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Abstract 

An advanced nonlinear continuum model is presented to analyse the super and subcritical 

nonlinear behaviour of nanotubes. The nanoscale system is used to convey fluid flow at 

nanoscale levels. Due to the restrictions of one-parameter size-dependent models, a more 

comprehensive nonlinear coupled model containing two different size parameters is 

introduced using the nonlocal strain gradient theory (NSGT). Both axial and transverse 

inertial terms are taken into consideration, leading to more accurate results for nanotubes 

conveying fluid. In addition, since the mean free path of molecules is not negligible 

compared to the diameter of the tube at nanoscales, the Beskok–Karniadakis approach is 

implemented. The NSGT, Galerkin’s technique and continuation method are finally 

employed to derive, discretise and solve the coupled nonlinear equations, respectively. The 

frequency-amplitude response, modal interactions and the possibility of energy transfer 

between modes are examined in both supercritical and subcritical flow regimes.  
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1. Introduction  

In recent years, various nanotubes have been synthesised and used in nanoscale 

electromechanical systems. The widespread application of nanotubes is due to their 

excellent mechanical, thermal and electrical properties. For instance, carbon nanotubes 

have an exceptional strength and a high thermal conductivity, leading to the extensive 

applications of them in different nanosystems such as nanoresonators, nanogenerators, 

thermal conductors and scaffolds for bone growth (De Volder et al. 2013). Strong nonlinear 

dynamics has been found in the fundamental structures of many microelectromechanical 

and nanoelectromechanical systems (MEMS and NEMS) (Farokhi and Ghayesh 2016; Farokhi 

and Ghayesh 2018; Ghayesh and Farokhi 2018; Sassi and Najar 2018), making the 

investigation of this phenomenon extremely important in analysing MEMS and NEMS 

devices.  

The vibration response of macroscale structures has widely been explored via the 

classical elasticity (Ghayesh et al. 2013a; Ghayesh and Moradian 2011; Malekzadeh 2007; 

Malekzadeh and Vosoughi 2009). However, since classical continuum-based models lead to 

size-independent results for small-scale structures, they are modified to include size effects 

(Babaei and Yang 2019; Ebrahimi and Barati 2019; Farajpour et al. 2018b; Farajpour et al. 

2018c; Ghayesh and Farajpour 2018b; Lin et al. 2018; Sahmani and Aghdam 2018), and 

accurately estimate the mechanical behaviour at small-scales (Farokhi et al. 2018a; Farokhi 

et al. 2018b; Ghayesh 2018; Ghayesh 2019; Kamali et al. 2018; Pradiptya and Ouakad 2018; 

Yayli 2018). Various modified continuum-based models involving the nonlocal (Farajpour et 

al. 2017; Reddy 2010), couple stress (Ghayesh et al. 2016; Nejad et al. 2017) and a theory 

incorporating the gradient of strain (Akgöz and Civalek 2011; Ghayesh et al. 2013b) have 
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been developed and utilised for small-scale structures. Recently, an advanced version of the 

nonlocal theory, which includes strain gradient effects, has attracted much attention in the 

continuum modelling of nanostructures (Lim et al. 2015; Zhu and Li 2017). This size-

dependent theory is technically termed as “nonlocal strain gradient”. In this work, using this 

theory, size effects on the mechanical response are captured.   

Modified continuum-based models have widely been presented for the vibration, 

bending and instability analyses of nanotubes. In one pioneering study, Zhang et al. (Zhang 

et al. 2005) presented a nonlocal model to analyse the free vibration of a system of two 

nanotubes. In another work, Reddy and Pang (Reddy and Pang 2008) presented different 

scale-dependent beam models for the mechanical behaviours of nanotubes involving the 

static deformation, oscillation and stability responses; they utilised the nonlocal constitutive 

relation for developing the scale-dependent formulation. Malekzadeh and Shojaee 

(Malekzadeh and Shojaee 2013b) developed a nonlinear beam model with incorporation of 

both nonlocal and surface influences for analysing the large-amplitude oscillations of 

nanobeams; they presented numerical results based on both Euler–Bernoulli and 

Timoshenko theories of beams. Moreover, Malekzadeh and Shojaee (Malekzadeh and 

Shojaee 2013a) analysed the static stability of quadrilateral laminated sheets made of 

several layers reinforced with carbon nanotubes; they used a first-order theory of shear 

deformations to model the quadrilateral laminated sheet. Khaniki et al. (Khaniki et al. 2018) 

also developed a two-phase scale-dependent model for dynamics of nanoscale beams; the 

nanosystem was embedded in a varying elastic medium. Aydogdu and Filiz (Aydogdu and 

