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Abstract 

A growing body of research has been designed to further our understanding of how 

single bouts of exercise affect cognitive performance. Early work in this area led to 

the identification of several moderating factors that influence the exercise-cognition 

interaction, with two of these being exercise intensity and fitness level. The positive 

effects of moderate-intensity are well accepted having received substantial support in 

the literature. Due to receiving much less attention however, there is currently no clear 

consensus on the effects of high-intensity exercise, though theoretical, experimental 

and anecdotal literature converges towards an impairment in cognitive function.  

Compared to moderate intensities, strenuous exercise places much greater 

physiological demands on the human body and thus it has been suggested that 

individuals of greater fitness levels, and those accustomed to high-intensities that 

have undergone years of training and adaption, may respond differently to strenuous 

intensities compared to normal populations. Many sporting paradigms involve 

prolonged exercise, congested tournament fixtures and involve weeks of intensive 

training and thus the influence of these stressors on cognitive function and mood, 

energy and fatigue states in trained populations holds important implications for 

sports performance.  

The current PhD programme aimed to examine different strenuous exercise 

paradigms on cognitive function, mood, energy and fatigue states in trained sporting 

individuals, with a particular focus on three exercise models; prolonged exercise, 

congested exercise and intensified training. The series of investigations that set out 

to address this aim have led to many novel and interesting findings. To begin, study 

one conducted the first systematic review in this area of the literature. Amongst 

highlighting the limited research, evaluation of the existing literature suggested little 

effect of acute strenuous exercise on measures requiring simple cognitive processing 

in trained populations, but found there to be more ambiguity surrounding top-down 

higher-order processes. This is particularly interesting, as the exercise-cognition 

literature has predominantly focussed on simple processes; consequently, this 

chapter called for the assessment of multiple cognitive domains in future studies. The 

first experimental study, presented in Chapter 3, examined a prolonged strenuous 

exercise bout on cognitive function, mood, energy and fatigue states. In support of 

the previous chapter’s conclusions, a negative effect on executive function was found 

alongside reductions in mood and energy and significant increases in both physical 
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and mental fatigue. Building on this, Chapter 4 explored the effect of repeated 

strenuous exercise bouts over two days on cognitive function, mood, energy and 

fatigue states. Results indicated that one day of congested strenuous exercise leads 

to a reduction in inhibitory response accuracy and choice reaction time in addition to 

having negative effects on mood, energy and fatigue states. The final experimental 

study of this thesis, presented in Chapter 5, investigated cognitive performance, 

mood, energy, fatigue, perceived sleep and physical performance during and 

following a chronic intensified training period. This paradigm led to significant 

reductions in physical performance and mood during the training weeks; however, 

cognitive function and sleep were not affected. The practical implications of each 

study are discussed in each respective chapter and highlight how the results can be 

applied in relevant situations. 

Collectively, the findings of this thesis provide novel information surrounding the 

effects of strenuous exercise on cognitive function, mood, energy and fatigue states 

in trained sporting populations. The current work has shown domain specific effects 

of strenuous exercise with a particular effect on top-down higher order cognitive 

processes. Similarly, deteriorations were observed in mood and energy states in each 

empirical chapter alongside significant increases in mental fatigue. Further work is 

required to: elucidate the mechanisms by which strenuous exercise exert these 

effects; to determine if these effects are observed in further exercise paradigms; and 

to identify methods by which cognitive function, mood, energy and fatigue states can 

be maintained in situations dependent upon optimal cognitive performance. 
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1.1 General introduction 

The past 50 years has seen a growing body of research designed to further our 

understanding of how acute and chronic exercise affects cognitive performance. This 

research is based upon the premise that physiological responses and adaptations to 

exercise have an impact on cognitive functioning, which can be assessed using 

behavioural measures. The acute physiological responses that have been implicated 

in the cognitive literature include; changes in heart rate (Davranche et al., 2005, 

Davranche et al., 2006b, Hillman et al., 2003, Kamijo et al., 2004a, Kamijo et al., 

2004b), levels of brain-derived neurotrophic factor (Ferris et al., 2007, Griffin et al., 

2011, Winter et al., 2007), cerebral oxygenation (Mekari et al., 2015) and changes in 

plasma catecholamines (Chmura et al., 1994, McMorris et al., 1999, McMorris et al., 

2009). However, contradictory findings of experimental research have led to the 

identification of several moderating factors that influence the exercise-cognition 

interaction: (i) exercise intensity, (ii) exercise duration, (iii) exercise mode, (iv) 

cognitive task type, (v) participant fitness and (vi) timing of cognitive task 

administration (Brisswalter et al., 2002, Chang et al., 2012, Lambourne and 

Tomporowski, 2010).  

The majority of research has concentrated on moderate-intensity exercise, which is 

generally considered to bring about positive effects in both cognition (Kashihara et 

al., 2009, Tomporowski, 2003) and mood (Berger and Motl, 2000, Zervas et al., 1993). 

Though it has received less attention, there are some suggestions that strenuous and 

high-intensity exercise (HIE) has the opposite effect, with reports of deteriorations in 

cognitive performance (Ando et al., 2005, Chmura et al., 1994, Chmura and Nazar, 

2010, Cooper, 1973, Covassin et al., 2007, Dietrich, 2006, Dietrich and Audiffren, 

2011, Wang et al., 2013) and mood (Berger and Motl, 2000, Hall et al., 2002). 

Individuals with greater fitness levels however, and athletes who are accustomed to 

high-training intensities and loads, may not succumb to the same detrimental effects 

as sedentary individuals as fitness level moderates these relationships. In line with 

this, there is evidence supporting superior mood effects in trained individuals following 

exercise compared to sedentary individuals, with this being particularly pertinent for 

HIE (Ekkekakis and Petruzzello, 1999).  

In the world of sport, performers are faced with many challenges that place extreme 

demands on the brain; demands that are rarely found in any other activity (Walsh, 

2014). In addition to the challenges imposed by physiological stresses associated 

with exercise, performers need to; process a large amount of information in a short 
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time under mental pressure; make fast decisions; quickly adapt; change strategy; 

inhibit responses; maintain spatial awareness; and predict subsequent movements 

(Vestberg et al., 2012). The necessary behaviour includes a creative decision-making 

in which both accuracy and speed are of equal importance. Such behaviour helps 

athletes to “read the game” and make successful a prior expectations. In addition to 

cognitive function, mood responses have been found to predict athletic performance 

and contribute to sporting success (Beedie et al., 2000) and thus the maintenance of 

both cognitive function and a functional mood profile is pivotal to sporting success 

(Knicker et al., 2011, Totterdell, 2000). This is of particular importance when training 

and competing in strenuous and/or stressful conditions, for example; prolonged 

exercise durations; congested tournament fixtures; and intensified training weeks. 

There is currently limited research investigating the effects of strenuous exercise on 

cognitive performance and mood in trained individuals. Consequently, there is an 

absence of information and ambiguous conclusions for athletes, coaches, sports 

scientists and trained populations to access and use to inform practice and potentially 

improve performance.  

1.2 Cognitive function 

Cognition is an umbrella term that includes any thought process from basic perception 

to action and behaviour (Erickson et al., 2012). The concept comes from the Latin 

word cognoscere, (“to know” or “to recognise”) and refers to the capacity for 

information processing, applying knowledge and changing preferences (Nehlig, 

2010). Since the term `cognition` has been criticized for being non-specific and too 

inclusive (Erickson et al., 2012), it is divided into multiple domains based on the 

particular process or type of information being processed. Broadly speaking it 

involves two levels of information processing. The first level is referred to as `top 

down` or complex and is associated with the organisation of goal-directed actions. 

The second level is known as `bottom up` or simple processes and these underlie all 

types of complex cognition (Davis and Lambourne, 2009). In the current cognitive 

psychology and neuropsychology texts (Lezak, 2004, Strauss et al., 2006) cognitive 

function is divided into the following domains: information processing; speed of 

performance; attention; knowledge and expertise; executive functioning; and 

memory. Classifications such as this recognise the multifaceted nature of cognitive 

function and the necessity to examine each domain in order to accurately understand 
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them. This section will clearly define and describe the domains relevant to this thesis 

and the tasks being used to asses them.  

1.2.1 Memory 

Memory is a key aspect of cognitive function that includes encoding, storage and 

retrieval of information. Whilst being one domain of cognitive function itself, memory 

can be further subdivided into short-term, long-term and working memory (WM) 

(Nehlig, 2010). Though all are important, within sport it is generally recognised that 

WM and visuospatial short-term memory significantly contribute to successful 

sporting performance (Furley and Memmert, 2010a, Furley and Memmert, 2010b). 

The concept of WM was first introduced by Baddeley and Hitch (1974) in their 

multicomponent model and is generally described as the cognitive mechanisms 

capable of retaining a small amount of information in an active state for use in ongoing 

tasks. Visuospatial short-term memory resides within this model and describes the 

ability to hold and process visual and spatial information. The dynamic environment 

of sport requires more than the simple recall of information and thus an appropriate 

behavioural test should measure both concepts. The Corsi blocks task (Corsi, 1972) 

is one of the most widely used indexes of visuospatial memory (VSM) and is a 

component of major neuropsychological batteries (Kessels et al., 2008, Schuhfried, 

2009) with performance being linked to a neuronal network encompassing visual 

occipital, posterior parietal and dorsolateral prefrontal cortices (Nemmi et al., 2013, 

Toepper et al., 2010).   

1.2.2 Executive functions 

Executive functions regulate subsidiary sensory, cognitive, emotional, and motor 

processes in a supervisory (or “top-down”) manner (Alvarez and Emory, 2006, 

Daamen and Raab, 2012). Not a cognitive domain in the strict sense, executive 

functioning is comprised of various “higher-level” processes that are crucial for 

complex decision-making and successful performance (Vestberg et al., 2012). These 

processes have been described as involving several functions including shifting 

between tasks or mental sets, updating and monitoring WM, inhibition of proponent 

responses, planning, and the coordination of multiple tasks (Miyake et al., 2000). 

Disproportional beneficial effects of acute exercise on executive functions compared 

with information processing, attention, and memory have recently been reported 
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(Chang et al., 2012). This highlights a moderating effect of specific types of cognition, 

suggesting that executive control may be more sensitive to acute exercise.  

An important executive domain in sport is response inhibition, a main component of 

decision making in human volition (Haggard, 2008). A good example of response 

inhibition in sport would be a defender (in any sport) who refuses to respond to a 

`dummy` or fake action by an attacker (McMorris, 2016). The Stroop test (Stroop, 

1935) is one of the most extensively used tasks  to assess the ability to inhibit habitual 

responses as well as assessing selective attention and information processing speed 

(Chang and Etnier, 2009). Selective attention is the ability to concentrate on task-

relevant stimuli or response options  (Daamen and Raab, 2012), crucial in sport when 

there is irrelevant stimuli and the performer needs to select and focus on only the 

relevant information. Executive functions are typically associated with frontal lobe 

activity (Strauss et al., 2006), a region that has shown extensive synaptic connections 

with a broad range of cortical and subcortical structures (Daamen and Raab, 2012). 

A growing body of neurophysiological evidence indicates that executive domains are 

underpinned by different neural networks which provide separable functional 

outcomes (Miyake et al., 2000). Tasks involving response inhibition and selective 

attention are specifically known to activate the anterior cingulate cortex (ACC; located 

in the medial frontal lobe) which plays an important role in Stroop performance 

(Alvarez and Emory, 2006). 

1.2.3 Reaction time 

As performance in sport is reliant upon psychomotor skills, it is important to study 

these simpler abilities in addition to higher-order skills. The ability to maintain 

psychomotor skill during strenuous exercise, as is often performed in competitive 

sport, is crucial for good performance. Reaction time (RT) is one aspect of speed of 

information processing and is defined as the time elapsed between stimulus onset 

and the initiation of the response to it. Accordingly, it is one of the many variables 

involved in psychomotor skill and is a prime determinant to evaluate psychomotor 

performance (Ando et al., 2005). Indeed, RT is used to evaluate performance on 

complex tasks such as the Stroop, but there are simple RT and choice RT tasks that 

specifically assess psychomotor speed. Though these tasks are simple, they do 

involve perception to identify the stimulus and efferent organisation, albeit not very 

demanding organisation, to prepare the response (McMorris, 2016).  
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As discussed, sport is a cognitively demanding activity where successful performance 

execution is reliant on the constant functioning of multiple cognitive domains (Mann 

et al., 2007, Walsh, 2014). What's more, these actions are often performed under 

conditions of physiological stress and psychological stress, adding a further level of 

complexity and difficulty (Ando, 2016). It is thus important to examine how exercise 

interacts with cognitive abilities and explore the factors that can influence this complex 

interaction such as physical fitness, exercise intensity, exercise duration, cognitive 

task complexity and cognitive expertise. These factors will be discussed in detail 

throughout Chapter 1. 

1.3 Physical fitness and exercise intensity 

The term ‘physical activity’ is described as any bodily movement produced by the 

skeletal muscles that requires energy expenditure (Caspersen et al., 1985). Though 

this phrase is often used interchangeably with ‘physical exercise’, it is important to 

emphasise that exercise is ‘physical activity that is planned, structured, repetitive, and 

purposive in the sense that improvement or maintenance of one or more components 

of physical fitness is an objective’ (Caspersen et al., 1985). Thus, exercise is the 

conscious effort to improve one or more aspects of oneself. Historically, the benefits 

of exercise were exclusively attributed to physiological functions. More recently 

however, a growing body of research has been designed to further our understanding 

on the relationship between chronic participation in-, and acute responses to-, 

physical exercise on cognitive performance. In this context and throughout this thesis, 

acute exercise refers to that of a single bout of exercise (Chang et al., 2012), while 

chronic exercise refers to the repetition of exercise over time during a period lasting 

from weeks to years (Dietrich and Audiffren, 2011). It is important that cognitive 

effects following acute and chronic exercise are considered separately due to the 

profound influence chronic exercise training has on the structure and functions of the 

brain (Tomporowski et al., 2015). Changes in cognitive performance that occur during 

and/or following acute exercise are transient and are due to acute physiological and 

neurochemical changes. Changes in cognition following chronic exercise however, 

may also be the result of functional and structural changes in the brain.  

Due to this, an important factor to consider within the exercise-cognition relationship 

is one’s physical fitness, which is derived from chronic exercise training. The 

characterisation of physical fitness and exercise intensity are discussed in the next 

section, followed by the influence they have on cognitive function.  
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1.3.1 Classification of fitness status 

Physical fitness is multifaceted and encompasses multiple components including 

muscular endurance, strength, power, speed, agility and balance. In the exercise-

cognition literature, fitness is typically expressed in terms of cardiorespiratory fitness; 

this involves both the circulatory and respiratory systems transporting oxygen through 

the body to be utilised by the working muscles for energy production, which is used 

to power muscular contractions (McMorris and Corbett, 2016). Oxygen uptake 

increases in proportion to an increase in work rate; however, if work rate continues to 

increase, a point will be reached where oxygen uptake plateaus and no further oxygen 

can be utilised. This point signifies an individual’s maximal volume of oxygen 

consumption (V̇O2max), defined as the highest rate of which oxygen can be taken up 

and utilised by the body (Bassett Jr and Howley, 2000). Thus, at any given intensity 

individuals with greater aerobic capacities will use a lower relative percentage of their 

V̇O2max. Due to this, the highest aerobic capacities are often found in highly-trained 

endurance athletes (Bassett Jr and Howley, 2000).  

V̇O2max is considered the primary marker of cardiorespiratory fitness and is 

consequently used as the criterion measure to define “fitness” in exercise science 

research. The American College of Sports Medicine (ACSM) provide age and gender 

adjusted guidelines for the classification of fitness categories, which are also 

expressed as a percentile relative to the general population. In the most recent 

guidelines (Pescatello, 2014), fitness is separated into six classifications, these being: 

very poor, poor, fair, good, excellent and superior (Table 1.1).  

Table 1.1 ACSM V̇O2max fitness classifications for men and women aged 20-29 

Fitness classification  % Men Women 

Superior 95-99 >55.5 ml.kg-1.min-1 >49.6 ml.kg-1.min-1 

Excellent 80-90 >51.1 ml.kg-1.min-1 >43.9 ml.kg-1.min-1 

Good 60-75 >45.6 ml.kg-1.min-1 >39.5 ml.kg-1.min-1 

Fair 40-55 >41.7 ml.kg-1.min-1 >36.1 ml.kg-1.min-1 

Poor 20-35 >38.0 ml.kg-1.min-1 >32.3 ml.kg-1.min-1 

Very poor 1-15 <36.7 ml.kg-1.min-1 <30.9 ml.kg-1.min-1 

% = percentile relative to the general population 
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Whilst these provide specific guidelines, much of the literature classifies individuals 

as “low”, “medium” and “high” fitness relative to the participant sample. For example, 

Labelle et al. (2014) classified a mixed gender sample of younger adults (mean age 

24.6 years) as “higher fit” with a mean V̇O2max of 50.6 ± 7.9 ml.kg-1.min-1 and “lower 

fit” as 38.3 ± 5.2 ml.kg-1.min-1. Llorens et al. (2015) on the other hand classified young 

males (19-28 years of age) as “high-fit” with a mean V̇O2max of 58.4 ± 3.0 ml.kg-1.min-

1 and “lower fit” as 41.3 ± 6.3 ml.kg-1.min-1 while an early study by Tomporowski et al. 

(1987) classified a mixed-gender “high fitness” group as 66.0 ml.kg-1.min-1 and the 

“average fitness” as 41.1 ml.kg-1.min-1. Moreover, the standard deviation of 7.9 ml.kg-

1.min-1 in the “higher fit” group in Labelle and colleagues study shows that some 

individuals would be well below what one might consider to be highly fit. The 

discrepancies in fitness classifications across studies may have led to the mixed 

findings on the effects of fitness on cognitive function during and following exercise. 

Rather than classifying participants as ‘higher-fit’ and ‘lower-fit’ individuals based on 

the participant sample, it is suggested that authors categorise them by the ACSM 

fitness classifications. Participant samples can also be compared to known aerobic 

fitness norms for both males and females, such as those provided by Shvartz and 

Reibold (1990), though an updated study is needed. Based on this study normative 

values suggest average young male V̇O2max values to be around 47 ml.kg-1.min-1 while 

young average female V̇O2max values are around 38 ml.kg-1.min-1. Normative values 

would be expected to be greater in athletic populations, particularly athletes in 

endurance sports (Billat et al., 2001, Legaz-Arrese et al., 2007). 

1.3.2 Classification of exercise intensity 

A lack of understanding of the interaction between the aerobic and anaerobic systems 

led early work investigating the effect of exercise on cognition to randomly select an 

exercise intensity for intervention. Advances in our understanding of exercise 

physiology has now provided evidence that physiological and biochemical changes 

are induced via different exercise intensities. Consequently, a large body of research 

has been dedicated to investigating the effect of exercise intensity on cognitive 

performance. However, research examining the acute exercise-cognition interaction 

frequently defines exercise quite broadly as low, moderate and high (also called 

strenuous, hard and/or heavy). This has led to many studies using different 

classifications of these intensities. For example, Hüttermann and Memmert (2014) 

describe low, moderate and high-intensity exercises as 50, 60 and 70 % of maximum 
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heart rate (HRmax) respectively, while Davranche et al. (2015) used intensities 

equivalent to 74, 81 and 90 % HRmax. Smith et al. (2016a) used 70 and 90 % heart 

rate reserve (HRR) as moderate and high-intensities while Wang et al. (2013) used 

30 % HRR as low, 50 % as moderate and 80 % as high. Kamijo et al. (2004b) on the 

other hand use Borg’s 6-20 rating of perceived exertion (RPE) scale to define low and 

moderate exercise intensities as 7-9 and 12-14 respectively, whilst high-intensity 

exercise was to volitional exhaustion.  

As highlighted by many reviews (Brisswalter et al., 2002, Chang et al., 2012, 

Tomporowski and Ellis, 1986, Tomporowski, 2003), exercise intensity is a large 

moderating factor within the exercise-cognition relationship. Notably due to different 

experimental methodologies, exercise intensities have been chosen relative to 

different physiological markers such as V̇O2max, HRmax, lactate threshold (LT), RPE or 

percentage HRR. Though this makes comparison between studies difficult, the ACSM 

provide guidelines on classifications of relative intensities with comparative values 

across physiological markers (Table 1.2).  

Table 1.2 ACSM guidelines on estimating cardiorespiratory exercise intensity  

Relative intensity 

Intensity % HRR or 
% V̇O2R 

% HR 
maximum 

% V̇O2max RPE (6-20) 

Very light <30 <57 <37 Very light (RPE ≤9) 

Light  30 - <40 57 - <64 37 - <45 
Very light to fairly light (RPE 9-
11) 

Moderate 40 - <60 64 - <76 46 - <64 
Fairly light to somewhat hard 
(RPE 12-13) 

Vigorous 60 - <90 76 - <96 64 - <91 
Somewhat hard to very hard 
(RPE 14-17) 

Near maximal 
to maximal 

≥90 ≥96 ≥91 ≥ Very hard (RPE ≥ 18) 

 

Following review of the literature, McMorris (2016) concluded that the majority of 

authors determine low-intensity exercise as being ≤30 % V̇O2max, though there was a 

tendency for some authors to use ≤40 %, while moderate-intensity is generally 40 % 

or 50 % to 79 % V̇O2max and HIE is seen as being ≥80 % V̇O2max. Most researchers do 

not provide any rationale for using their selected exercise intensities; more recently 

however, McMorris and Hale (2012) identified that the intensity ranges generally 
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chosen to represent low, moderate and high are very close to those identified by 

exercise endocrinologist Borer (2003). Borer based their classifications of exercise 

intensities on several endocrinological factors such as central and peripheral 

concentrations of catecholamines, hypothalamic-pituitary-adrenal axis hormones and 

cortisol; subsequently this led to the identification of low-intensity exercise as <50 % 

V̇O2max, moderate-intensity as 50-75 % V̇O2max and high-intensity as ≥76 % V̇O2max. 

Furthermore, measures of lactate, catecholamines, cortisol and adrenocorticotropic 

hormone show significant increases at ≥80 % V̇O2max (de Vries et al., 2000, Hill et al., 

2008, McMorris et al., 2009). Due to this, it has recently been proposed that >80 % 

V̇O2max is a safer workload to signify the lower end of '‘high-intensity'’ exercise 

(McMorris, 2016). Based on these guidelines which provide the most recent and 

scientifically justified reasoning for intensity categorisation, recent studies have 

implemented the following intensity classifications: <40 % maximal aerobic power 

(Wmax) low intensity, 40 - 79 % Wmax for moderate and ≥80 % Wmax  for HIE (McMorris 

and Hale, 2012, McMorris et al., 2015, Schapschröer et al., 2016). Based on the 

conversion formulae from Arts and Kuipers (1994), these classifications are equal to 

<47 % V̇O2max, 48 – 81 % V̇O2max and ≥82 % V̇O2max for low-, moderate- and high-

intensities respectively. 

The differentiation of exercise intensities is purposeful for both practical reasons and 

to make sense of past research. However, the biochemical responses to exercise are 

individually different; consequently some authors have determined moderate-

intensity exercise as being greater than the LT or the catecholamine threshold 

(Chmura et al., 1994, Kashihara and Nakahara, 2005). Furthermore, exercise to 

volitional exhaustion at or above 100 % V̇O2max as well as highly demanding 

intermittent exercise, determined by the amount of time working at heavy workloads, 

has been deemed high-intensity (Fery et al., 1997, McMorris and Graydon, 1996a, 

McMorris and Graydon, 1996b, Whyte et al., 2015). The influence of physical fitness 

and exercise intensity on cognitive performance will be considered in the following 

section alongside potential mechanisms of action.  

1.4 Exercise-cognition interaction: Mechanisms of action 

1.4.1 Physical fitness and cognition 

There are many adaptations that occur due to chronic exercise training which may 

contribute to the beneficial effects of physical fitness on cognitive function. The most 
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frequently suggested mechanisms include increased brain derived neurotropic factor 

(BDNF) expression (Babaei et al., 2014, Zoladz et al., 2008), changes in brain 

morphology (Chaddock et al., 2010, Colcombe et al., 2006), increased neuronal firing 

(Nakata et al., 2010) and changes in plasma catecholamine levels (de Diego Acosta 

et al., 2001, McMorris and Hale, 2012). The adaptations from chronic cardiovascular 

exercise have been found to reduce a number of physical and mental disorders 

across the adult lifespan (Hillman et al., 2008) and alleviate cognitive decline 

associated with ageing (Colcombe and Kramer, 2003). Physical fitness has also been 

associated with greater academic achievement in schoolchildren (Castelli et al., 2007, 

Chomitz et al., 2009, Van Dusen et al., 2011). Together, this evidence supports the 

positive influence of fitness on cognitive performance. Alongside this, evidence 

supports an influential effect of sport training on fundamental cognitive and perceptual 

measures outside the sport-specific domain (Chaddock et al., 2011, Voss et al., 

2009). 

Brain morphology is one of the key adaptations associated with chronic exercise. 

Non-athletes undertaking exercise have been shown to have enhanced grey matter 

volume in several brain regions, including the dorsolateral prefrontal cortex 

(Weinstein et al., 2012), basal ganglia and hippocampus in children (Chaddock et al., 

2010) and adults (Becker et al., 2016) and the hippocampus in elderly individuals 

(Erickson et al., 2009). Concerning athletes in particular, it is difficult to differentiate 

between exercise-induced effects and expertise training. In an attempt to do this, 

Schlaffke et al. (2014) compared martial arts athletes who are characterised by high 

skill but not necessarily high cardiovascular fitness, with endurance athletes and a 

sedentary population. Compared to the sedentary group, both athletic groups showed 

greater grey matter volumes in the supplementary motor area/ dorsal premotor cortex, 

including the pre-supplementary motor area. This region is extensively connected to 

prefrontal areas and plays a role in cognitive control, response selection and 

response inhibition (Dum and Strick, 1991, McMorris and Corbett, 2016, Yanagisawa 

et al., 2010). Tseng et al. (2013) has also evidenced greater grey and white matter 

tissue concentrations predominantly in the right parietal and occipital lobes, involved 

in visuospatial processing and motor control (Indovina and Macaluso, 2004), in 

masters athletes compared with sedentary counterparts. These findings may explain 

superior results seen by athletes, independent of sport type, on neurobehavioural 

tests of executive function and visuospatial attention when compared to non-athletic 

populations, as observed by Alves et al. (2013).  
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From a theoretical perspective, exercise-induced increases in grey and white matter 

would likely be caused by, amongst other growth factors, increases in brain 

concentrations of BDNF and BDNF messenger ribonucleic acid expression (McMorris 

and Corbett, 2016). BDNF is part of a family of proteins called neurotrophic factors or 

“growth factors”, which are directly involved in neuronal and synaptic growth. In 

particular, BDNF is vital for short-term cognitive performance and long-term brain 

morphology (e.g. plasticity) (Piepmeier and Etnier, 2015) which has led to it receiving 

extensive attention (Cirulli et al., 2004, Ferris et al., 2007, Huang et al., 2014). 

Correlational studies have frequently reported negative associations between aerobic 

fitness and peripheral BDNF (pBDNF) (Babaei et al., 2014, Chan et al., 2008, Currie 

et al., 2009, Nofuji et al., 2008), with athletes often being found to have lower 

circulating pBDNF levels than sedentary individuals (Babaei et al., 2014, Nofuji et al., 

2008). It is currently not clear why relatively low pBDNF levels in higher-fit individuals 

are positively associated with better cognitive function, though a more efficient uptake 

mechanism of pBDNF through the blood-brain barrier (BBB) into the central nervous 

system (CNS) has been suggested (Hwang et al., 2017).  

One of the main hypotheses proposed to be the driving force behind the positive 

benefits of physical fitness on cognitive function surrounds the beneficial adaptations 

that occur due to improvements in cardiovascular function. Known as the 

“cardiovascular fitness hypothesis”, this theory proposes that physical fitness is the 

mediator that explains the relationship between physical exercise and improved 

cognitive performance (Etnier et al., 1997). The premise for this is that cardiovascular 

training is associated with many adaptations that support more efficient function of 

neurotransmitters and neural circuits leading to improved cognitive performance 

(Dustman et al., 1984).  

Though evidence demonstrating exactly how improved cardiovascular fitness is 

related to adaptations in the brain is limited, functional magnetic reasoning imagining 

studies provide overwhelming support for a regionally selective association for 

prefrontal cortex (PFC) function (for review see Voss 2016). It is suggested that this 

may be because the cardiovascular related adaptations have the greatest effect in 

regions with the most vulnerability during development and ageing, such as the PFC 

(Billinger et al., 2017, Voss, 2016). Interestingly, this supports neurobehavioural 

findings that suggest physical fitness has the greatest effect on tasks of executive 

function (Chang et al., 2014, Colcombe and Kramer, 2003). Furthermore, this may 

also support the mechanistic rationale proposed by Llorens et al. (2015) to explain 

their findings of superior cognitive performance in trained individuals. Llorens and 
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colleagues explain that as physical exertion requires increased activity of motor and 

sensory brain regions compared to rest (Dietrich, 2006) and requires the modulation 

of brain metabolism (Secher et al., 2008); having greater fitness levels would lower 

the magnitude of changes in brain metabolism and functioning, particularly during 

HIE. Equally, individuals with lower fitness levels would require more metabolic 

resource in areas of the brain not as involved in cognitive functioning, such as the 

motor cortex. Due to the competitive environment, the loss of resource to other areas 

of the brain may reduce cognitive capacities. Interestingly, findings from a 

neuroimaging study examining brain glucose uptake during different intensities of 

exercise reports a potential effect of physical training on brain metabolism 

(Kemppainen et al., 2005). This study found trained subjects had a more pronounced 

decrease in glucose uptake in the frontal lobe area compared to less-trained 

participants. To compensate for the increased energy needed to maintain neuronal 

activity, the brain metabolises lactate. Regional analysis indicated that this finding 

was restricted to superior and medial frontal cortex and the dorsal ACC which is 

associated with cognitive, motor planning, emotional processing and autonomic 

functions (Kemppainen et al., 2005). Whilst it is unknown what mechanism causes 

this adaption, it does highlight that training can elicit adaptive metabolic changes in 

the brain.  

Though the exact mechanism behind greater fitness levels and superior cognitive 

functioning is not fully understood, it is believed that cognitive responses to acute 

exercise may be different in athletic populations. The following section will focus on 

the potential mechanisms underpinning the effect of acute exercise on cognitive 

performance. 

1.4.2 Acute exercise and cognition 

Early research investigating the interaction between exercise and cognition was 

atheoretical and appears to have been purely discovery work based on the whims of 

researchers (Gutin, 1966, Gutin and Di Gennaro, 1968, McAdam and Wang, 1967, 

Meyers et al., 1969). This changed from the early 1970s however, when exercise was 

viewed as a stressor that could affect bodily systems in the same way as other 

stressors (Davey, 1973, Levitt and Gutin, 1971, Sjöberg, 1975). Since this early work, 

several mechanisms have been suggested to explain the effect of exercise on 

cognitive function, these include: exercise-induced arousal (Audiffren et al., 2009, 

Davey, 1973, Lambourne and Tomporowski, 2010, Tomporowski, 2003), changes in 
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plasma catecholamines (Chmura et al., 1994, Cooper, 1973), regulation of neural 

resources (Dietrich, 2003, Dietrich, 2006), and the synthesis of BDNF (Ferris et al., 

2007; Griffin et al., 2011; Winter et al. 2007). This section will focus on each 

mechanism, succinctly discussing their application to acute exercise and cognitive 

function.   

Arousal “is the intensity dimension of behaviour” and has been defined as a “general 

state of activation” that is typically associated with increases in heart rate, respiration 

and sweat response (Gill et al., 2017), as well as the amount of resources available 

to the CNS (McMorris et al., 1999). The longest standing theory regarding the effect 

of acute exercise on cognitive function is that of exercise-induced arousal, which has 

gone on to form the basis of many subsequent models. Indeed this concept has been 

studied extensively since its initial proposal by Davey (1973) and has received 

subsequent support (Brisswalter et al., 1995, Chmura et al., 1994, Hüttermann and 

Memmert, 2014, Lambourne and Tomporowski, 2010, Tomporowski, 2003). Davey 

(1973) applied Yerkes and Dodson’s (1908) inverted-U hypothesis to an exercise and 

cognition paradigm, seeing exercise as a stressor that caused an incremental rise in 

arousal as intensity increased. Their investigation provided evidence for an inverted-

U effect of exercise-induced arousal on cognitive performance, which was later 

supported by Sjöberg (1975). Since this initial theory, the inverted-U effect has 

provided a foundation for many other models; a particular evolution of this came in 

the form of cognitive energetic-models (Kahneman, 1973, Sanders, 1983). These 

theories are based on individuals having a limited amount of resources and suggest 

that as arousal increases to moderate levels, an improvement in performance will 

only occur if resources are allocated. Sanders (1983) model in particular suggests 

that if sufficient resources are available, low arousal may act similarly to moderate 

arousal on cognitive performance. These models postulate however that high-

intensities would cause random inherent fluctuations in neural networks, termed 

“neural noise”, which inhibit optimal cognitive performance.  

