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Abstract

Prediction models in credit scoring usually involve the use of data sets with highly

imbalanced distribution of the event of interest (default). Logistic regression, which is

widely used to estimate probability of default (PD), often suffers from the problem of sep-

aration when the event of interest is rare and consequently poor predictive performance

of the minority class in small sample. A common solution is to discard majority-class

examples, duplicate minority-class examples, or use combination of both to balance the

data. These methods may overfit data. It is unclear how penalized regression models

such as the Firth (1993) estimator, which reduces bias and mean square-error relative to

classical logistic regression performs in modelling PD. We review some methods for class

imbalanced data and compare them in a simulation study using the Taiwan credit card

data. We emphasized the impact of events per variable (EPV) for developing accurate

model- an often neglected concept in PD modelling. The data balancing technique con-

sidered are ROSE (Random Over-Sampling Examples) and SMOTE (Synthetic Minority

Over-Sampling Technique) methods. The results indicate that SMOTE improved predic-

tive accuracy of PD regardless of sample size. Among the penalized regression models

analyzed, the log-F prior and ridge regression methods are preferred.

Keywords: Credit scoring; Default probability; Firth method; Imbalanced data; Rare event;

SMOTE technique

1 Introduction

Prediction models for credit risk forecasting, often referred to as credit scoring models, are

widely used in finance and banking. This is because bank regulations required banks to develop
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a systematic approach to evaluating and controlling risks based on timely data and their

analysis and interpretations (Basel Committee on Banking Supervision (June, 2004)). Basel

II accord emphasized the importance of the interface between statistical modelling (credit

scoring) and application of these models for internal ratings of credit worthiness of a loan

applicant.

Credit scoring is a set of decision models that aid lenders in the granting of consumer credit

(Thomas et al. (2002)). Its ultimate aim is to predict risk and not explain it. The scoring

system are based on the past performance of consumers who are similar to those who will be

assessed under the system. In other words, a number of particular loan applicant attributes are

used to assign a score. These scores are used to determine credit worthiness of the applicant. In

practice, the credit scores are transformed into probability of default (PD). PD is the expected

probability that a borrower will default on the debt before its maturity.

Durand (1941) was the first to propose the use of discriminant analysis to distinguish bad

loans from good ones. The approach was popularized by Altman (1968), who used discriminant

analysis to model credit risk. Several authors have proposed methods for modelling PD. Two

streams of literature are distinguished- literature that relies on the machine learning techniques

and classical methods that involves the use of statistical models. The former placed emphasis on

predictions and not development of explanation, while the latter prioritized the interpretation

of covariate effects (Berk & Bleich (2013)) over predictions. Some research that compared

these techniques concluded that the machine learning techniques for credit scoring, such as

neural networks and fuzzy algorithms are better than the classical methods. Others such as

Ghotra et al. (2015) ranked the performance of random forest and logistic regression above

learners such as support vector machine, decision trees and Naive Bayes. The implication of

the discordant viewpoints is that there is generally no overall best statistical technique that

can be recommended for developing credit scoring models (Hand & Henley (1997)). Thus, the

choice of models should be guided by factors such as data structure (Courvoisier et al. (2011)),

the degree of balance in categorical predictors (Ogundimu et al. (2016)) and the purpose for

which the model is being developed (Harrell et al. (1996)). A resounding problem in the use

of logistic regression for modelling PD is the rarity of the event of interest (default). As noted

by King & Zeng (2001), the model underestimates the probability of rare events because they

tend to be biased towards the majority class, which is the less important class. This has led

to the proposal of skew models for predictions in class imbalanced data.

In a series of research papers, Raffaela Calabrese and co-authors proposed the use of gen-

eralized extreme value (GEV) regression for modelling PD. Calabrese & Osmetti (2011) and

Calabrese & Osmetti (2013) evaluated the use of logistic regression and GEV regression in

modelling rare events using data from bankruptcy in Italian SMEs (Small and medium-sized

2



enterprizes). The authors justified the use of the model on the skewness induced in the data

as a consequence of class imbalance in the binary outcome. Indeed, when the probability of a

given binary response approaches zero at a different rate than it approaches one, the symmetric

link such as the logit or probit is inappropriate (Czado & Santner 1992, Chen 2004). Whilst

the argument for skewness is generally true, the issue of imbalance in this framework can also

be construed as a small sample problem. It is unclear whether models such as the GEV model

should be preferred over models that can attenuate the effect of separation due to rarity of the

event of interest. Separation occurs when one or more model covariates perfectly predict the

outcome of interest. In logistic regression, the probability of separation depends on sample size,

the number of dichotomous risk factors, the magnitude of the odds ratios associated with them

and on the degree of balance in their distribution (Heinze & Schemper (2002)). Weiss (2004)

identified two classes of problems associated with rare events and imbalanced data: absolute

rarity, where the number of examples associated with the minority class is small in absolute

sense. This is essentially a small sample problem and as common in logistic regression, maxi-

mum likelihood estimator (MLE) breaks down due to potential separation problem (Heinze &

Schemper 2002, Zorn 2005, Rainey 2016). The second is relative rarity, where minority class

(usually the class of interest) are rare relative to the other class. This constitutes a challenge

for classification algorithms. It is unclear whether the benefit of the additional parameter

estimated in the GEV model outweighs its cost (Taylor et al. (1996)).

Recent developments in the statistical literature have seen the emergence of newer methods

for circumventing the estimation challenges posed by rare events when using logistic regression

in the frequentist framework (Mansournia et al. (2018)). A method based on the penalization

of likelihood function using the information matrix was proposed by Firth (1993). The original

motivation for the method is the reduction of bias and mean square-error relative to the MLE.