Filiz 2011) proposed a scale-dependent model for mass nanosensors using nanotubes; the 

axial vibration of carbon nanotubes was exploited for mass detection at nanoscales. In 

addition, Aydogdu (Aydogdu 2014) employed the nonlocal elasticity for analysing axial wave 
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propagations in multi-walled nanotubes; the effects of van der Waals forces between 

various walls on the wave propagation were captured via an analytical model. In another 

study, Malekzadeh et al. (Malekzadeh et al. 2014) investigated the free vibration of a skew 

small-scale plate with large displacements capturing size effects; surface effects were also 

taken into consideration in the model. Setoodeh and Afrahim (Setoodeh and Afrahim 2014) 

utilised the strain gradient theory to explore the large-amplitude dynamics of microscale 

pipes conveying fluid; in the formulation, it was assumed that the pipe was made of 

functionally graded materials. More recently, Li et al. (Li et al. 2016) analysed the wave 

dispersion in nanotubes with viscoelastic properties via a nonlocal strain gradient theory 

(NSGT).  

In addition to pure nanotube systems, the mechanics of fluid-conveying nanotubes has 

attracted noticeable attention in the literature (Dai et al. 2015; Wang et al. 2010). 

Understanding the mechanical behaviour of these systems is important in applications such 

as drug delivery systems and microfluidics-based devices. Although some valuable research 

works have been performed on the fluid-conveying nanotubes (Ansari et al. 2016; Maraghi 

et al. 2013; Soltani et al. 2010; Zeighampour and Beni 2014), further investigation is 

required to understand the large-amplitude dynamics of nanotubes conveying nanofluid 

since the majority of previously published works are restricted to small deformations. In 

addition, for the sake of simplification, only transverse motion has been analysed. 

Furthermore, to the best of our knowledge, modal interactions and energy transfer 

between different modes of fluid-conveying nanotubes have not been examined yet. In the 

present paper, an advanced scale-dependent model is presented for the frequency 

response of a nanotube with large amplitudes of vibrations. The elastic nanotube is used to 

convey fluid flow. The Beskok–Karniadakis approach is implemented to consider slip 
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boundary conditions on the nonlinear behaviour. The NSGT, Galerkin’s approach and 

continuation scheme are, respectively, utilised to derive, discretise and solve the motion 

equations. The frequency-amplitude plots are constructed for studying the possibility of 

energy transfer between modes together with modal interaction in both supercritical and 

subcritical regimes.      

 

2. A NSGT-based model  

To develop a continuum model, a single nanotube of a high length-to-thickness ratio is 

taken into account as shown in Fig. 1. The nanotube is used to convey fluid flow at 

nanoscales. It is assumed that the tube is perfectly straight. In addition, there is no internal 

friction in both the fluid and solid parts. The length, mass per length and diameter of the 

nanotube are, respectively, indicated by L, m and do. Furthermore, M is utilised to indicate 

the mass per length of the nanofluid. For the displacement components of the tube, we 

assume that (u,w)=(axial displacement, transverse displacement). It is assumed that the 

effects of shear deformation are negligible. In addition, the tube cross-section is constant in 

this analysis. Only geometrical nonlinearity caused by the stretching influence of the tube 

centreline is captured. Using Euler-Bernoulli theory and incorporating the geometrical 

nonlinearity, the strain is  


    

     
     

2 2

2

1
.

2
xx

u w w
z

x x x
         (1) 

The force and couple resultants related to the total stress  ( )( )tot
xx  are as  

   
( ) ( ),     .tot tot

xx xx xx xx

A A

N dA M z dA         (2) 
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Using the NSGT, one can express the total stress in terms of the strain as 

   
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in which 2 , lsg , E, e0 and a are the Laplacian operator, strain gradient parameter, elasticity 

constant, calibration coefficient and internal characteristic size, respectively (Farajpour et al. 