The catecholamine hypothesis initially proposed by Cooper (1973), is closely linked 

to theories of exercise-induced arousal but attempts to provide a more scientifically 

robust method using a neurophysiological explanation. Catecholamines are a group 

of neurotransmitters secreted by cells in the brain, with the most abundant being 

adrenaline, noradrenaline and dopamine. Exercise causes the release of 

catecholamines, these then induce increases in dopamine and noradrenaline 

concentrations in the brain, which subsequently cause the activation or inhibition of 

neurons. This is responsible for facilitating CNS arousal and it is proposed that these 
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neurophysiological changes could be responsible for the changes in cognitive 

performance seen during and after exercise, though consensus on this is still unclear 

(Chmura et al., 1994, Cooper, 1973, McMorris et al., 1999, Winter et al., 2007).  

In a study examining the relationship between graded exercise, plasma 

catecholamine thresholds and choice-reaction time (CRT), Chmura et al. (1994) 

observed an inverted-U effect where beyond an optimal point, increases in plasma 

catecholamine levels resulted in a rapid deterioration of cognitive performance. In 

support of this, McMorris et al. (1999) reported improvements in a sport-specific 

decision-making test together with a rise in adrenaline levels during exercise and 

Grego et al. (2004) found an increase in P300 amplitude, as measured by 

electroencephalography (EEG), between the 72nd and 108th minute of prolonged 

moderate-intensity cycle ergometry which disappeared following 2-hours of exercise. 

As the P300 is considered to reflect a manifestation of CNS involvement with the 

processing of new information, the results may be indicative of an improvement in 

cognitive function following up to 2 hours of exercise, with further exercise leading to 

fatigue-induced alterations in information processing speed. Furthermore, the 

reduction in P300 amplitude past 2 hours’ exercise was in line with significant rises in 

adrenaline and noradrenaline from baseline. Evidence supporting this hypothesis 

however is not conclusive. McMorris and colleagues (2000) found no change in speed 

of decision-making on a psychomotor soccer-skill test and failed to provide support 

for a direct effect of increased catecholamine concentrations on cognitive 

performance during exercise (McMorris et al., 2008). This evidence suggests there is 

a likely relationship between catecholamines and cognitive function during exercise, 

though not direct.  

Similarly to cognitive-energetic models, the transient hypofrontality hypothesis 

(Dietrich, 2003) is based on the concept that the brain has a limited information 

processing capacity (Broadbent, 1958) as global cerebral blood flow, global 

metabolism and global oxygen uptake to the brain are constant (Ide and Secher, 

2000), and thus there are no additional metabolic resources available during exercise. 

As each area of the brain is highly competitive, the brain must allocate resource to 

where it is most needed. During exercise there is a large and sustained activation of 

motor pathways (i.e. primary and secondary motor cortices, basal ganglia, 

cerebellum) as well as sensory (i.e. primary sensory cortex) and autonomic (i.e. 

hypothalamus) systems which must take priority for exercise to continue (Vissing et 

al., 1996). Because of this, there is a downregulation on resource to the PFC during 

exercise, causing a temporary inhibition of brain regions that are not essential to 
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exercise and this temporarily impairs performance on prefrontal-dependent tasks that 

are mostly those of higher cognitive functions.  

Though there is sound theoretical evidence for hypofrontality, empirical evidence has 

been mixed. Some evidence concerning impairment to behavioural performance of 

attentional or executive tasks during exercise has been reported (Del Giorno et al., 

2010, Dietrich and Sparling, 2004, Wang et al., 2013), but equally improvements in 

performance have been reported during prolonged (Pesce et al., 2003), moderate 

(Hung et al., 2013) and high-intensity (Davranche et al., 2015, Schmit et al., 2015) 

exercise. A recent study by Tempest et al. (2017) used both a behavioural 

assessment of executive function and near-infrared spectroscopy to detect changes 

in brain activity via oxyhaemoglobin concentrations (O2Hb). Interestingly, 60-minutes 

of cycling at a physiologically challenging intensity improved RT on the Eriksen flanker 

task (indexing inhibitory control; Machado et al. 2007) but impaired performance on 

the 2-back task (reflecting WM efficiency). Moreover, no inverse pattern of 

oxygenation between prefrontal and motor regions was observed as exercise 

duration progressed. Schmit et al. (2015) and Ando et al. (2011) have also failed to 

find a relationship between behavioural task performance on the Eriksen flanker task 

and reductions in right frontal cortex oxygenation during strenuous exercise. This is 

particularly surprising since the right inferior frontal cortex is an important component 

in inhibition processes (Aron et al., 2004). These findings raise an interesting point 

regarding the effect of exercise on executive function. The finding that inhibitory 

processes are facilitated with exercise but WM processes are impaired supports the 

notion that, despite both being classed as executive processes, they are indeed 

separate and should not be generalised (Miyake et al., 2000). Furthermore, it is 

important to consider that different executive processes rely on different neural 

networks and thus downregulation of the PFC may be more prominent on particular 

tasks (Radel et al., 2017). 

An increase in peripheral BDNF (pBDNF) levels during (Rasmussen et al., 2009) and 

following (Ferris et al., 2007, Griffin et al., 2011, Lee et al., 2014, Rasmussen et al., 

2009, Skriver et al., 2014, Tonoli et al., 2014, Tsai et al., 2014a, Winter et al., 2007) 

exercise has led to the theory that this mechanism may be responsible for exercise-

induced cognitive enhancement. Winter et al. (2007) assessed 27 healthy male 

participants on a novel language-learning task following a rested condition, moderate-

intensity and high-intensity exercise. Vocabulary learning was faster and BDNF levels 

higher after the intense exercise condition compared to the other two conditions. 

Furthermore, the maintenance of pBDNF concentrations post-exercise positively 
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correlated with better short-term learning performance, highlighting the potential role 

of BDNF as a mediator of improved learning following physical exercise. Griffin et al. 

(2011) also reports similar findings, with intensity-dependent increases in pBDNF and 

improvements in memory performance on a face-name matching task, known to 

recruit the hippocampus but not on Stroop task performance that primarily recruits the 

frontal lobe. These results are not uncommon, with positive correlations often being 

reported when studies assess pBDNF alongside a measure of memory (Lee et al., 

2014, Skriver et al., 2014, Winter et al., 2007) but not when studies assess other 

cognitive domains (Ferris et al., 2007, Tsai et al., 2014a). It is important to emphasise 

openly that many of the theoretical models commonly used in current literature to 

explain post-exercise changes in cognitive function were designed specifically to 

account for the psychological effects during exercise. Given the lack of detailed data 

about the time it takes for the brain to resume pre-exercise status, there is uncertainty 

regarding the applicability of these frameworks to cognitive function when assessed 

post-exercise. There are very few theoretical frameworks specifically explaining 

exercise-induced cognitive changes post-exercise, perhaps due to the challenges 

and limitations in neurophysiological assessment.  

1.5. Exercise-cognition interaction: Moderating factors  

1.5.1 Exercise intensity  

Low-intensity exercise has most commonly been examined when used to assess the 

inverted-U effect of exercise intensity on cognitive function. Wang et al. (2013) found 

no effect of 30-minutes low-intensity cycling exercise (30 % HRR) on shifting and 

problem-solving executive functions in young healthy adults when compared to a 

seated control. These results are echoed by Kamijo et al. (2004b) who found no 

change in P300 amplitude following low-intensity cycling, judged as an RPE of 7-9 on 

the Borg 6-20 scale (Borg, 1998). In a later study, Kamijo et al. (2009) assessed 

inhibitory control in healthy young and older adults following 20-minutes of light 

exercise (30 % V̇O2max) and reported no significant changes in RT in either group, 

though P300 latency was significantly shorter following exercise than the baseline 

session. This finding led the authors to suggest stimulus evaluation processes were 

facilitated. Conversely, Ferris et al. (2007) assessed performance on inhibitory control 

using the Stroop test following 30-minutes` low-intensity exercise (20 % below 

ventilatory threshold; VT) and found improved performance in young physically active 
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students. In support of this, a meta-analysis indicated overall beneficial effects of low-

intensity exercise on aspects of cognitive function immediately following exercise, 

though no moderating effect of any exercise intensity on cognitive function was 

observed when testing was conducted during exercise (Chang et al., 2012).  

Moderate-intensity exercise has received the most attention regarding its effect on 

cognition, likely due to increased health benefits compared to low-intensity exercise 

(Warburton et al., 2006). In alignment with early theories of an inverted-U effect, much 

of the research examining moderate-intensity exercise reports facilitative effects. 

Kamijo et al. (2009) found an improvement in RT performance on a modified flanker 

task during 20 minutes of exercise at 50 % V̇O2max in both younger and older male 

adults. Similarly, Pesce and Audiffren (2011) assessed younger and older adults 

during moderate-intensity exercise but on a much larger scale, with a total of 100 

participants. During exercise at 60 % HRR, a facilitative effect on CRT speed of 

response was reported. Chang et al. (2011) had 20 participants exercise at a 

moderate-intensity (69 % HRR) on a cycle ergometer for 20 minutes and reported 

facilitative effects for both accuracy and response speed in the Tower of London task, 

indicating a facilitative effect on planning and problem solving. Furthermore, 

improvements with moderate-intensity exercise appear to be independent of fitness-

level, as facilitative effects have been observed in both untrained (Joyce et al., 2009) 

and endurance-trained (Hogervorst et al., 1996) individuals. Though the authors 

determined this intensity to be strenuous in the latter study, as previously discussed 

more recent guideline places their work at the higher-end of moderate-intensity. 

Indeed, there are studies that indicate negligible or even detrimental effects on 

cognition during and/or following moderate-intensity exercise (Del Giorno et al., 2010, 

Moore et al., 2012), though collectively these studies are in the minority. This is 

reinforced by an overall review of studies examining the effect of moderate-intensity 

exercise on cognitive performance, where McMorris (2016) identified that 28 of 32 

studies found facilitative effects on either speed or accuracy of cognitive tasks. 

Additionally in a comprehensive meta-analysis of the acute effects of exercise on 

cognitive performance, Chang et al. (2012) found an overall positive effect for 

moderate-intensity exercise when cognitive tasks were administered immediately 

following exercise and following more than a 15 minute delay. While recreational 

athletes and those interested in general health benefits exercise at moderate-

intensity, high-level athletes regularly train to push their own limits of performance 

and as such, they frequently partake in exercise intensities greater than what is 

considered moderate.  
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High-intensity exercise places greater demands on anaerobic metabolism than lower 

intensities. Limitations in energy supply (e.g. phosphocreatine) and intramuscular 

accumulation of metabolic by-products (e.g. lactate, H+, inorganic phosphate) 

associated with strenuous exercise have been attributed as the cause of physical 

fatigue (Tomlin and Wenger, 2001). Though some researchers have suggested that 

cognitive control is “extremely robust” and not influenced by the intensity of exercise 

(Davranche et al., 2015), theoretical, experimental and anecdotal literature converges 

towards an impairment of cognitive performances (Ando et al., 2005, Chmura et al., 

1994, Chmura and Nazar, 2010, Cooper, 1973, Covassin et al., 2007, Dietrich, 2006, 

Dietrich and Audiffren, 2011, Wang et al., 2013). Fery et al. (1997) reported an 

impaired RT during exhaustive exercise in young male adults and McMorris et al. 

(2009) found detrimental effects of exercise at 80 % Wmax on concomitant flanker task 

performance. In a larger study, Covassin et al. (2007) assessed neurocognitive 

function in 102 male and female recreational athletes following a maximal treadmill 

test to exhaustion. Post-exercise reductions in immediate recall memory and delayed 

recall memory, but not visual memory, motor processing speed or RT were observed. 

The diverse effects seen in different aspects of memory and other cognitive domains 

provides evidence for task-specific effects of exercise, a point that will be discussed 

further in section 1.5.4. In two studies, Kamijo et al. (2004a, 2004b) reported a 

reduction in arousal and in attentional resource allocation, as indicated by the P300 

component, following HIE to volitional exhaustion. In a recent investigation, Schmit et 

al. (2015) assessed changes in cognitive control via the Eriksen flanker task during 

intense exercise (85 % Wmax) to volitional exhaustion in 15 young healthy individuals. 

Most notably, Schmit and colleagues were interested in examining cognitive 

performance at two particular time points, at the start and end of strenuous exercise. 

Interestingly, facilitative effects were observed shortly following the onset of exercise, 

indicating that improvements in cognitive performance can occur in the first moments 

of intense exercise. At the point of exhaustion however, an individual’s susceptibility 

to incorrect responses increased and they were less capable of correcting incorrect 

action impulse, as measured by electromyography of the thumb muscle, despite 

unchanged behavioural processes.  

The moderating effect of exercise intensity on cognitive performance appears well 

established. However, as shown in Figure 1.1, many factors influence cognitive 

performance and therefore exercise intensity must be considered alongside 

concomitant moderators to understand its interaction. The next section will explore 

the moderating effect of exercise mode on cognitive performance.  
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Figure 1.1 Schematic representation taken from Pesce (2009b) illustrating the effects 

of individual and task constraints on the acute exercise-cognition interaction: (a) 

arrows represent the interactions reported in the literature between individual and 

task constraints (horizontal arrows) and within the sub-sets of individual and task 

constrains (vertical arrows); (b) arrows represent the relationships hypothesised in 

the literature. 
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1.5.2 Exercise mode 

A factor often overlooked despite having been demonstrated to significantly moderate 

the exercise-cognition interaction is exercise mode (Lambourne and Tomporowski, 

2010). Ergometer cycling is the most frequent exercise modality used in the literature 

investigating the impact of exercise on cognitive function, followed by running 

(Lambourne and Tomporowski, 2010). The decision behind the selection of exercise 

mode is frequently unreported, perhaps due to both exercise modalities being 

considered to evoke similar responses. Meta-analytic assessment however has 

demonstrated that the cognitive response is not similar (Lambourne and 

Tomporowski, 2010). Interestingly, a small positive effect on cognitive performance 

during and following exercise was observed when cycling was used as the exercise 

modality. Running, however, elicited a moderate negative effect on cognitive 

measures during exercise. Though both exercise modes utilise large muscle groups, 

the physiological response is substantially different, which may explain this finding 

(Millet et al., 2009). Indeed, running requires greater coordination and control of body 

movement compared to cycling and thus it is plausible that a greater allocation of 

physiological and psychological resources is required. This may resultantly divert 

resource away from the PFC in favour of cortices regulating posture and stability, or 

lower the signal-to-noise ratio resulting in less efficient cognitive processing 

(Lambourne and Tomporowski, 2010).  

The expertise of individuals may also influence cognitive processes, with familiarity 

being associated with the modulation of brain cortical activity (Brümmer et al., 2011). 

Familiar exercise has been reported to deactivate emotional brain regions, resulting 

in a more positive psychophysiological response at both moderate- and high-

intensities. Thus, when assessed on less familiar exercise modes, cognitive 

performance may be affected and results may be less ecologically valid. Similar to 

exercise mode, the duration of exercise has a moderating effect on cognitive 

performance; this will be discussed in the next section. 

1.5.3 Exercise duration 

In a recent meta-analysis, Chang et al. (2012) found exercise durations greater than 

20 minutes had positive effects on cognitive performance. Conversely, short-duration 

exercise lasting less than 11 minutes had no effect on cognitive performance and 

exercise durations between 11-20 minutes resulted in negative effects. In line with 
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this, it is generally considered that submaximal exercise lasting between 20–60 

minutes is most beneficial for cognitive enhancement (Tomporowski, 2003) and in 

reducing negative psychological states such as anxiety (Petruzzello et al., 1991). 

When exercise duration lasts more than 60 minutes however, the appearance of 

fatigue symptoms may compromise cognitive functions (Brisswalter et al., 2002).   

Research investigating cognition during or following prolonged exercise lasting 

greater than 60 minutes is limited. In one study investigating prolonged continuous 

exercise over one hour, Grego et al. (2005) found facilitative effects of moderate-

intensity exercise (~60 % V̇O2max) up to 2 hours. During exercise from 2-3 hours and 

immediately post-exercise however, cognitive performance was impaired on both 

simple and complex cognitive tasks. It is known that prolonged periods of exercise 

cause dehydration which can have deleterious effects on cognitive performance (Cian 

et al., 2000). However, Grego and colleagues assessed the effect of prolonged 

exercise with and without fluid and found no difference in cognitive performance 

between conditions despite a significant 4.1 % loss in body mass in the no-fluid 

condition. From this Grego et al. (2005) speculated that the reductions in cognitive 

function observed may have been due to the fatigue phenomenon, causing a 

redistribution of neural resources to areas that are considered a greater priority, such 

as the motor cortices. Alternatively, since levels of catecholamines increase over time 

regardless of exercise intensity (Chmura et al., 1998), the results may indicate that 

once a certain, and perhaps individual, catecholamine threshold is reached, 

impairments in cognitive performance are observed. This may explain how other 

moderators, such as physical fitness, cause differences in cognitive responses. As 

the duration of HIE is limited by anaerobic metabolism, there is a shortage of research 

specifically investigating the effect of exercise duration and HIE. Much of this research 

investigates exercise to volitional exhaustion, which typically lasts 8-12 minutes.  

1.5.4 Cognitive task type  

As previously discussed in section 1.2, cognitive domains are derived from different 

cortical networks within the brain and thus in experimental research, it is important 

that multiple domains be assessed to gain a true understanding and representation 

of effects. This is particularly important since most narrative reviews (McMorris and 

Graydon, 2000, Tomporowski, 2003) and meta-analyses (Chang et al., 2012, 

Colcombe and Kramer, 2003, Etnier et al., 1997, Lambourne and Tomporowski, 2010, 

McMorris and Hale, 2012) have identified task type to be a moderating variable within 
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the exercise-cognition relationship. Though task-type categories and descriptions do 

vary amongst reviews, increasing evidence supports the notion that the effects of 

acute exercise vary by the domain of cognitive function assessed.    

At the time of Etnier et al. (1997) meta-analysis and Tomporowski (2003) narrative 

review, the majority of the acute exercise literature focused on tasks that assessed 

basic information processes such as simple reaction time (SRT), CRT, visual 

searches and coincident anticipation. Recently however, there has been particular 

interest in executive functions (Chang et al., 2011, Davranche and McMorris, 2009, 

Dietrich and Sparling, 2004, Etnier and Chang, 2009, Hillman et al., 2003, Sibley, 

2006, Sudo et al., 2017, Tempest et al., 2017, Tomporowski, 2005, Tsai et al., 2014b, 

Wang et al., 2013). Though domains of executive function rely on the same fronto-

cingulo-parietal network (Niendam et al., 2012), a growing body of neurophysiological 

evidence indicates that these functions are underpinned by different neural networks 

which provide separate functional outcomes (Miyake et al., 2000). In studies that have 

assessed multiple subcomponents of executive function (Drollette et al., 2012, Moore 

et al., 2012, Soga et al., 2015, Tempest et al., 2017), different effects of exercise have 

been observed. Thus, while current evidence appears to indicate that executive 

control is more sensitive to acute exercise than other cognitive domains, emerging 

evidence suggests that generalising subcomponents of executive function may mask 

differential effects of exercise (Tempest et al., 2017).  

Recently, Chang et al. (2012) reported a significantly larger overall positive effect of 

acute exercise on executive tasks than any other cognitive domain assessed and 

independent of when the task was administered. These results are supported by 

those of McMorris et al. (2011) who report moderate-to-large positive effects of 

exercise upon central executive tasks. It is important to consider these effects in 

combination with the previously discussed moderators of performance; it is however 

interesting that many empirical studies have demonstrated detrimental effects of 

acute exercise on executive processes (McMorris et al., 2009, Mekari et al., 2015, 

Moore et al., 2012, Smith et al., 2016a, Wang et al., 2013, Whyte et al., 2015).  

1.5.5 Duration of exercise induced changes in cognitive function 

Whether facilitative or detrimental effects of exercise are observed on cognitive 

function during and/or following exercise, it is important to establish the longevity of 

the observed effect to be able to make helpful recommendations. Surprisingly, there 
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are relatively few studies that have thoroughly examined cognitive changes over time 

following exercise cessation (Lambourne and Tomporowski, 2010). Though the 

theory of exercise-induced arousal (discussed in section 1.4.2) postulates a reduction 

in cognitive performance in line with the time elapsed from exercise cessation, a 

meta-analysis of several studies has not substantiated this (Lambourne and 

Tomporowski, 2010). In a recent meta-analytic review, Chang et al. (2012) found 

cognitive tests administered 11-20 minutes after exercise result in the biggest effects 

which subside following a longer (>20-minute) delay. The authors suggest that the 

mechanisms underlying cognitive benefits are impacted by exercise intensity and the 

associated physiological response (e.g. heart rate, BDNF, endorphins, serotonin, 

dopamine).  

Brisswalter et al. (1997) assessed SRT during and immediately following exercise at 

different intensities and though a deterioration in cognitive performance during 

exercise was observed, these effects appeared to dissipate immediately post-

exercise. Similar results were also reported by Collardeau et al. (2001) who assessed 

SRT during a 90-minute moderate-intensity run as well as immediately after, 2-

minutes, and 5-minutes post-exercise. Following exercise cessation effects on 

cognitive function were found to diminish from 2-minutes onwards.  Audiffren et al. 

(2009) examined two subcomponents of executive function - inhibition and updating 

of WM - in untrained individuals before, during and following 35 minutes moderate-

intensity cycling. Effects observed during exercise were not evident upon immediate 

termination of exercise. Contradictory findings however have been reported by Joyce 

et al. (2009) in a study specifically designed to assess the time-course effect of 

exercise on cognitive function. Facilitative effects in response execution and inhibition 

(measured by a stop-signal task) were sustained for up to 52 minutes following 30-

minutes of low-moderate intensity cycling (40 % Wmax) in young untrained individuals. 

In a similar study design, Hung et al. (2013) assessed the planning domain of 

executive function via the Tower of London task prior to, immediately following, 30-

minutes post- and 60-minutes post-exercise at moderate-intensity (60-70 % HRR) in 

young individuals. Positive effects of the exercise bout were observed immediately 

following exercise cessation as well as better performance following 30 and 60 

minutes. These beneficial effects may have been observed at time periods in excess 

of 60-minutes, though as this was not assessed the full-duration of cognitive 

facilitation cannot be determined. Interestingly, Tsukamoto et al. (2016a) found 

beneficial effects of high-intensity interval exercise on executive processes (assessed 

via the Stroop task) up to 30-minutes post-exercise whereas moderate-intensity 
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exercise returned to baseline within the same timeframe. In a follow-up study 

examining repeated high-intensity interval exercise, similar effects were observed 

though post-exercise benefits following the second exercise bout only lasted up to 

10-minutes before returning to baseline (Tsukamoto et al., 2016b).  

1.5.6 Moderating effects of physical fitness and cognitive expertise 

As discussed in section 1.4.1, increasing evidence highlights the profound effects that 

chronic exercise can have on brain function and cognition. Converging evidence from 

a number of neuroimaging and neurophysiological techniques has illustrated changes 

in sensory, motor, and autonomic regions of the brain (Kramer and Erickson, 2007), 

alongside larger regional brain volumes (Tseng et al., 2013), reinforced neural 

networks (Nakata et al., 2010), and increased neuroplasticity (Knaepen et al., 2010) 

in individuals with higher physical fitness levels. It therefore appears complimentary 

that facilitative effects on behavioural performance should be observed in individuals 

with greater fitness levels.  

Indeed, Tomporowski and Ellis’s (1986) review claimed physically fitter individuals 

could perform better on cognitive tasks than individuals who had lower physical 

fitness. In support of this, further narrative (Brisswalter et al., 2002, Tomporowski, 

2003) and meta-analytic (Chang et al., 2012, Etnier et al., 1997, McMorris et al., 2011, 

McMorris and Hale, 2012) reviews have highlighted physical fitness as a key 

moderator of the acute exercise-cognition relationship. Longitudinal studies have 

demonstrated that chronic exercise leading to increased physical fitness has been 

shown to have positive effects on cognitive performance (Angevaren et al., 2008, 

Barnes et al., 2003). Given the improvements in cognitive performance and the 

beneficial changes cardiovascular exercise has on cerebral structure and function 

(Erickson et al., 2009, Voss et al., 2010), it is plausible that individuals with high-

fitness levels may receive greater benefits from an acute bout of exercise than 

individuals with low-fitness levels. However, empirical studies exploring the 

moderating influence of fitness levels have yielded inconsistent results. 

Themanson and Hillman (2006) found individuals with fitness levels above the 80th 

percentile (based upon ACSM guidelines) had greater action monitoring ability, as 

indicated via EEG measurements, compared to individuals with lower-fitness. This 

study however, failed to find differential effects of 30-minutes moderate-intensity 

exercise relative to fitness levels on executive processes. Similar findings have been 
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reported in adolescents, with physical fitness but not acute exercise modulating 

event-related potential indices for executive control (Stroth et al., 2009b). In an initial 

review, Tomporowski and Ellis (1986) concluded that strenuous exercise would have 

differential effects on cognitive abilities in subjects of different fitness levels. Two 

subsequent studies designed to substantiate this conclusion however failed to 

provide supporting evidence (Tomporowski et al., 1987). On examining the effect of 

cardiovascular fitness, Etnier et al. (1997) reported significantly larger effect sizes for 

cross-sectional/correlational designs (ES=0.53) and chronic designs (ES=0.33) than 

acute exercise intervention studies (ES=0.16) and indeed, studies assessing 

behavioural (Fleury et al., 1981b, Travlos and Marisi, 1995), and neurophysiological 

indices (Magnie et al., 2000) provide opposing evidence. Nevertheless, a 

considerable amount of literature provides supporting evidence for a moderating 

effect of fitness level on cognitive function, thus indicating a potential relationship that 

requires further examination.   

Pesce et al. (2011) compared performance on a go/no-go task while cycling at 60 % 

HRR in 16 older road cyclists (60-80 years old) with 16 age-matched endurance-

trained non-cyclists and 16 sedentary individuals. When compared to sedentary 

untrained individuals, both trained groups had faster RT during physical exercise, 

suggesting the chronic practice of endurance sports positively moderates the 

relationship between acute exercise and attentional RT. A weakness of this study 

however is that fitness assessment was not objectively assessed nor did the authors 

report the duration of the exercise bout and thus, while the trained individuals were 

experienced in their respective sports, the effect of their cardiovascular fitness in 

relation to their cognitive performance cannot be inferred. Labelle et al. (2014) 

assessed executive control via a modified Stroop task in higher- (V̇O2max = 50.6 ml.kg-

1.min-1) and lower- (V̇O2max = 38.3 ml.kg-1.min-1) fit individuals during a 6.5 minute bout 

of exercise at either 40 %, 60 % or 80 % of their Wmax. Deleterious effects when 

exercising at the highest intensity were reported but only in lower-fit individuals who 

had an increase in RT for the inhibition non-switch trials of the Stroop task switching 

condition. In a similar study, Brisswalter et al. (1997) examined the effect of fitness 

level on SRT while cycling at either 20, 40, 60 or 80 % Wmax. Individuals with greater 

fitness levels (V̇O2max = 64.1 ml.kg-1.min-1 vs 42.2 ml.kg-1.min-1) were unaffected by 

the exercise bout whilst lower-fit individuals demonstrated a deterioration in RT at all 

intensities, with the most pronounced being at 80 % Wmax compared to baseline. In a 

study examining cognitive performance post-exercise, Llorens et al. (2015) found 

individuals with lower fitness levels had reduced attentional control following a 
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maximal test to exhaustion, while individuals with higher fitness levels maintained 

performance. The beneficial effects of fitness and acute exercise have also been 

supported by a recent meta-analysis reporting significant benefits of acute exercise 

on cognitive performance for people with high fitness levels (Chang et al., 2012). One 

limitation of this meta-analysis conclusion is that the majority of the studies assessed 

the effects in individuals with moderate fitness, with fewer studies examining the 

effects in high or low fitness individuals. 

Beneficial effects of greater fitness levels on electrophysiological indices following 

acute exercise have been observed (Tsai et al., 2014a). Two groups were formed 

following the assessment of V̇O2max forming a high-fitness group (V̇O2max = 58.0 ml.kg-

1.min-1) and low-fitness group (V̇O2max = 36.0 ml.kg-1.min-1). Following 30-minutes of 

moderate-intensity exercise at 60 % V̇O2max, both groups had shorter RT on a 

visuospatial attention task and increased central contingent negative variation (CNV). 

However, only individuals with higher fitness levels were found to have greater P300 

amplitude and increased frontal CNV after acute exercise. The authors indicate that 

the CNV results may suggest that the function of "cognitive” preparation processes 

could be enhanced via acute exercise for higher-fit individuals while greater P300 

amplitude may indicate more efficient allocation of attentional resources. The failure 

to find a fitness-related difference in behavioural performance supports others that 

have suggested aerobic fitness has the greatest effect on cognitive control processes 

relative to other aspects of cognition (Colcombe and Kramer, 2003, Kamijo et al., 

2010).  

There has been debate over potential ceiling effects of fitness on cognitive 

performance, or whether above average fitness levels provide greater benefits 

(McMorris and Corbett, 2016). This was addressed in a study by Chang et al. (2014) 

who investigated the role of cardiovascular fitness on Stroop test performance before 

and after 20-minutes of cycling at 65 % V̇O2max. Participants were placed in one of 

three groups based upon a tertiary split and were classified as having poor, good and 

super fitness for men and poor, excellent and superior fitness for women aged 20-29 

according to the ACSM guidelines (see section 1.3.1): low fitness group (mean V̇O2max 

= 35.25 ml.kg-1.min-1), moderate fitness group (mean V̇O2max = 45.52 ml.kg-1.min-1) 

and high fitness (mean V̇O2max = 56.21 ml.kg-1.min-1). Improvement in performance 

was found in all three fitness groups indicating that fitness level did not affect the 

positive relationship between acute moderate exercise and cognition. Interestingly 

however, in the incongruent condition, the moderate fitness group displayed the 

shortest RT and the longest RT was observed in the high-fitness group. The authors 
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suggest this indicates that there are no additional benefits of extremely high fitness, 

as judged relative to ACSM norms, and that there may be an inverted-U dose-

response relationship between fitness and cognition. One difficulty with this 

conclusion is that it does not explain why moderate, but not high-fitness individuals 

would benefit from exercise-induced cognitive benefits (Erickson et al., 2009, Voss et 

al., 2010). A potential explanation for this may be derived from a study by Rimmele 

et al. (2009), who investigated the effect of physical activity level on adrenal and 

cardiovascular reactivity to psychosocial stress. Within this study it was found that in 

a non-sporting setting, trained individuals had a reduced reactivity of the autonomic 

nervous system to psychosocial stress than untrained counterparts. Furthermore, in 

response to a stress test, elite sportsmen (compared to amateur sportsmen and 

untrained men) had the lowest cortisol, heart rate and psychological responses. 

Based upon this it could be suggested that greater exposure to high-pressure 

situations and/or exercise-induced physiological stress reduces the stress effect as 

individuals become more accustomed to that environment. Consequently, the results 

of Chang et al. (2014) may be reflecting lower physiological arousal in higher-fit 

participants, which consequently had a negative effect on cognitive performance.  

Evidence remains equivocal regarding the effect of fitness on cognitive performance 

during and/or following acute exercise. The inconsistent findings may be because 

there is currently no well-established classification as to what ‘low’, ‘moderate’ or 

‘high’ fitness is (see section 1.3.2). Furthermore, studies that do not report objective 

values of fitness but report the trained status make it difficult to compare studies. 

Presently, there are few studies in healthy adult populations examining the effect of 

fitness levels within an acute-exercise paradigm and thus current evidence regarding 

the effect of physical fitness on acute-exercise is unclear.  

1.5.6.1 Athletes and cognitive expertise 

Some studies that have examined the effect of cardiovascular fitness on cognitive 

performance have used athletic populations to represent highly trained individuals 

(Brisswalter et al., 1997). It has been proposed however that athletes may have 

superior cognitive abilities on fundamental laboratory cognitive tasks than non-

athletes (Voss et al., 2009); in line with this, the use of a mixed athletic and non-

athletic but trained population would potentially confound results.  