It has been adapted to mitigate the effect of separation and monotone likelihood in binary and

survival models respectively (Heinze & Schemper 2002, Heinze & Schempe 2001). An intuitive

explanation of complete separation and application of the Firth method is as follows. Consider

the case of 10 observations with a single predictor X (positive values denoted as 1 and negative

values denoted as 0) and a binary response Y , where yi = 0 whenever xi is negative and 1

otherwise, i = 1, . . . , 10 (see Table 1a). The implied two way table is given in Table 1b. Clearly,

the odds ratio is infinite using maximum likelihood (ML) on this data. Firth’s penalization

however, is equivalent to ML estimation after augmentation of the cell counts by 0.5 (see Table

1c). This amended estimator has been described elsewhere (see (Agresti 2002, p. 70-71)). In

this case, the odds ratio is finite and thus have merits in modelling PD where probability of

separation is high. Figure 1 shows the plots of the fitted probabilities from standard and Firth

logistic regression models using the data. The Firth method showed better predictions than

the unrealistic heaviside function produced by the logistic regression model.
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The concept and importance of events per variable (EPV) requirements for developing

accurate prediction model has been underemphasized in the literature on credit scoring. EPV

is the simple ratio of the number of the less frequent outcome and the number of estimated

regression coefficients, and thus useful for quantifying the amount of information in the data

relative to model complexity. The aim of this paper is therefore to evaluate the performance

of statistical approaches for rare events and EPV requirements for accurate predictions in

credit scoring. Since statistical models for rare events are rarely used in this framework, we

compared Firth (1993) method (Firth), modification of Firth logistic regression called Firth’s

logistic regression with added covariate (FLAC- proposed by Puhr et al. (2017)) and logistic

regression penalized by log-F prior (LF22- by Greenland & Mansournia (2015)) with methods

such as linear discriminant analysis (LDA), Ridge regression (Ridge), GEV model and logistic

regression (logit). In particular, we “balanced” the data using ROSE (Random Over-Sampling

Examples, by Menardi & Torelli (2014) and Lunardon et al. (2014)) and SMOTE (Synthetic

Minority Over-Sampling Technique, by Chawla et al. (2002)) methods for various EPV values

and develop prediction models using logistic regression. Since the main reason for modelling PD

is to predict loan applicants who have the tendency to default, we focus on model evaluation

criteria for predictions in the context of regression analysis rather than classification. This

is to ensure that the predictive performance measures are not threshold dependent. We also

corrected the performance measures for overfitting both in the simulation study and data

analysis. The approach we adopted for model validation is based on the bootstrap internal

validation method which has been recommended for the validation of prediction models in

small sample (Smith et al. (2014)).

The rest of the paper is organized as follows. In Section 2, we describe the data used in the

study. The models and methods are reviewed in Section 3. We also provided brief explanations

of the model evaluation criteria. In Section 4, we described the simulation study and the two

methods of data balancing considered in the article. The results from the simulation study are

also analysed. Results from the real data example is presented in Section 5 and conclusions

are given in Section 6. We present results of apparent performance of the models and sample

codes in the Appendix.

2 Data set

We used the Taiwan credit card data set (Yeh & Lien (2009)) in this study. The data is used

in the simulation study to evaluate sample size requirements for adequate predictions when

the number of variables and prevalence (event rate) are taken into account.
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Table 1: Example of complete separation and Firth correction in a 2× 2 contingency table

(a) Artificial data with separation

i 1 2 3 4 5 6 7 8 9 10
xi -5 -4 -3 -2 -1 1 2 3 4 5
yi 0 0 0 0 0 1 1 1 1 1

(b) Corresponding 2× 2 contingency table

x
0 1

y
0 5 0
1 0 5

(c) Augmented table by Firth’s penalization

x
0 1

y
0 5.5 0.5
1 0.5 5.5

0.00

0.25

0.50

0.75

1.00

−5.0 −2.5 0.0 2.5 5.0
x

y

Model

GLM

Firth

Figure 1: Predicted probabilities from classical logistic regression and logistic model using
Firth method

2.1 Taiwan Credit Card data

The data set is from credit card clients from a bank in Taiwan, who is a cash and credit card

issuer. The data is available within the University of California Irvine (UCI) machine learning

repository. There are 30,000 observations in the data with 6636 (22.12%) defaulters. The

outcome of interest is default payment (Yes = 1, No = 0). In the same vein as Yeh & Lien

(2009), we used the following 23 variables in the models.

(a) Limit bal: Given credit amount (NT dollar). This include both the individual applicant

credit and his/her family (supplementary) credit

(b) Sex: 1 = male; 2 = female
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(c) Education: 1 = graduate school; 2 = undergraduate; 3 = high school; 4 = others. We

combined both groups 3 and 4 for this study

(d) Marital Status: 1 = married; 2 = single; 3 = others. The “others” category is small so,

we combined groups 2 and 3

(e) Age (year)

(f) Pay 0 - Pay 6: History of past payment. Past monthly payment records tracked from

April to September 2005 as follows: Pay 0 = repayment status in September, 2005; Pay 2

= repayment status in August, 2005; . . . ; Pay 6 = repayment status in April, 2005. The

measurement scale for the repayment status is -1 = pay duly; 1 = payment delay for one

month; 2 = payment delay for two months; . . . ; 8 = payment delay for eight months; 9 =

payment delay for nine months and above. We take this as ordinal variable.