2018a; Ghayesh and Farajpour 2018a; Ghayesh and Farajpour 2019). In view of the above 

constitutive equation (i.e. Eq. (3)), the following relations are obtained from Eq. (2) 

 l
         
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 

2 2
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02 2
,xx sg xx

w w
M EI EI e a M
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       (5) 

where I denotes the second moment area. Let us indicate the classical and higher-order 

stresses by  xx  and  (1)
xx , respectively (Farajpour et al. 2019; Lim et al. 2015). For the strain 

energy ( s ), one can write  

    
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,
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L L
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       (6) 

where 


 


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

(1)
( ) ,tot xx
xx xx

x
          (7) 

Assuming U is the fluid velocity, the kinetic energy of the nanosystem (Tk) is (Ghayesh et al. 

2018; Paidoussis 1998) 
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Here a correction factor for the fluid velocity (v ) is utilised for capturing slip conditions at 

the wall. Using the Beskok–Karniadakis approach (Beskok and Karniadakis 1999), one obtains  

 


 


   
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where 

 


 


  
 

110
0

2
tan ,Kn          (10) 

in which Kn is the Knudsen number. For nanotubes, it is commonly assumed that   0.7v , 

 0 4 ,  1 0.4  and  0 64 15 . Assuming the amplitude F(x) and frequency   for the 

applied load, the external work is given by  

  0 d .
L

qW q w x           (11) 

where 

    cos .q F x t           (12) 

For deriving the motion equations, Hamilton’s principle is employed as follows 

      
2

1

d 0.
t

q k st
W T t          (13) 

Substituting Eqs. (6), (8) and (11) into the above principle, one can obtain 
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Using the above equations (i.e. Eqs. (14) and (15)) together with Eqs. (4) and (5), the motion 

equations are derived as 

 
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Now without losing the generality, a set of dimensionless parameters is utilised as follows  
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Here 2  denotes the dimensionless Laplacian operator. Employing Eq. (18) together with 

Eqs. (16) and (17), the dimensionless motion equations are derived as 
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     (20) 

in which “*” is dropped in Eqs. (19) and (20) for the sake of convenience.      

 

3. Galerkin-based discretisation and solution technique  

A Galerkin-based discretisation is performed in this section using the following 

expressions for the displacement components  
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N
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k k
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r t x
u
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q t x

         (21) 

where rk and qk are generalised coordinates whereas  k  and k  are trial functions. 

Assuming clamped-clamped boundary conditions and using Eq. (21), one can obtain   
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    (23) 

Equations (22) and (23) indicate a set of time-dependent ordinary differential equations, 

which can be solved via a continuation approach. It is worth mentioning that for developing 

a numerical solution, ten trial functions are assumed.    

 

4. Results and discussion 

For constructing the frequency-response curves of the fluid-conveying nanosystem 

incorporating both stress nonlocality and strain gradients, the tube material and 

geometrical parameters are assumed as  =1024 kg/m3, v=0.3, E=610 MPa, h=66.0 nm and 

Ro =290.5 nm where h,   and Ro are respectively the nanotube thickness, density and outer 

radius. In the numerical solution, a dimensionless damping coefficient of 0.25 is added for 

both u and w motions. The focus of this paper is not on the influence of viscoelastic 
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medium. The system dimensionless parameters are v =1.0788, M =0.5915,   0.04sg , 

  0.09nl ,  =4006.9411 and s=20.0, unless otherwise specifically mentioned.   

The change of maximum transverse and axial displacements versus the frequency ratio 

(the ratio of excitation frequency to fundamental natural one) is plotted in Fig. 2 for F1=2.0 

and U=3.25. The flow regime is subcritical since the flow speed is less than the critical one 

associated with buckling (Ucr = 5.1862). Both unstable and stable branches are indicated in 

the figure. Two bifurcation points at ω/ω1=1.1608 and 1.0378 are seen for the fluid-

conveying nanosystem. Moreover, it is found that the nonlinearity of the nanosystem is of 

hardening type. In addition, modal interactions are found in the nonlinear response.  

In order to study the modal interaction in the nonlinear dynamics of the fluid-conveying 

nanosystem, the change of first four generalised coordinates of the transverse motion 

versus the frequency ratio is plotted in Fig. 3. Strong modal interactions as well as energy 

transfer between modes are observed in the nonlinear response of the nanosystem, 

especially for higher generalised coordinates.   

The detailed motion characteristics of the nanotube of Fig. 2 are shown in Figs. 4 and 5 

for ω/ω1=1.0522 and ω/ω1=1.1608, respectively; the former case is the one when the modal 

interactions are strongest. Time histories and phase-plane plots for both types of motions 

are plotted. It should be noticed that tn denotes normalised time with respect to the period 

of oscillation. It can be concluded that in the presence of strong modal interactions, the 

motion characteristics of the nanotube are different, especially for the axial motion.  