Most athletes participate in life-long training, practice throughout their whole career 

and often start very early in their childhood. Alongside the development of physical 
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fitness, athletes also develop cognitive expertise as it derives from the practice of 

sports characterised by high demands on cognitive flexibility (Pesce, 2009b). The 

‘cognitive component skills’ approach focuses on whether sport expertise can 

transcend sport to influence fundamental cognitive and perceptual measures outside 

of the sporting domain (Nougier et al., 1991).  

Superior performance in athletes compared to non-athletic participants has been 

observed on classic laboratory tests of cognitive function in the absence of any 

exercise or sporting context (Alves et al., 2013, Chaddock et al., 2011, Faubert, 2013, 

Nougier et al., 1989, Pesce et al., 2011, Pontifex et al., 2009b). Chaddock et al. (2011) 

examined 18 mixed-sports college athletes and 18 non-athlete college students on 

two general cognitive tasks, namely a psychomotor speed task and a street crossing 

paradigm. Results indicated athletes to be superior on both tasks, with higher street 

crossing success rates and faster processing speed, suggesting that cognitive skills 

developed in sport might transfer to performance in everyday fast-paced multitasking 

abilities. In support of this, Alves et al. (2013) found professional volleyball players 

have superior performance speed on general tasks of executive control and 

visuospatial attentional processing compared to inactive controls. Professional 

athletes have also been found to demonstrate a dramatically better ability to learn 

how to process complex dynamic visual scenes than high-level amateur athletes, who 

in turn are much better than non-athletic university students (Faubert, 2013). 

Moreover, general tests of executive function have been shown to predict the success 

of ball sports players, with better scores on general tests of executive function being 

significantly correlated to the number of goals and assists (Vestberg et al., 2012).  

To gain a greater insight into the overall effect of studies, Voss et al. (2009) performed 

a meta-analysis examining the relationship between sports training and core cognitive 

processes. From this, a small-to-medium effect was reported indicating that athletes 

outperform non-athletes on general laboratory measures of cognition. In particular, 

athletes performed better on measures of processing speed and attentional 

paradigms and the largest effects were seen from athletes involved in interceptive 

sports (e.g. hand-body coordination sports such as tennis, fencing and boxing).  

The research presented so far suggests athletes possess better fundamental 

cognitive processes at rest. Further studies have investigated whether this is also 

reflected during and/or following exercise. Guizani et al. (2006a) compared the SRT 

and CRT of professional fencers to a sedentary control group at rest and while 

exercising on a cycle ergometer at 40 %, 60 % and 80 % Wmax. The fencers 
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demonstrated significantly faster CRT during exercise at all intensities in addition to 

a main effect for SRT indicating fencers to be faster overall. It can be argued that the 

results of this study are likely due to the type of expertise needed by fencers rather 

than fitness levels. This is supported by observation of the mean V̇O2max of the 

fencers, 50.7 ml.kg-1.min-1, which for their average age of 19 years would be classified 

as a ‘good’ fitness level according to the ACSM guidelines (Pescatello, 2014) and is 

only slightly above that regarded the norm for young males (~47 ml.kg-1.min-1) as 

indicated by Shvartz and Reibold (1990). As fitness levels between groups were not 

similar in this study, it does not provide insight into whether the training associated 

with athletic status gives a greater advantage over trained individuals of a similar 

fitness. To investigate this, Delignières et al. (1994) compared 20 expert fencers 

(mean V̇O2max = 50.1 ml.kg-1.min-1) with 20 individuals who had similar fitness levels 

(mean V̇O2max = 49.6 ml.kg-1.min-1) but had no expertise in decisional sports. 

Participants performed two CRT tasks while cycling at either 20 % 40 %, 60 % or 80 

% of their Ẇ̇max. Cognitively expert athletes showed better performance speed than 

their non-expert counterparts, with progressive enhancements occurring as physical 

exertion increased. Conversely, a negative trend was observed in non-expert 

athletes. Similar findings have been reported by Hüttermann and Memmert (2014) 

who found athletes performed better at higher exercise intensities than non-athletes 

on an attentional task, leading authors to suggest that an inverted-U function does 

not appear in expert athletes but does appear in non-athletes.  

Studies examining athletic populations are very limited and of the few, many are 

conducted without the inclusion of a control group or without comparison to 

trained/experienced novice athletes (Chmura et al., 1998, Davranche and Audiffren, 

2004b, Davranche et al., 2006a, McMorris et al., 1999). Behavioural performance 

appears to be superior in athletes both at rest and during exercise, particularly at 

strenuous intensities and therefore the inclusion of an athletic population is thought 

to moderate the acute exercise-cognition relationship. It is difficult to evaluate the 

effect of cognitive expertise against non-athletic but highly fit individuals as there are 

currently few studies with adequate control examining this effect. Due to this, it is 

currently not possible to evaluate whether athletes have an advantage over physically 

active non-athletes. It can be concluded however that both physical fitness level 

(Chang et al., 2012) and cognitive expertise (Pesce, 2009b, Voss et al., 2009) 

moderate the acute exercise-cognition relationship.  

There are discrepancies in the literature as to what an ‘athlete’ is, with some studies 

using professional athletes while others use collegiate athletes. As this could 
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influence results, guidelines have been suggested that enable both the classification 

of athlete and their trained status to be reported, which may help understand potential 

differences in results observed (De Pauw et al., 2013, Swann et al., 2015).  

The first section of this literature review focussed on the effects of exercise on 

cognitive function and why it is important for sporting performance. The totality of 

evidence suggests exercise to have positive effects during and following moderate 

intensities on many cognitive domains. There is more uncertainty surrounding 

strenuous exercise intensities however and it is suggested that this is due to the 

influence of key moderators within the exercise-cognition relationship, such as fitness 

level and exercise duration. An emerging area gaining increasing support is the 

cognitive domain-specific effects of exercise, with their being a large body of evidence 

showing greater effects on higher-order cognitive functions as compared to simple 

processes thus highlighting the importance of assessing multiple cognitive domains. 

In addition to cognitive function, mood responses can be differentially influenced by 

exercise intensities, have been found to predict athletic performance and contribute 

to sporting success (Beedie et al., 2000). To gain a deeper understanding behind the 

effects of strenuous exercise on cognitive performance it is important to investigate 

contributing constructs and thus, the next sections on this review will focus on the 

effect of exercise on different mood states.  

1.6 Exercise and Mood 

Exercise is commonly reported to improve mood and enhance psychological well-

being (Penedo and Dahn, 2005, Reed and Ones, 2006) as well as reducing stress, 

anxiety and depression (Petruzzello et al., 1991). Moods are typically defined as 

coherent affective states which last for minutes or hours and are different to emotions, 

which typically only last seconds (Mitchell and Phillips, 2007). Many reviews (Berger 

and Motl, 2000, Petruzzello et al., 1991, Reed and Ones, 2006, Yeung, 1996) and 

intervention studies (Anderson and Brice, 2011, Bartholomew and Miller, 2002, Choi 

et al., 1993, Head et al., 1996, Maraki et al., 2005, Maroulakis and Zervas, 1993, 

McGowan et al., 1991) have shown acute bouts of exercise, particularly 

cardiovascular exercise, can improve mood. As with cognitive function however, 

moderating factors influence the effect. 
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1.6.1 Exercise intensity 

It is generally considered that moderate-intensity exercise elicits the most favourable 

effects for mood benefits (Zervas et al., 1993), particularly when there is an absence 

of interpersonal competition (Berger and Motl, 2000). Many studies have found 

positive effects of moderate-intensity exercise; for example, Head et al. (1996) found 

reductions in total mood disturbance following 1-hour of treadmill walking at 50 % 

V̇O2max and following a 30-minute bout of moderate-intensity exercise at 60 % V̇O2max. 

In 24 healthy males, Cox et al. (2001) observed an increase in positive mood state 

and a decrease in negative mood state following 30-minutes of exercise at both 50 % 

and 75 % predicted V̇O2max. Neither of these studies, however, used a resting control 

group for comparison. A study that did was that of Steptoe and colleagues (1993) 

who investigated the relationship between exercise intensity and mood. Competitive 

sportsmen (n=36) and inactive men (n=36) participated in a 20-minute cycling 

exercise bout at either high-intensity (70 % V̇O2max), moderate-intensity (50 % 

V̇O2max), or light intensity (control). Following exercise, both groups exhibited 

increases in mental vigour and exhilaration compared to the control, with the same 

effects observed following exercise at both moderate and high-intensities. As 

previously discussed in section 1.3.2 however, recent suggestions place 70 % V̇O2max 

as moderate-intensity exercise, with intensities over 80 % V̇O2max being representative 

of HIE (McMorris, 2016). If we are to go by the more recent exercise-intensity 

guidelines, it could be argued that the failure to observe a difference in mood between 

the two exercise interventions was due to both being at a moderate-intensity. 

Nevertheless, it is interesting to observe that reductions in tension-anxiety across a 

maximal test were only observed in sportsmen, with inactive men reporting no 

change. This result has been echoed in a more recent study by Hoffman and Hoffman 

(2008), where improvements in vigour and reductions in fatigue were only reported 

among regular exercisers but not in non-exercisers. Furthermore, though total mood 

disturbance (TMD) improved in both groups following a 20-minute moderate–intensity 

exercise bout, approximately twice the effect was observed in regular exercisers 

compared to non-exercisers. This raises an interesting question regarding the 

influence of physical fitness on mood, which will be discussed further throughout 

section 1.6.   

While it appears moderate-intensities generally facilitate mood, high-intensities have 

been associated with detrimental effects (Berger and Motl, 2000, Hall et al., 2002, 

Steptoe and Bolton, 1988, Steptoe and Cox, 1988). This may be founded on the 
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assumption that exercise at moderate-intensities are more enjoyable and less 

aversive than activities typically performed at higher intensities (Ekkekakis et al., 

2000). Two studies found low-intensity exercise (25 W) to produce modest 

improvements in mood, as assessed via the profile of mood states (POMS) (McNair, 

1971), while HIE (100 W) increased negative mood states (Steptoe and Bolton, 1988, 

Steptoe and Cox, 1988). The use of an absolute measure of intensity in these studies 

may mean that for some individuals 100 W is representative of a high-intensity, whilst 

for others it is not. However, other studies have shown similar findings using relative 

measures. For instance, increases in depression, confusion and tension were shown 

in competitive swimmers that exercised at or near maximal physical capability (Berger 

et al. (1997). Similarly, Blanchard et al. (2001) found increases in psychological 

distress following exercise at high (80 % age-predicated HRR) but not moderate (50 

% age-predicted HRR) intensities in untrained individuals. In agreement with this, 

Oweis and Spinks (2001) observed higher negative affect following 10-minutes of 

exercise at 75 % V̇O2max in untrained older individuals (55-65yrs). On the other hand, 

some reports have observed beneficial effects of HIE on anxiety reduction (Farrell et 

al., 1987) and self-esteem (Pronk et al., 1995).  

The limited amount of research, particularly current research, and differences in 

methodology used to assess the impact of HIE on mood make it difficult to draw firm 

conclusions. One problem lies in the use of various physiological parameters to 

identify intensity including power, percentage HRmax, percentage HRR and 

percentage V̇O2max (Yeung, 1996). To try to provide clarity, Berger and Motl (2000) 

suggest, overall, that optimal benefits occur following moderate-intensity exercise but 

not following low- or high-intensity exercise. These suggestions point towards the 

notion of either a critical intensity such as a threshold, or inverted-U relationship 

between exercise intensity and mood (Reed and Ones, 2006).  

A different perspective considers individual perceptions, proposing the optimal 

exercise-induced mood benefits may be subject to large individual differences 

(Berger et al., 2016, Brümmer et al., 2011, Motl et al., 2000, Raedeke, 2007, 

Schneider et al., 2009). Assessing mood using the POMS, Zervas et al. (1993) 

compared mood responses following exercise at 4 different intensities: low, 

moderate, high and self-selected. Interestingly, the group that exercised for 30-

minutes at a self-selected pace reported the greatest number of improvements across 

all of the POMS subscales. Indeed, not all individuals experience the same mood 

benefits with exercise (Raedeke, 2007) and thus, the results reported by Zervas et al. 

(1993) may be indicative of different levels of enjoyment which is known to have an 
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important role in the exercise-mood relationship (Berger, 1996, Wankel, 1993). The 

enjoyment individuals yield from different workloads may therefore be reflective of 

“flow”, described as a pleasurable state of consciousness that can only be achieved 

when an individual’s competencies are realistically matched against the challenges 

of the task (Csikszentmihalyi, 2014, Yeung, 1996). This would imply that though some 

individuals find the discomfort of HIE distressing, others may find it enjoyable and like 

the feeling of fatigue. This is in accordance with the “exercise preference hypothesis” 

which is built on the assumption that the relaxation effects of exercise are linked to 

an individual’s physical activity history and exercise preferences, where the 

‘preferred’ mode and intensity of exercise is what an individual is most familiar with 

(Brümmer et al., 2011, Schneider et al., 2009). Indeed, support for this hypothesis 

has been demonstrated by Brümmer et al. (2011) who observed reductions in brain 

cortical activity in emotional brain regions when individuals engaged in familiar 

exercise. The role of exercise modality is considered further in the following section. 

 1.6.2 Exercise mode 

Similar to exercise intensity, it is suggested that the exercise mode optimal for 

enhancing mood is one that an individual enjoys (Basso and Suzuki, 2017, Berger 

and Motl, 2000, Plante et al., 2007). Higher negative affect has been reported when 

individuals are told what type of exercise they must do compared to when individuals 

are given a choice of exercise mode (Daley and Maynard, 2003); thereby suggesting 

that preference may moderate the exercise-mood relationship. In a relatively large 

study involving 75 aerobic dance participants and 42 controls, McInman and Berger 

(1993) found significant positive changes in all POMS subscales except for fatigue in 

dance participants following 45 minutes of an aerobic dance class. Similarly, 

Steinberg et al. (1997) also found improvements in positive mood following two kinds 

of aerobic exercise (aerobic workout and aerobic dance) lasting only 25 minutes 

compared to a ‘neutral’ control group that watched a video. Lane et al. (2003) also 

assessed dance but from a more competitive standpoint. Upon assessing the impact 

of two different styles of dance in trained dancers, only one style of dance was found 

to increase vigour from baseline, indicative of enhanced mood. This suggests that the 

impact of dance on mood may be specific to its style, which again may be related to 

one’s enjoyment and/or preferred style.  
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Aside from dance, enhanced mood has been reported following a range of different 

types of activity. For example, increases in positive affect and decreases in negative 

affect were shown following an aerobics class in women (Bartholomew and Miller, 

2002, Choi et al., 1993, Maraki et al., 2005) while Berger and Owen (1992) found both 

yoga (n=22) and swimming (n=37) induced reductions in anger, confusion, tension 

and depression compared to a control group (n=28). The improvements observed 

following yoga are supported by others with reports of improvements in mood and 

anxiety in healthy young adults (Streeter et al., 2010) and reductions in self-reported 

anxiety and depression in mildly depressed young adults (Woolery et al., 2004). 

Collectively these results indicate that exercise does not need to be aerobic to be 

associated with mood enhancement. In support of this, McGowan et al. (1991) found 

reductions in total mood disturbance, tension, depression, anger and confusion 

following 75-minutes of both weightlifting and running. Interestingly, they did not see 

similar effects in a third group who participated in a 75-minute karate class. Though 

the authors suggest this may have been due to karate being of lower intensity, this is 

difficult to determine as intensity was not measured. Moreover, this explanation 

seems unlikely, as positive effects have been reported following yoga, which is 

arguably less intense than karate. Alternatively, it could be suggested that as karate 

is a contact sport that involves duelling with an opponent, it may invoke very different 

effects on mood than less confrontational sports such as running or cycling. 

Furthermore, the effect of one’s own performance against that of an external 

opponent may also affect mood. This highlights a difficulty in team sports, where 

elements outside of the control of the athlete (e.g. teammates moods, score, previous 

experience) may influence mood (Clingman and Hilliard, 1994).  

 

In addition to enjoyment (Basso and Suzuki, 2017, Berger and Motl, 2000, Plante et 

al., 2007), familiarity with the exercise mode is also important when considering the 

effects on mood. Individuals who are familiar with a particular mode of exercise are 

most likely to report positive mood effects following that mode of exercise. The most 

constant effect of exercise on mood is found when regular exercisers undertake 

exercise that is familiar to them in terms of both mode and intensity (Salmon, 2001).  

1.6.3 Exercise duration  

Literature examining the interaction between exercise duration on mood is limited, 

with studies commonly exploring mood as a secondary outcome. If duration is viewed 
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from a chronic perspective, studies exploring the effect of intensified training (IT) on 

mood are more prevalent and have yielded consistent responses. Common in many 

sports, IT is typically carried out over a few weeks and involves training sessions of 

increased volume and intensity with limited recovery (Halson et al., 2002). Following 

7 days of intense training, Piacentini et al. (2016) observed a 32 % rise in TMD as 

measured by the POMS, with the magnitude of increase being intensity dependent. 

Others have similarly found negative effects of IT on mood. For example Halson et 

al. (2002) observed a 29 % increase in TMD on the POMS following 14 days of IT in 

cyclists, Killer et al. (2017) observed a significant increase in TMD with time over 9 

days of IT and Berger et al. (1999) observed an 8 % average increase in TMD in elite 

cyclists over three-weeks of IT.  

When examiming literature regarding acute exercise duration and mood, meta-

analyses suggest at least 21-minutes is necessary to achieve increases in positive 

affect (Berger and Motl, 2000) and reductions in anxiety (Petruzzello et al., 1991). 

However, beneficial effects have been reported following 10-minutes of exercise in 

young healthy regular exercisers (Anderson and Brice, 2011, Hansen et al., 2001). 

Anderson and Brice (2011) assessed mood on a modified POMS questionnaire 

before and after 10-minutes of jogging in 20 young healthy volunteers. Compared to 

a control group, jogging resulted in favourable effects on mood. In a study specifically 

looking at the effect of exercise duration and mood state, Hansen et al. (2001) 

investigated the effect of 10-, 20- and 30-minutes cycle ergometry at 60 % estimated 

V̇O2max on mood compared to 21 healthy female rested controls. Using the POMS to 

assess mood state, beneficial effects were found following 10-minutes of cycling, with 

improvements in vigour and reductions in levels of confusion, fatigue and total mood 

disturbance. An additional 10-minutes of exercise provided a progressive 

improvement to confusion but no additional benefits were found following 30-minutes 

of exercise.  

Though there appears a general consensus that beneficial effects on mood can be 

observed following only 10-minutes of light or moderate exercise, literature examining 

the effect of exercise duration and prolonged/high-intensity exercise is scarce. This 

may be because this intensity of exercise is often explored using tests to volitional 

exhaustion and thus duration is not considered. This presents a large gap in the 

literature, specifically when examining trained populations that often engage in 

fatiguing exercise. As with cognitive function, there is an influential effect of physical 

fitness on mood, with regular exercisers experiencing different mood benefits than 

non-exercisers. This will be explored in the next section. 
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1.6.4 Physical fitness and mood  

It seems logical to suggest that people who partake in regular exercise do it because 

they enjoy it, or because they are conscious of the associated health-related benefits. 

In line with this, there is strong evidence supporting the superior mood effects trained 

individuals gain following exercise compared to sedentary individuals, with this being 

particularly pertinent for HIE. Steptoe et al. (1993) found reductions in tension-anxiety 

across a maximal test only in sportsmen, with inactive participants reporting no such 

change. Similarly, Hoffman and Hoffman (2008) found improvements in vigour and 

reductions in fatigue among regular exercisers but not non-exercisers following 20-

minutes of moderate-intensity exercise. Blanchard et al. (2001) assessed feeling 

state responses in 12 fit (V̇O2max = 53.79 ml.kg-1.min-1) and 12 unfit females (V̇O2max 

= 32.99 ml.kg-1.min-1) following 30-minutes of cycling at 50 % and 80 % age-predicted 

HRR. Following the 50 % intensity condition, similar changes in psychological distress 

were observed between groups. However, following exercise at a greater intensity 

the unfit group experienced a significant increase in psychological distress, where the 

fit group experienced a relatively large, but non-significant decrease. The authors 

align these findings with that of ‘opponent process theory’ (Solomon and Corbit, 

1974). This theory suggests that the initial feeling state reaction to strenuous exercise 

is driven by the “a-process” which causes discomfort. The a-process however, always 

arouses an opponent “b-process” which is characterised by the opposite affective 

quality and attempts to return to homeostasis. The interaction of these processes over 

time controls the intensity and quality of the affective state; the more exposure one 

gains to the exercise stimulus, the stronger the b-process becomes. Following this 

theory, it can be argued that unfit individuals find strenuous exercise more aversive 

than fit individuals, resulting in higher psychological distress post-exercise. Parfitt et 

al. (1994) found highly active subjects who exercised more than 3 times per week 

were significantly more positive during exercise at higher intensities (90 % V̇O2max) 

compared to less active individuals who trained less than twice per week. Further 

support comes from studies that have observed greater mood effects in fitter and 

more active individuals following both moderate (Boutcher and Landers, 1988) and 

higher (Boutcher et al., 1997) exercise intensities.  

Though some reports oppose the positive interaction between mood and fitness (Choi 

et al., 1993, Felts and Vaccaro, 1988, Roth, 1989, Steptoe and Cox, 1988), evidence 

appears to be strong regarding the moderating effect. Importantly however, this 

appears most apparent at high exercise intensities, with light and moderate exercise 
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being less conclusive (Ekkekakis and Petruzzello, 1999). It is reasonable to 

hypothesise that individuals more accustomed to high-exercise intensities will feel 

more comfortable in dealing with the physiological effects than those who are not 

used to them.  

A weakness in much of the evidence is in the failing to objectively quantify fitness, 

with studies often just reporting the amount of exercise participants do and classifying 

individuals over a certain threshold as ‘fit’. This is important when the findings of 

Thirlaway and Benton (1992) are considered. Findings from a correlational study led 

the authors to suggest cardiovascular fitness and participation in exercise, though 

one is causative of the other, have different effects on mood and should be 

considered separately. Furthermore, the authors suggest that it is participation in 

exercise that enhances mood and thus emphasis needs to be on performing physical 

activity rather than improving fitness. As discussed in section 1.6.1, mood benefits 

from exercise should be considered on an individual basis with preferences towards 

certain intensities and modes of exercise influencing the effect. To avoid confounding 

effects of fitness level, Ekkekakis and Petruzzello (1999) recommend controlling for 

physical fitness particularly in studies that include high exercise intensities and/or long 

durations.  

Evidence highlighting the importance of considering the exercise-mood relationship 

on an individual level may be related to the mechanisms causing the positive and/or 

negative effects. This will be explored in the next section.   

1.6.5 Mechanisms of exercise-induced mood 

Numerous physiological mechanisms have been suggested to account for the effects 

of exercise on mood. Exercise induces several physiological and neurochemical 

changes in the body which could contribute to altered mood states, these include; 

elevated endorphin levels (Boecker et al., 2008), alterations in central neural activity 

(Hall et al., 2007) and the secretion of hormones and neurotransmitters (Heijnen et 

al., 2016).  

A popular theory that has received much interest in the literature is the endorphin 

hypothesis which suggests positive mood following exercise is attributed to increased 

endorphins in the CNS (Boecker et al., 2008, Thorén et al., 1990). Whilst it has been 

shown that plasma levels of endorphins are elevated following exercise of sufficient 

intensity and duration (Goldfarb and Jamurtas, 1997), the correlation between 
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peripheral and central levels of endorphins has been debated. This is due to it being 

unlikely that endorphin molecules would be able to pass the BBB as it is relatively 

impermeable to peptides and other large molecules circulating the blood stream 

(Berger and Motl, 2000). However, convincing evidence for the endorphin hypothesis 

has been provided by Boecker et al. (2008) who used positron emission tomography 

to provide the first human evidence of increased central endorphin levels following 

exercise. In this study, 10-trained athletes were scanned at rest and following 2-hours 

of moderate-intensity running. Following exercise, the level of euphoria (assessed via 

subjective ratings) was significantly elevated and inversely correlated with non-

selective radioligand binding in frontolimbic brain areas, suggesting an increased 

uptake of endogenous endorphins.  

To try to understand the different modulation in affect following moderate and high-

intensity exercise, a recent study by Saanijoki et al. (2018) specifically investigated 

μ-opioid receptors (MOR), as these are responsible for mediating positive reward and 

euphoria (Chartoff and Connery, 2014). Results demonstrated that decreased 

radioligand receptor binding was only found following high-intensity interval training 

and this was associated with an increase in negative affect. Moderate-intensity 

activity however, did not affect MOR availability, though it did elicit positive mood and 

euphoria. This may suggest that specific opioid receptor activity modulates positive 

emotionality after moderate-intensity exercise and negative emotionality or pain after 

HIE (Saanijoki et al., 2018). The authors also suggest that mood is likely to be 

modulated by other neural factors and neurotransmitter systems, such as the 

endocannabinoid system (Fuss et al., 2015, Markoff et al., 1982, Sparling et al., 

2003).  

It has been demonstrated in mice that blocking endocannabinoids receptors, but not 

endorphin receptors, diminishes the anxiolytic and analgesic effects of running (Fuss 

et al., 2015), causing researchers to turn their attention to endocannabinoids 

(Sparling et al., 2003). Anandamide, a cannabinoid neurotransmitter linked to 

emotional and cognitive processes, freely crosses the BBB and has been reported to 

increase peripherally following exercise (Sparling et al., 2003). This mechanism may 

therefore play a significant role in the effects of exercise on mood (Dietrich and 

McDaniel, 2004, Brellenthin et al., 2017). 

It is suggested that endorphins may interact with neurotransmitters, such as 

dopamine, to improve mood (Dishman and O'Connor, 2009). In line with this is the 

monoamine hypothesis, which states that exercise leads to an increase in the 
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availability of brain neurotransmitters (e.g. serotonin, dopamine, and noradrenaline) 

(Craft and Perna, 2004). These neurotransmitters increase in both plasma and urine 

following exercise, but whether exercise leads to an increase in neurotransmitters 

centrally is currently unknown (Craft and Perna, 2004). These theories also align well 

with the neuropsychological theory of positive affect (Ashby and Isen, 1999) that 

suggests positive mood is associated with, but not necessarily caused by, increased 

levels of dopamine in the brain, particularly in the PFC and anterior cingulate. Indeed, 

a complex set of different signalling pathways, including those activated by hormones, 

neurotransmitters, growth factors, and neuromodulators, are stimulated with a single 

bout of exercise (Basso and Suzuki, 2017), and thus it is unlikely any one mechanism 

is responsible.  

In addition to physiological mechanisms, several psychological mechanisms have 

been proposed to explain the effect of exercise on mood. A popular psychological 

mechanism is the distraction hypothesis (Craft and Perna, 2004, Raglin and Morgan, 

1985) which suggests that exercise serves as a distraction from worrisome thoughts 

and daily stressors. Some studies have indicated that exercise is no more effective 

than an equivalent period of relaxation in reducing anxiety and tension (Berger and 

Friedman, 1988, Felts and Vaccaro, 1988). However, as well as alleviating negative 

mood symptoms, exercise has been demonstrated to promote positive mood 

symptoms. Therefore, exercise may only be as effective as relaxation for the 

alleviation of negative mood states, but may be superior for the enhancement of 

positive mood states (Saklofske et al., 1992). From a similar perspective, Dietrich and 

Audiffren (2011)  apply their reticular-activating hypofrontality model of acute exercise 

by suggesting worrying or stressful thoughts are not able to reach consciousness as 

the brains finite metabolic resources are diverted away from the PFC and towards 

higher priority areas such as the motor cortices. Though many theories have been 

postulated, it is highly likely that a combination of physiological, psychological, 

environmental and sociological factors influence the interaction between exercise and 

mood.  

1.7 Summary of current literature 

Research investigating the effect of exercise on cognition and mood has increased 

exponentially over the past 50 years, though the state of current research illustrates 

this area is still very much in its infancy. The identification of moderating factors within 

both the exercise-cognition and exercise-mood relationships highlights the limitations 
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in transferring results from studies done in sedentary populations and in studies using 

low or moderate-intensity exercise paradigms. Moreover, it appears that literature 

emphasising the cognitive domain specific effects of exercise is only recently 

emerging, thus calling for researchers to investigate multiple cognitive domains to 

provide insight on the effect of different exercise types and durations on specific 

cognitive domains.  

The evidence evaluated in the literature review highlights the need for further 

research investigating strenuous exercise in healthy sporting individuals. The 

physiological and neurophysiological adaptations that occur with chronic training 

support cognitive development and thus research investigating the effect of exercise 

in sedentary or untrained populations cannot be transferred nor is it likely to simulate 

the exercise type or intensity trained sporting performers undertake.  

The literature review suggests, though not conclusive, that high exercise intensities 

have detrimental effects on cognitive performance, specifically higher-order 

processes, and mood. The effect on individuals familiar with strenuous exercise and 

of greater fitness levels however has not been thoroughly investigated. Furthermore, 

an important aspect highlighted by this review is the lack of research using sport-

specific exercise protocols within their research designs. In modern day sport athletes 

must compete in congested tournament fixtures, in competitions of prolonged 

durations and commit to weeks of intensified training prior to enduring competitions. 

To understand the stress of these paradigms on cognitive function and mood, 

research needs to replicate them in study designs whilst tightly controlling for 

moderators and confounders. 

1.8 Scope of the thesis and aims  

Accordingly, the primary purpose of this thesis is to examine various strenuous, HIE 

paradigms on cognitive performance and mood in trained and athletic populations. 

Chapter 2 provides a comprehensive systematic review on the current literature 

surrounding cognitive performance in trained populations during and following acute 

HIE. It then outlines the consensus to date alongside the moderating factors that 

influence the relationship between exercise and cognitive function. In addition to 

systematically reviewing current literature, the aim of this chapter was to gain insight 

into current understanding and identify gaps in the literature for further investigation. 

The subsequent three chapters’ present experimental studies designed to investigate 
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the effect of different paradigms of exercise on cognitive performance in trained 

individuals of various disciplines. Chapter 3 examines cognitive processes in trained 

endurance cyclists following prolonged, strenuous intermittent exercise. Chapter 4 

investigates the effects of congested tournament scenarios by examining the impact 

of repeated intermittent HIE sessions, over two-consecutive days, on cognitive 

performance, mood and ratings of physical and mental energy and fatigue in trained 

intermittent sports players. Chapter 5 presents cognitive, mood, physical performance 

and perceived sleep data throughout a two-week intensified cycling training period 

and two-week taper period in trained cyclists. Chapter 6 discusses the results of the 

aforementioned studies and provides an overview of the main conclusions, practical 

implications and future research interests. 

Overall, this course of research intends to address four specific aims throughout the 

thesis: 

1. Identify and evaluate current understanding concerning the effects of strenuous 

exercise on cognitive function in trained populations. 

2. Examine the effect of prolonged, strenuous exercise on cognitive function mood, 

energy and fatigue states in trained sporting individuals. 

3. Investigate the effect of multiple strenuous exercise bouts on cognitive function 

mood, energy and fatigue states in trained sporting individuals. 

4. Characterise the effect of an intensified training intervention on cognitive function, 

physical performance, mood, energy, recovery and fatigue states in trained 

sporting individuals. 
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Chapter 2: The effect of acute high-intensity exercise 

on cognitive function in trained individuals: A 

systematic review 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 

2.1 Introduction  

The health benefits provided through participation in regular exercise are well 

established, with an abundance of evidence demonstrating increases in physical well-

being and improvements to many metabolic parameters (American College of Sports 

Medicine, 2013, Penedo and Dahn, 2005). Additional benefits are provided for those 

engaged in exercise for the purpose of training, where exercise is undertaken at 

higher intensities and/or greater frequencies/durations (Pollock et al., 1998). A 

growing body of research has demonstrated that these benefits are not just limited to 

physical health but extend to improvements in brain function and cognition (Hillman 

et al., 2008). Moreover, several intervention studies have found superior cognitive 

performance in trained subjects compared to untrained (Colcombe and Kramer, 2003, 

Tomporowski and Ellis, 1986), signifying a positive influence of physical fitness on 

cognition. Converging evidence from a number of neuroimaging and 

neurophysiological techniques provides support for these functional relationships, 

showing exercise and aerobic fitness level to be associated with profound changes in 

sensory, motor and autonomic regions of the brain (Kramer and Erickson, 2007), 

alongside larger regional brain volumes (Tseng et al., 2013), reinforced neural 

networks (Nakata et al., 2010) and increased neuroplasticity (Knaepen et al., 2010).  