(g) Bill Amt1 - Bill Amt6: Amount of bill statement (NT dollar). Bill Amt1 = amount of

bill statement in September, 2005; Bill Amt2 = amount of bill statement in August, 2005;

. . . ; Bill Amt6 = amount of bill statement in April, 2005

(h) Pay Amt1 - Pay Amt6: Amount of previous payment (NT dollar). Pay Amt1 = amount paid

in September, 2005; Pay Amt2 = amount paid in August, 2005; . . . ; Pay Amt6 = amount

paid in April, 2005.

The continuous variables in the data are log-transformed to cushion the effect of skewness.

3 Models and Predictive accuracy measures

3.1 Models

The main criteria for the choice of models considered in this section is to assess the performance

of newer statistical methods for rare events in the framework of modelling PD. The newer

methods evaluated are Firth, FLAC and LF22 models, and are evaluated alongside LDA,

GEV model and Ridge regression.

We assume there are n loan applicants with two possible events- default or non-default

which is governed by a Bernoulli random variable Yi ∈ {0, 1}, i = 1, . . . , n. The event of

interest is Y = 1, the positive event of defaults, with associated PD, π = P (Y = 1|X = x).

The p-dimensional applicants attributes, X (covariates) include personal details, past credit

history and behavioral data. The statistical problem is to estimate π = P (Y = 1|X = x) and

a commonly used method is the logistic regression.
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3.1.1 Logistic Regression

Logistic regression assumes that the probability of default, π is a linear function of the observed

covariates. That is,

π = P (Y = 1|X = x) = exp(β′x)
/(

1 + exp(β′x)
)
,

where x = (1, x1, . . . , xp) is the design matrix and β = (β0, β1, . . . , βp) is the (p+1) dimensional

vector of regression parameters. The decision boundary is linear via the linear predictor,

lp = β′x. Thus, lp > 0 (equivalently {x : π̂ > 0.5}, where π̂ is the fitted probability) is

classified as 1 and zero otherwise. In addition to its instability in modelling rare event data

and well separated classes, it does not work well with non-linear effects of the covariates. The

log-likelihood function for n subjects, which is not optimized for predictions, is given by

l(β) =
n∑
i=i

[
yi

(
β′xi

)
− log

(
1 + exp(β′xi)

)]
. (1)

We evaluated the performance of logistic regression on the probability scale as a model for PD

rather than as a classifier.

3.1.2 Firth (1993) Method

Firth’s penalized log-likelihood function for logistic regression can be written as

l(βFirth) = l(β) + 1/2 log |I(β)|,

where l(β) is the log-likelihood function in equation (1) and |I(β)| is the determinant of the

Fisher information matrix. Alternatively, parameter estimates can be obtained by solving the

modified score equation:

n∑
i=1

{
yi − πi + hi(

1

2
− πi)

}
xir = 0; r = 0, . . . , p, (2)

where hi is the i-th diagonal elements of the hat matrix H = W1/2X(X′WX)−1XW1/2, W is

the diagonal matrix diag{πi(1 − πi)} and p is the dimension of the covariates. Consequently,

the Fisher information matrix, I(β) = X′WX. The estimator prevents bias in the MLEs and

produce useful standard errors. This is because the penalizing factor contains information on
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the curvature of the likelihood function and thus contains information on the variation of the

coefficient estimates. The penalty term is asymptotically negligible in large data sets, and thus

coefficient estimates from the Firth estimator coincides with the ML. A major disadvantage of

using Firth estimator for prediction in rare events setting is that it introduces bias in predicted

probabilities towards π = 0.5 (Puhr et al. (2017)). This is because the determinant of the

Fisher information matrix is maximized for π = 0.5 and thus push the predicted probabilities

towards 0.5 compared with the MLE.

3.1.3 Firth’s Logistic regression with Added Covariate (FLAC)

Puhr et al. (2017) proposed the FLAC approach to overcome the bias problem in average

predicted probabilities of the Firth estimator. The method involves the following steps:

1. Apply Firth’s logistic regression and calculate the diagonal elements hi of the hat matrix.

2. Construct an augmented data set by stacking:

(i) the original observations weighted by 1,

(ii) the original observations weighted by hi/2 and

(iii) the original observations weighted by hi/2 but with reversed values of the binary

outcome variable (yi replaced by 1− yi).

3. Define an indicator variable g on this augmented data set, where for (i) g = 0 and for

(ii) and (iii) g = 1.

4. The FLAC estimates are then obtained by ML estimation on the augmented data set

adding g as covariate.

Following from equation (2), the FLAC method has a modified score equation given as

n∑
i=1

(yi − πi)xir︸ ︷︷ ︸
Original data

+
n∑
i=1

hi
2

(yi − πi)xir︸ ︷︷ ︸
Original data, weighted by hi/2

+
n∑
i=1

hi
2

(1− yi − πi)xir︸ ︷︷ ︸
Data with reversed outcome︸ ︷︷ ︸

Pseudo data

= 0.

g = 0 g = 1 (indicator variable)

The FLAC method, like the Firth method, circumvents the problem of separation in low EPV

settings.
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3.1.4 log-F Prior Penalty

The Firth penalty is data dependent since it is proportional to exp(1/2 ln |I(β|)) and I(β) is

composed of the design matrix of the observed covariates. Consequently, the covariates can

induce correlations in the penalty term as well as in the coefficient estimates. These artifactual

prior correlations lead to a serious practical defect of the Firth penalty. In order to circumvent

this problem, Greenland & Mansournia (2015) proposed a class of penalty functions which is

not data dependent. The method is developed in the Bayesian framework but can be easily

implemented in any logistic regression package by translating each desired coefficient penalty

into a pseudo record data. For example, let β1 be an element of β, with x1 as the corresponding

element of x. Because a log-F(m,m) density is proportional to emβ1/2/(1 + eβ1)m, penalization

of β by a log-F(m,m) prior can be performed by adding a data record with m/2 successes on

m trials. In general, the prior degrees of freedom m in a log-F prior is exactly the number of

observations added by the prior. Penalization by log-F(m,m) priors is in general equivalent

to multiplying the likelihood function corresponding to equation (1) by emβ/2/(1 + eβ)m. The

log-likelihood function is therefore

l(βLF22) = l(β) +mβ/2−m log(1 + eβ).

