum displacement in the 

longitudinal axis at x=0.657. Neglecting slip effects at the nanotube-fluid interface leads to 

notably higher resonance frequencies and peak amplitudes for the nanosystem. 

Furthermore, modal interactions are not observed in the nonlinear response when slip 

boundary conditions are neglected. 

Figure 10 illustrates the supercritical frequency-amplitude diagrams of nanoscale 

tubes conveying fluid of velocity U/Ucr=1.20 for the maximum and minimum transverse 

displacements at x=0.5 as well as the maximum displacement in longitudinal axis at x=0.657. 

The fluid-conveying nanoscale tube displays a softening nonlinearity for both transverse and 

axial responses. Furthermore, there are two saddle-node bifurcations at ω/ω1=0.9514 and 

0.7963 in the nonlinear frequency response in which the nanosystem displays a sudden 

jump in the amplitude. The effects of a slight increase in the fluid velocity on the frequency 

response are shown in Fig. 11; this time the fluid velocity is set to U/Ucr=1.40. It is found that 

a slight increase in the nanofluid velocity leads to the dramatic change of the frequency 

response of viscoelastic nanoscale tubes. There are four saddle-node bifurcations (i.e. SD1: 

ω/ω1=0.9446, SD2: ω/ω1=0.9290, SD3: ω/ω1=1.7984, SD4: ω/ω1=2.0598,) and two period-

doubling bifurcations (i.e. PD1: ω/ω1=1.9234, PD2: ω/ω1=2.0587). Finally, the effects of the 

velocity correction factor on the supercritical amplitude-frequency diagrams of the 

nanofluid-conveying nanoscale tube are shown in Fig. 12 for the maximum displacement in 
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the transverse axis at x=0.5 and the maximum displacement in the longitudinal axis at 

x=0.657. The resonance frequency is higher for higher velocity correction factors.  

 

4. Conclusions  

A nonlinear viscoelastic model has been developed for the frequency response of 

nanotubes conveying fluid incorporating both transverse deflections and axial 

displacements. Both strain gradients and stress nonlocality were taken into consideration 

via a NSGT model. The occurrence of slip in the interface between the fluid and nanotube 

was modelled employing the Beskok-Karniadakis theory. The effects of viscoelastic 

properties on the nonlinear frequency response were captured using the Kelvin-Voigt 

model. Galerkin’s technique and a continuation scheme were applied to determine a 

numerical solution. 

It was found that in the subcritical flow regime, increasing the nanofluid velocity 

reduces the fundamental frequency while the velocity has an increasing impact on the 

fundamental frequency in the supercritical flow regime. For both transverse and axial 

responses, the fluid-conveying nanosystem displays a hardening nonlinearity with strong 

modal interactions in the subcritical regime. Furthermore, employing the classical model 

results in overestimated values for the resonance frequencies and peak amplitudes of the 

nanoscale tube. Higher fluid velocities lead to lower resonance frequencies. In addition, it 

was observed that neglecting slip boundary conditions leads to significantly higher 

resonance frequencies and peak amplitudes. In the supercritical flow regime, the fluid-

conveying nanoscale tube displays a softening nonlinearity for both transverse and axial 

responses.  
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Fig. 1. A fluid-conveying nanoscale tube with outer diameter do and length L. 

 
 

 
 

 
Fig. 2. Static divergence of the nanoscale tube conveying nanofluid; w at midpoint. 
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(a) 
 

 
(b) 

 
Fig. 3. Nonlocal and strain gradient effects on positive stable static response of the nanoscale tube conveying 
nanofluid at midpoint; (a) χn = 0.10; (b) χg = 0.04. 
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Fig. 4. Nanosystem fundamental natural frequency in sub and supercritical flow regimes; κnf1=1.1595. 
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(c) 

 
Fig. 5. Subcritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale tube; (a) wmax at x=0.5; 

(b) umax at x=0.657; (c) umin at x=0.344; U/Ucr=0.75, κnf1=1.1595 and F1=2.2. 
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(a) 

 
(b) 

 
Fig. 6. (a, b) Transverse and longitudinal response of fluid-conveying nanotube of Fig. 4 in one period of 

oscillation at ω/ω1 = 1.2819. 
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(a) 

 
(b) 

 
Fig. 7. Subcritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale tube obtained via the 
nonlocal strain gradient theory (χg=0.04, χn=0.10) and classical theory (χg=χn=0); (a) wmax at x=0.5; (b) umax at 

x=0.657; U=3.6, κnf1=1.1595 and F1=2.2. 
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 (a) 

 
(b) 

 
Fig. 8. Subcritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale tube for different fluid 

speeds; (a) wmax at x=0.5; (b) umax at x=0.657; κnf1=1.1595 and F1=2.2. 
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 (a) 

 
(b) 

 
Fig. 9. Slip effects on subcritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale tube; (a) 

wmax at x=0.5; (b) umax at x=0.657; U=3.6 and F1=2.2; κnf1=1.1595 for slip boundary condition and κnf1=1.0 for 
no-slip boundary condition. 
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(c) 

 
Fig. 10. Supercritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale tube; (a,b) wmax and 

wmin at x=0.5; (c) umax at x=0.657; U/Ucr=1.20, κnf1=1.1595 and F1=2.2. 
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(c) 

 
Fig. 11. Supercritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale tube; (a) wmax and 

wmin at x=0.5; (b) umax at x=0.657; U/Ucr=1.40, κnf1=1.1595, and F1=6.0. 
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(a) 
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Fig. 12. Effects of κnf1 on supercritical amplitude-frequency diagrams of the nanofluid-conveying nanoscale 

tube; (a) wmax at x=0.5; (b) umax at x=0.657; U=6.5 and F1=2.0. 
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