There are a number of narrative, systematic and meta-analytic reviews assessing the 

relationship between acute exercise and cognition (Brisswalter et al., 2002, Chang et 

al., 2012, Etnier et al., 1997, Etnier et al., 2006, Kashihara et al., 2009, Lambourne 

and Tomporowski, 2010, Tomporowski and Ellis, 1986, Tomporowski, 2003). Despite 

advances in our understanding however, a consensus in this area is lacking. For 

example, studies have found positive effects (Hogervorst et al., 1996, McMorris and 

Graydon, 1997a), negative effects (Chmura et al., 1998, Fery et al., 1997) and no 

effects (Bard and Fleury, 1978, McMorris and Graydon, 2000) of exercise on cognitive 

function. Literature reviews have proposed that these conflicting results are due to a 

number of moderating variables that influence the exercise-cognition relationship; 

consequently, conclusions on the overall effect of exercise on cognition can only be 

drawn when moderators are controlled. Indeed, this highlights the complex 

relationship between exercise and cognitive function and thus, alongside broad all-

encompassing reviews and analyses, there is a need for more detailed systematic 

reviews to help articulate the effects of exercise on cognitive function within explicit 

parameters. 
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Two recent meta-analyses highlight a number of influential moderating factors that 

require control in research examining the relationship between exercise and 

cognition: (i) exercise intensity, (ii) exercise duration, (iii) exercise mode, (iv) cognitive 

task type, (v) participant fitness,  (vi) timing of cognitive task administration and (vii) 

the rigor of the study design (Chang et al., 2012, Lambourne and Tomporowski, 

2010). Surprisingly the number of intervention trials that have examined the 

relationship between high-intensity exercise (HIE) and cognition are relatively small, 

especially when compared to the wealth of research investigating the effect of low- 

and moderate-intensity exercise on cognitive function (Chang et al., 2012, Davranche 

and McMorris, 2009, Joyce et al., 2009, Kashihara et al., 2009, McMorris et al., 2011). 

It is generally accepted that moderate intensity exercise promotes positive changes 

in cognitive function (Chang et al., 2012, Tomporowski, 2003), while a consensus on 

the effect of HIE is yet to be reached.  

High-intensity exercise initiates significant metabolic, mechanical and biochemical 

disturbances both peripherally and centrally. These disturbances include a significant 

disruption to intramuscular homeostasis (Tomlin and Wenger, 2001), a 

disproportionate increase in the rate of peripheral fatigue development (Burnley et al., 

2012) and an increase in the release of catecholamines such as adrenaline and 

noradrenaline (McMorris et al., 2015). The large increase in adrenaline and 

associated arousal, has led to much research investigating the inverted-U effect, 

which postulates that once an ‘optimal point’ is reached, any further increase in 

metabolic load will be detrimental to cognitive performance (McMorris, 2016). Despite 

this theory setting a general notion that HIE has detrimental effects on cognition, 

empirical studies have not observed a clear relationship (Tomporowski, 2003).  

Though there is evidence supporting an inverted-U effect (Aks, 1998, Brisswalter et 

al., 1995, Chmura et al., 1994, McMorris and Graydon, 2000, Reilly and Smith, 1986), 

this function is not always observed in trained individuals with higher fitness levels 

(Hüttermann and Memmert, 2014, Pesce, 2009a). Consequently, one of the main 

methodological problems often proposed to explain the diversity of experimental 

results is the failure to control for physical fitness (Brisswalter et al., 2002, 

Tomporowski, 2003). In support of this, neuroimaging studies have shown greater 

metabolic workloads require increased brain activation of the motor cortices which 

come at the expense of other brain regions due to limited resource capacity (Dietrich 

and Sparling, 2004). This observation suggests that the influence of physical exercise 

on cognitive processes may be mediated by the level of activation induced by physical 

exertion. Within this framework it is suggested that greater fitness levels and 
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familiarity with greater metabolic workloads might enable greater resource allocation 

for cognitive tasks, thus facilitating cognitive performance (Brisswalter et al., 2002).  

Trained individuals from various backgrounds such as sports, the military and 

emergency services regularly engage in situations where they must respond quickly 

and make critical decisions during and following exposure to strenuous physical 

workloads. The ability to maintain cognitive performance on such occasions is 

paramount and thus prior to providing any recommendations, an increased 

understanding within this area is required to establish a clear effect. The limited 

number of studies investigating HIE and cognition is surprising, especially considering 

the indication of detrimental effects. Furthermore, the need for more reviews to control 

moderators is emphasized when the impact of these moderators on the acute 

exercise-cognition relationship is considered. Adding more focus to these reviews via 

this method will enable the provision of more detailed conclusions regarding the effect 

of different exercise intensities on cognitive domains in specific populations. Thus, it 

is the purpose of this systematic review to critically assess the effect of acute HIE on 

cognitive function in trained individuals. In relation to the first objective of the thesis, 

this study aims to identify and evaluate current understanding concerning the effects 

of strenuous exercise on cognitive performance in trained populations. 

2.2 Method 

This systematic review was performed following Cochrane Collaboration 

recommendations and criteria (Higgins and Green, 2011), which are in line with 

guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) statement (Moher et al., 2009).  

2.2.1 Eligibility criteria  

PICO (population, intervention, comparison, and outcome) criteria were used to 

determine eligibility for this review. Accordingly, the following inclusion criteria were 

applied: studies included trained/highly fit participants; HIE was the independent 

variable; a control and/or comparison group was used; performance on a general 

laboratory cognitive task was the dependent variable; and cognitive tests were 

administered either during or ≤10 minutes following exercise cessation. Included 

studies were designed to test the effect of high-intensity exercise (intervention) on 

cognitive task performance (outcome); consequently, studies were not included if 
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exercise was not the main intervention (i.e. assessment of pharmacological or 

nutritional interventions). In addition, only full-text original studies written in English 

were included.  

2.2.1.1 Trained/highly fit participants: Definition  

When aerobic fitness was provided, a population was deemed trained if they could 

be classified as having ‘excellent’ or ‘superior’ fitness according to the ACSM 

guidelines (Pescatello, 2014). This provided an age and gender adjusted criteria for 

inclusion. When aerobic fitness was not provided, inclusion was based upon the 

description of the sample provided by the author(s). Studies were included if they 

examined at least one trained group; if studies examined low/moderately fit 

participants but compared them to a trained group, they were included.  

2.2.1.2 High-intensity exercise: Definition  

In line with previous reviews, an ‘acute’ exercise period was defined as “exercise 

performed within a single day” (Chang et al., 2012). Consistent with the definitions 

used by McMorris et al. (2015), HIE was defined as exercise ≥ 80 % maximum power 

output (Wmax). If Wmax values were not reported but V̇O2max or percentage maximum 

heart rate (%HRmax) were, the conversion formula provided by Arts and Kuipers 

(1994) was used to determine eligibility: %V̇O2max = 12.1 + 0.866 × %Wmax, 

percentage HRmax = 46.3 + 0.545 × %Wmax. This procedure has previously been 

applied by both McMorris and Hale (2012) and Schapschroer et al. (2016). If other 

indicators of intensity were provided e.g. RPE or percentage heart rate reserve (% 

HRR), the exercise physiology literature was examined to ascertain whether or not 

the intensity was sufficient to qualify for inclusion. Exercise was deemed high-intensity 

when exercise went to voluntary exhaustion or when maximal effort was required. 

Where exercise was intermittent, duration and time working at high-intensities were 

used to determine eligibility. 

2.2.2 Information sources and search strategy  

The search strategy included several steps to ensure all possible relevant articles 

were obtained. First, an online search of electronic databases was conducted. To 

build the search criteria for database searches a PICO search strategy was employed 

(Higgins and Green, 2011); an example of the strategy can be seen in Table 2.1. To 
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avoid database bias, searches were conducted on seven different electronic 

databases: Academic Search Complete; PsycARTICLES; PsycINFO; PubMed; 

Scopus; SPORTDiscus; and Web of Science. In addition, reference lists within 

retrieved articles were manually reviewed as well as reference lists from previous 

reviews relevant to the exercise and cognition literature (Chang et al., 2012, Etnier et 

al., 1997, Lambourne and Tomporowski, 2010, McMorris and Hale, 2012, 

Schapschröer et al., 2016, Tomporowski, 2003, Tomporowski and Ellis, 1986). 

Electronic database searches were carried out on the 4th February 2017 and studies 

published anytime until the day of searching were considered.  

2.2.3 Study selection and data collection process 

Two researchers independently screened for initial exclusion via titles and abstracts. 

If it was unclear whether a study met the inclusion criteria, a secondary exclusion was 

conducted based on a review of full-text articles. If the full-text was not available, first 

authors were contacted to obtain the manuscript. Full-text articles were independently 

scanned by two researchers to determine whether they met the inclusion criteria. Any 

disagreements were resolved by discussion and if an agreement could not be 

attained, inclusion was decided by a third researcher. The data collection process is 

presented in Figure 2.1.  
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Table 2.1 Example of PubMed search strategy  

Concept Search Strategy Line  Entry 

Trained individuals 1 Trained 
 

2 Athlete* 
 

3 Skill* 
 

4 Expert 
 

5 Recreational athlete  
 

6 1or2or3or4or5 

Exercise intensity 7 Strenuous exercise 
 

8 High intensity exercise 
 

9 Physical exertion 
 

10 Physical load 
 

11 Fatiguing exercise 
 

12 7or8or9or10or11 

Cognitive function  13 Cogniti* 
 

14 Executive function  
 

15 Memory 
 

16 Psychomotor 
 

17 Reaction time 
 

18 Attention  
 

19 Decision making 
 

20 13or14or15or16or17or18or19 
 

21 6and12and20 

 

2.2.4 Quality assessment 

All studies included in the review were subject to quality assessment as suggested 

by the Cochrane guidelines (Higgins and Green, 2011). The quality of the studies was 

assessed by two members of the study team (SB and MF) who graded them with 

respect to their methodological strength using the quantitative assessment tool 

‘QualSyst’ (Kmet et al., 2004). To assess scientific rigour, QualSyst assesses 14 

items that are scored depending on the degree to which the specific criteria were met 

(yes = 2, partial = 1, no = 0) (Table 2.2). Items not applicable to a particular study 
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design were marked ‘N/A’ and excluded from the calculation of the summary score. 

The total sum of all relevant items was divided by the total possible score to give each 

study a final summary score. Quality assessment was completed by two researchers 

independently; disagreements were solved by consensus or by a third researcher. As 

outlined in the QualSyst guidelines, a final summary score of ≥75 % indicated strong 

quality, a score of 55-74 % indicated moderate quality and a score ≤54 % indicated 

weak quality.  

2.2.5 Analysis  

Cognitive tasks were identified based upon the particular test that was administered 

and were subsequently classified into a general cognitive task category (dependent 

variable). Since only a few tests measure a single cognitive construct (Lezak, 2004) 

two of the most well-established compendiums for neuropsychological assessment 

were used to identify and categorize tasks (Lezak, 2004, Strauss et al., 2006). Both 

of these resources have been used for similar purposes in previous reviews (Chang 

et al., 2012, Roig et al., 2013) and provide precise definition and categorization of 

cognitive tests into different domains. Each cognitive task and the time the task was 

completed (i.e. during and/or immediately post-exercise) was classified as an 

outcome measure and the number of outcome measures were tallied. Consistent with 

similar reviews, the direction of each outcome measure was coded as positive (+), 

negative (-), no effect (o). 
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Table 2.2 Quality assessment (Kmet et al., 2004) 

 

2 indicates yes, 1 indicates partial, 0 indicates no, NA not applicable.  

Quality scores: ≥75 % strong, 55 ≥ 74 % moderate, ≤54 % weak 

Study Question 

described 

Appropriate 

study design 

Appropriate 

study 

selection 

Characteristics 

described 

Random 

allocation 

Researchers 

blinded 

Subjects 

blinded 

Outcome 

measures well 

defined and 

robust to bias 

Appropriate 

sample size 

Analytic 

methods 

well 

described 

Estimate 

of 

variance 

reported 

Controlled 

for 

confounding 

Results 

reported 

in detail 

Conclusion 

supported 

by results 

Rating 

Brisswalter 2 2 2 2 0 N/A N/A 2 1 2 2 0 2 2 79% 

Bue-Estes  2 2 2 2 0 N/A N/A 2 1 2 2 1 2 2 83% 

Draper 2 2 1 1 N/A N/A N/A 2 1 2 2 0 2 2 77% 

Guizania 2 2 2 2 2 N/A N/A 2 1 2 2 0 2 2 88% 

Guizanib 2 2 2 2 1 N/A N/A 2 1 2 2 0 2 2 83% 

Labelle 2 2 2 2 N/A N/A N/A 2 2 2 2 1 2 2 95% 

Reilly 2 2 2 1 0 N/A N/A 2 1 2 2 0 1 1 67% 

Smith 2 2 2 1 0 N/A N/A 2 2 2 2 1 2 2 83% 

Tomporowski 2 2 1 2 0 N/A N/A 2 1 0 1 0 1 2 58% 

Whyte 2 2 2 2 2 N/A N/A 2 2 2 2 1 2 2 96% 
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2.3 Results 

2.3.1 Study selection 

Each step of the systematic search with the number of studies reviewed at each stage 

and main reasons for exclusion are shown in Figure 2.1 below.  

 

 

Figure 2.1 PRISMA flowchart illustrating the literature search and selection process 

at each stage; from (Moher et al., 2009) 

 

A total of 863 articles were located through the systematic search; of these 318 were 

duplicates and therefore removed. An additional 19 articles were identified from 

additional records including relevant reviews and hand-searching through the 
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reference lists of the articles found through the database search.  A total of 564 

articles were screened by title and abstract leading to the exclusion of 526 articles 

which did not meet the inclusion criteria. The main reasons for exclusion included: 

“cognitive performance not being the dependent variable”, “exercise not being the 

independent variable”, “cognitive tasks not being general laboratory-based tasks” and 

“studies examining injuries or diseases”. The remaining 38 articles were assessed for 

inclusion by reading the full-text; this resulted in a further 28 articles being excluded. 

The primary reason for exclusion was the exercise intervention not meeting the 

required intensity (Del Percio et al., 2009, Elsworthy et al., 2016, Hancock and 

McNaughton, 1986, Hogervorst et al., 1996, Hüttermann and Memmert, 2014, 

Lemmink and Visscher, 2005, Pesce et al., 2007, Pesce and Audiffren, 2011, Pesce 

et al., 2011, Sjöberg, 1980). Several studies were excluded because participants did 

not meet the ‘trained’ criteria (Aks, 1998, Fery et al., 1997, Fleury and Bard, 1987, 

Fleury et al., 1981a, Levitt and Gutin, 1971, McMorris and Keen, 1994, Thomas et al., 

2016, Wang et al., 2013). Five studies did not provide enough detail to enable 

inclusion with regards to either trained status (Malomsoki and Szmodis, 1970, 

Nibbeling et al., 2014, Strauss and Carlock, 1966) or exercise intensity (Guizani et 

al., 2006c, Reddy et al., 2014). Three studies did not provide an adequate control or 

comparison group (Chmura et al., 1994, Luft et al., 2009, Thomson et al., 2009). One 

study mixed trained and untrained participants in the intervention groups 

(Tsorbatzoudis et al., 1998) and exercise in one study was not the main independent 

variable (Coco et al., 2009). A total of 10 studies remained and were included in the 

review. 

2.3.2 Descriptive characteristics of included studies 

The characteristics of the studies regarding participants, exercise interventions and 

cognitive tests are shown in Table 2.3. Overall, the data from 130 participants (101 

male, 29 female) who met the ‘trained’ criteria were included in this review. Mean age 

ranged from 19-31 years (mean 23.3 ± 2.6 years) and from the seven studies that 

provided specific information regarding the fitness level of the participants, mean 

V̇O2max values was 57.5 ml∙kg-1∙min-1 (mean range 50.6 to 66.0 ml∙kg-1∙min-1). Nine 

studies used participants involved in sports including running, triathlon, soccer, 

hockey, athletics, fencing, rugby, Gaelic football and hurling. Only two modes of 

exercise were used in study protocols with cycling being the most common (n = 6) 
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followed by running (n = 4); the average exercise time at high-intensity was 5.6 ± 3.0 

minutes with the range being from 1-10 minutes.  

In total, 5 studies used a mixed between-subjects and within-subjects design, 3 

studies used a within-subject’s crossover design and 2 used an independent 

between-subjects only design. Seven studies compared HIE to moderate- and low-

intensities (Brisswalter et al., 1997, Draper et al., 2010, Guizani et al., 2006b, Labelle 

et al., 2013, Lo Bue-Estes et al., 2008, Reilly and Smith, 1986, Smith et al., 2016a); 

of these 5 studies included a rest condition (Brisswalter et al., 1997, Draper et al., 

2010, Guizani et al., 2006b, Lo Bue-Estes et al., 2008, Smith et al., 2016a) with 2 

failing to counterbalance the order of the rest or exercise intensities (Guizani et al., 

2006b, Lo Bue-Estes et al., 2008). The 3 remaining studies did not compare HIE to 

other intensities but instead investigated one HIE session and compared this to a rest 

condition (Llorens et al., 2015) or non-exercising group implementing 

counterbalanced (Whyte et al., 2015) and non-counterbalanced orders (Tomporowski 

et al., 1987). 
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Table 2.3 Summary of studies examining the effect of high-intensity exercise on cognitive performance  

Author  Design Participants Exercise  Cognitive Performance Outcome Main results Comments 

 

 

Type  & 
Intensity 

Time 
at HI 

 Task 

 

General 
Category 

Time of 
testing 

Brisswalter et 
al. (1997) 

Mixed 
 

Trained: n = 10  

A = 23.3 ± 1.5 
M/F = 10/0 

V̇O2 = 64.1 ± 2.3 

 
Untrained: n = 10 

A = 23.7 ± 1.8 
M/F = 10/0 

V̇O2 = 42.2 ± 3.0 

 

Cycle 
ergometer 

20%, 40%, 
60%, 80% 
Wmax 

10 
min 

 SRT 
 
 

Information 
processing 

Pre, 
Post & 
during 
 
 

No effect on speed or 
accuracy during or post HI 
exercise in trained group 
compared to lower intensity 
exercise 
 

Rest condition 
Counterbalanced order 

Draper et al. 
(2010) 
 
 
 

Crossover Trained: n = 12 

A = 31.5 ± 5 
M/F = 12/0 

V̇O2 = NR 

Cycle 
ergometer  

80% VT, 
25% ∆ VT, 
75% ∆  VT 

3 
min 
+ 
time 
of 
task  
 
 

 SRT, 
CRT 
 
 
 
 

Information 
processing 

During 
 

Speed: Faster CRT during 
HI exercise (75% ∆ VT) 
compared to rest. No effect 
on movement time or total 
response time for SRT or 
CRT 
Accuracy: No effect of HI 
exercise on SRT or CRT 
compared to rest. 
 

Rest condition 
Counterbalanced order 
Speed assessed as RT, 
movement time & total 
response time; 
considered as 6 outcome 
measures.  

Guizani et al. 
(2006b)  

Mixed Trained: n = 12 

A = 19.0 ± 2.9 
M/F = NR 

V̇O2 = 50.7 ± 5.6 

 
Untrained: n = 12 

A = 20.8 ± 3.9 
M/F = NR 

V̇O2 = 36.9 ± 4.6 

 
 
 

Cycle 
ergometer  

20%, 40%, 
60%, 80% 
Wmax 

6 
min 

 SRT, 
CRT 
 

Information 
processing 

During 
 

Speed: Faster CRT at 80% 
Wmax in trained group 
compared to rest. No effect 
on SRT.  
Accuracy: No effect of HI 
exercise compared to rest. 

Rest condition 
No Counterbalanced 
order  
Simple effects analyses 
were conducted despite 
no interaction. 
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Table 2.3 Summary of studies examining the effect of high-intensity exercise on cognitive performance (continued)  

Author Design Participants Exercise  Cognitive performance outcome Main results Comments 

Type  & 
intensity 

Time 
at HI 

Task General 
category 

Time of 
testing 

Labelle et al. 
(2013) 
 
 
 

Mixed Trained: n = 16 

A = 24.6 ± 2.5 
M/F = 9/7 

V̇O2 = 50.6 ± 7.9 

 
Untrained: n = 21 

A = 23.2 ± 2.6 
M/F = 10/11 

V̇O2 = 38.3 ± 5.2 

 

Cycle 
ergometer 

40 %, 60 %, 
80 % Wmax 

 

 

6.5 
min 

 Stroop 
task 
 

Executive 
function 

During 
 
 

No effect of HI exercise in 
trained group for speed or 
accuracy compared to lower 
intensities or untrained 
group  
 
 

No rest condition 
Counterbalanced order  
 

Llorens et al. 
(2015) 

Mixed Trained: n = 14 

A = 19-28 
M/F = 14/0 

V̇O2 = 58.4 ± 3.0 

 
Untrained: n = 13 

A = 19-28 
M/F = 13/0 

V̇O2 = 41.3 ± 6.3 

 

Cycle 
ergometer 

Incremental 
test to 
exhaustion 

NR  Spatial 
attention 
task  
 

Attention Post Speed: Faster RT after 
exercise in trained group 
compared to rest condition. 
Accuracy: No effect  
 

Rest condition 
Counterbalanced order 

Lo Bue-Estes 
et al. (2008) 

Mixed 
 

Trained: n = 9 

A= 20.8 ± 0.9 
M/F = 0/9 

V̇O2 = 55.3 ± 7.9 

Control: n = 8 

A = 21.1 ± 2.2 
M/F = 0/8 

V̇O2 = NR 

Treadmill 

25 %, 50 %, 
75 %, 100 %  
V̇O2max 

1 
min 

 SRT, 
CPT, CS, 
WM, 
VSM, 
CSD. 

Information 
processing, 
Attention, 
Memory  

Pre, 
Post & 
during 
 

No change post-exercise in 
SRT, CPT, CS, VSM or 
CSD.  
Negative effect of HI on 
working memory at 100 % 

V̇O2 & post-exercise 

compared to pre-exercise. 

Rest group (control) 
No counterbalanced order 
Experimental group mean 
scores adjusted using 
control group mean scores 
on complex cognitive tasks. 
WM only test done ‘during’ 
exercise. All but SRT 
measured as throughput 
from the ANAM; a measure 
of correct hits (accuracy) in 
a set period of time. 



 

57 
 

Table 2.3 Summary of studies examining the effect of high-intensity exercise on cognitive performance (continued)  

Author Design Participants Exercise  Cognitive performance outcome Main results Comments 

Type  & 
intensity 

Time 
at HI 

Task General 
category 

Time of 
testing 

Reilly and 
Smith (1986) 

Crossover Trained: n = 10 

A = 20.0 ± 0.8 
M/F = 10/0 

V̇O2max=57.6 ± 7.7 

Cycle 
ergometer 

10 %, 25 % 
40 % 55 %, 
70 %, 85 %  
V̇O2max 

NR  Pursuit 
rotor task 
 

Information 
processing 

During 
 
 

Reduced performance at 85 
% V̇O2 compared to control 
(10 % V̇O2) 
 
 

No rest condition (10 % 
V̇O2 used as control) 
Counterbalanced order 

Smith et al. 
(2016a) 
 
 

Crossover Trained: n = 15 

A= 28.0 ± 5.0  
M/F = 6/9 

V̇O2max = NR 

Treadmill 

70% HRR 
(until RPE 
15-17) and 
90 % HRR 
(until RPE 
18-19)  
 
 

~4 
min 

 Go/No-
go 
 
 

 

Executive 
function 

During 
 
 

Speed: Slower RT during 
high-intensity exercise 
compared to rest and 
moderate-intensity   
Accuracy: Higher omission 
and decision errors during 
high-intensity exercise 
compared to rest and 
moderate-intensity 
 

Rest condition 
Counterbalanced order 
Accuracy provided 2 
outcome measures split 
into omission and 
decision error rate 
 

Tomporowsk
i et al. (1987) 

Between-
subjects 

Trained: n = 12 

A= 19-23 
M/F = 8/4 

V̇O2max=66.0 ± NR  

 
Untrained: n = 12  

A= 17-29 
M/F = 8/4 

V̇O2max=41.1 ± NR 

 
 
 

Treadmill 

Incremental 
up to 80 %  
V̇O2max 

NR  Free-
recall 
memory 

Memory Post No effect of exercise on free-
recall memory compared to 
untrained group 

No rest condition 
No counterbalanced 
order 
Intensity of exercise was 
based on HR 
corresponding to % V̇O2 
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A= age; ANAM = Automated Neuropsychological Assessment Metrics; CPT = continuous processing task; CRT = choice reaction time; CS = 
code substitution; CSD = code substitution delay; HI = high-intensity; HRmax = heart rate maximum; HRR = heart rate reserve; M/F = male/female; 
Mixed = mixed between and within subjects design; n = number of subjects; NR = not reported; RPE = rate of perceived exertion; RT = reaction 
time; SDMT = symbol digits modality test; SRT = simple reaction time; V̇O2max = maximal oxygen consumption; VSM = visuospatial memory; VT 
= ventilatory threshold; Wmax = maximum power output; WM = working memory; ∆ = the difference between VT and V̇O2max; ~ = approximately. 
Age is provided as mean ± standard deviation or range. V̇O2 value are normalised to body weight (mL∙kg-1∙min-1). Counterbalanced order refers 
to exercise intensity. Only data from trained participants outlined in the table were included in the analysis 

 

Table 2.3 Summary of studies examining the effect of high-intensity exercise on cognitive performance (continued) 

Author Design Participants Exercise  Cognitive performance outcomes 

 

Main results Comments 

 Type & 
Intensity  

Time at 
HI 

Task General 
category  

Time of 
testing  

Whyte et al. 
(2015) 

Between-
subjects 

Trained: n = 20 

A = 21.1 ± 1.3 
M/F = 20/0 

V̇O2max = NR 

 
Control:  n = 20 

A = 21.2 ± 1.3 
M/F = 20/0 

V̇O2max = NR 

Intermittent 
Running & 
Jumping 

Until RPE 
≥18 

~6 
min 

 SDMT, 
Stroop  
 

Attention, 
Executive 
function 

Pre & 
Post 
 
 

Reduced Stroop 
performance post-exercise 
compared to the control 
group. No change in SDMT 
performance post-exercise 
in either group.   

Rest group (control) 
Counterbalanced order 
Average % of HRmax 

during exercise = 94.6 % 
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2.3.3 Effect of acute high-intensity exercise on cognitive function 

Results for the effect of HIE on cognitive performance in trained groups are presented 

in Table 2.4. In total, 4 cognitive domains were assessed across 10 studies with some 

studies assessing more than one domain. Reaction time and information processing 

were combined under the category ‘information processing’ and were regarded as 

simple cognitive tests. Executive function, attention and memory were considered 

complex.   

2.3.3.1 Information processing 

Five studies assessed information processing; of these 4 used RT tasks and 1 used 

a pursuit rotor task. RT was assessed via SRT and CRT in 4 studies (Brisswalter et 

al., 1997, Draper et al., 2010, Guizani et al., 2006b, Lo Bue-Estes et al., 2008). In all 

4 studies, HIE was found to have no effect on speed or accuracy of SRT performance. 

CRT was assessed in 2 of these 4 studies (Draper et al., 2010, Guizani et al., 2006b) 

and in both, an improvement in speed of CRT was observed following HIE. In 

contrast, the 1 remaining study assessed information processing using a pursuit rotor 

task (Reilly and Smith, 1986) and found a negative effect of exercise. In total, there 

were 18 outcome measures, 11 measuring speed and 7 measuring accuracy. Overall, 

no effect of HIE on speed or accuracy was observed on the majority of outcome 

measures.  

2.3.3.2 Executive function 

Of the 10 studies included, 3 assessed executive function. Labelle et al. (2013) 

measured both speed and accuracy on a Stroop task during exercise providing 2 

outcome measures which showed no effect of HIE. Similarly, Whyte et al. (2015) also 

used a Stroop task but administered the test pre-and post-exercise and measured 

correct responses (regarded as accuracy) only. These results demonstrated a 

reduced performance following HIE. Smith et al. (2016a) used a Go/No-go task to 

measure speed and two types of accuracy (omission and decision errors) providing 

3 outcome measures which all showed a deterioration in cognitive performance 

during HIE. A total of 6 outcome measures were provided for executive function. 

Overall 4 outcome measures found negative effects of HIE on executive function 

while 2 found negligible effects. 
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2.3.3.3 Memory 

Two studies assessed memory. Lo Bue-Estes et al. (2008) assessed memory using 

an Automated Neuropsychological Assessment Metrics (ANAM) cognitive testing 

system. Results from the ANAM (throughput) provide a corrected response rate 

measuring the number of correct responses in a set period of time; due to the nature 

of the task and to align these results with that of others, this review has regarded 

throughput as accuracy. Four domains of memory (short-term memory, long-term 

memory, VSM, WM) were assessed post-exercise. In addition, WM was assessed 

during, as well as post-exercise, providing a total of 5 outcome measures. All tasks 

other than WM showed no effect of HIE. WM was negatively affected during exercise 

at 100 % V̇O2max and immediately following HIE when compared to the pre-exercise 

rested state. Tomporowski et al. (1987) on the other hand assessed free-recall 

memory post-exercise at 80 % V̇O2max and found no effect of exercise on memory 

compared to an untrained group. Overall, 4 outcome measures for memory found no 

effect of HIE whilst 2 found negative effects. 

2.3.3.4 Attention  

Three studies assessed attention following HIE. Lo Bue-Estes et al. (2008) used a 

continual processing task assessing accuracy (as throughput from the ANAM) and 

found no effect. Llorens et al. (2015) used a spatial attention task assessing both 

speed and accuracy and similarly found no effect of HIE on accuracy performance 

though a positive effect was observed on RT. Whyte et al. (2015) employed a symbol 

digit modality test (SDMT) to assess correct responses (regarded as accuracy) 

following a high-intensity intermittent running and jumping protocol. The results of this 

study indicated no effect of HIE on SDMT accuracy. In total 4 outcome measures 

were provided. No effect was found for accuracy whilst one positive effect was 

observed for speed.  

2.3.3.5 Time of testing 

The time at which cognitive tasks were administered presents one of the main 

methodological differences between studies. When assessing the effect of acute 

exercise on cognitive function, tasks can be administered during and/or after the 

cessation of exercise. Within the 10 studies included, 5 studies assessed cognitive 

function during exercise (Draper et al., 2010, Guizani et al., 2006b, Labelle et al., 
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2013, Reilly and Smith, 1986, Smith et al., 2016a), 2 studies performed tasks both 

during and pre-post exercise (Brisswalter et al., 1997, Lo Bue-Estes et al., 2008), one 

study performed tasks before and immediately following exercise (Whyte et al., 2015) 

and the remaining two studies performed cognitive tasks post-exercise only (Llorens 

et al., 2015, Tomporowski et al., 1987). There was no obvious pattern of a time-

related effect on any cognitive domain. However, there were fewer outcome 

measures for post-exercise compared to during; consequently, this review cannot 

establish any clear conclusions regarding the time of testing. 

Table 2.4 Effects of high-intensity exercise on each cognitive task category  

Cognitive task 
category 

Studies Total 
outcome 

measures 

Outcome measures 

Post 

 

 

 Outcome measures 

During 

 
   +     o -  + o - 

Information 
processing 

         

Speed n = 4 n = 11 - n = 2 -  n = 2 n = 7 - 

Accuracy n = 4 n = 7 - n = 1 -  - n = 5 n = 1 

Executive 
function 

         

Speed n = 2 n = 2 - - -  - n = 1 n = 1 

Accuracy n = 3 n = 4 - - n = 1  - n = 1 n = 2 

Memory          

Speed n = 0 n = 0 - - -  - - - 

Accuracy n = 2 n = 6 - n = 4 n = 1  - - n = 1 

Attention          

Speed n = 1 n = 1 n = 1 - -  - - - 

Accuracy n = 3 n = 3 - n = 3 -  - - - 

Totals n = 19 n = 34 n = 13  n = 21 

   8 % 77 % 15 %  10 % 67 % 24 % 

2.4 Discussion 

This focussed review set out with a specific aim to identify and evaluate current 

understanding concerning the effects of HIE exercise on cognitive function in trained 

populations. Overall the majority of studies included suggested that neither speed nor 

accuracy are influenced in tasks requiring simple cognitive processing during or 

following a single-bout of HIE in trained individuals. However, the results regarding 

complex cognitive processes are more ambiguous. These results support others that 

emphasize the importance of considering the specific cognitive task type that is being 
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assessed when synthesising results, as the influence of exercise on cognition has 

been shown to be dependent on the specific cognitive domain that is being assessed 

(Lambourne and Tomporowski, 2010, McMorris, 2016).  