When m = 0, the function reduces to the log-likelihood function in equation (1). Greenland

et al. (2016) suggested the use of log-F prior as a default prior for the general sparse-data

settings. We consider m = 2 (denoted as LF22 method) for this study.

3.1.5 Ridge Regression

The ridge method minimizes the mean squared error of predictions by introducing some bias

to the estimates of the regression coefficients. The log-likelihood function in equation (1)

can be reconstructed as a constrained likelihood problem, where l(β) is maximized subject to∑p
j=1 β

2
j ≤ t; t ≥ 0, where t is a scalar chosen by the investigator. Equivalently, the ridge

penalized likelihood function can be written as

l(βRidge) = l(β)− λ
p∑
j=1

β2
j , (3)

where λ ≥ 0 has a one-to-one correspondence with t, and it is referred to as the regularization

parameter, βRidge are the parameter estimates from the ridge regression. The larger the value

of λ, the further the parameter estimates are shrunk towards zero. In particular, the standard

logistic regression is recovered when λ = 0 in (3). The ridge estimator is a convex optimization

9



problem and it is sometimes referred to as an L2-type regularization procedure (Verweij &

Van Houwelingen (1994)). Except for cases of complete separation, the ridge estimator will

converge.

3.1.6 Linear Discriminant Analysis (LDA)

LDA, also known as Fisher’s LDA (Fisher (1936)), is a widely used method aimed at finding

linear combinations of observed attributes, X which best separate two or more classes of events.

For credit scoring, LDA assumes that there is a prior probability, P (Y = 1) = π?, of default

and that the conditional distribution of P (X = x|Y = j) ∼ N(µj,Σ), j = {0, 1}, a multivariate

normal with µj and covariance matrix Σ. Using Baye’s theorem,

P (Y = 1|X = x) =
π? exp(−1

2
d1(x))

π? exp(−1
2
d1(x)) + (1− π?) exp(−1

2
d0(x))

,

where dj = (x− µj)′Σ−1(x− µj) is the Mahalanobis distance from x to µj. Since the decision

boundary is linear, the log-odds can be computed as

log
P (Y = 1|X = x)

P (Y = 0|X = x)
= log

π?

1− π?
− 1

2
(µ1 + µ0)

′Σ−1(µ1 − µ0) + x′Σ−1(µ1 − µ0)

=β′x.

The predicted probabilities using the linear predictor are available in all major statistical

software.

3.1.7 Generalized Extreme Value (GEV) regression model

The GEV model has been used to estimate and predict extreme events in many applications

such as environment, engineering, economics and finance. Calabrese & Osmetti (2013) pro-

posed its use for modelling PD. The cumulative distribution function is given by

F (x) = exp
{
−
[
1 + ξ

(x− µ
σ

)]−1/ξ}
−∞ < ξ <∞, −∞ < µ <∞, σ > 0,

defined on the support S = {x : 1 + ξ((x − µ)/σ) > 0}. The parameter ξ is the shape

parameter, µ and σ are the location and scale parameters respectively. The probability of

default is π(xi) = exp{−[1 + ξ(β′xi)]
−1/ξ}. The corresponding linear predictor can be derived

as
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{− ln[π(xi)]}−ξ − 1

ξ
= β′xi.

We fitted this model using the GJRM (Generalised Joint Regression Modelling) package in R

statistical software (Marra & Radice (2017)).

3.2 Criteria for predictive performance

Brier score (BS): It is a measure of agreement between the observed binary outcome (i.e.,

default vs. non-default) and the predicted PD (Brier (1950)). We used brier score plus (BS+

- brier score computed for only the positive outcome).

Area under the receiver operating curve (AUROC): The generalization of the AUROC

is the c-index (Harrell et al. (1982)). It is a measure of model performance that separates sub-

jects with the event of interest from subjects without the event (discrimination). It calculates

the proportion of pairs in which the predicted event probability is higher for the subject with

the event of interest than that of the subject without the event. A model with no discriminatory

ability has value around 0.5 whereas a value close to 1 suggests excellent discrimination.

Area under the Precision-Recall curve (AUPRC): The Precision-Recall curve shows the

relationship between precision (P (Y = 1|Ŷ = 1)), where Ŷi are fitted values, and recall (P (Ŷ =

1|Y = 1)) for every possible threshold values. It takes into account the prior probability of the

outcome of interest. The AUPRC is therefore a summary statistic that reflects the ability of

a classifier to identify the minority group. Unlike the AUROC, it values ranges from 0 to 1.

Its value approaches zero as the prior probability of the outcome decreases. Davis & Goadrich

(2006) recommended its use over AUROC in rare event and class imbalance data settings.

Calibration slope (CS): The slope is used to check the agreements between the observed and

predicted probabilities. We regressed the binary outcome on the linear predictors obtained from

the models using logistic regression (except for the GEV regression model where the regression

was done using the GEV model). The resulting slope in this regression is the calibration slope.