The change of maximum transverse and axial displacements versus the excitation 

frequency is plotted in Fig. 6 for various fluid speeds in the subcritical regime. The forcing 
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amplitude, speed correction factor, nonlocal coefficient and strain gradient coefficient are 

set to F1=1.5, κs=1.0788, χnl=0.09, and χsg=0.04, respectively. It is found that higher fluid 

speeds yield higher peak amplitudes but lower resonance frequencies for both motion types 

of the fluid-conveying nanosystem.   

Figure 7 is plotted for comparing the nanosystem frequency response for slip conditions 

with that calculated using no-slip boundary conditions. The forcing amplitude, speed 

correction factor, fluid speed, nonlocal coefficient and strain gradient coefficient are set to 

F1=2, κs=1.0788, U=3.5, χnl=0.09, and χsg=0.04, respectively. The no-slip condition yields 

overestimated results for both resonance frequency and peak amplitude of the nanotube. 

Figure 8 also compares the slip and no-slip boundary conditions for a higher fluid speed 

(U=4.5) in the subcritical regime. The amplitude of the external distributed loading is F1=1.2. 

Comparing Figs. 7 and 8 indicates that the effect of slip conditions on the subcritical 

frequency response increases as the flow speed increases.   

The change of maximum transverse and axial displacements versus the excitation 

frequency is plotted in Fig. 9 for both the classical theory of beams and the NSGT-based 

model. For the classical theory of beams, both scale coefficients are zero (i.e. χnl =χsg=0) 

whereas the scale coefficients are as χnl=0.09, χsg=0.04 for the NSGT-based model. The 

speed correction factor and forcing amplitude are κs=1.0788 and F1=2.5, respectively. The 

NSGT yields a relatively high peak amplitude but a low resonance frequency, compared to 

the classical theory. This is due to the high value of nonlocal coefficient compared to the 

strain gradient coefficient. In fact, since nonlocal effects are dominant for this case, the total 

structural stiffness of NSGT nanotubes is less than that calculated via the classical theory. 
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This results in a lower resonance frequency as well as a higher peak amplitude for the 

nanosystem.  

Figure 10 illustrates the change of maximum transverse and axial displacements versus 

the frequency ratio for F1=1.0, U=6.15, κs=1.0788, χnl=0.09, and χsg=0.04; the fundamental 

frequency is ω1=12.9072. It should be noticed that this time, the fluid speed is higher than 

the critical one (i.e. supercritical regime). The frequency response is of softening type 

containing two bifurcation points at ω/ω1 = 0.9706 and 0.6705. This is in contrast to the 

subcritical frequency response in which a hardening nonlinearity is observed. Moreover, 

modal interactions are found in the nonlinear response for both motion types. Figure 11 

gives the frequency response of the tube for the first four generalised coordinates. Strong 

modal interactions as well as energy transfer between modes are observed in the nonlinear 

response, especially for higher generalised coordinates. Furthermore, the detailed motion 

characteristics of the nanosystem of Fig. 10 at ω/ω1=0.6705 (i.e. at peak oscillation 

amplitude) are indicated in Fig. 12; phase-plane plots and time histories for both motion 

types are shown.  

Figure 13 depicts the change of maximum transverse and axial displacements versus the 

frequency ratio for F1=1.0, κs=1.0788, χnl=0.09, and χsg=0.04. In contrast to the subcritical 

regime in which increasing U decreases natural frequency, in supercritical regime increasing 

U increases natural frequency (shifts frequency response to the right). Figure 14 compares 

the frequency responses using no-slip and slip conditions in the supercritical regimes for 

χnl=0.09,  χsg=0.04, and F1=0.8. The no-slip condition underestimates both peak amplitude 

and resonance frequency in the supercritical regime. This is in contrast to the subcritical 
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frequency response in which the no-slip condition yields overestimated results for both the 

resonance frequency and peak amplitude. 
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 5. Conclusions 

The large-amplitude forced oscillations of nanotubes conveying fluid were analysed via 

a size-dependent coupled nonlinear model of beams. The proposed model contained two 

different size parameters, leading to a better simulation of size effects on the nonlinear 

oscillations. Both axial and transverse inertial terms were taken into consideration. To 

incorporate the mean free path of molecules at the tube/fluid interface, the Beskok–

Karniadakis approach was implemented. The coupled nonlinear equations were finally 

obtained, discretised and solved via application of the NSGT, Galerkin’s technique and 

continuation method, respectively. 