Of the cognitive domains assessed, information processing requires substantially less 

neural activity and brain resource than complex tasks (McMorris and Hale, 2012). 

Within the information processing domain, RT (SRT and CRT) was most commonly 

assessed, with 4 studies measuring a total of 18 outcome measures for both speed 

and accuracy. Reaction time is a popular measure in the literature on acute exercise 

and cognition, particularly in studies designed to assess the inverted-U effect 

(Lambourne and Tomporowski, 2010). Moreover, RT on simple tasks has previously 

been shown to be sensitive to the effects of acute exercise (Tomporowski, 2003). In 

the most recent comprehensive meta-analysis on acute exercise and cognition, 

Chang et al. (2012) found no significant effect of exercise on SRT or CRT; this effect 

however was averaged over a range of exercise intensities, leading the authors to 

suggest there may have been an influence of exercise intensity on RT that was 

undetected. The current review, however, found no effect on speed of RT in 9 of the 

11 observed outcome measures. Interestingly, the 2 remaining outcome measures 

were from the only 2 studies included in the review that assessed CRT, with both of 

these studies observing a positive effect of HIE on speed of CRT (Draper et al., 2010, 

Guizani et al., 2006b). This supports the conclusions of Draper et al. (2010) whose 

results indicate that SRT and CRT are affected differently by exercise and should be 

considered individually. Due to the limited number of studies in this review, all RT 

measures were considered as a whole as organised by Lezak (2004). To establish 

more evidence for differential effects on these two tasks, more research is required.  

Collectively, the lack of effect observed for information processing tasks disagrees 

with the results of Lambourne and Tomporowski (2010) and fails to support studies 

that have observed an inverted-U effect (Brisswalter et al., 1995, Chmura et al., 1994, 

Salmela, 1986). A potential reason for this effect, and an important criterion within 

this review, is the high/trained fitness level of participants. Narrative (Brisswalter et 

al., 2002, Tomporowski, 2003) and meta-analytic (Chang et al., 2012, Etnier et al., 

1997, McMorris et al., 2011, McMorris and Hale, 2012) reviews have highlighted 

physical fitness as a key moderator of the exercise-cognition relationship and it has 

been hypothesised that trained individuals may be able to compensate for the 

negative effects of fatigue at high exercise intensities (Tomporowski and Ellis, 1986). 

Proposed mechanisms by which this may happen include a reduction in the 

magnitude of change in brain metabolism and functioning during exercise (Llorens et 
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al., 2015) and more efficient allocation of attentional resources (Kamijo et al., 2010, 

Polich and Kok, 1995). As HIE is typically associated with negative effects on 

cognitive performance (Fery et al., 1997, Kamijo et al., 2010, McMorris et al., 2009, 

McMorris and Rayment, 2007), the results may suggest trained individuals are able 

to maintain cognitive performance on tasks of information processing at higher levels 

of arousal (Brisswalter et al., 1997). Alternatively, Tomporowski and Ellis (1986) 

suggest that cognitive tasks without challenge that do not require enough attentional 

resources, do not show any effect of exercise on cognitive function. This may imply 

that the trained participants included in this review did not perceive simple tasks of 

RT and information processing challenging, resulting in the lack of effect.  

Largely, the results for accuracy on information processing tasks indicate no effect of 

HIE, supporting previous findings from both McMorris and Hale (2012) and 

Schapschroer et al. (2016). This result is surprising considering evidence, particularly 

in sporting conditions, demonstrating reductions in whole-body psychomotor skill 

accuracy with fatiguing physical exertion (Russell and Kingsley, 2011). One 

suggestion has indicated the likelihood of a ceiling effect for accuracy in healthy 

individuals when assessed in tasks such as RT (McMorris, 2016). Moreover, it is 

possible that consistent failures to observe accuracy effects is due to the nature of 

the cognitive tasks. Many cognitive tasks assessing both simple and complex 

cognitive processes have been designed to measure performance through speed of 

processing, with accuracy measures merely there to safeguard against the speed-

accuracy trade off (McMorris and Hale, 2012). If accuracy is to be validly assessed, 

it is argued that tests must be used that control participants focus on solving the tasks 

with a reduced emphasis on speed. Interestingly, when accuracy is assessed via 

whole-body psychomotor skills, such as those performed in sporting situations, heavy 

exercise has been found to have a large effect (McMorris et al., 2015). This may 

potentially indicate that the diminishing accuracy observed with increasing levels of 

fatigue during sporting situations may be due to detriments to neurophysiological 

mechanisms rather than cognitive components. Deciphering the extent to which 

precise areas contribute to reductions in whole-body performance provides a 

challenging but important task for future research.  

Higher-order cognitive processes are described as those central executive processes 

involving several functions including planning, scheduling, working memory, multi-

tasking, cognitive flexibility and abstract thinking (Hillman et al., 2008, McMorris and 

Hale, 2012). These functions are heavily dependent on the activation of the PFC 

which constitutes the highest level of cortical hierarchy (Fuster, 2001). Compared to 
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the lower-order, simpler cognitive tasks assessed in this review, the impact of HIE on 

higher cognitive processes is ambiguous. As a whole, 6 studies assessed executive 

function, attention and memory providing a total of 16 outcome measures for both 

speed and accuracy (Figure 2.2). Attention was assessed by three studies; whilst little 

can be concluded on speed of attention as it was only assessed by one study, all 

accuracy outcome measures indicated no difference with HIE. Similarly, the results 

for memory demonstrated a greater tendency to show no effect of HIE; however, as 

5 of the 6 outcome measures were obtained from one study, this review cannot 

establish any clear conclusions on this cognitive domain. Observations on measures 

of memory following acute exercise have failed to yield reliable results with some 

authors suggesting that memory may not be particularly sensitive to the effects of 

acute exercise (Chang et al., 2012). As demonstrated by Lo Bue-Estes et al. (2008) 

however, exercise often has diverse effects on different types of memory and thus 

when assessing this construct, the specific type of memory the task is assessing is 

an important consideration. The lack of studies assessing higher cognitive functions 

such as attention and memory with HIE is surprising considering the complex 

environments that trained individuals, such as athletes and military personnel, are 

regularly confronted with when under high physical loads. The ability to assess 

unknown situations and make appropriate decisions relies heavily on central 

executive processes and thus if strategies to improve decision-making in these 

situations are to be established, a greater body of research on the effect of high 

physical loads on cognition is required.  
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Figure 2.2 Overview of the effect of high-intensity exercise on simple and complex 

cognitive tasks 

Interestingly, measures of executive function have been shown to be particularly 

sensitive to exercise in general, with effects being significantly larger than other areas 

of cognitive function (Chang et al., 2012). This is interesting considering that 

substantial age–related deteriorations of executive function are positively influenced 

by physical training and fitness (Hillman et al., 2008), potentially suggesting executive 

function may be particularly sensitive to acute exercise and fitness. Of the complex 

processes assessed in this review, executive function appeared most sensitive to 

acute HIE. Whilst caution must be taken with any concluding remarks due to the 

limited sample of studies, these results do align with previous research suggesting 

that performance on complex tasks assessing higher-order cognitive processes are 

more likely to be affected by exercise (Dietrich, 2006, Dietrich and Audiffren, 2011, 

McMorris and Graydon, 2000). These views have largely been derived from the 

hypofrontality theory which proposes that HIE causes a change in physiological state, 

momentarily disrupting brain homeostasis causing a modification in the brains 

resource allocation (Dietrich, 2003). Based upon this theory, the neural resources 

used for conducting exercise compete with the same resources necessary to perform 

cognitive processing. As the maintenance of HIE requires large increases in neural 

resource demands to sustain activation within the motor and sensory regions, supply 

Total 
studies 

(n = 10)

Total 
outcome 

measures 

(n = 34)

Simple (n = 18)

Positive: 11 %

(n = 2)

No change: 83 %

(n = 15)

Negative: 6 %

(n = 1)

Complex (n = 16)

Positive: 6 %

(n = 1)

No change: 38 %

(n = 6)

Negative: 56 %

(n = 9)
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of essential metabolic resources such as oxygen and glucose are reduced to other 

brain regions (Dietrich and Audiffren, 2011). This reallocation of neural resources 

results in the temporary inhibition of brain regions not essential to performing 

exercise, such as areas of the PFC involved in higher-order cognitive functions 

(Dietrich and Sparling, 2004, Dietrich, 2006). 

During the review process of full-text articles there were a number of studies that 

marginally failed to meet the classification for HIE imposed by this review. The issue 

surrounding classification of exercise intensity raises an important matter within the 

exercise literature. Currently there is a lack of consensus on the definition of ‘high-

intensity’ exercise, which has led to the use of a variety of exercise intensities under 

this categorisation (Hancock and McNaughton, 1986, Hogervorst et al., 1996, 

Hüttermann and Memmert, 2014). In trying to elucidate the effect of high exercise 

intensities on cognitive performance, it is essential that consistency be maintained 

across studies. To maintain consistency and enable comparison of results, the current 

review classified HIE in line with previous systematic and meta-analytic reviews as 

≥80 % Wmax or equivalent (McMorris et al., 2015, McMorris and Hale, 2012, 

Schapschroer et al., 2016). High exercise intensities of this nature have been shown 

to induce substantial metabolic disturbances (Tomlin and Wenger, 2001) alongside 

large increases in brain concentrations of the neurotransmitters dopamine and 

noradrenaline (de Vries et al., 2000, Hill et al., 2008, McMorris et al., 2009), and thus 

distinguish high from moderate and low exercise intensities. Going forward, studies 

should aim to use consistent terminology when assessing the effect of acute exercise; 

this will enable comparison of studies and may facilitate a greater consensus within 

the literature.  

Interestingly, the current results are dissimilar to those of a recent review which 

supported favourable effects of HIE on both general and sport-specific cognitive tasks 

(Schapschroer et al., 2016). Within this review by Schapschroer et al. (2016) 

however, only 2 studies investigated the effect of HIE on the performance of general 

cognitive tasks, both of which were included in the current review (Guizani et al., 

2006b, Llorens et al., 2015). In agreement, the 2 respective studies did find positive 

effects of HIE on cognitive performance. Notably however, these effects were found 

for speed of performance on CRT tasks, which, as previously stated, requires more 

evidence to establish differential effects, if any, between SRT and CRT during and/or 

following exercise. The difference in overall conclusions between both reviews is 

likely due to methodological differences. Firstly the general conclusions drawn from 

Schapschroer et al. (2016) encompass both general and sport-specific cognitive 
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tests. Secondly, Schapschroer et al. (2016) based their review solely on athletic 

populations. These methodological differences are important considering research 

surrounding the ‘expert performance approach’, which describes consistently better 

performance by athletes on sport-specific cognitive tasks (Voss et al., 2009). 

Consequently, it is argued that measures of fundamental cognitive ability in simulated 

sport environments are confounded by an athlete’s superior declarative and 

procedural knowledge. The current review only specified a fitness criterion for 

inclusion and therefore the type of cognitive task, that is, general rather than sport-

specific tasks, was controlled to reduce potential confounding.  

2.5 Considerations for future research 

An important consideration for further research that has been highlighted in previous 

reviews is the exercise modality used when performing HIE (Lambourne and 

Tomporowski, 2010, Schapschröer et al., 2016). The current review highlighted a 

preference for the use of cycling compared to other modes of exercise. The high 

number of studies assessing trained individuals on exercise modes that they are not 

accustomed to is surprising as it reduces ecological validity of the findings (Guizani 

et al., 2006b, Llorens et al., 2015, McMorris and Graydon, 1996b, McMorris and 

Graydon, 1997a). Lambourne and Tomporowski (2010) assessed the effect of cycling 

vs treadmill exercise and found cycling to elicit larger and more positive effects on 

cognitive performance compared to treadmill running which elicited negative effects. 

As running requires greater metabolic energy, it is plausible that sensory afferents 

detecting metabolic disturbance influence the integration of cortical activation and 

lower the signal-to-noise ratio to a greater extent than cycling exercise, thus resulting 

in less efficient cognitive processing (Lambourne and Tomporowski, 2010). This 

highlights an important consideration when designing studies. For example, 

assessing the effect of exercise on cognition using cycling protocols with soccer 

players may not provide ecologically valid results. Familiarity with the exercise task 

has been shown to lower brain modulation and activity, thus freeing more resources 

for cognitive performance (Brümmer et al., 2011). Where possible studies should 

consider the accustomed or usual exercise mode of the target population and use 

this when designing protocols. Notably, the systematic search of the literature found 

no study that assessed cognitive function following maximal strength exercises. This 

is surprising considering its relevance to many sports.  
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A potential shortcoming of the literature as a whole is the use of short duration 

exercise only. The average exercise duration at high-intensities in the current review 

was 5.6 minutes. Whilst it is appreciated that exercise at high-intensities cannot be 

sustained for long periods of time, many sports require intermittent bursts at high-

intensities over prolonged periods, or efforts that require the maintenance of a high 

percentage of V̇O2max for sustained durations. Research using transcranial magnetic 

stimulation has shown that shorter HIE lasting around 6 minutes results in greater 

peripheral fatigue, whereas longer durations (>30 minutes) cause greater 

disturbances in central fatigue (Thomas et al., 2015). The large disturbances in 

central fatigue caused by prolonged HIE could have a pronounced effect on cognitive 

function, thus presenting a further area of investigation.  

Within this review, accounting for methodological differences between studies was 

challenging. For example, 3 studies did not include a rest group or control condition 

(Brisswalter et al., 1997, Labelle et al., 2013, Reilly and Smith, 1986) but instead 

compared HIE to low- and moderate-intensities. Whilst these studies enable a 

comparison of HIE with that of others, they fail to enable any conclusions to be drawn 

about HIE compared to a rested state. Furthermore, two studies did not employ 

counterbalancing of exercise intensities (Guizani et al., 2006b, Lo Bue-Estes et al., 

2008). These methodological differences make it difficult to assess if changes in 

cognitive performance were due to the impact of HIE or because of factors such as 

learning or time effects. In addition, attention should be given to the control of 

confounding variables. Within the quality criteria check, only 4 studies were deemed 

to have adequately controlled for confounding. One study met the partial control 

criteria whilst 5 studies did not report any measures of control for confounding 

variables. Cognitive performance in healthy individuals is readily influenced by small 

changes in day to day living as well as aspects such as prior exercise and nutrition; 

as such, care should be taken to control and report confounding variables where 

possible. 

2.6 Limitations of the current review 

Due to the limited number of studies, specific cognitive tasks could not be assessed 

separately and instead were assigned to general cognitive task categories. Although 

this was a reasonable approach to examining the research question, this does reduce 

specificity of results, which may have led to differences within each category being 

overlooked.  
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Another important limitation of this review is the methodology applied regarding 

exercise intensity. This review followed that of others and classified the physical 

intensity of exercise based on Wmax, V̇O2max or HRmax.  Studies that used other values 

of intensity such as HRR or RPE were compared to the studies that provided data on 

Wmax V̇O2max or HRmax and eligibility was accordingly determined. Although this 

limitation was relevant to only three studies that met the eligibility criteria, this strategy 

undoubtedly contains subjectivity as previously acknowledged (McMorris and Hale, 

2012, Schapschroer et al., 2016).  

The strategy to classify populations within studies as ‘trained’ was also partially reliant 

on subjectivity. The first criteria was an objective measure of participants V̇O2max 

which was required to meet ‘excellent’ or ‘superior’ classification via the ACSM 

guidelines (Pescatello, 2014). When V̇O2max was not provided however, inclusion was 

based upon the description of the sample provided by the author(s), which inevitably 

invites subjectivity. Limiting study inclusion to V̇O2max provision may have excluded 

studies that clearly included trained participants as demonstrated by their level of 

sport or hours of training per week and thus it was felt that the criteria applied provided 

the best opportunity for inclusion of all relevant articles. Whilst everything was done 

to ensure fitness levels met the required criteria, confidence cannot be guaranteed. 

Finally, only articles written in English were included in this systematic review. This 

criterion is applied within many reviews and has been deemed an acceptable method 

due to English being the most commonly understood and published language. 

Nevertheless, articles important to this review may be written in other languages. 

2.7 Conclusion & perspectives 

In summary, results from this study indicate there to be no significant effects of HIE 

on measures of simple cognitive processing in individuals with high fitness levels; the 

effects on complex functions however remain unclear, with evidence suggesting both 

negligible and detrimental effects. These findings support previous work that have 

shown differential effects of exercise on various cognitive domains and thus in doing 

so, emphasise the need to assess multiple cognitive components when conducting 

exploratory research. This systematic review adds the first to the literature specifically 

evaluating HIE and cognitive performance, and provides a summary on research 

within this area to date. Subsequently, this study is applicable to sports and 

occupations that require the maintenance of cognitive performance whilst under high 
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physical demands. Amongst other issues discussed within the chapter, this study 

highlights the need for greater durations of HIE to be assessed alongside the use of 

cognitive tasks assessing higher-order cognitive processes.  

This chapter addressed the first aim of the thesis, to `Identify and evaluate current 

understanding concerning the effects of strenuous exercise on cognitive 

performance`. Previously there has been no clear consensus on the effects of HIE on 

cognitive function. It is probable that this is due to the limited pool of studies that have 

assessed cognitive performance during and following HIE. Furthermore, trained 

individuals are frequently overlooked when exploring the effects of intensity on 

cognitive performance; this is surprising considering the populations and situations 

for application of results. Sporting and military situations provide just a few examples 

of when trained individuals are required to simultaneously handle high levels of 

strenuous physical exertion and cognitive loads; thus, it is important that the impact 

of HIE, particularly on higher-order cognitive processes, is sufficiently examined.  

The current review has identified numerous areas that require further investigation 

that will build upon and add to existing knowledge. As a result, the following chapters 

in this thesis will explore the effect of different strenuous exercise paradigms on 

cognitive performance in trained populations. 
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Chapter 3: The effect of prolonged strenuous exercise 

on cognitive function, mood, energy and fatigue states 

in trained cyclists 
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3.1 Introduction 

The well-known physiological effects of exercise have led to several reviews and 

meta-analyses exploring the impact these effects may have upon cognitive function 

(Brisswalter et al., 2002, Chang et al., 2012, Lambourne and Tomporowski, 2010, 

McMorris and Graydon, 2000, Tomporowski, 2003). Contradictory findings 

emphasise the complexity of the exercise-cognition interaction and have caused 

authors to stress the importance of control and specificity within their work 

(Brisswalter et al., 2002, Browne et al., 2017, Chang et al., 2012). Reviews have 

highlighted six moderating variables to control in such studies: (i) exercise intensity, 

(ii) exercise duration, (iii) exercise mode (iv) physical fitness of participants, (v) 

cognitive domain assessed, and (vi) timing of cognitive task administration 

(Brisswalter et al., 2002, Browne et al., 2017, Chang et al., 2012, Lambourne and 

Tomporowski, 2010). Generally, improvements are found in cognitive function 

following moderate-intensity exercise lasting between 20-minutes and 1-hour 

(Brisswalter et al., 2002, Chang et al., 2012). This improvement has previously been 

attributed to increases in catecholamine and arousal levels, leading to an optimal level 

that facilitates cognitive function (Brisswalter et al., 2002, Chang et al., 2012, 

McMorris et al., 2009). However, when exercise duration lasts more than an hour, 

and when the intensity of exercise increases, detrimental effects on cognition are 

reported (Fery et al., 1997, Grego et al., 2004, Labelle et al., 2013, Labelle et al., 

2014, Mekari et al., 2015, Tomporowski, 2003). This is proposed to be due to further 

increases in arousal and catecholamines which causes neural noise and impairs 

cognitive performance (McMorris, 2016).  

The experimental and theoretical literature exploring the effects of strenuous exercise 

on cognitive performance converges towards impairment (Ando et al., 2005, Browne 

et al., 2017, Chmura et al., 1994, Cooper, 1973, Davey, 1973, McMorris et al., 2009, 

Tomporowski, 2003, Yerkes and Dodson, 1908). Not all studies however have 

observed this effect (Alves et al., 2014, Davranche et al., 2015, Lemmink and 

Visscher, 2005, Schmit et al., 2015, Tsukamoto et al., 2016a, Winter et al., 2007). In 

a recent study, Alves et al. (2014) reported improvements in a central executive task 

following short-duration, high-intensity interval exercise, leading the authors to 

suggest that exercise intensity itself may not exert a major role in exercise-induced 

cognitive modulation, but rather the level of induced fatigue may play a more 

important role. In line with this, Tomporowski (2003) suggested that HIE-induced 

cognitive impairment may be due to increases in mental fatigue. Thus, assessing both 
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physical and mental fatigue may provide greater insight into the reasoning behind 

potential changes in cognitive function. 

Increases in metabolic load through greater durations and intensities of exercise are 

associated with the manifestation of physical fatigue, which is understood to be due 

to both peripheral (e.g. reduced muscle excitability) and central (e.g. reduction in 

neural drive) mechanisms (Grego et al., 2005). The appearance of fatigue is known 

to cause reductions in performance, even in well-trained athletes (Lepers et al., 2000). 

Prolonged and strenuous intermittent exercise, for example, has been shown to 

cause metabolic and mechanical perturbations in physical performance (Bell et al., 

2014); however, little is known about the effects of such exercise on cognitive function 

and mood. Studies examining the effect of exercise on cognition have often focussed 

upon continuous exercise models (Grego et al., 2005, Hogervorst et al., 1996, Labelle 

et al., 2014, McMorris et al., 2009). This is surprising considering that in many sports 

and occupations (e.g. military, firefighting), exertion is often intermittent and 

comprised of both metabolic and mechanical stressors. 

In accordance with the effects of exercise on cognition, mood improvements and 

positive effects of well-being are commonly observed following moderate-intensity 

exercise (Scully et al., 1998), but not following a single session of intense exercise 

(Berger et al., 1997), even in trained individuals (Berger and Motl, 2000). Moreover, 

strenuous exercise can cause worsened mood states compared to pre-exercise 

(Steptoe and Bolton, 1988). In association with mood, emerging evidence suggests 

that the maintenance of prolonged exercise requires mental effort, which is necessary 

to inhibit peripheral and central afferents that arise with physical fatigue (Radel et al., 

2017). Based on this, it may be postulated that exercise causes reductions in mental 

energy and increases in mental fatigue as the brain attempts to modulate activity to 

maintain physical effort. Thus, the assessment of both cognitive and psychological 

markers may provide greater insight into any observed effect that sustained exercise 

may have on central processes. 

The systematic review presented in Chapter 2 highlights limited research 

investigating cognitive function in trained subjects. Analysis of the studies available 

indicated that strenuous exercise causes an impairment in tasks requiring higher-

order cognitive processes whilst having little effect on simple cognitive tasks. In 

addition to this, the review found that the average exercise duration of all the studies 

meeting the criteria of ‘’trained’ and ‘high-intensity’ exercise was 5.6 minutes, with the 

largest duration of exercise lasting approximately 10-minutes and that most of these 
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studies assessed SRT and CRT, whilst limited studies investigated higher-order 

cognitive processes such as executive function. To address this gap in the literature 

and build upon existing knowledge, the first experimental study of this thesis aims to 

examine the effect of prolonged strenuous exercise on cognitive tasks assessing both 

simple and complex cognitive performance and mood disturbance, in trained 

individuals. It was hypothesised that sustained physical exercise requiring high 

physiological effort, would cause a reduction in cognitive performance requiring 

higher-order processes despite the trained status of participants. Secondly, it was 

hypothesised that prolonged exercise would have a negative effect on both mood and 

measures of physical and mental energy and fatigue.  

3.2 Methods 

3.2.1 Participants  

Statistical power was calculated using commercially available software (G*Power 

v3.1.9, Düsseldorf, Germany) to determine an adequate sample size for this 

investigation. Based off of previous studies that examined the effect of acute exercise 

on executive function (Davranche and McMorris, 2009, Pontifex et al., 2009a), it was 

estimated that a sample size of 13 would be required to detect significant changes 

with a two tailed α level of 0.05 and a sufficient statistical power of 0.80 (Cohen, 1992). 

This returned a hypothesised effect size of 0.8 (Cohen’s d - large) for a within subject’s 

design. Consequently, 13 male endurance-trained cyclists that met the inclusion 

criteria outlined below (see Table 3.1 for participant characteristics) were recruited to 

participate in the study that took place outside of the racing season.  

Participants were provided with a verbal and written explanation of the study prior to 

providing written informed consent (appendix A) and completed a questionnaire to 

assess for eligibility and contraindications. Eligibility criteria stated that cyclists must 

be male, between the ages of 18 and 35 and have been regularly competing (at least 

a Category 3 British Cycling licence holder or an estimated 16.1 km TT of ≤23 

minutes). This was assessed through the completion of health screening (appendix 

B) and training history questionnaires (appendix C). All cyclists were healthy, had no 

severe head injuries in the past 12 months and did not take any medication that may 

have interfered with cognitive function. This study was conducted in accordance with 

the Helsinki Declaration (1964) and was approved by Northumbria University’s 

Faculty of Health and Life Sciences Ethics committee. All study procedures were 
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conducted in a laboratory accredited by the British Association of Sport and Exercise 

Sciences.  

Table 3.1 Participant characteristics (mean ± SD) 

Variables  

Age (years) 26 ± 5 

Body mass (kg) 73.9 ± 11.1 

Height (cm) 178.9 ± 8.2 

Heart rate maximum (beats·min−1 ) 191 ± 10 

V̇O2max (mL∙kg-1∙min-1) 62.1 ± 5.6 

Wmax (W) 415 ± 62 

3.2.2 Experimental protocol 

Each participant was required to visit the laboratory on three separate occasions. The 

first visit was used to collect demographic information, determine maximal oxygen 

uptake (V̇O2max; protocol described in Eddens et al. 2017) and familiarise participants 

with the cognitive performance tasks and psychological measures. During this visit, 

each participant completed the cognitive and psychological assessments three times 

to minimise the possibility of learning effects. The present study was part of a larger 

study which imposed limitations on the current study design. The study was 

conducted in a repeated measures design; however, it is important to explain that the 

conditions were not counterbalanced. Each participant completed the exercise 

condition first. The limitations imposed by this are acknowledged in the limitations 

section of this chapter (see section 3.5). 

The second and third visits comprised of cognitive measures prior to and immediately 

following either a prolonged strenuous exercise protocol lasting 140 minutes, or 

seated rest for the same duration (Figure 3.1). During the seated rest, participants 

were free to relax whilst being instructed not to do anything mentally demanding. To 

minimise diurnal variation and control for potential influencing variables, participants 

visited the lab at the same time of day and were asked to refrain from exercise, alcohol 

and caffeine 24-hours prior to each laboratory visit. Participants were also asked to 

log all food consumed in a provided food diary 24 hours prior to the first experimental 

visit and then to replicate this prior to the second experimental visit. During the study 

period participants were encouraged to consume a carbohydrate-rich diet and to 
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remain euhydrated. Compliance was assessed via subjective report on each day of 

testing.  

 

 

Figure 3.1 Schematic of testing protocol 

3.2.3 Cognitive performance measures 

Cognitive measures were administered using the Computerised Mental Performance 

Assessment System (COMPASS, Northumbria University, UK), a programme used 

to present computerised standard psychometric tests. COMPASS has previously 

been demonstrated to be sensitive to both exercise and nutritional interventions (Ali 

et al., 2016, Asamoah et al., 2013, Thompson et al., 2014, Veasey et al., 2013). 

Cognitive tasks were presented via a laptop computer and responses were recorded 

via a response pad (comprising of a central RT button, Left/Right/Up/Down and 

Red/Blue/Green/Yellow) or computer mouse, depending on the task.  

The entire cognitive battery took approximately 15 minutes to complete. Participants 

were tested individually in an isolated booth and were required to wear noise 

minimising headphones in an attempt to reduce visual and auditory distraction. To 

measure simple and complex cognitive processes, various measures were utilised 

including a measure of processing speed (SRT), a more complex measure of 

processing speed (FCRT), visuospatial short term working memory (Corsi blocks) and 

executive function, namely response inhibition, cognitive flexibility and selective 



 

77 
 

attention (Stroop task). These measures have been used in similar research and 

show a sensitivity to exercise interventions (Bandelow et al., 2010, Brisswalter et al., 

1997, Davranche and Audiffren, 2004b, Delignières et al., 1994, Furley and Memmert, 

2010a, Hogervorst et al., 1996).  

3.2.3.1 Simple reaction time (SRT) 

An arrow pointing upwards appeared in the centre of the computer screen at irregular 

intervals (interstimulus (ISI) interval = 1 to 2.5 seconds). Participants were instructed 

to press the centre button on the response pad as quickly as possible as soon as the 

arrow appeared. The task was scored for overall RT (ms) to 35 stimuli. Incorrect 

responses were not recorded. 

3.2.3.2 Four-choice reaction time (FCRT) 

Four arrows pointing left, right, up and down individually appeared on the computer 

screen at irregular intervals (ISI = 1 to 3.5) seconds. Participants were instructed to 

use the index finger of their dominant hand to press the corresponding button on the 

response pad, as quickly as possible, when an arrow appeared. The task was scored 

for correct RT (ms) and accuracy of responses (%) to 32 stimuli.  

3.2.3.3 Computerised Corsi blocks 

Nine blue squares on a black background were displayed on the computer screen. In 

a random order, some of the blue squares changed to red and back to blue again. 

Participants were instructed to remember the sequence and once it had finished, use 

the cursor to click the blocks in the exact sequence in which they were presented. 

The task was repeated five times at an increasing level of difficulty (addition of 1 

block) with the sequence span beginning at 4 and increasing upwards until the 

participant could no longer correctly recall the sequences. The task was scored for 

span score, calculated by averaging the level of the longest three correctly completed 

trials. 

3.2.3.4 Stroop task (Stroop, 1935) 

Words describing one of four colours (‘RED’, ‘YELLOW’, ‘GREEN’, ‘BLUE’) were 

presented in different coloured fonts in the centre of the computer screen. Participants 
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were instructed to press one of four coloured response buttons in order to identify the 

font colour (e.g. if the word ‘YELLOW’ was presented in a red font, the correct 

response would be to respond with the red button). The presented words were either 

‘congruent’ (word and font were the same colour) or ‘incongruent’ (word and font were 

different colours) and were presented in a random order. The task was scored for 

congruent and incongruent correct response RT (ms) and accuracy (%) to 30 stimuli. 

3.2.4 Mood assessment 

Mood measures were selected based on previous published studies that investigated 

the impact of exercise on affective responses (Davranche and Audiffren, 2004a, 

Moore et al., 2012). 

3.2.4.1 Bond-Lader mood scale (Bond and Lader, 1974) 

A series of 16 visual analogue scales (VAS) were presented to participants assessing 

mood, to which participants were asked to answer ‘how do you feel right now’. Scored 

from 0-100, each scale was presented on a straight 100 mm horizontal line anchored 

at either side by opposite adjectives describing a mood (for full scales see appendix 

D). Participants were instructed to click at a point on the scale that represented the 

intensity of how they were feeling at that current point in time. From these scales, 

three composite scores were calculated describing feelings of alertness, calmness 

and contentedness, with each of the scales showing high internal validity.   

3.2.4.2 Mental and Physical Energy and Fatigue 

The state components of the Mental and Physical State and Trait Energy and Fatigue 

Scale (O’Connor 2006) consist of 12 items that measure four energy and fatigue 

mood states: Physical Energy, Physical Fatigue, Mental Energy and Mental Fatigue. 

Participants were asked to indicate, “How do you feel right now with regard to your 

capacity to perform your typical physical activities” for the physical energy and fatigue 

questions (appendix E). The instructions were identical for the mental energy and 

fatigue questions except that the focus was changed to “typical mental activities”. The 

scales ranged from ‘I feel I have no’ to ‘strongest feelings of…ever felt’ with the 

adjectives at the end of each scale being energy/ fatigue/ vigour/ exhaustion/ pep/ 

feelings of being worn. Participants rated the intensity of their current feelings by 

marking a point on each of the twelve presented 100 mm VAS. Each VAS item was 
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scored 0-100 in mm from left to right along the horizontal line with 0 representing the 

lowest possible score and 100 being the highest. Participants total fatigue and energy 

scores were derived by summing the three items constituting each of the four state 

scales (O'Connor, 2006) and thus, the scale scores could range from 0 to 300.  