A slope of one suggests perfect calibration (Cox (1958)).
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4 Simulation based on the Taiwan credit card data set

4.1 Simulation settings

We used the Taiwan credit card data as the basis for the simulation and varied the prevalence

and EPV. Let Yi (outcome) and xi (covariates) be defined as in Section 3.1. The assumed

regression model for the data (suppressing index, i) is of the form logit(E(Y )) = β′x. We

simulated the training data sets using the steps in Pavlou et al. (2016) as follows.

1. Fit a logistic regression model to the original data set to obtain β̂′ = (β̂0, β̂1) where β̂0

is the estimate of the intercept term and β̂1 is the estimate of the vector of regression

coefficients for the covariates.

2. Choose the required prevalence (prev) and replace β̂0 by the value β̂∗0 that makes the

average fitted probability equal to prev. Define β∗′ = (β̂∗0 , β̂1).

3. To create the data, choose the EPV and prev, and calculate sample size for each EPV

given the number of covariates p. The sample size is given by n = EPV× p

prev
. Sample

with replacement n values of the covariates in the true model from the original data and

generate a new outcome Ysim ∼ Bernoulli(logit−1(β∗′x)). The resulting data set of size

n is (Ysim, x) and the process is repeated to produce 500 training data sets (number of

replication).

We considered prevalence of 5%, 10% and 20% (22.12% is the prevalence of the entire data

set). The models are evaluated on EPV= {2, 3, 5, 7, 10}, with EPV of 10 recommended for

model accuracy (Peduzzi et al. (1996)). Each of the models developed in the training samples

are validated using the bootstrap validation method (Harrell et al. (1996)). The steps for the

model validation are as follows.

(a) Simulate the data set based on the required EPV. Fit the models using the methods

in section 3.1 and compute Apparent predictive performance based on the performance

measure of interest, say AUROCapp.

(b) Take B bootstrap samples from the simulated data set, where b = 1 . . . B. Fit the models

and compute AUROC
(b)
boot. This is the bootstrap performance.

(c) Test the performance of each of the B models on the original simulated data by computing

AUROC
(b)
orig. This is the test performance.
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(d) Optimism in model fit for each of the bootstrap sample isOpt(b) = AUROC
(b)
boot−AUROC

(b)
orig.

The average optimism is

Opt =

∑B
b=1Opt

(b)

B
.

(e) Optimism corrected measures for the original model is AUROCcorrect = AUROCapp−Opt.

We take B = 150 for this study.

4.2 SMOTE and ROSE techniques for data balancing

In addition to the models examined in Section 3.1, we evaluated the use of SMOTE and ROSE

methods for data balancing.

SMOTE: The technique generates randomly new examples or instances of the minority class

from the nearest neighbours of line joining the minority class sample to increase the number

of instances. These instances are created based on the features of the original data set so that

they are similar to the original instances of the minority class (Chawla (2005)).

The SMOTE algorithm can be constructed as follows.

For each minority class instance x:

1. Compute its nearest neighbours, say k = 5 neighbours.

2. Randomly choose one of the neighbours, say x∗.

3. Create a synthetic new minority sample, xnew using x′s feature vector and the feature

vector’s difference of x∗ and x multiplied by a random number from the uniform distri-

bution.

That is,

xnew = x + u.(x∗ − x),

where u ∼ U(0, 1). We kept the proportion r = |m|/|M | to 0.75, where r is the ratio of the

number of examples in the minority class (m) to the number in the majority class (M).

ROSE: The method is based on the generation of new artificial data according to a smoothed

bootstrap approach. The method is as follows.

Let P (x) = f(x) be the probability density function on X. Let nj < n be the size of

Yj, j = 0, 1. A new sample is generated using the following three steps:
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1. select y = Yj, j ∈ {0, 1}, with probability 1/2.

2. select (xi, yi) in the sample such that yi = y with probability pi = 1/nj.

3. sample the vector of covariates x from the kernel probability distribution KHj
(·,xi)

centered on xi and depending on the matrix of smoothing parameters Hj.

That is, an observation belonging to one of the two classes is drawn from the training

set with the same probability. A new sample is then generated in its neighborhood of width

governed by Hj. Further details on how to select the smoothing matrix Hj can be found in

Menardi & Torelli (2014) and Lunardon et al. (2014).

We used similar bootstrap steps in section 4.1 to correct for overfitting in the models. Here,

the training data sets are first “balanced” using either SMOTE or ROSE techniques. The

balanced data is then used in the bootstrap steps to develop models for PD using logistic

regression. The original imbalanced data (test data) is used to test predictive accuracy of the

developed models in the bootstrap samples.

Simulation results

Figures 2-4 shows the predictive performance of the methods for different values or prevalence.

When the prevalence is 5% (Figure 2), ROSE data balancing method outperforms the other

methods on discrimination as shown by AUROC and AUPRC. The SMOTE method, another

data balancing technique, shows the second best discriminatory ability on AUROC but pre-

forms poorly on AUPRC. Of the three Firth-type penalization methods, the LF22 is superior

to Firth and FLAC methods on AUROC. Although GEV model performs well on AUROC,

its estimates are not generally stable at EPV=2, resulting in AUROC estimates for EPV=2

being greater than EPV = 3. The FLAC method is practically indistinguishable from the

logit. However, both methods show better discrimination than the Firth method at EPV ≤ 5.

This is in line with the submission in Puhr et al. (2017), where the authors opined that Firth

method introduces bias in predicted probabilities. Ridge on the other hand does not perform

well at EPV=2 when AUROC is used to evaluate discrimination. However, it exhibits gradual

improvement until it surpasses the other methods (except ROSE and SMOTE) at EPV ≥ 7.

Again, Ridge performs well on AUPRC, where it is outperformed only by ROSE.