In the supercritical flow regime, the frequency response is of softening type containing 

two saddle-node bifurcations while the subcritical frequency response is of a hardening 

nonlinearity. When nonlocal influences are dominant, the total stiffness of NSGT nanotubes 

is less, and this leads to a lower resonance frequency and a higher peak amplitude for the 

nanosystem conveying fluid. Strong modal interactions as well as energy transfer between 

modes are observed in both flow regimes. In contrast to the subcritical regime in which 

higher fluid speeds yield a decrease in the natural frequency, in supercritical regime, the 

natural frequency increases with increasing fluid speed. Furthermore, no-slip boundary 

conditions lead to underestimated supercritical peak amplitudes and resonance frequencies 

for the NSGT nanotube whereas no-slip boundary conditions yield overestimated subcritical 

resonance frequencies and peak amplitudes. 
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Fig. 1. A NSGT nanotube conveying fluid subject to a distributed load. 
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(a) 

 
(b) 

 
Fig. 2. Change of maximum transverse and axial displacements versus the frequency ratio in the subcritical 
flow regime for F1=2.0 and U=3.25; (a) wmax at x=0.5; (b) umax at x=0.657; ω1=15.5031.  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig. 3. Change of (a) q1, (b) q2, (c) q3 and (d) q4 versus the ratio of the excitation frequency to the natural one in 
the subcritical flow regime. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig. 4. Detailed motion characteristics of the system of Fig. 2 at ω/ω1=1.0522 (i.e. when the modal interactions 
are strongest). (a, b) w versus tn for x=0.5 and u versus tn for x=0.657, respectively; (c, d) dw/dt versus w for 
x=0.5 and du/dt versus u for x=0.657, respectively.  
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig. 5. Detailed motion characteristics of the system of Fig. 2 at ω/ω1=1.1608 (i.e. at peak oscillation 
amplitude).  
(a, b) w versus tn for x=0.5 and u versus tn for x=0.657, respectively; (c, d) dw/dt versus w for x=0.5 and du/dt 
versus u for x=0.657, respectively. 
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(a) 

 
(b) 

 
Fig. 6. Change of maximum transverse and axial displacements versus the excitation frequency for different 
fluid speeds in subcritical flow regime; (a) wmax at x=0.5; (b) umax at x=0.657. 
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(a) 

 
(b) 

 
Fig. 7. Effects of slip boundary conditions on the forced oscillation when U=3.5 (subcritical flow regime); (a) 
wmax at x=0.5; (b) umax at x=0.657.  
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(a) 

 
(b) 

 
Fig. 8. Effects of slip boundary conditions on the forced oscillation when U=4.5 (subcritical flow regime); (a) 
wmax at x=0.5; (b) umax at x=0.657.  
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 (a) 

 
(b) 

 
Fig. 9. Change of maximum transverse and axial displacements versus the excitation frequency obtained via 
the nonlocal strain gradient theory and classical theory for U=3.0 (subcritical flow regime); (a) wmax at x=0.5; (b) 
umax at x=0.657.   
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(a) 

 
(b) 

 
Fig. 10. Change of maximum transverse and axial displacements versus the excitation frequency in the 
supercritical flow regime; (a) wmax at x=0.5; (b) umax at x=0.657.   
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig. 11. Change of (a) q1, (b) q2, (c) q3 and (d) q4 versus the ratio of the excitation frequency to the natural one 
in the supercritical flow regime. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
 
Fig. 12. Detailed motion characteristics of the nanosystem of Fig. 10 at ω/ω1=0.6705. (a, b) w versus tn for 
x=0.5 and u versus tn for x=0.657, respectively; (c, d) dw/dt versus w for x=0.5 and du/dt versus u for x=0.657, 
respectively. 
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 (a) 

 
(b) 

 
Fig. 13. Change of maximum transverse and axial displacements versus the excitation frequency for different 
fluid speeds in supercritical flow regime; (a) wmax at x=0.5; (b) umax at x=0.657. 
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(a) 

 
(b) 

 
Fig. 14. Effects of slip boundary conditions on the forced oscillation when U=6.4 (supercritical flow regime); (a) 
wmax at x=0.5; (b) umax at x=0.657.  
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