3.2.5 Exercise protocol 

Participants completed a prolonged, strenuous stochastic cycling protocol (Table 3.2) 

on a magnetically braked cycle ergometer (Velotron RacerMate, Seattle, WA, USA) 

which has previously been used to simulate cycling road race demands (Bell et al., 

2014, Vaile et al., 2008). Participants completed a 10-minute self-selected warm-up 

including 3 × 3 second sprints at a perceived intensity of 70 %, 80 % and 90 % of 

maximum effort respectively. Following the warm-up, participants went straight into 

the main exercise task, which consisted of 66 maximal effort sprints of 5, 10 or 15 

second duration with specific work to rest ratios of 1:6, 1:3 or 1:1. Sprints were divided 

into 9 sets, with an active recovery period taking place between sprints and sets 

where intensity was equally maintained at 40 %–50 % Wmax achieved at V̇O2max. 

Additionally, a further 9-minutes of sustained effort was incorporated into the protocol 

through the performance of time trials of 2-minute (after sets 3 and 6) and 5-minute 

(after set 9) duration. Throughout the protocol, participants were encouraged to 

complete as much work as possible, water was available ad libitum and participants 

were cooled with an electric fan on a standardised setting. The total duration of the 

cycling trial was 109 minutes.  

Following a brief period of standardised dynamic stretching, participants performed 

100 drop-jumps which were separated into five sets of 20 drop-jumps. Participants 

were given a 10-second rest between each jump and a 120-second rest between 

each set. Jumps were performed from a height of 0.63 cm and participants were 

encouraged to jump vertically with maximal force immediately upon landing. Strong 

verbal encouragement was provided throughout the duration of the protocol. The 

protocol used has previously been shown to cause significant metabolic and 

mechanical damage resulting in reductions in performance (Bell et al., 2014, Miyama 

and Nosaka, 2004). 
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Table 3.2 High-intensity simulated road cycling race protocol (Vaile et al., 2008). 

Work – Maximal effort sprint. Active recovery – 40 %-50 % maximum aerobic power 

(Wmax). TT (time trial) – Sustained maximal effort. 

 

10-minute warm up at a self-selected pace 

Set number Sprint frequency x Duration Work : Rest ratio 

1 12 x 5 s 1 : 6 

2 12 x 5 s 1 : 3 

3 12 x 5 s 1 : 1 

4 min active recovery - 2 min TT - 4 min active recovery 

4 6 x 10 s 1 : 6 

5 6 x 10 s 1 : 3 

6 6 x 10 s 1 : 1 

4 min active recovery - 2 min TT - 4 min active recovery 

7 4 x 15 s 1 : 6 

8 4 x 15 s 1 : 3 

9 4 x 15 s 1 : 1 

5 min active recovery - 5 min TT - 5 min active recovery 

 

3.2.6 Statistical analysis 

All data were analysed using IBM SPSS 22 for Windows (New York, USA). Prior to 

analysis, outliers were identified as greater or less than 2.5 times the SD of the mean 

and removed; the relevant n for each task is shown in Table 3.3. Sphericity was 

verified by Mauchly’s test; if sphericity was violated, the degrees of freedom were 

corrected using Greenhouse-Geisser procedure. Baseline values for the exercise and 

control conditions were statistically compared at baseline using a paired samples t-

test. Cognitive performance and psychological measures were analysed using a two-

way repeated measures analysis of variance (ANOVA) with condition (exercise, rest) 

and time (pre, post) as within subject’s factors. Significant interaction effects were 

followed up with prior planned pairwise comparisons with LSD to identify significant 

differences between individual means. Statistical significance was set at an α level of 

0.05.  
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3.3 Results 

All cognitive data can be seen in Table 3.3. Only significant results are reported 

below.  

3.3.1 Baseline measures 

There were no significant differences at baseline on any measures with the exception 

of mental energy (exercise, 200.2 vs control, 223.7; p=0.014). Despite a baseline 

difference between the conditions, mental energy remained stable in the control 

condition (p=0.16). 

3.3.2 Cognitive performance 

A significant interaction effect (F(1,12)=5.35, p=0.041, ηp
2=0.33)  was observed for RT 

in the congruent condition of the Stroop task (Figure 3.2). Pairwise comparisons 

revealed Stroop task congruent RT to be significantly slower post-exercise when 

compared to pre-exercise (p=0.001). No difference was observed in the control 

condition (p>0.05). No further differences in cognitive performance were found 

between or within conditions.   
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Figure 3.2 Stroop task congruent RT pre- and post-exercise. Data presented as 

mean ± SEM. *Significant difference pre-post in exercise condition only (p<0.05) 
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Table 3.3 Cognitive performance results prior to and following each condition  

Data reported as mean ± SD. *Significantly different to previous measure (p<0.005). X = interaction  

Measure n Exercise Control p value 
 

 Pre Post Pre Post Condition Time X 

SRT (ms) 13 321.4 ± 36.7 315.8 ± 33.4 317.0 ± 24.5 325.4 ± 26.2 0.70 0.08 0.22 

FCRT correct RT (ms) 13 514.6 ± 64.2 511.2 ± 62.8 486.7 ± 42.0 497.0 ± 41.7 0.09 0.67 0.44 

FCRT accuracy (%) 13 99.0 ± 2.0 98.8 ± 2.7 99.3 ± 1.9 99.3 ± 1.8 0.60 0.75 0.67 

Corsi blocks (Span Score) 13 6.8 ± 1.3 6.8 ± 1.3 7.0 ± 1.3 7.1 ± 1.2 0.43 0.69 0.69 

Stroop correct RT (ms) 13 673.3 ± 67.8 733.1 ± 80.0 667.3 ± 67.0 669.0 ± 74.5 0.09 0.11 0.09* 

Stroop task accuracy (%) 12 98.1 ± 2.5 98.5 ± 2.1 97.8 ± 1.8 98.7 ± 1.2 0.99 0.23 0.49 

Stroop congruent correct RT (ms) 12 624.6 ± 70.3 700.4 ± 99.5* 629.4 ± 58.5 646.8 ± 65.3 0.33 0.01 0.04* 

Stroop congruent accuracy (%) 12 97.6 ± 3.8 96.8 ± 4.8 96.9 ± 4.2 99.1 ± 2.0 0.49 0.51 0.22 

Stroop incongruent correct RT (ms) 12 695.2 ± 73.9 747.9 ± 79.8 683.9 ± 82.1 684.4 ± 90.4 0.10 0.22 0.19 

Stroop incongruent accuracy (%) 12 97.9 ± 3.2 96.8 ± 4.8 98.3 ± 2.5 98.5 ± 2.5 0.40 0.59 0.34 
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3.3.3 Mood, energy and fatigue states 

3.3.3.1 Bond-Lader mood scale 

Significant interaction effects were observed for both alertness (F(1,12)=6.57, p=0.025, 

ηp
2=0.35) and contentedness (F(1,12)=7.02, p=0.021, ηp

2=0.37) (Figure 3.3). Pairwise 

comparisons revealed alertness and contentedness ratings to be significantly lower 

post-exercise when compared to pre-exercise (p<0.05) and when compared to the 

control condition (p<0.05). No changes were observed in the control condition 

(p>0.05). No differences within or between conditions were observed for calmness 

(p>0.05).   
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Figure 3.3 Mood subscales of alertness, contentedness and calmness pre- and post-

exercise. Data presented as mean ± SEM. §Significant difference between conditions 

(p<0.05). *Significant difference pre-post exercise (p<0.05) 
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3.3.3.2 Mental and physical energy and fatigue 

Interaction effects for physical energy (F(1,12)=20.248, p=0.001, ηp
2=0.63), physical 

fatigue (F(1,12)=24.287, p<0.001, ηp
2=0.67), mental energy (F(1,12)=5.591, p=0.036, 

ηp
2=0.32) and mental fatigue (F(1,12)=7.496, p=0.018, ηp

2=0.38) were observed (Figure 

3.4). Pairwise comparisons revealed both mental and physical fatigue to be 

significantly higher and physical and mental energy to be lower, when measured post-

exercise compared to pre-exercise (p<0.05) and compared to the control condition 

(p<0.05).   
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Figure 3.4 Physical and mental energy and fatigue scales pre- and post-exercise. 

Data presented as mean ± SEM. §Significant difference between conditions (p<0.05). 

*Significant difference pre-post exercise (p<0.05) 

3.4 Discussion 

In agreement with our first hypothesis, the main finding of the present study indicated 

that prolonged, strenuous exercise impaired top-down cognitive processes; with 
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impairments in Stroop task congruent RT immediately post-exercise while accuracy 

was maintained. There was no effect however on psychomotor speed or visuospatial 

memory (VSM) (as assessed by SRT, CRT and the Corsi blocks task respectively). 

Two components of mood, namely alertness and contentedness, were significantly 

lower immediately following prolonged strenuous exercise and when compared to the 

rested control condition. In addition, significant disruptions in mental and physical 

energy and fatigue states where observed following exercise, with increased levels 

of fatigue and reduced energy levels.  

This is the first study to examine the effects of a prolonged and strenuous mixed-

model exercise bout on cognitive function. Many sports and occupational 

environments involve intermittent periods of high-intensity work that induce both 

metabolic and mechanical stress (Howatson and Milak, 2009, Nindl et al., 2007). Thus 

the detrimental effects of this type of exercise on cognitive function may be more 

representative of the cognitive effects in this field, as opposed to continuous exercise. 

Classically, poor performance following heavy exercise has been interpreted with 

regards to high arousal levels (Gould and Krane, 1992). It is proposed that as arousal 

increases to an optimal level, cognitive facilitation occurs due to the processing of 

relevant cues. Further increases however, leads to a subsequent narrowing of 

attention and increased neural noise, particularly on central executive tasks 

(McMorris, 2016). The results of the current study may therefore be a direct influence 

of over-arousal. Additionally, the observations of reduced alertness and 

contentedness alongside increases in physical and mental fatigue, may suggest 

impaired RT in the current study was also a result of the manifestation of fatigue due 

to the prolonged and strenuous nature of the exercise bout.  

The current findings are, in part, in agreement with those reported by Grego et al. 

(2005). Within this study, the authors investigated the effect of a prolonged (3-hour) 

cycling bout on cognitive processes both during and following exercise in a trained 

cohort of cyclists. Following 2 hours of exercise until the final assessment post-

exercise, an increase in the number of errors was reported on a complex map 

recognition task. Thus, from 120 minutes onwards a decline in accuracy was 

observed compared to the pre-exercise state. In addition, Grego et al. (2005) also 

observed reductions in critical flicker fusion following 120-minutes of prolonged 

exercise, which is suggested to be indicative of CNS fatigue. This is in agreement 

with studies that have shown central fatigue, as well as peripheral fatigue, manifests 

following ~2-hours of prolonged exercise (Lepers et al., 2000). As central fatigue is 

associated with disturbances in perception, coordination and concentration (Lehmann 
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et al., 1993), its manifestation may have contributed to the reduction in cognitive 

performance observed in the current study. The finding of a slower RT without a 

change in accuracy suggests an impairment in the ability to readily respond to the 

correct information. Interestingly, this finding was only observed in the congruent 

condition of the Stroop task, indicating that of the executive processes in use, 

selective attention was affected rather than inhibitory control. The impairment in 

congruent trials but not incongruent is particularly surprising. The incongruent trials 

present a more complex condition due to a greater reliance on response inhibition 

than selective attention and thus, one might expect to see a change in the incongruent 

condition if a change is observed in the congruent condition, as occurred in McMorris 

et al. (2009). The remit of the current study cannot provide an explanation for the 

observed effect, but warrants further investigation with a larger sample size.  

Individuals with higher physical fitness levels have been suggested to cope better at 

high exercise intensities as they have a higher oxygen-carrying capacity, which would 

confer the ability to compensate for the negative effects of heavy exercise on 

cognitive task performance (Wang et al., 2013). Furthermore, as physically fitter 

individuals have a faster rate of recovery following physiological distress (Tomlin and 

Wenger, 2001), it may be postulated that there is similarly a quicker return to 

homeostasis at the cognitive level. However, in the current study and that of Grego 

et al. (2005), reductions in cognitive performance were observed following prolonged 

strenuous exercise despite the use of trained participants accustomed to cycling. As 

the exercise protocol utilised induced high physiological stress for over 2-hours, the 

results may be a consequence of the intense nature of the exercise task and the 

heavy burden placed on metabolic resource. Accordingly, similar to studies 

demonstrating differential effects on cognitive performance following shorter exercise 

bouts in trained and sedentary individuals (Brisswalter et al., 1997, Labelle et al., 

2013, Labelle et al., 2014); it could be speculated that the effect of prolonged 

strenuous exercise on cognitive function may be more severe in untrained individuals 

that are not accustomed to this intensity and/or type of exercise. 

 

In the current investigation, negative effects on parameters of mood, namely alertness 

and contentedness, were observed following strenuous exercise. In addition, 

significant increases in physical and mental fatigue alongside reductions in physical 

and mental energy were reported. These results are in support of our second 

hypothesis and existing research which has similarly found detrimental effects of HIE 

on mood and mental fatigue (Berger and Motl, 2000, Blanchard et al., 2001, Hall et 
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al., 2002, Rose and Parfitt, 2007, Steptoe and Bolton, 1988). Indeed, increases in 

mental fatigue alongside reductions in alertness make an individual more vulnerable 

to the possibility of both mistakes and injury and thus these findings raise important 

considerations for sporting individuals and military personnel. Interestingly, mood has 

been found to be related to an individuals preferred intensity (Berger et al., 2016, 

Saanijoki et al., 2015, Zervas et al., 1993). It has been suggested that this may be 

reflective of “flow”, described as a pleasurable state of consciousness that can only 

be achieved when an individual’s competencies are realistically matched against the 

challenges of the task (Csikszentmihalyi, 2014, Yeung, 1996). The negative mood 

states observed in the current study following prolonged exercise may therefore 

reflect the intensity of the task being above the preferred intensity of the trained 

subjects. In a recent study, Saanijoki et al. (2018) found that high-intensity interval 

training significantly decreased cerebral μ-opioid receptors binding in the frontolimbic 

brain regions involved in pain, reward and emotional processing. These effects 

however, were not observed following moderate-intensity exercise. Decreased 

binding was correlated with increased negative emotions, thus providing a potential 

mechanistic pathway for the mediating effect of exercise intensity on mood. 

3.5 Practical applications 

There are many sporting events that require prolonged cognitive effort for extended 

durations, with endurance cycling, ultra-endurance, tennis and baseball naming just 

a few. In all of these sports maintaining attention and reacting quickly is important to 

success. In endurance cycling for example, when a break from the peloton occurs a 

cyclist needs to see the attack, judge the importance of the break, decide if they need 

to break with the attacking cyclist(s) and judge their capacities against the remaining 

distance to form a decision, all within milliseconds. The findings of this study, which 

show detrimental effects of prolonged exercise on attentional capacities in trained 

sporting individuals, highlights the need for the utilisation of cognitive strategies both 

in training and competition. Furthermore, the reductions in alertness, contentedness, 

and energy observed alongside increases in mental fatigue highlight probable 

contributing factors to the observed reduction in selective attention and thus 

emphasise the importance of adequate nutrition strategies during competition.  
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3.6 Limitations 

A limitation of the present study was the order of testing. Due to being part of a larger 

study, limitations were imposed and it was not possible to counterbalance conditions. 

The purpose of counterbalancing is to control for order effects and minimise 

confounding variables. In the current study, all subjects participated in the exercise 

condition first followed by the control condition. To reduce the learning effect, all 

participants completed three familiarisation trials prior to the first experimental visit.  

To determine if the study was influenced by an order effect, a two-way (cognitive task 

x time) repeated measures ANOVA was conducted on familiarisation trials to see if a 

plateau in learning was reached. Initial analysis revealed significant differences 

between time points in Stroop congruent correct RT and Stroop incongruent correct 

RT (p<0.05). Pairwise comparisons revealed that in the Stroop congruent correct RT 

condition there was only a difference between the first and third trial and in the Stroop 

incongruent correct RT condition there was a significant difference between the first 

and second familiarisation trial but not between the second and third (p>0.05). These 

results demonstrate that a plateau in learning was reached, therefore reducing the 

likelihood that there was an order effect in the study. Though the assessment of the 

familiarisation trials provides greater confidence that the study results were not 

influenced by an order effect, it is acknowledged that counterbalancing the order of 

the conditions would have improved the design and is therefore implemented in the 

subsequent studies of this thesis.  

3.7 Conclusion & perspectives  

In summary, and in support of the first hypothesis, the main finding of this study is 

that prolonged strenuous exercise had detrimental effects on selective domains of 

cognitive function. Specifically, negative effects were observed in the Stroop task, 

which requires higher-order thinking and more conscious effort than simpler tasks. 

Despite the trained and competitive status of participants, negative effects were also 

observed in mood and perceptions of physical and mental energy and fatigue. These 

findings suggest the need for greater research into cognitive strategies for sports that 

require extended cognitive effort for prolonged durations. This study is in agreement 

with the findings in Chapter 2 and adds to the growing body of literature showing 

differential effects of strenuous exercise on various cognitive domains in addition to 

detrimental effects of exercise of a prolonged duration.  
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This chapter addressed the second aim of this thesis, to `examine the effect of 

prolonged, strenuous exercise on cognitive performance, mood, energy and fatigue`. 

The current study presents novel data illustrating a negative effect of prolonged and 

strenuous exercise on cognitive performance and mood. This has important 

implications for endurance sports and military personnel that engage in prolonged 

durations of high physical exertion. It is appreciated that the current protocol used 

may not represent the intermittent nature of many sports and occupations and thus, 

Chapter 4 will expand on the current results and explore the effect of intermittent HIE 

on cognitive performance and mood. In modern day sporting paradigms, the effect of 

congested tournament fixtures is becoming of increasing interest and concern, 

though this remains an unexplored area within the cognition space. Thus, the 

subsequent chapter will specifically explore the effect of repeated exercise over 

multiple days on cognitive performance and mood. 
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Chapter 4: The effect of congested strenuous exercise 

bouts on cognitive function, mood, energy and fatigue 

states in trained intermittent sports players 
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4.1 Introduction 

Successful sporting performance is dependent on the ability of an athlete to produce 

and  sustain high levels of physical, technical, cognitive and psychological skills 

throughout a competition (Knicker et al., 2011). These skills often decline during the 

final stages of a match or game (McMorris et al., 2015, Royal et al., 2006), with 

deterioration being attributed to exercise-induced fatigue (Smith et al., 2016b, 

Rampinini et al., 2009). Residual fatigue accumulated over successive matches can 

also adversely affect team-sport performance (Ronglan et al., 2006) and has been 

associated with rises in injury rates (Carling et al., 2016) and reductions in player well-

being (Gescheit et al., 2015). Despite the need for sufficient recovery after a match, 

team-sports players are often required to compete and train within intensified 

competition periods held over consecutive days, multiple times per week (Ronglan et 

al., 2006). Rugby 7s epitomises congested fixtures, with most competitions consisting 

of multiple fixtures across a two-day tournament. These excessive volumes of training 

and competition put the musculoskeletal, nervous, immune and metabolic systems 

under high loads which have detrimental effects on subsequent exercise performance 

(Gescheit et al., 2015). Although the physiological effects of a high-intensity exercise 

(HIE) bout are well-documented, less is known about the effect of cumulative HIE 

bouts on cognitive performance, though as shown in Chapter 3 and by Grego and 

colleagues (2004, 2005), long duration exercise has negative effects. Based on the 

detrimental physiological and performance observations, it is likely that cumulative 

residual fatigue and limited recovery between successive performances may 

compromise fundamental cognitive processes and associated sporting performance. 

Individuals who engage in strenuous exercise often report a reduced ability to think, 

make logical judgements and decisions, and have a reduced mood state. Though not 

all empirical evidence supports these observations (Davranche et al., 2015, Schmit 

et al., 2015), the experimental and theoretical literature on the cognitive effect of 

strenuous exercise converges towards an impairment of cognitive performance (Ando 

et al., 2005, Browne et al., 2017, Chmura et al., 1994, Cooper, 1973, Davey, 1973, 

Tomporowski, 2003). It is known that intermittent exercise, such as that performed in 

team sports, increases both mental (Smith et al., 2016b) and physical (Rampinini et 

al., 2009) fatigue, which can have detrimental effects on cognitive and sport-specific 

performance (Casanova et al., 2013, Smith et al., 2016b, Stone and Oliver, 2009).  

Many moderating variables influence the exercise-cognition interaction, which 

highlights the complexity of this construct. Alongside the intensity of exercise, 
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individual characteristics such as physical fitness and skill level have been 

demonstrated to have a moderating effect (Chang et al., 2012, Voss et al., 2009). 

Furthermore, the use of imaging tools has provided robust evidence that long-term 

exercise training and fitness enhances brain structure and functioning throughout the 

lifespan (Voss et al., 2011); subsequently the failure to control for physical fitness has 

been highlighted as a major flaw in previous studies (Brisswalter et al., 2002). It has 

been suggested that fit individuals with a history of training who are accustomed to 

strenuous exercise may compensate for the negative effects of fatigue on cognitive 

function (Tomporowski and Ellis, 1986, Wang et al., 2013), with more favourable 

cognitive responses reported following intense exercise in trained vs untrained 

individuals (Delignières et al., 1994). Together with the “cognitive component skills” 

theory (Mann et al., 2007, Voss et al., 2009), which highlights that athletes show 

enhanced cognitive performance in perceptual-cognitive measures outside of the 

sport context, it could be suggested that trained athletic individuals are more resistant 

to the negative effects associated with intense exercise and cognitive performance.  

Within the acute exercise-cognition literature, there appears to be a propensity for 

studies to assess cognition using exercise paradigms that are not matched to the 

specific sport of interest (Schapschröer et al., 2016). For instance, cycling protocols 

have been used to assess the impact of exercise on general and soccer-specific 

cognitive tasks in soccer players (McMorris and Graydon, 1997b). The importance of 

assessing athletes’ cognition under congruent sport-specific contexts is highlighted 

by the observation that different exercise modalities, such as cycling and running, 

elicit different effects on cognitive function (Lambourne and Tomporowski, 2010) and 

familiarity with exercise modality influences brain cortical activity (Brümmer et al., 

2011). It is suggested that differences in the metabolic cost of each exercise mode 

may alter the attentional demands required and thus impose different loads on 

cognitive processes (Scott et al., 2006). Consequently, when exploring the impact of 

sport on cognitive function it is important that the exercise protocol is representative 

of the participant’s habitual sport. As such, when assessing the effect on cognitive 

function of intermittent sports such as soccer and rugby, which are characterised by 

frequent bouts of high-intensity repeated sprint activity punctuated by short periods 

of recovery, exercise protocols of a similar nature should be employed (Austin et al., 

2013). 

Several studies designed to assess the effects of strenuous exercise on cognitive 

function have focussed specifically on the acute effects either during or immediately 

post-exercise (Chang et al., 2012). Whilst this sheds light on acute exercise-induced 
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modulation of cognition, it fails to provide an insight into the impact of cumulative or 

residual effects of exercise on cognitive function during subsequent sport 

performance. As the last game within a tournament fixture is often the pinnacle match, 

it is important to consider the impact of repeated, multi-day exercise bouts on 

cognitive performance and mood. Thus, in relation to the third aim of this thesis, the 

purpose of the present study was to investigate the effect of multiple high-intensity 

intermittent exercise bouts, performed over two consecutive days, on cognitive 

performance and mood in trained team-sports players that are familiar with the type 

and mode of exercise imposed. It was hypothesised that cumulative fatigue, as a 

consequence of multiple exercise bouts, would cause a deterioration in cognitive 

performance and mood despite the trained status of the participants.  

4.2 Methods 

4.2.1 Participants 

Statistical power was calculated using commercially available software (G*Power 

v3.1.9, Düsseldorf, Germany) to determine an adequate sample size for this 

investigation. In the absence of any directly relevant data, analysis was based on a 

based on a hypothesised effect size of 0.3 (Cohen’s d - small) for a within subject’s 

design. It was estimated that a sample size of 20 would be required to detect 

significant changes with a two tailed α level of 0.05 and a sufficient statistical power 

of 0.80 (Cohen, 1992). Thus with the inclusion of a 20 % drop-out rate, twenty-four 

well-trained male rugby players were recruited to participate in the study. Mean ± SD 

age, height and body mass were 21.4 ± 1.7 years, 88.2 ± 9.0 kg and 181.7 ± 5.2 cm, 

respectively. Volunteers had at least six years’ competitive rugby experience, and 

were currently playing within the top five divisions in the English Rugby Union system. 

This was assessed through the completion of a training history questionnaire.  

Participants had not experienced concussion in the preceding 3 months and were not 

taking any medications that might interfere with cognitive function. The study was 

conducted in accordance to the Declaration of Helsinki (1964) and was approved by 

the Faculty of Health and Life Science Ethics Committee at Northumbria University, 

UK.  

All participants were informed of the purposes of the study, signed a written informed 

consent before the study commenced and completed a health screening 
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questionnaire. All study procedures were conducted in a laboratory accredited by the 

British Association of Sport and Exercise Sciences.  

4.2.2 Study design  

The study was structured using a randomized, counter-balanced, crossover design 

that consisted of five laboratory visits. The first visit was an initial screening that 

included the collection of demographic information and familiarisation with the 

cognitive tasks, subjective measures and experimental procedures. During this 

session, the battery of cognitive tasks was performed three times to minimise learning 

effects. Following this, four experimental visits were conducted, where each condition 

(exercise vs. rested control) was carried out over two consecutive days, in a 

randomised counter-balanced manner, with a minimum of seven days between 

conditions. In an attempt to simulate a two-day congested competition period, during 

each visit, participants completed the cognitive tasks six times; pre and post each of 

three exercise/control sessions with a three-hour rest in between each bout. Testing 

was conducted at the same time of day on each occasion. On each experimental day, 

after each exercise or control session, standardised food was provided. To 

standardise food consumption in the morning and evenings prior to visits, participants 

were provided with a food diary and asked to mimic food consumption. Participants 

were required to refrain from alcohol consumption, caffeine and exercise 24-hours 

prior to the start of each trial and were asked to attain a minimum of 7-hours sleep on 

nights prior to each testing day. Self-reported compliance was checked prior to 

testing.  

4.2.3 Experimental Procedure  

Upon arrival each experimental day, participants confirmed that they had not suffered 

a concussion since their previous visit and had complied with the study requirements. 

Following this, baseline completion of the cognitive tasks, mood, fatigue and energy 

scales was undertaken. Participants assigned to complete the exercise condition 

were fitted with a HR monitor (Polar RS800CX, Polar Electro, Finland) and completed 

a standardised 15-minute warm-up. This consisted of 5-minutes on a cycle ergometer 

(Watt bike Pro, Nottingham, UK) maintaining between 150-200 Watts, followed by a 

series of dynamic stretches and shuttle runs at 60 %, 70 % and 80 % of maximal 

effort. Timing gates (SmartSpeed, Fusion Sport, Australia) were positioned at 0 and 
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20 m to record sprint times; participants were instructed to start with their foot 

approximately 30 cm from the start line to avoid premature triggering of the timing 

system. After a 5-second count down, participants completed 20 x 20 m sprints with 

a 20 s active recovery period. Participants were instructed to give maximal-effort for 

each sprint and stop within a 10 m deceleration zone. Congruent to the habitual sport 

of the participants, this protocol was adapted from a previous study in rugby players 

and is in line with global position system (GPS) data in rugby (Austin et al., 2013, 

Suarez-Arrones et al., 2012). Standardized verbal encouragement was provided 

throughout. Immediately upon completion of the final sprint, a capillary blood sample, 

for determination of peak blood lactate concentration, was taken and participants 

provided their RPE using a 15-point RPE scale (Borg, 1998). Participants were then 

seated in a quiet testing booth to repeat the cognitive performance tests, mood 

measures and fatigue and energy scales. A three-hour gap was then provided prior 

to the next session; during this time period participants were free to relax whilst being 

instructed not to do anything mentally demanding. The control condition was identical 

to the exercise condition with the exception that no exercise was undertaken and no 

blood samples, HR or RPE measures were provided. In place of exercise, subjects 

remained seated in a quiet area for 20 minutes to mimic the same time required for 

the exercise protocol (Figure 4.1). 

 

Figure 4.1 Schematic of testing protocol over day 1. This protocol was replicated on 

day 2.  

4.2.4 Cognitive and mood measures 

Cognitive measures were administered using COMPASS (Northumbria University, 

UK). The cognitive battery of tests took approximately 15-minutes to complete and 

included simple reaction time (SRT), four-choice reaction time (FCRT), Corsi block 

task and the Stroop task. Mood was assessed via the Bond-Lader mood scale and 
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via the Mental and Physical State and Trait Energy and Fatigue Scale; for full 

descriptions of cognitive tasks and scales please refer to the methods section in 

chapter 3. 

4.2.5 Statistical analysis 

All data were analysed using statistical software (IBM SPSS 22 for Windows, New 

York, USA). Prior to analysis, outliers were identified as greater or less than 2.5 times 

the SD of the mean and removed; the relevant n for each task is shown in Table 4.1. 

Baseline scores between conditions were assessed with a paired samples t-test and 

are reported in section 4.3.1.1 and 4.3.2.1 for cognitive and mood, energy and fatigue 

results respectively. To assess the effect of strenuous exercise across consecutive 

days, as well as pre and post multiple exercise bouts, a four-way (condition x day x 

session x pre-post) repeated measures ANOVA was conducted on all cognitive 

performance, mood, energy and fatigue measures. Blood lactate concentration, RPE, 

sprint time and HR were assessed via a two-way (day x exercise session) ANOVA. A 

p value of <0.05 was considered significant and pairwise comparisons were used to 

follow-up on any significant interaction effects revealed by the ANOVAs. Sphericity 

was assumed if Mauchly’s test score returned p ≥0.05; if sphericity was violated, the 

degrees of freedom were corrected using Greenhouse-Geisser procedure. 

4.3 Results 

All cognitive data can be seen in Table 4.1. Significant main effects and interactions 

involving condition are reported below. 

4.3.1 Cognitive Performance 

4.3.1.1 Baseline differences  

Day 1 baseline differences were observed between the control and exercise condition 

for Stroop correct RT (696.5 vs 661.4; p=0.008) and Stroop incongruent correct RT 

(715.5 vs 671.5; p=0.011). Following analysis however, these two differences in 

baseline cognitive function were not related to outcomes significantly affected by the 

intervention and were therefore not further investigated. 
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4.3.1.2 Four-choice reaction time 

A condition x day interaction effect (F(1,20)=6.24, p=0.02, ηp
2=0.21) revealed FCRT to 

be significantly slower across day 2 in the exercise condition when compared to day 

1 (p<0.05) with no such effect in the control condition (Figure 4.2). A three-way 

condition x session x pre-post interaction (F(2,40)=3.41, p=0.04, ηp
2=0.15) found RT 

following session 3 was slower than following session 2 in the exercise condition 

(p=0.001), irrespective of day. 
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Figure 4.2 Four-choice reaction time pre and post each session of high-intensity 

exercise/rest over two-consecutive days. Data presented as mean ± SEM. 

*Significantly different to day 1 (p<0.05)  

 

4.3.1.3 Corsi blocks task 

Significant interactions between condition x session (F(2,38)=3.56, p=0.038, ηp
2=0.16) 

and condition x pre/post (F(1,19)=10.4, p=0.004, ηp
2=0.35) were observed. Pairwise 

comparisons following a significant condition x session x pre/post interaction 

(F(1,19)=3.40, p=0.044, ηp
2=0.15) revealed that this was due to a decline in 

performance post-exercise during session 2 (p=0.001) and 3 (p=0.003) that was not 

observed in the control condition. Span score was also significantly lower in the 

exercise condition when compared to control when measured pre and post session 2 

and post session 3 (all p<0.05; Figure 4.3).  
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Figure 4.3 Corsi blocks span score pre and post each session of high-intensity 

exercise/rest over two-consecutive days. Data presented as mean ± SEM. See text 

4.3.1.3 for significant differences 

4.3.1.4 Stroop test 

A condition x pre-post interaction (F(1,18)=9.07, p=0.007, ηp
2=0.36)  was observed for 

Stroop congruent correct RT, indicating faster performance post-exercise compared 

to pre (p=0.001), that was not observed in the control condition. A significant condition 

x day interaction was observed for overall Stroop accuracy (F(1,18)=4.79, p=0.04, 

ηp
2=0.21), which was driven by an effect on incongruent stimuli (F(1,18)=6.77, p=0.02, 

ηp
2=0.27). In the exercise condition, performance on day 2 was significantly worse 

than day 1 (p=0.03) and compared to the control (p=0.008; Figure 4.4). A condition x 

pre-post interaction for Stroop incongruent accuracy (F(1,18)=7.66, p=0.01, ηp
2=0.30) 

revealed a pre-post improvement in the control condition irrespective of day or 

session (p=0.02), that was not observed exercise condition.  
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Figure 4.4 Stroop task incongruent accuracy pre and post each session of high-

intensity exercise/rest over two-consecutive days. Data presented as mean ± SEM. 