In terms of calibration, the Ridge is the best performing method as shown by the calibration

slope (value of 1 indicates perfect calibration). The slope is better calibrated for FLAC than

Firth and LF22 models. The GEV model and logit are indistinguishable on this performance

measure. However, LDA is poorly calibrated. This may be due, in part, to the use of logistic

model for the computation of the calibration slope as described in Section 3.2. Figure 2 (bottom
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left) shows the BS+ computed on the defaulters. Overall, ROSE has the least error followed

by SMOTE. Among the Firth-type method, Firth method is the best. This is not surprising

as the method is generally known to have low mean square error. Although Ridge outperforms

Firth when the standard Brier score is used (result not shown), its performance is the worst

on BS+.
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Figure 2: Optimism corrected predictive accuracy measures for prevalence of 5%

Some of the methods compared improved as prevalence of the outcome variable increases.

from 5% to 10% (see Figure 3). Again, both ROSE and SMOTE perform well on AUROC,

but the SMOTE technique is superior. Similar to the results in Figure 2, Ridge becomes in-

creasingly better from EPV = 2 and outperforms other methods (except ROSE and SMOTE)

at EPV > 5 when AUROC is the performance measure of interest. The more stable AUPRC
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ranked ROSE and Ridge as the best among the methods. The performance of SMOTE im-

proved from prevalence of 5% to 10%. The performance of the methods on calibration slope

and BS+ follow the same pattern as shown in Figure 2 for the prevalence of 5%.
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Figure 3: Optimism corrected predictive accuracy measures for prevalence of 10%

The results of model performance at prevalence of 20% are shown in Figure 4. SMOTE

maintained a strong discriminatory ability on AUROC but ROSE deteriorated. Its performance

on AUROC is consistent across the three event rates. On the other hand, ROSE and Ridge

perform consistently well across the three levels of prevalence and EPV values considered for

AUPRC (Figure 5). The LF22 model performs consistently better than the Firth, FLAC,

GEV model and logit on AUROC and AUPRC. Again, the performance of the methods on

calibration slope and BS+ follow the same pattern as seen in Figures 2 and 3. While the slope
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for Ridge get closer to 1 as EPV approaches 6, it approaches 1 as EPV increases for SMOTE.
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Figure 4: Optimism corrected predictive accuracy measures for prevalence of 20%

Figures 6- 8 (Appendix A) shows the results of apparent performance measures from the

simulation study. All the Figures show high degree of overfitting especially at low EPV. In

particular, Figures 6- 8 (top, left) shows that Ridge does not perform well when the model is

not adjusted for optimism. In principle, this model is the least susceptible to overfitting. Also,

there is severe overfitting in models developed with ROSE and SMOTE on AUPRC across the

event rates. This corroborates the importance of internal validation of predictive models.
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Figure 5: Comparison of predictive performance on AUPRC across prevalence

5 Data Analysis

We used the Taiwan credit card data described in section 2 to evaluate the performance of

our models. In the data, the higher the amount of credit given, the higher the probability of

default. In particular, all applicants older than 50 years of age borrowed 620,000 Taiwanese

dollars or more, and they are defaulters. Age does not affect the chance of paying back amount

borrowed that is less than 500,000 dollars.

The results from fitting the models are summarized in Table 2. Logistic regression with data

balancing technique using SMOTE slightly outperforms the other methods on three out of the
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four measures of predictive accuracy (AUROC, BS+ and Calibration slope). The performance

of Firth, FLAC and the LF22 methods (Firth-type penalization) are essentially the same. This

is expected since the sample size is now large (EPV = 289). The GEV model outperforms the

logit on AUROC and BS+, which is in line with previous observation (Calabrese & Osmetti

(2013)). It should be noted that the performance of SMOTE using AUROC is in concord

with our observation from the simulation study. That is, the method is very good when

AUROC is used for discrimination regardless of prevalence and corresponding EPV values.

One noticeable result is the performance of SMOTE on calibration slope. Again, this follows

from the simulation study, whereby AUROC value approaches 1 as EPV increases.

Table 2: Model performance in predicting default probability in Taiwan credit card data

AUROC AUPRC BS+ Slope
logit 0.7459 0.5036 0.4676 0.9912
Firth 0.7459 0.5036 0.4674 0.9923
Flac 0.7459 0.5036 0.4677 0.9926
LF22 0.7459 0.5037 0.4676 0.9914
Ridge 0.7474 0.5019 0.4727 1.0498
LDA 0.7447 0.5016 0.4726 0.8975
GEV 0.7480 0.4997 0.4756 0.9914
logit-rose 0.7478 0.4996 0.2117 1.1910
logit-smote 0.7482 0.4988 0.2108 0.9939
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6 Concluding remarks

This paper examined six modifications of the logistic regression (Firth, FLAC, LF22, Ridge,

ROSE and SMOTE), linear discriminant analysis (LDA) and binary regression model using

generalized extreme value distribution (GEV) in the estimation of probability of default (PD).

The simulation study is based on the modification of event rate in the Taiwan credit card data.

We evaluated measures of model performance identified in the literature for the evaluation of

predictive accuracy in class imbalanced data settings. Sample size was taken into account in the

evaluation of the methods using events per variable (EPV). Since the design factors (number

of predictors and event rate) are kept constant, both EPV and sample size have one-to-one

correspondence and the same conclusion is expected.