*Significantly different to day 1 (p<0.05); †significantly different to control condition on 

day 2  
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Table 4.1 Raw scores for each cognitive measure across day 1 and day 2 in both the exercise and control condition 

Measure n Condition Day Pre-session 1 Post-session 1 Pre-session 2 Post-session 2 Pre-session 3 Post-session 3 

Simple 

reaction time 

(ms) 

23 Exercise 1 319.7 ± 30.2  334.5 ± 32.5 320.4 ± 25.6 341.3 ± 40.4 331.6 ± 30.7 342.5 ± 42.1 

  2 325.4 ± 27.0 345.8 ± 33.7 335.2 ± 32.1 338.9 ± 27.8 336.7 ± 29.4 338.5 ± 28.9 

         

 Control 1 319.7 ± 20.9 331.7 ± 27.7 331.8 ± 33.9 332.3 ± 24.2 336.8 ± 34.9 332.8 ± 29.9 

  2 324.4 ± 28.2 333.4 ± 34.9 321.7 ± 21.0 339.3 ± 34.4 333.5 ± 33.3 333.6 ± 46.5 

Four-choice 

reaction time 

accuracy (%) 

21 Exercise 1 99.4 ± 2.1 99.4 ± 1.3 99.6 ± 1.5 99.6 ± 1.1 99.4 ± 1.3 99.4 ± 1.6 

  2 99.3 ± 1.7 99.7 ± 0.9 99.3 ± 2.2 99.0 ± 1.8 99.0 ± 2.1 98.7 ± 2.7 

         

 Control 1 99.1 ± 1.8 99.9 ± 0.7 99.7 ± 0.9 99.1 ± 2.0 99.6 ± 1.1 100.0 ± 0.0 

  2 99.3 ± 1.4 99.9 ± 0.7 98.8 ± 2.7 99.3 ± 1.7 99.4 ± 1.3 99.1 ± 1.4 

Four-choice 

correct 

response RT 

(ms) 

21 Exercise 1 487.5 ± 34.9 491.9 ± 41.1 500.2 ± 42.0 488.4 ± 62.7 500.2 ± 53.2 510.2 ± 52.5 

  2* 515.6 ± 50.9 509.1 ± 59.9 509.5 ± 45.1 497.9 ± 59.1 504.1 ± 35.3 511.6 ± 65.3 

         

 Control 1 508.6 ± 53.9 512.5 ± 49.8 513.9 ± 40.9 503.9 ± 45.8 513.7 ± 57.4 506.0 ± 40.9 

  2 497.8 ± 40.7 511.8 ± 51.1 506.2 ± 43.9 507.3 ± 39.7 506.6 ± 46.8 507.9 ± 46.1 
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Table 4.1 Raw scores for each cognitive measure across day 1 and day 2 in both the exercise and control condition (continued)  

Measure n Condition Day Pre-session 1 Post-session 1 Pre-session 2 Post-session 2 Pre-session 3 Post-session 3 

Corsi blocks 

(Span Score) 

20 Exercise 1 6.7 ± 1.1 6.5 ± 1.2 6.9 ± 0.8 6.7 ± 1.1 6.6 ± 0.7 6.4 ± 1.1 

  2 7.1 ± 1.1 7.1 ± 1.0 7.1 ± 1.1 6.5 ± 1.1 7.2 ± 0.9 6.4 ± 1.1 

         

 Control 1 6.8 ± 0.9 6.5 ± 0.8 6.7 ± 0.8 6.9 ± 0.9 6.7 ± 0.8 6.6 ± 1.1 

   2 6.8 ± 1.1 6.8 ± 0.9 6.8 ± 1.0 6.9 ± 0.8 7.1 ± 0.9 7.2 ± 0.9 

Stroop task 

accuracy (%) 

19 Exercise 1 97.3 ± 2.2 97.6 ± 2.1 97.7 ± 2.1 97.2 ± 3.0 97.0 ± 2.5 95.9 ± 2.9 

  2† 96.9 ± 2.0 96.8 ± 2.5 96.8 ± 3.0 96.8 ± 3.1 97.0 ± 2.4 96.1 ± 2.8 

         

 Control 1 96.8 ± 2.3 97.7 ± 2.4 96.8 ± 2.4 97.5 ± 2.0 97.2 ± 2.1 97.7 ± 2.6 

  2 98.2 ± 1.8 97.4 ± 2.3 97.5 ± 3.0 97.1 ± 2.2 97.8 ± 2.0 
97.4 ± 2.8 

Stroop task 

correct 

response RT 

(ms) 

19 Exercise 1 661.4 ± 55.1 646.9 ± 64.4 667.9 ± 64.1 635.9 ± 65.4 648.8 ± 58.6 646.2 ± 69.5 

  2 651.6 ± 56.5 640.6 ± 47.6 665.4 ± 59.6 653.0 ± 63.4 645.9 ± 62.1 638.4 ± 69.5 

         

 Control 1 696.5 ± 72.7 677.9 ± 53.8 676.5 ± 61.8 673.5 ± 71.8 680.4 ± 80.4 665.3 ± 62.5 

  2 650.7 ± 56.8 672.1 ± 58.0 655.6 ± 56.3 654.2 ± 66.4 646.0 ± 61.2 650.5 ± 66.4 

Stroop task 

incongruent 

accuracy (ms) 

19 Exercise 1 96.5 ± 3.0 97.3 ± 3.3 97.8 ± 2.7 96.5 ± 3.6 96.7 ± 3.5 94.8 ± 4.6 

  2*† 95.7 ± 2.7 96.2 ± 3.9 96.3 ± 4.0 96.1 ± 4.1 96.6 ± 3.2 95.1 ± 3.9 

         

 Control 1 95.9 ± 3.5 97.6 ± 2.8 96.2 ± 2.4 97.5 ± 2.4 96.4 ± 3.1 97.8 ± 2.6 

  2 97.6 ± 2.7 97.1 ± 3.2 97.7 ± 2.9 96.4 ± 3.7 97.6 ± 2.4 96.8 ± 3.6 
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Table 4.1 Raw scores for each cognitive measure across day 1 and day 2 in both the exercise and control condition (continued)  

Measure n Condition Day Pre-session 1 Post-session 1 Pre-session 2 Post-session 2 Pre-session 3 Post-session 3 

Stroop task 

incongruent 

correct 

response RT 

(ms) 

 

 

19 Exercise 1 671.5 ± 58.5 662.3 ± 72.2 678.8 ± 65.9 649.7 ± 71.4 666.9 ± 66.4 664.1 ± 76.3 

  2 662.5 ± 66.4 655.8 ± 51.2 668.1 ± 67.3 663.3 ± 75.7 661.4 ± 71.6 665.4 ± 72.0 

         

 Control 1 715.5 ± 85.2 700.0 ± 64.6 688.7 ± 79.9 688.6 ± 82.1 704.6 ± 97.6 678.6 ± 66.3 

  2 669.9 ± 74.4 692.5 ± 64.4 675.6 ± 71.0 668.1 ± 68.8 661.1 ± 65.4 665.4 ± 72.0 

Stroop task 

congruent 

accuracy (%) 

19 Exercise 1 98.8 ± 2.1 98.2 ± 2.5 97.6 ± 2.4 98.6 ± 4.0 97.8 ± 2.5 97.9 ± 4.0 

  2 99.4 ± 1.9 97.8 ± 3.5 98.1 ± 3.3 98.0 ± 2.8 97.7 ± 4.2 98.1 ± 3.1 

         

 Control 1 98.5 ± 2.7 97.6 ± 3.6 97.7 ± 3.9 97.9 ± 3.1 98.7 ± 2.2 97.7 ± 4.5 

  2 99.2 ± 1.8 97.9 ± 3.5 97.2 ± 6.5 98.1 ± 3.0 98.5 ± 2.7 98.8 ± 2.6 

Stroop task 

congruent 

correct 

response RT 

(ms) 

19 Exercise 1 639.8 ± 57.5 615.2 ± 59.1 646.2 ± 73.1 610.0 ± 64.1 620.2 ± 56.3 608.7 ± 70.0 

  2 629.2 ± 50.1 611.4 ± 53.3 631.2 ± 63.4 631.5 ± 63.4 610.1 ± 50.0 608.1 ± 82.8 

         

 Control 1 656.6 ± 63.4 631.7 ± 42.7 658.9 ± 54.0 639.4 ± 61.4 634.4 ± 67.1 635.3 ± 77.0 

  2 614.0 ± 42.4 632.1 ± 55.1 612.9 ± 36.9 631.9 ± 80.0 613.9 ± 79.3 621.6 ± 66.3 

Data presented as mean ± SD. *Significantly different to day 1 (p<0.05). †Significantly different to control condition (p<0.05).
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4.3.2 Mood, energy and fatigue states  

A condition main effect was found for all three subscales of the Bond-Lader mood 

scale, indicating that calmness (F(1,23)=18.14, p<0.001, ηp
2=0.44), alertness 

(F(1,23)=5.66, p=0.03, ηp
2=0.20) and contentedness (F(1,23)=13.01, p=0.001, ηp

2=0.36) 

were all lower in the exercise condition than the control.  

4.3.2.1 Baseline differences 

Baseline differences in the control vs exercise condition were observed for physical 

energy (176.8 vs 201.8; p=0.006), mental energy (175.4 vs 206.3; p=0.002), alertness 

(59.7 vs 67.9; p=0.024) and calmness (72.3 vs 60.6; p=0.005). Some of the mood 

outcomes were affected by exercise and were therefore further explored. Of the 

interaction effects observed, alertness, physical energy and mental energy were all 

significantly greater at baseline in the exercise condition. Despite this, all variables 

decline over day 2 in the exercise bout, while they rise and remain stable in the control 

condition. Together with the significant increases in both mental and physical fatigue, 

confidence is given that the results of the aforementioned psychological variables are 

due to intervention and not the disparity observed at baseline.  

4.3.2.2 Alertness 

A condition x day interaction effect (F(1,23)=18.06, p<0.001, ηp
2=0.44) indicated that 

alertness was significantly lower on day 2 in the exercise condition compared to day 

1 (p=0.001) and the control condition (p<0.001; Figure 4.5). A condition x session 

interaction effect (F(1,23)=6.52, p<0.005, ηp
2=0.22) indicated that alertness significantly 

increased from session 1 to session 2 in the control condition (p<0.005), whereas in 

the exercise condition it significantly decreased from session 1 to session 3 (p<0.005) 

and from session 2 to session 3 (p<0.001).  
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Figure 4.5 Alertness pre and post each session of high-intensity exercise/rest over 

two-consecutive days. Data presented as mean ± SEM. §Condition main effect 

(p<0.05); *significantly different to day 1 (p=0.001); †significantly different to control 

condition on day 2 (p<0.001) 

4.3.2.3 Contentedness 

A condition x day interaction effect for contentedness (F(1,23)=10.14, p=0.004, 

ηp
2=0.31) indicating it was significantly lower on day 2 in the exercise condition 

compared to day 1 (p<0.05) and the control condition (p<0.001; Figure 4.6). A 

condition x session x pre/post interaction effect was also observed (F(2,46)=6.278, 

p=0.004, ηp
2=0.21). Pairwise comparisons indicated that contentedness increased 

from pre- session 1 to pre- session 2 in the control condition (p<0.05), whereas in the 

exercise condition post-session three ratings were significantly lower than post-

session 2 (p=0.019), and 1 (p=0.036). Post-exercise contentedness ratings were also 

significantly lower following session 3 than immediately before (p=0.014), whereas 

these ratings increased in the control condition (p<0.05). Content ratings were also 

significantly lower in the exercise condition compared to control pre- and post-session 

1, pre-session 2 (all p<0.05) and post-session 3 (p<0.001).  
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Figure 4.6 Contentedness pre and post each session of high-intensity exercise/rest 

over two-consecutive days. Data presented as mean ± SEM. §Condition main effect 

(p=0.001), *significantly different to day 1 (p=0.001); †significantly different to control 

condition on day 2 (p<0.001)  

4.3.2.4 Calmness 

A condition x pre-post interaction (F(1,23)=6.80, p=0.015, ηp
2=0.23) indicated that post-

exercise calmness was significantly lower than pre-exercise (p=0.01) while no change 

was observed in the control condition (p>0.05; Figure 4.7). A condition x session 

(F(2,46)=5.05, p=0.01, ηp
2=0.18) and a condition x day x session interaction 

(F(2,46)=7.69, p=0.001, ηp
2=0.25) revealed that calmness was higher during session 1 

on day 2 compared to day 1 in the exercise condition (p<0.001). Calmness 

significantly increased from session one to session 2 (p<0.05) and 3 (p<0.001) on 

day 1 in the exercise condition but decreased from session 1 to session 3 on day 2 

(p<0.05) and was lower on all sessions except session three on day 1 in the exercise 

condition compared to the control (p<0.05).  
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Figure 4.7 Calmness pre and post each session of high-intensity exercise/rest over 

two-consecutive days. Data presented as mean ± SEM. §Condition main effect 

(p<0.001)  

4.3.2.5 Physical energy 

A significant condition main effect (F(1,23)=49.15, p<0.001, ηp
2=0.68) and condition x 

day interaction (F(1,23)=22.25, p<0.001, ηp
2=0.49) were observed for physical energy, 

revealing ratings to be significantly lower in the exercise condition on day 2 compared 

to day 1 (p=0.001), and compared to the control condition (p<0.001; Figure 4.3). A 

condition x session interaction indicated lower ratings in session 2 (p=0.048) and 3 

(p<0.001) than in session 1 in the exercise condition whilst all sessions were 

significantly different between conditions (p<0.001), with lower ratings in the exercise 

condition. A condition x pre-post interaction also revealed lower physical energy post-

exercise compared to pre-exercise (p<0.001) and control (p< 0.001).  
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 Figure 4.8 (a) Physical energy and (b) physical fatigue pre and post each session of 

high-intensity exercise/rest over two-consecutive days. Data presented as mean ± 

SEM. §Significant condition main effect (p<0.05). *Significantly different to day 1 

(p<0.05). †Significantly different to control condition on (a) day 2 (b) both day 1 and 2 

 

 

(a) 

(b) 
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4.3.2.6 Physical fatigue 

A significant main effect of condition (F(1,23)=164.23, p<0.001, ηp
2=0.88) and 

significant condition x day (F(1,23)=43.37, p<0.001, ηp
2=0.88), condition x session 

(F(2,46)=17.38, p<0.001, ηp
2=0.43) and condition x pre/post (F(1,23)=36.88, p<0.001, 

ηp
2=0.62) interactions were observed. Pairwise comparisons following a significant 

condition x day x session interaction (F(2,46)=6.06, p=0.005, ηp
2=0.21) revealed 

significantly higher physical fatigue during each session on day 2 compared to day 1 

(session 1: p=0.001; session 2: p<0.0001; session  3: p=0.014), and between 

sessions 1 and 3, and 2 and 3 on each day following exercise (all p<0.0001). 

Conversely, in the control condition, physical fatigue decreased from session 1 to 2 

on day 1 (p=0.006) and was significantly lower at session 1 (p=0.002) and session 3 

(p=0.033) on day 2 compared to day 1. Physical fatigue was significantly higher when 

compared to control during each session on each day (all p<0.005). A significant 

condition x day x pre/post interaction (F(1, 23)=9.99, p=0.004 ηp
2=0.30) indicated that 

ratings were higher pre and post-exercise on day 2 compared to day 1, whereas in 

the control condition these ratings decreased (all p<0.001). Ratings also increased 

pre-post exercise on day 1 (p<0.001) and day 2 (p=0.001), with no such effects in the 

control condition. Ratings in the exercise condition were significantly higher than 

control pre- and post- on each day (all p<0.001; Figure 4.3).  

4.3.2.7 Mental energy 

A condition main effect (F(1,23)=8.81, p=0.007, ηp
2=0.28), condition x day interaction 

(F(1,23)= 4.74, p=0.001, ηp
2=0.39) and condition x session interaction (F(2,46)=6.32, 

p=0.004, ηp
2= 0.22) revealed mental energy to be lower following exercise on day 2 

compared to day 1 (p=0.001; Figure 4.4) and compared to control (p<0.001) while 

mental energy got lower at each consecutive session compared to the previous 

session and to the control at session 2 and 3 (p≤0.02). A condition x pre-post 

interaction (F(1,23)=5.79, p=0.025, ηp
2=0.20) indicated that mental energy was lower 

post-exercise when compared to pre-exercise (p=0.009) and control (p=0.002).  
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Figure 4.9 (a) Mental energy and (b) mental fatigue pre and post each session of 

high-intensity exercise/rest over two-consecutive days. Data presented as mean ± 

SEM. §Significant condition main effect (p<0.05). *Significantly different to day 1 

(p<0.05). †Significantly different to control condition on day 2 
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4.3.2.8 Mental fatigue 

A condition main effect (F(1,23)=27.62, p<0.001, ηp
2=0.55) and condition x day 

interaction (F(1,23)=11.16, p=0.003, ηp
2=0.33) revealed mental fatigue to be higher on 

day 2 compared to day 1 in the exercise condition (p=0.003) while both day 1 and 2 

were significantly higher compared to the control (p≤0.02; Figure 4.4). A condition x 

session interaction (F(2,46)=5.99, p=0.005, ηp
2 =0.21) revealed mental fatigue to be 

increasingly higher at each session (p≤0.02) in the exercise condition whilst also 

being higher than the control condition (p≤0.003). A condition x pre-post interaction 

(F(1,23)=14.11, p= 0.001, ηp
2=0.38) found post-exercise mental fatigue to be higher 

than pre-exercise (p<0.001) while the control was lower than the exercise condition 

at pre (p=0.002) and post (p<0.001).   

4.3.3 Performance measures and RPE 

Due to technical issues, HR data for 18 of the 24 participants was available for 

analysis. A session main effect showing an increase in RPE (F(2,46)=15.90, p<0.001, 

ηp
2=0.41) was observed alongside a session main effect for post-exercise blood 

lactate concentration (F(2,46)=15.81, p< 0.001, ηp
2=0.41), which indicated  a reduction 

across each exercise session. In addition, a day main effect for blood lactate 

(F(1,23)=46.601, p<0.001, ηp
2=0.67), sprint time (F(1,23)=6.12, p=0.021, ηp

2=0.21) and 

HR (F(1,17)=28.69, p<0.001, ηp
2=0.63) revealed all to be lower on day 2 than day 1 

(p<0.05). Performance and RPE data is presented in Table 4.3 below. 

 

 

 

 

 

 

 

 



 

111 
 

Table 4.3 Average: sprint time, HR, RPE and post-exercise blood lactate 

concentration following each session of repeated sprints on day 1 and 2 

 Day Session 1 Session 2 Session 3 

Average sprint 

time (s) ‡ 

1 3.43 ± 0.2 3.47 ± 0.1 3.46 ± 0.1 

2 3.51 ± 0.1 3.51 ± 0.1 3.52 ± 0.1 

HRav (bpm) ‡ 
1 178 ± 8 180 ± 6 179 ± 6 

2 175 ± 8 175 ± 8 176 ± 7 

BLa (mmol/L) #‡ 
1 12.4 ± 2.6 11.4 ± 2.5 10.4 ± 2.1 

2 9.9 ± 2.0 9.6 ± 1.8 9.1 ± 1.6 

RPE# 
1 18 ± 1.1 18.4 ± 1.1 18.7 ± 1.5 

2 18.0 ± 1.9 18.4 ± 1.3 18.8 ± 1.1 

HRav = average heart rate; BLa = blood lactate concentration; RPE = rate of perceived 

exertion. Data presented as mean ± SD. #Significant session main effect (p<0.05). 

‡Significant day main effect (p<0.05) 

4.4 Discussion 

It was hypothesised that cumulative fatigue, as a consequence of multiple exercise 

bouts, would cause a deterioration in cognitive performance and mood in trained team 

sports players. In support of the hypothesis, cumulative HIE bouts did result in a 

deleterious effect on cognitive performance and mood. Specifically, on day 2, both an 

increase in errors (assessed by response accuracy on the Stroop task) and a slowing 

of RT (assessed on the FCRT) were observed. In addition, FCRT and VSM (assessed 

on the Corsi blocks test) were generally worse post-exercise following cumulative 

exercise bouts. Within the mood measures, both alertness and contentedness were 

lower following one day of exercise. Furthermore, mental and physical fatigue were 

significantly higher on day 2 while mental and physical energy were lower.  

The results observed in the current study are supported by within-match observations 

of reductions in technical skill and performance (Rampinini et al., 2009) in addition to 

reductions in performance across congested matches and tournaments (Ronglan et 

al., 2006). In  contrast to the results of the current study, Tsukamoto and colleagues 

(2016b) found improved RT on the Stroop task following repeated HIE. Though a 

positive effect of exercise on Stroop congruent RT was observed in the current study, 

this was offset by a negative effect on Stroop incongruent accuracy, which also 
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interacted with day suggesting that the cumulative effect of HIE here was negative. A 

possible explanation for the contrasting results when compared to those of 

Tsukamoto and colleagues is that whilst high-intensity was used in their study (90 % 

V̇O2max), the exercise was not at maximal effort and was on a cycle ergometer which 

has been shown to be a less cognitively demanding activity as compared to running 

(Lambourne and Tomporowski, 2010). Higham et al. (2012)  also observed different 

findings to the current study. When assessing movement patterns in rugby sevens, 

the authors found little indication of accumulated fatigue in players when comparing 

first and last games during tournaments that were held across two-days and consisted 

of five to six matches. However, this study only reported movement patterns and not 

skill, perceptual responses or any markers indicative of cognitive performance such 

as decision-making or missed passes and therefore the true impact of accumulated 

matches and residual fatigue was not fully assessed. Furthermore, as highlighted by 

Higham et al. (2012), their results may be representative of effective between-match 

physiological recovery strategies rather than the effect of exercise-induced fatigue on 

consecutive performance.  

Though the relationship between fundamental cognitive processes and sport-specific 

cognitive processes is still unclear, it is interesting that the findings of the current study 

support those of Sinclair and Artis (2013) who found a considerable reduction in sport-

specific decision-making and accuracy across a 4-day soccer tournament. Moreover, 

our results indicating a reduction in accuracy on a higher-order cognitive task 

(Stroop), supports previous studies that have used intermittent protocols and found 

reductions in accuracy on both cognitive (Casanova et al., 2013) and performance-

specific (McMorris and Rayment, 2007, Stone and Oliver, 2009) tests. This suggests 

that the effects of cumulative HIE bouts may be specific to more complex tasks and 

have the potential to impact cognitive processes that form the basis of sporting 

performance such as decision making, response inhibition and cognitive flexibility.   

During HIE hyperventilation blunts increases in cerebral blood flow which can lead to 

inadequate oxygen, glucose, and lactate delivery to the brain and contribute to the 

development of central fatigue (Ogoh and Ainslie, 2009). According to Dietrich (2006), 

studies on cerebral blood flow and metabolism provide the strongest support for the 

hypofrontality hypothesis that suggests exercise decreases neural activity in the PFC. 

Based upon this mechanistic theory, it could be postulated that greater resource in 

the motor cortices was required on day 2 due to the increased fatigue, consequently 

inhibiting cognitive performance. However, caution must be taken when applying this 

theoretical model to post-exercise performance as it was designed to specifically 
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account for the psychological effects during exercise. Given the lack of detailed data 

about the time it takes for the brain to resume pre-exercise status, there is a lack of 

confidence when applying this framework to post-exercise changes in cognition. 

Previous studies investigating repeated high-intensity interval exercise and executive 

function have associated reduced lactate levels with reduced executive functioning 

on the premise that as lactate is a main energy source for the brain during high-

intensity activity, lower lactate levels may not adequately support neuronal activity 

and metabolism (Tsukamoto et al., 2016b). This is thought unlikely in the current 

study however due to the relatively high lactate levels on day 2 despite the significant 

decrease from day 1. Indeed, reduced lactate levels suggests reduced glycolysis 

which is a consequence of fatigue. A recent study by Fiorenza et al. (2019) found 

multiple short sprints, similar to that in the current study, resulted in neuromuscular 

fatigue which has been suggested to decrease parasympathetic tone and attenuate 

executive functioning (Dupuy et al., 2018). Together with the slowing of sprint 

performance and self-rated increases in physical and mental fatigue, the decline in 

cognitive and physical performance observed on day 2 of the current protocol may be 

attributed to both mental (Smith et al., 2016b) and physical (Rampinini et al., 2009) 

fatigue, which is understood to be due to both peripheral and central mechanisms 

(Thomas et al., 2015).  

Physical fitness and athletic experience have been reported to moderate cognitive 

performance following exercise (Chang et al., 2012, Voss et al., 2009).  Highly trained 

sports players are able to sustain performance and recover quicker from high-

intensity intermittent exercise (Edwards et al., 2003); however, it is known that even 

well-trained games players become fatigued with increasing game time (Rampinini et 

al., 2009). As such, the fatigue induced via cumulative exercise bouts in the current 

protocol may have been above a functional threshold, even for trained players, 

resulting in the reported detrimental effects on cognitive performance and mood. As 

most research investigates the effects of exercise during or immediately following one 

acute exercise session, the present study highlights important novel implications for 

individuals involved in repeated exercise.  

Reductions in sprint time, HR and blood lactate values were observed on day 2 

despite no change in effort (as shown by RPE), indicating the presence of exercise-

induced fatigue. Reductions in mood, particularly alertness, and increases in mental 

fatigue were also observed on day 2. Research examining the effect of HIE on mood 

is limited, particularly in trained populations. It has been suggested that trained 
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individuals who are accustomed to HIE will find strenuous exercise less aversive than 

their untrained counterparts (Solomon and Corbit, 1974) and are more positive during 

exercise at higher intensities than less active individuals (Parfitt et al., 1994). The 

present study however is in support of others that have reported detrimental effects 

of multiday consecutive performance on mood, perceptions of fatigue and well-being 

(Gescheit et al., 2015, Halson et al., 2002, Johnston et al., 2013). Unlike alertness 

and contentedness in which progressively negative effects of HIE were observed, 

exercise had positive effects on calmness initially but following one day of HIE 

negative effects were observed on day 2. Given the recognised relationship between 

mood and cognitive performance (Ashby and Isen, 1999, Mitchell and Phillips, 2007, 

Parkinson et al., 1996, Spies et al., 1996), it may be suggested that the reduced mood 

state on day 2 of the current study contributed to the reductions in cognitive 

performance. Self-report measures of well-being and physical status are often 

overlooked in favour of objective physiological and biochemical markers; recent 

evidence however demonstrates subjective measures are often more responsive to 

training and provide superior sensitivity and consistency compared to objective 

counterparts (Saw et al., 2015). As self-report measures are easy to employ, quick to 

determine and physically non-invasive, they can provide a good indication of 

immediate player performance and well-being; something of great use during 

congested periods of competition.  

It is acknowledged that laboratory-based exercise does not truly replicate the 

demands of match performance; it does however, enable greater control over 

confounding variables. The current protocol was selected based upon a sport-specific 

intermittent paradigm and was adapted from studies that have used sprint-based 

protocols in sporting populations (Austin et al., 2013, Howatson and Milak, 2009). 

Specifically, a running protocol was selected due to it being the exercise mode the 

trained participants were most familiar with. This is particularly important as meta-

analytic assessment has demonstrated that the cognitive response may not be similar 

between exercise modes (Lambourne and Tomporowski, 2010). Furthermore, it has 

been shown that familiarity of exercise mode and exercise modality preference 

influence mood (Daley and Maynard, 2003) and brain cortical activity which may 

contribute to altered psychophysiological response (Brümmer et al., 2011). Thus, the 

use of an intermittent high-intensity protocol in the present study may better reflect 

cognitive performance in intermittent team sports players than studies that have used 

alternate exercise modalities (McMorris and Graydon, 1997a).  
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4.5 Practical applications 

The present study is the first to investigate the impact of congested strenuous 

exercise sessions on specific cognitive domains, mood, energy and fatigue states. 

The protocol in this study was specifically designed around Rugby 7’s tournament 

fixtures which commonly involve 3 games per day for two consecutive days, with the 

ultimate, and arguably most important game, being the last game of the final day. The 

findings of reduced inhibition, energy, alertness and increased physical and mental 

fatigue on the second day highlights several practical applications that may serve to 

help with performance success and player well-being. Perhaps most importantly is 

the need for cognitive recovery strategies in-between games and tournament days to 

help players cognitively and mentally recover. Furthermore, the importance of 

nutritional and physiological recovery strategies are emphasised to minimise fatigue 

states and increase alertness.  

The current results can be applied to many sports that involve congested tournament 

fixtures as well as applied to professional occupations. For example, military and 

emergency response personnel are frequently required to perform operations over 

several days that require the maintenance of cognitive performance under stressful 

conditions and high physical loads (Hoffman et al., 2014, Nindl et al., 2007). Further 

understanding of the impact of these situations on both fundamental and task-specific 

cognitive processes is crucial for improving sports performance over prolonged 

periods of time and under stressful conditions. Understanding the behavioural 

responses to congested HIE and the mechanisms behind them will work towards the 

identification and development of intervention strategies to attenuate negative 

responses and prepare both the body and mind for each exercise session, thus 

enabling optimum performance during training and competition.  

4.6 Limitations 

Participants were provided with standardised meals during testing days and were 

asked to ensure they consumed sufficient carbohydrates in the evenings prior to 

testing; this was done in an attempt to maintain blood glucose and glycogen levels. 

Pharmacological studies indicate that a low blood glucose concentration is associated 

with the release of counter-regulatory hormones such as cortisol, and an impairment 

in cerebral function (Blackman et al., 1990, Mitrakou et al., 1991). Though the 

influence of this mediator on cognitive performance has not been fully established, 
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the assessment of blood glucose concentration following each exercise bout may 

have provided greater insight into the potential reasoning behind the reduction in 

cognitive performance across day 2.  

4.7 Conclusion & perspectives 

This study is the first to investigate cognitive performance and mood within a 

consecutive day repeated-exercise paradigm and provides novel data evidencing 

detrimental effects of strenuous exercise on cognition in trained and accustomed 

sporting individuals. The main finding was that cumulative HIE had deleterious effects 

on choice-reaction time and Stroop incongruent accuracy indicative of inhibitory 

control as well as mood, energy and fatigue states in trained intermittent team sports 

players. Supporting the previous two chapters, a reduction was observed across the 

second day of exercise in tasks requiring executive processes, in addition to mood 

disturbances and reduced physical performance. Increases in mental fatigue 

occurred concurrently with deteriorations in 20 m sprint performance despite greater 

perceived effort. It is postulated that increases in both physical and mental fatigue 

were integral to the reductions in both cognitive and physical performance, though 

further research is required to establish the mechanistic underpinnings of these 

findings. Practical applications of the results are discussed with particular emphasis 

on cognitive recovery strategies between games and tournament days whilst also 

highlighting the importance of nutrition and physiological recovery strategies for 

optimal cognitive performance.  

This chapter addressed the third aim of the thesis, to ̀ investigate the effect of multiple 

acute high-intensity exercise sessions on cognitive performance, mood, energy and 

fatigue’. As the first study assessing a congested tournament scenario on cognitive 

performance, further research is required to replicate these results to support current 

observations. It is postulated that the reductions in cognitive performance observed 

may have negative effects on sporting performance and be indicative of the increased 

injury rates commonly reported with congested sporting fixtures, though limitations of 

the study make this inference speculative. While reductions in 20 m sprint time were 

observed, the inclusion of further sport-specific performance measures would have 

provided further insight, specifically regarding performance accuracy, and should be 

considered in future studies. Furthermore, assessing sleep quality may have provided 

further insight behind the observed reductions in accuracy and thus the assessment 

of sleep will be considered in the next Chapter.  
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Chapters 3 and 4 provide evidence that both prolonged and repeated strenuous 

exercise paradigms have negative effects on executive processes and mood in 

trained individuals that are accustomed to the respective exercise modes used. Given 

these findings, there is a rationale to suggest that there may be similar effects 

following exercise of a more chronic nature. Intensified training camps are common 

practice for many athletes and are a regular part of training cycles. The findings within 

this thesis thus far suggest weeks of significantly increased training volume may 

negatively affect cognitive parameters, mood and sporting performance: this will be 

explored in the following chapter.  