The key result showed that SMOTE should be preferred when the aim is to obtain op-

timal discrimination using AUROC in small and large samples. SMOTE exhibited patterns

of improved predictive accuracy as EPV increases on three of the measures of performance

(AUROC, BS+ and Slope). In particular, the slope approaches 1 as EPV becomes large. This

is further corroborated in the data analysis where EPV equals 289. For optimal performance

on AUPRC, we recommend the use of ROSE and ridge regression. Of the statistical methods

analyzed, the LF22 and FLAC methods are generally superior to Firth, logit and GEV models.

In addition, the two models converge and will generally produce accurate predictions in the

presence of sparse data structure (e.g. binary predictors with low prevalence), whereas models

such as GEV and logistic regression are likely to fail in such setting. Although the computa-

tional time is higher for FLAC and LF22 models than the logit model, improved predictive

accuracy in small sample cannot be traded for computational complexity.

The measure of predictive accuracy based on AUPRC appears to be a more realistic measure

of discrimination than AUROC in rare event settings. As can be seen from Figure 5, the

performance of all the methods increases on this measure from 5% prevalence to 20% as

expected. Consider the ridge regression for example, the corrected AUPRC at EPV = 2

for 5% prevalence is 0.2412. This value increases to 0.3092 for 10% prevalence and 0.3954 for

20% prevalence. On the other hand, and at EPV = 2 the AUROC values are 0.7558, 0.7383

and 0.7183 for 5%, 10% and 20% prevalence respectively, indicating consistent decline across

prevalence.

A possible criticism of the bootstrap method used for internal validation is the possibilities of

model non-convergence within the bootstrap samples for models such as logistic regression and

GEV models. As noted by Loughin (1998), separation has significant probability of occurring

in resamples when the event of interest is rare. Whilst this argument may be valid in certain

cases, the chance of not selecting any member of the minority group is just approximately
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1/3. We accommodated the possibility of such divergence/singularity in the resample. We

also emphasized the merits of model evaluation in simulation studies using optimism corrected

measures (Ogundimu & Collins (2018)).

Although we showed the conditions for preference of SMOTE and LF22 methods on the data,

the latter can be improved to cater for various modelling challenges that are often encountered

while modelling PD. For example, the method can be combined with the ridge method (in a

similar way as Shen & Gao (2008) combined Firth and Ridge methods) to optimize predictive

accuracy of PD. In addition to optimized predictive accuracy, this method will alleviate the

effect of multicollinearity- a common problem in credit scoring. We have combined both

undersampling of the majority class and oversampling of the minority class to achieve a ratio

of 0.75 for data balancing using SMOTE. This is not necessarily optimal as SMOTE can be

used without undersampling. The performance of SMOTE can also be improved by developing

sampling strategy such that the amount of oversampling and the nearest neighbours used for

a particular data is selected in some optimal way. There are still open questions on variable

selection and methods for dealing with incomplete data in credit scoring. SMOTE (and its

variants) and LF22 methods have enormous potential in these settings.
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Appendix

A Apparent Predictive Accuracy Measures
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Figure 6: Apparent predictive accuracy measures for prevalence of 5%
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AUROC − 10% prevalence
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Figure 7: Apparent predictive accuracy measures for prevalence of 10%
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AUROC − 20% prevalence
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Figure 8: Apparent predictive accuracy measures for prevalence of 20%
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B Sample R code for Internal validation

Bootstrap validation code for logistic regression

logitboot <- function(formula, data, B, seed){

if (match("MASS",.packages(),0)==0) require(MASS)

if (match("PRROC",.packages(),0)==0) require(PRROC)

if (match("ROCR",.packages(),0)==0) require(ROCR)

set.seed(seed)

mf <- model.frame(formula, data)

y <- model.response(mf, "numeric")

X <- model.matrix(formula, data = data)

int <- slope <- auc <- pauc1 <- brier <- brierp <- cal <- c()

intest <- slopetest <- auctest <- pauctest1 <- briertest <- brierpt <- calt <- c()

# Looping to generate B bootstrap data

bootdata <- mydat <- list()

for(i in 1:B){

iboot <- sample(1:nrow(data), replace=TRUE)

bootdata[[i]] <- data[iboot,]

}

for(i in 1:B){

options(warn=2)

dattest <- X

res <- try(glm(formula, data=bootdata[[i]], family=binomial(link = "logit")))

if (any(class(res)=="try-error")){

int[i] <- slope[i] <- auc[i] <- pauc1[i] <- brier[i] <- brierp[i] <- cal[i] <- NA

intest[i] <- slopetest[i] <- auctest[i] <- pauctest1[i] <- briertest[i] <- NA

brierpt[i] <- calt[i] <- NA

} else{

p <- res$fitted.values

lp <- res$linear.predictors

mf2 <- model.frame(formula, bootdata[[i]])

yboot <- model.response(mf2, "numeric")

lptest <- dattest%*%coef(res)

prtest <- plogis(lptest)

fg <- p[yboot == 1]

bg <- p[yboot == 0]
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roc <- roc.curve(scores.class0 = fg, scores.class1 = bg)

pr <- pr.curve(scores.class0 = fg, scores.class1 = bg)

ab <- glm(yboot~lp,family = binomial(logit))# usual calibration

pred <- prediction(p, yboot)

int[i] <- ab$coef[1]

slope[i] <- ab$coef[2]

auc[i] <- roc$auc

pauc1[i] <- pr$auc.integral

brier[i] <- mean((p-yboot)^2)

brierp[i] <- mean((p[yboot == 1]-yboot[yboot==1])^2)

cal[i] <- mean(unlist(performance(pred, "cal",window.size=100)@y.values))#sample size >100

# doing the test back in the original data

fgt <- prtest[y == 1]

bgt <- prtest[y == 0]

roct <- roc.curve(scores.class0 = fgt, scores.class1 = bgt)

prt <- pr.curve(scores.class0 = fgt, scores.class1 = bgt)

abt <- glm(y~lptest,family = binomial(logit))

predt <- prediction(prtest, y)

intest[i] <- abt$coef[1]

slopetest[i] <- abt$coef[2]

auctest[i] <- roct$auc

pauctest1[i] <- prt$auc.integral

briertest[i] <- mean((prtest-y)^2)

brierpt[i] <- mean((prtest[y == 1]-y[y==1])^2)

calt[i] <- mean(unlist(performance(predt, "cal",window.size=100)@y.values))

}}

aaa <- auc

ck <- sum(is.na(aaa))

int <- mean(int, na.rm=T)

slope <- mean(slope,na.rm=T)

auc <- mean(auc,na.rm=T)

pauc1 <- mean(pauc1,na.rm=T)

brier <- mean(brier,na.rm=T)
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brierp <- mean(brierp, na.rm=T)

cal <- mean(cal, na.rm =T)

intt <- mean(intest, na.rm=T)

slopet <- mean(slopetest, na.rm=T)

auct <- mean(auctest,na.rm=T)

pauct1 <- mean(pauctest1,na.rm=T)

briert <- mean(briertest,na.rm=T)

brierpt <- mean(brierpt, na.rm=T)

calt <- mean(calt, na.rm =T)

# Index measures from the orginal data set

options(warn=2)

orig <- try(glm(formula, data=data, family=binomial(link = "logit")))

if (any(class(orig)=="try-error")){

Oint <- Oslope <- Oauc <- Opauc1 <- Obrier <- Obrierp <- Ocal <-999

} else{

lporig <- orig$linear.predictors

prorig <- orig$fitted.values

fgo <- prorig[y == 1]

bgo <- prorig[y == 0]

oroc <- roc.curve(scores.class0 = fgo, scores.class1 = bgo)

opr <- pr.curve(scores.class0 = fgo, scores.class1 = bgo)

oab <- glm(y~lporig,family = binomial(logit))

opred <- prediction(prorig, y)

Oint <- oab$coef[1]

Oslope <- oab$coef[2]

Oauc <- oroc$auc

Opauc1 <- opr$auc.integral

Obrier <- mean((prorig-y)^2)

Obrierp <- mean((prorig[y == 1]-y[y==1])^2)

Ocal <- mean(unlist(performance(opred, "cal",window.size=100)@y.values))

}

index.orig <- c(Oint,Oslope,Oauc,Opauc1,Obrier,Obrierp,Ocal)

training <- c(int,slope,auc,pauc1,brier, brierp,cal )
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test <- c(intt,slopet,auct,pauct1,briert,brierpt,calt)

data.a <- data.frame(index.orig,training,test)

data.a$optimism <- training-test

data.a$index.corrected <- index.orig-data.a$optimism

data.a$n <- rep(B-ck, length(training))

data.a <- round(data.a,digits=4)

xx <- c("int","slope","auc","pauc1","brier", "brierp","cal")

rownames(data.a) <- xx

outt <- list(nonconvergence=ck,resu=data.a)

return(outt)

}

This function can be easily extended to other model families as was done in this article. It

can also be extended to include other desired measure of predictive accuracy. It gives exactly

the same results as for the “validate.lrm” function in the rms package.

gendat <- function(n,seed){#data generation

set.seed(seed)

beta = c(0.5, 0.5, 1,1,1,0)

alpha<- -1.8

m <- length(beta)

X <- matrix(runif(n*m), nrow=n, ncol=m)

Xb <- alpha + X%*%beta

pr <- 1/(1+exp(-Xb))

y<- rbinom(n,1,pr)

df <- data.frame(y,X)

return(df)

}

dat <- gendat(1000,1)

formula <- y~X1+X2+X3+X4+X5+X6

res <- logitboot(formula,data=dat,B=10,seed=1)

library(rms)# bootstrap validation in rms package

f <- lrm(y~X1+X2+X3+X4+X5+X6, x=TRUE, y=TRUE, data=dat)

p <- predict(f,type="fitted",data =dat)

set.seed(1)

res.lrm <- validate(f, B=10)
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res

index.orig training test optimism index.corrected n

int 0.0000 0.0000 0.0235 -0.0235 0.0235 10

slope 1.0000 1.0000 0.8715 0.1285 0.8715 10

auc 0.6467 0.6645 0.6433 0.0213 0.6254 10

pauc1 0.6493 0.6618 0.6455 0.0163 0.6330 10

brier 0.2327 0.2283 0.2345 -0.0062 0.2389 10

brierp 0.2287 0.2283 0.2361 -0.0078 0.2365 10

cal 0.0373 0.0491 0.0422 0.0069 0.0304 10

res.lrm

index.orig training test optimism index.corrected n

Dxy 0.2933 0.3291 0.2865 0.0426 0.2507 10

R2 0.0924 0.1151 0.0876 0.0275 0.0649 10

Intercept 0.0000 0.0000 0.0235 -0.0235 0.0235 10

Slope 1.0000 1.0000 0.8715 0.1285 0.8715 10

Emax 0.0000 0.0000 0.0345 0.0345 0.0345 10

D 0.0708 0.0894 0.0670 0.0224 0.0484 10

U -0.0020 -0.0020 0.0019 -0.0039 0.0019 10

Q 0.0728 0.0914 0.0651 0.0263 0.0465 10

B 0.2327 0.2283 0.2345 -0.0062 0.2389 10

g 0.6392 0.7247 0.6203 0.1044 0.5347 10

gp 0.1506 0.1681 0.1467 0.0214 0.1292 10
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