 

 

 

 

 

 

 

 

 

 



 

118 
 

 

 

 

 

Chapter 5: Two-weeks of intensified training disturbs 

mood, energy and fatigue states but not cognitive 

function in trained cyclists 
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5.1 Introduction 

Athletes participating in elite sports are frequently exposed to high training loads, 

where training volume and intensity are pushed to the limits to maximise performance 

improvement (Soligard et al., 2016). Although many factors can contribute, the main 

instrument to improve performance is via training regimen. In many sports, intensified 

training (IT) camps, where high loads are prescribed with limited recovery, are 

commonly incorporated into an athletes training regimen. The purpose of this is to 

impose an accumulative training stress great enough to disturb homeostasis, 

resulting in a transitory performance reduction followed by a supercompensation 

effect. Though the physiological and biochemical response to the increased load are 

well-established (Meeusen et al., 2013), much less is known about the cognitive 

response following a prolonged two-week intense exercise regimen.  

Assessment of the literature on the cognitive effect of strenuous and/or prolonged 

exercise converges towards an impairment in cognitive performance (Ando et al., 

2005, Chmura et al., 1994, Cooper, 1973, Davey, 1973, McMorris et al., 2009, 

Tomporowski, 2003, Yerkes and Dodson, 1908). In agreement with the findings of 

chapters 2, 3 and 4, studies suggest that above a certain intensity or duration, 

cognitive functioning could be disrupted, with particular impairments occurring to 

higher-order cognitive domains (Dietrich, 2009, Dietrich and Audiffren, 2011, Fery et 

al., 1997, Grego et al., 2005, Wang et al., 2013). Intense exercise has also been 

associated with detrimental effects on mood state and feelings of well-being (Berger 

and Motl, 2000). Although the underlying mechanisms for this are still unclear, it is 

known that an increase in metabolic load and/or exercise of a prolonged duration is 

associated with the manifestation of both physical (Millet and Lepers, 2004) and 

mental fatigue (Van Cutsem et al., 2017), which may contribute to reductions in 

cognition. For example, Grego et al. (2005) found a prolonged cycling bout reduced 

trained individuals’ cognitive performance while McMorris et al. (2009) found cycling 

at 80 % maximal power output as compared to 50 % induced significantly more errors 

on an executive task. Recent emerging evidence suggests that the maintenance of 

prolonged exercise requires mental effort, which is necessary to inhibit the sensory 

afferents that arise with physical fatigue (Radel et al., 2017). This suggests that 

increases in mental fatigue, caused via sustained mental effort, may contribute to 

reduced cognitive performance during and following exercise-induced fatigue. 

In line with this, reports following two-weeks of high-volume training have 

demonstrated that IT causes detectable reductions in both simple and complex 
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cognitive processes (Decroix et al., 2016, Dupuy et al., 2010, Rietjens et al., 2005). 

However, others have failed to find any effect (Jeukendrup et al., 1992, Nederhof et 

al., 2007) and thus the effect of IT on cognition remains far from being fully 

understood. Due to the complex interaction between exercise and cognition, there 

are multiple factors than can affect performance and thus several measures, such as 

physical performance, mood, stress-recovery balance and body mass should be 

assessed to gain a holistic understanding of potential disruption. This is particularly 

pertinent in a training paradigm where numerous factors can influence performance. 

For example, it has been demonstrated that IT can have negative effects on sleep 

quality (Killer et al., 2017) and it is reported that following suboptimal sleep, mood and 

cognitive function decline more rapidly than physical capabilities (Davenne, 2009, 

Fullagar et al., 2015b).  

As indicated in previous systematic (see Chapter 2) and meta-analytic (Chang et al., 

2012) reviews, the control of confounding factors is imperative in cognitive studies 

due to the many influential moderating factors. The differences observed between 

studies may be due to a number of factors including differences in training load, 

cognitive tests, athlete fitness/experience level, study control and small sample sizes. 

As a consequence, there is a need for further research that employs strict control and 

scientific rigor. Though many sports employ IT regimens, they are particularly 

common in endurance sports such as cycling, with training camps commonly 

undertaken by both professionals and amateurs. Thus, in line with the fourth objective 

of the thesis, the aim of this study was to characterise the effect of a two-week 

intensified training intervention on cognitive performance and psychological 

disturbances in trained cyclists. Based on the results observed in chapters 3 and 4 

that demonstrated a deterioration in particular cognitive domains, mood, energy and 

fatigue states following strenuous, prolonged and repeated high-intensity exercise, it 

was hypothesised that IT would cause significant reductions in cognitive and physical 

performance alongside psychological disturbances to mood, energy, recovery and 

fatigue states.  

5.2 Methods 

5.2.1 Participants 

Statistical power was calculated using commercially available software (G*Power 

v3.1.9, Düsseldorf, Germany) to determine an adequate sample size for this 



 

121 
 

investigation. Based on a hypothesised effect size of 0.5 (Cohen’s d – moderate) for 

a within-between subject’s design, it was estimated that a sample size of 24 would be 

required to detect significant changes with a two tailed α level of 0.05 and a power of 

0.90 (Cohen, 1992). To account for a 10% drop-out rate, twenty-seven well-trained 

male endurance cyclists that met the inclusion criteria outlined below were recruited 

to participate in this study. Due to unforeseen circumstances during the testing period, 

4 participants had to withdraw prior to study completion; this resulted in a total sample 

size of 23 participants (age: 29.0 ± 5.7 years; height: 177.6 ± 7.2 cm; weight: 75.0 ± 

9.6 kg; V̇O2max: 61.8 ± 6.5 ml·kg-1·min-1). 

 

Participants were provided with a verbal and written explanation of the study prior to 

providing written informed consent and completed a questionnaire to assess for 

eligibility, training history and contraindications. All participants were regularly 

competing at a minimum of category 3 British road racing standard, had a competitive 

training history of at least 3 years and were routinely training ≥ 4 days per week. All 

cyclists were healthy, had no severe head injuries in the past 12 months and did not 

take any medication that may have interfered with cognitive performance. This study 

was conducted in accordance with the Helsinki Declaration (1964) and was approved 

by Northumbria University’s Faculty of Health and Life Sciences Ethics committee. All 

study procedures were conducted in a laboratory accredited by the British Association 

of Sport and Exercise Sciences.  

 

Following familiarisation participants were randomly assigned, via block 

randomisation, to the experimental group (intensified training; IT) or the control group 

(normal training; NT) according to a matched group experimental design based on 

V̇O2max. Group characteristics taken at baseline are presented in Table 5.1. According 

to the V̇O2max based athlete-classification norms of Pauw et al. (2013), the cyclists 

could be categorised as performance levels 3 (76 %), 4 (16 %) and 5 (8 %), which 

can be described as trained, highly trained and professional respectively.  
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Table 5.1 Baseline characteristics for the normal training (NT) and intensified training 

(IT) groups 

All values are mean ± SD 

5.2.2 Experimental protocol  

Participants were familiarised to all test procedures prior to baseline data collection. 

This included the completion of a maximal cycle ergometer test (MT) and a 1-hour 

time trial (TT) alongside three completions of all cognitive tasks and mood 

scales/questionnaires. No participant exhibited signs of fatigue prior to beginning the 

study, assessed via visual analogue scales at familiarisation. 

 

The training of each cyclist was monitored for a period of 5 weeks in total, which was 

divided into three distinct phases. The first phase was the same for both IT and NT 

groups and consisted of a 1 week baseline period. During this, all cyclists performed 

and recorded their usual amount and type of training for five days followed by a 

baseline MT on the sixth day and baseline TT on the seventh day.  

 

The second phase consisted of a 100 % increase in training volume and intensity for 

the IT group; the NT replicated their usual amount and type of training as performed 

in the baseline week (Figure 5.1). Participants trained 7 days per week for these 2 

weeks including MT and TT laboratory tests, which were performed on the sixth and 

seventh days respectively. The third phase of the study was similar for both the IT 

and NT group and consisted of a taper period where baseline training volume was 

reduced by 50 % for 2 weeks with final performance tests completed on the thirty-fifth 

and thirty-sixth day of the study.  

 

Participant 

Characteristics  

Intensified training 

(IT, n = 12) 

Normal training  

(NT, n = 11) 

p 

 

Age (years) 28.9 ± 6.6 29.2 ± 4.9 0.92 

Height (cm) 177.8 ± 7.3 177.3 ± 7.5 0.87 

Body mass (kg)  74.8 ± 10.8 75.2 ± 8.6 0.92 

V̇O2max (ml/min) 4630.0 ± 618.9 4538.2 ± 601.7 0.72 

V̇O2max (ml·kg-1·min-1) 62.5 ± 7.9 61.1 ± 5.0 0.63 

Peak power output (W/kg) 5.8 ± 0.6 5.5 ± 0.4 0.19 
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To ensure that performance variations during all physical and cognitive performance 

tests were due to the IT period and not to the acute training session(s), all participants 

were instructed to refrain from exercise 24-hours prior to laboratory visits. 

Additionally, participants were instructed to abstain from caffeine and alcohol and to 

eat the same food for 24-hours leading up to each performance test. Subjects were 

encouraged to consume a carbohydrate-rich diet and to remain euhydrated during 

the entire experimental period. To monitor compliance, all participants completed a 

food diary throughout the study period. 

 

 

Figure 5.1 Schematic representation of the study design  

 

To examine changes in performance a variety of measures were taken. Participants 

performed two physical performance tests and four cognitive tests at weekly intervals 

during the training period alongside measurements of mood, recovery and feelings of 

mental and physical energy and fatigue, as well as at the end of the taper period. 

Additionally, due to the intervention type and duration, perceived sleep quality was 
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assessed throughout each phase of the study. To control for diurnal variation, all 

testing was performed at the same time of day for each participant. A summary of 

physical performance, cognitive and psychological assessments completed each  

week during the study period can be seen in Table 5.2 below. 

 

Table 5.2 Summary of physical performance, cognitive and psychological 

assessments completed during the study period 

 

5.2.2.1 Training quantification 

Each participant received a Polar A300 fitness watch and heart rate monitor (Polar, 

Kempele, Finland) to record all activity for the duration of the study. Following every 

training session, participants synchronised their watch with the Polar Flow app for 

training data to be downloaded; training accounts were monitored daily by the 

principal investigator to ensure adherence to the specified training hours each week. 

In addition, participants were instructed to complete an online training diary within the 

first 30-minutes following every training session. Recoded data included; type of 

session, time spent in each HR zone from the Polar data, total training time and 

session rate of perceived exertion (sRPE) which was rated via a 0-10 scale (Foster, 

1998). sRPE is one of the most widely used methods to quantify internal training load 

which accounts for both physiological and psychological stress that results from 

external load (training volume and intensity) (Foster, 1998). Monitoring both internal 

and external load provides a more inclusive method to assess training load as many 

circumstances can influence the ability of an athlete to handle a given external load 

(Halson, 2014). sRPE and exercise time were used to calculate training load, 

monotony and strain. The product of the sRPE (0-10) and training duration (in 

minutes) was termed the daily load. Total weekly load was calculated for each training 

week by the sum of daily loads. Monotony was computed by dividing the average 

Tests Baseline Training 

week 1 

Training 

week 2 

Taper 

week 1 

Taper 

week 2 

Body Mass      

V̇O2max      

1-hour time trial      

Cognitive testing      

Mood      

Perceived sleep       
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daily load by the standard deviation of the daily load. Strain was calculated as total 

load multiplied by monotony. 

To prescribe training load in the IT group, individual baseline training diaries were 

assessed for total volume and these values were then doubled. HR zones were 

individually calculated from each participants HR maximum (HRmax) measured at the 

baseline V̇O2max test. Five zones were devised, based on previous research (Halson 

et al., 2002, Killer et al., 2017), and expressed as a percentage of HRmax: zone 1, < 

69 % HRmax; zone 2, 69-81 % HRmax; zone 3, 82-87 % HRmax; zone 4, 88-94 % HRmax; 

zone 5, > 94 % HRmax.  

5.2.3 Cognitive function assessment 

Cognitive measures were administered using COMPASS (Northumbria University, 

UK). The cognitive battery of tests took approximately 15-minutes to complete and 

included simple reaction time (SRT), four-choice reaction time (FCRT), Corsi block 

task and the Stroop task. For full descriptions of cognitive tasks please refer to the 

methods section in Chapter 3. The Stroop task in this study was configured to present 

160 random congruent and incongruent stimuli.  

5.2.4 Mood assessment 

Participants completed three mood/recovery questionnaires on the final day of each 

training week following cognitive tests. Two of these were the ‘Bond-Lader Mood 

Scale’ and the ‘Mental and Physical State and Trait Energy and Fatigue Scale’ that 

asked participants to report, “How do you feel right now”. The description and scoring 

for these scales can be seen in the methods section of chapter 3.  

The Profile of Mood States (POMS-65) was also administered (McNair, 1971, McNair 

et al., 1992); a 65-item Likert scale questionnaire which measures six specific mood 

states (tension, depression, anger, vigour, fatigue and confusion). For this 

questionnaire participants were asked to score how they had been feeling “During the 

past week, including today”, therefore providing an overall representation of mood 

over each training week. Data was analysed for each specific mood state and total 

mood disturbance (TMD) was calculated by the sum of anger, fatigue, depression 

and tension minus vigour. Higher TMD scores indicate greater negative mood 
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disruption. A score for energy index was also calculated by subtracting vigour from 

fatigue. Higher scores for energy index indicate greater feelings of energy.  

5.2.5 Recovery-Stress questionnaire 

Perceptual measures of stress and recovery were assessed using the recovery stress 

questionnaire for athletes (RESTQ-Sport) (Kellmann and Kallus, 2001) on the final 

day of each training week prior to the TT performance. The RESTQ-Sport is a 76 item 

psychometric questionnaire that systematically assesses an individual’s recovery-

stress state in both a general and a sport-specific context (Kellmann and Kallus, 

2001). The response scale asks participants to rate the frequency of each item over 

the preceding 3 days/nights on a scale of 0 (never) to 6 (always). These responses 

form 19 subscales, made up of 12 general scales and 7 sport-specific scales, with 4 

questions per scale. Total scores of stress and recovery can be evaluated enabling a 

holistic perspective of athlete’s recovery stress states. The total stress score 

corresponds to the sum of all the stress subscale scores (7 general plus 3 sport-

specific), while the total recovery score represents the sum of all of the recovery 

subscale scores (5 general plus 4 sport-specific). A general indicator of the recovery-

stress state is calculated as the total recovery score minus the total stress score; 

where higher scores indicate better recovery and less stress. The RESTQ-Sport has 

been demonstrated to have a good internal consistency (Cronbach’s a values range 

from 0.71 to 0.93) and reports Pearson’s (r) test-retest reliability values following 3 

and 9 days as 0.51 - 0.81 (Kellmann and Kallus, 2001).  

5.2.6 Perceived sleep quality 

Intense training is associated with suboptimal sleep, which could have an effect on 

cognitive functioning. To assess subjective sleep, upon awakening following the 

fourth, fifth and sixth night’s sleep of each training week, participants completed the 

Karolinska Sleep Diary (KSD) (Åkerstedt et al., 1994). Mean responses over the 3 

nights were calculated to account for potential random disturbance. The KSD, which 

has been validated against polysomnography and has shown significant correlations 

with objective sleep parameters (Åkerstedt et al., 1994), consists of 12 items, most of 

which offered 5 response alternatives graded from 5 to 1. Sleep efficiency was 

calculated as total sleep length/total time in bed (sleep length + sleep latency) whilst 

number of awakenings per hour was calculated as number of awakenings/sleep 
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length. The diary was intended to be short, but to reflect the usually encountered 

sleep disturbances of initiating and maintaining sleep, as well as a global appreciation 

of sleep. Sleep quality and feeling refreshed are used as global indicators of sleep, 

whereas the rest of the items covered specific aspects of sleep.  

5.2.7 Physiological and performance testing  

All cycling performance tests were performed on a magnetically braked cycle 

ergometer (Velotron, RacerMate Inc., Seattle, USA). Individual cycling positions were 

recorded following familiarisation and replicated throughout the study. Participants 

were instructed to drink water ad libitum throughout each test.  

 

5.2.7.1 Time trial 

The main performance measure used throughout the study was a 1-hour cycling time 

trial (TT). This test was selected due to its high ecological validity, low coefficient of 

variation (CV) and sensitivity to change, enabling it to detect small, but important 

changes in performance (Currell and Jeukendrup, 2008). Following a 10-minute 

warm-up at a self-selected pace, participants were asked to “Cover as much distance 

as possible in 60 minutes”, where they could freely select their gears and cadence. 

Throughout the TT participants were blinded to all performance data, with the only 

feedback being an indication every time 10 minutes had been completed. The intra-

individual reliability of these measures, assessed in the NT group returned a CV of 

1.7 %. Mean power output (MPO), distance and average HR were recorded 

throughout whilst blood lactate concentration was taken pre and immediately post 

each TT. RPE was provided immediately following the TT completion.  

 

5.2.7.2 Maximal incremental test (V̇O2max)   

Following a graded 20-minute warm-up (4-minute incremental stages), the cycle 

ergometer software (RacerMate® One, RacerMate® Inc.) was programmed to elicit 

an incremental ramp test which increased at a rate of 4 watts (W) every 10-seconds 

(24 W·min-1); starting power output for each participant was individually prescribed 

following familiarisation. Participants were instructed to continue cycling for as long 

as possible and were strongly encouraged throughout. The test was terminated upon 

voluntary stoppage or until a cadence of at least 60 rpm could not be maintained. 

Expired gas was collected throughout using an online (i.e. continuously 
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measured/real time) gas analyser (Metalyzer 3B; Cortex, Leipzig, Germany) to 

measure oxygen and carbon dioxide fractions and volume of gas in inspired and 

expired air. The analyser was warmed up and calibrated for oxygen (15 %) and 

carbon dioxide (5 %) fractions and gas volume (3 L syringe) as per manufacturers 

prescription. During the tests, the participant breathed through a low dead space (70 

mL) mouth piece and low resistance turbine (<0.1 kPa·L-1·s-1 at 16 L·s-1), while 

inspired and expired gas was sampled continuously at 50 Hz. Expired gas data were 

averaged across 30-second intervals using online gas analysis software (MetaSoft 

Studio, Cortex., Leipzig, Germany), before downloading for subsequent assessment. 

The Wmax intra-individual reliability assessed in the NT group returned a CV of 1.9 %. 

V̇O2max was calculated as the highest 30-second average collected during the 

maximal test. HR was recorded throughout (Polar, Kempele, Finland) whilst a 

capillary blood lactate sample and RPE were provided upon immediate completion of 

the test. According to the British Association of Sport and Exercise Sciences testing 

guidelines (Winter et al., 2006), the test was considered to be maximal when at least 

three of the following criteria were met: HR >90 % of HRmax, blood lactate >10 mmol/L, 

respiratory exchange ratio >1.15, respiratory rate >45, no further increase in V̇O2 

despite an increase in workload. Peak power output (PPO) was determined as the 

highest 30-second average from the incremental ramp test and subsequently 

expressed relative to body mass.  

5.2.8 Statistical analysis 

All data were analysed using statistical software (IBM SPSS Statistics 24, New York, 

USA). Prior to analysis, outliers were identified as greater or less than 2.5 times the 

SD of the mean and removed. The IT and NT groups were statistically compared at 

baseline using an independent samples t-test to ensure that they were similar prior to 

the commencement of training; this included physiological variables as seen in Table 

5.1. All data were analysed using a two-way repeated measures ANOVA with group 

as a between subject’s factor and time as a within subject’s factor. Significant 

interaction effects were followed up with prior planned pairwise comparisons with LSD 

to identify significant differences between individual means. Statistical significance 

was set at an α level of 0.05. Sphericity was assumed if Mauchly’s test score returned 

p≥0.05; if sphericity was violated, the degrees of freedom were corrected using 

Greenhouse-Geisser procedure. 
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5.3 Results  

A prerequisite to compare physical performances at different time points in different 

athletes is to make sure that all performances were indeed maximal. We did not find 

any effect of time or group on the RPE at the end of each MT or TT (p<0.05), thus 

suggesting that this criterion was fulfilled. Baseline analysis on all measures revealed 

no differences between groups (p<0.05). 

5.3.1 Cognitive function 

No main or interaction effects were observed on any cognitive variable due to the IT 

(Table 5.3).  
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Table 5.3 Cognitive performance (mean ± SD) in IT and NT groups over the course of the training study 

Measure Baseline Training week 1 Training week 2 Taper p value 

 IT NT IT NT IT NT IT NT G T X 

SRT (ms) 279.6 ± 18.0 280.4 ± 21.4 285.9 ± 22.3 280.1 ± 19.9 292.5 ± 33.5 276.2 ± 14.9 278.1 ± 24.6 275.4 ± 15.7 0.40 0.40 0.35 

FCRT correct RT (ms) 511.6 ± 54.5 504.5 ± 65.3 514.4 ± 47.6 507.1 ± 54.3 527.9 ± 55.0 503.4 ± 62.7 503.2 ± 41.7 511.1 ± 63.3 0.72 0.73 0.27 

FCRT accuracy (%) 98.4 ± 2.1 98.3 ± 2.1 99.5 ± 1.2 96.9 ± 3.7 99.0 ± 1.5 98.6 ± 2.1 100.0 ± 0.0 98.6 ± 2.1 0.46 0.21 0.12 

Corsi blocks (span score) 6.8 ± 0.7 6.2 ± 0.9 6.5 ± 0.8 6.4 ± 0.7 6.8 ± 1.4 6.4 ± 0.9 6.6 ± 1.0 6.5 ± 1.0 0.38 0.87 0.47 

Stroop correct RT (ms) 698.5 ± 94.0 690.8 ± 99.8 695.8 ± 114.6 676.4 ± 74.7 698.8 ± 105.3 660.5 ± 81.2 692.1 ± 57.5 663.5 ± 84.0 0.50 0.59 0.70 

Stroop accuracy (%) 97.4 ± 1.7 97.4 ± 2.0 98.5 ± 1.2 98.0 ± 1.6 98.1 ± 1.8 97.9 ± 2.5 98.3 ± 1.5 97.9 ± 1.6 0.59 0.50 0.82 

Stroop congruent correct 

RT (ms) 

658.5 ± 81.2 668.8 ± 101.3 658.7 ± 107.4 656.1 ± 87.8 666.3 ± 100.2 639.2 ± 78.8 659.1 ± 57.5 655.5 ± 87.5 0.86 0.90 0.63 

Stroop congruent 

accuracy (%) 

98.1 ± 2.2 96.9 ± 3.0 98.6 ± 1.5 98.5 ± 1.7 97.6 ± 2.0 98.0 ± 2.9 98.4 ± 1.4 98.1 ± 1.3 0.60 0.20 0.44 

Stroop incongruent 

correct RT (ms) 

739.9 ± 

111.0 

712.5 ± 104.9 732.9 ± 123.3 697.0 ± 66.2 746.4 ± 118.5 682.1 ± 84.6 725.1 ± 69.6 671.5 ± 85.0 0.27 0.28 0.70 

Stroop incongruent 

accuracy (%) 

96.8 ± 2.2 97.8 ± 1.6 98.4 ± 1.5 97.4 ± 2.1 98.4 ± 2.1 98.0 ± 2.5 98.1 ± 1.9 97.7 ± 2.0 0.73 0.28 0.14 

 G = group; T = time; X = interaction 
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5.3.2 Mood, energy, fatigue and recovery states 

5.3.2.1 Profile of Mood States 

A time main effect (F(2,42)=9.84, p<0.001, ηp
2=0.32) and group x time interaction 

(F(2,42)=7.92, p=0.001, ηp
2=0.27) for TMD was observed. Pairwise comparisons 

showed TMD was significantly greater in the IT group compared to the NT group 

(p<0.05) and baseline (p<0.001) during both IT weeks. A time main effect 

(F(3,63)=19.42, p<0.001, ηp
2=0.48) and interaction effect (F(3,63)=12.78, p<0.001, 

ηp
2=0.39) was also observed for energy index, with pairwise comparisons 

demonstrating significantly lower energy in the IT group compared to the NT group 

during training week 1 (TW1; p=0.002) and training week 2 (TW2; p=0.001) as well 

as significant reductions in energy index compared to baseline (p<0.001; Figure 5.2). 

In the IT group, TMD and energy index were significantly improved following the taper 

compared to TW2 (p<0.001). 

Table 5.4 shows mean weekly POMS scores for each subscale. Significant interaction 

effects were found for vigour (F(3,63)=6.10, p=0.002, ηp
2=0.26), fatigue (F(2,47)=16.58, 

p<0.001, ηp
2=0.44) and confusion (F(2,41)=8.45, p=0.001, ηp

2=0.29). Post-hoc analysis 

showed vigour to be significantly lower than the NT group during TW1 (p=0.016) and 

lower during both TW1 (p=0.001) and TW2 (p=0.003) compared to baseline. Similarly, 

fatigue was significantly higher in the IT group during TW1 (p=0.006) and TW2 

(p<0.001) compared to the NT group and was significantly lower than baseline during 

both IT weeks (p<0.001). Participants in the IT group also felt significantly more 

confused during TW2 (p=0.015) compared to the NT and during TW1 (p=0.021) and 

TW2 (p=0.001) compared to baseline.  
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Figure 5.2 Change in (a) total mood disturbance and (b) energy index. Data 

presented as mean ± SD. *Significantly different to previous measure (p<0.001); 

†significantly different to baseline week (p<0.001); §significant difference between IT 

and NT groups (p<0.05); #significant time main effect (p<0.001)

(a) 

(b) 
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Table 5.4 Changes in Profile of Mood State subscales measured in IT and NT cyclists throughout the study period 

Data presented as mean ± SD. *Significantly different to previous measure (p<0.05); †significantly different to baseline week (p<0.05); 

§significant difference between IT and NT groups (p<0.05).  X = interaction 

 

Measure Baseline Training week 1 Training week 2 Taper P value 

 IT NT IT NT IT NT IT NT Group Time X 

Tension 8.8 ± 4.8 6.6 ± 4.3 11.2 ± 6.7 6.5 ± 4.2 11.8 ± 6.4 6.6 ± 4.7 9.3 ± 6.7 6.3 ± 3.9 0.07 0.25 0.32 

Depression 5.9 ± 6.0 7.5 ± 6.6 10.4 ± 9.6 7.1 ± 6.4 10.6 ± 8.6 7.0 ± 6.3 7.2 ± 7.9 5.6 ± 5.3 0.52 0.09 0.19 

Anger 8.4 ± 4.8 7.9 ± 6.0 11.6 ± 8.5 7.2 ± 3.2 12.1 ± 8.6 7.2 ± 4.6 10.6 ± 8.7 6.4 ± 3.4 0.11 0.65 0.35 

Vigour 18.6 ± 5.1 17.7 ± 4.6 13.5 ± 3.4 *†§ 17.1 ± 3.2 13.4 ± 5.2† 15.5 ± 5.3 20.2 ± 4.9*§ 15.6 ± 4.8 0.97 0.001 0.002 

Fatigue 7.6 ± 5.1 9.0 ± 4.6 17.1 ± 5.3*†§ 9.6 ± 6.3 20.3 ± 4.7*†§ 8.5 ± 5.2 5.1 ± 5.7* 6.2 ± 4.7 0.02 <0.001 <0.001 

Confusion 8.0 ± 4.7 9.0 ± 3.0 10.8 ± 4.8*† 7.2 ± 3.8 12.8 ± 5.3*†§ 7.5 ± 4.2 6.7 ± 4.1 * 7.7 ± 4.0 0.28 0.012 0.001 
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5.3.2.2 Bond-Lader Mood Scale 

A time main effect was observed for alertness (F(3,63)=9.34, p<0.001, ηp
2=0.31), 

contentedness (F(3,63)=4.99, p=0.004, ηp
2=0.19) and calmness (F(3,63)=6.02, p=0.001, 

ηp
2=0.22). Significant group x time interaction effects were observed for alertness 

(F(3,63)=7.70, p<0.001, ηp
2=0.27), contentedness (F(3,63)=5.52, p=0.002, ηp

2=0.21) and 

calmness (F(3,63)=3.34, p=0.025, ηp
2=0.14)(Figure 5.3). Post-hoc analysis on alertness 

revealed significantly reduced feelings of alertness in the IT group during TW1 

(p<0.001) and TW2 (p=0.001) compared to baseline and during TW1 (p=0.001) and 

TW2 (p=0.031) compared to NT. In addition, the IT group had reductions in feelings 

of contentedness at TW1 (p=0.03) and TW2 (p=0.001) compared to baseline. There 

were no group differences in feelings of calmness though participants in the IT group 

felt significantly less calm following the recovery period compared to baseline 

(p=0.01). Apart from feelings of calmness, no significant differences in the IT group 

were observed between baseline and the taper period, demonstrating a return to 

baseline.   

 

Figure 5.3 Bond-Lader mood 

subscales measured in IT and NT 

cyclists throughout the study period 

(mean ± SD). *Significantly different 

to previous measure (p<0.05); 

†significantly different to baseline 

week (p<0.05); §significant difference 

between IT and NT groups (p<0.05); 

#significant time main effect (p<0.05). 
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5.3.2.3 Mental and physical state and trait energy and fatigue scale 

Changes in participant’s ratings of physical and mental energy and fatigue across the 

study period are shown in Figure 5.3. Significant time x group interaction effects were 

observed for ratings of physical energy (F(3,63)=13.20, p<0.001, ηp
2=0.39), physical 

fatigue (F(3,63)= 14.94, p<0.001, ηp
2=0.52), mental energy (F(2,38)=7.63, p=0.002, 

ηp
2=0.27) and mental fatigue (F(3,63)=8.40, p<0.002, ηp

2=0.21). Pairwise comparisons 

revealed significantly greater physical and mental fatigue and reduced physical and 

mental energy during both TW1 (p<0.005) and TW2 (p<0.005) compared to the NT 

group and baseline. Physical energy was significantly greater in the IT group 

compared to baseline and TW2 following the taper period (p<0.005). All other 

variables returned to baseline following the taper. 
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Figure 5.4 Physical and mental energy and fatigue ratings across the study period. 

Data presented as mean ± SD. *Significantly different to previous measure (p<0.001). 

§Significantly different between conditions (p≤0.001). †Significantly different to 

baseline week (p<0.005). #Time main effect (p<0.001). ‡Group main effect (p<0.05) 
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5.3.2.4 RESTQ-Sport questionnaire 

Changes in each subscale of the RESTQ-Sport and the composite scales can be 

seen in Table 5.5. During the IT period, significant interaction effects were observed 

for total stress (F(2,44)=19.53, p<0.001, ηp
2=0.48), total recovery (F(3,63)=4.87, p<0.005, 

ηp
2=0.19) and recovery-stress state (F(2,44)=13.96, p<0.001, ηp

2=0.40). Pairwise 

comparisons revealed significant increases in total stress and decreases in total 

recovery in the IT group during TW1 (p<0.01) and TW2 (p<0.005) compared to 

baseline with total stress also being significantly greater than NT during both IT weeks 

(p<0.005). Accordingly, the recovery-stress state in the IT group was significantly 

affected during both intensified weeks compared to baseline (p<0.001) and the NT 

group (p<0.05; Figure 5.4).  

Significant interaction effects were found for individual stress subscales including; 

fatigue (F(2,49)=12.64, p<0.001, ηp
2=0.38), lack of energy (F(3,63)=7.85, p<0.001, 

ηp
2=0.27), physical complaints (F(3,63) = 11.97, p<0.001, ηp

2= 0.43), disturbed breaks 

(F(2,48)=12.50, p<0.001, ηp
2=0.37), emotional exhaustion (F(3,63)=6.252, p=0.001, 

ηp
2=0.23) and fitness/injury (F(2,44)=22.62, p<0.001, ηp

2=0.52), and for individual 

recovery scales; success (F(3,63)=3.77, p=0.015, ηp
2=0.15), physical recovery 

(F(3,63)=4.40, p=0.007, ηp
2=0.17), being in shape (F(3,63)=7.64, p<0.001, ηp

2=0.27) and 

self-efficacy (F(3,63)=3.65, p=0.02, ηp
2=0.15). All stress subscales were significantly 

increased during the intensified period in the IT group compared to baseline (p<0.05) 

and to the NT group (p<0.05). Recovery subscales of physical recovery, being in 

shape and self-efficacy were all reduced compared to baseline in the IT group 

(p<0.05) apart from success which did not change.  

Following the taper period total stress and stress subscales including; lack of energy, 

physical complaints and fitness/injury were significantly lower than baseline in the IT 

group (p<0.05) while the recovery scale, being in shape, was significantly greater 

than baseline (p=0.008). No significant differences in the IT group were observed 

between baseline and the taper period in all other subscales and composite scales, 

demonstrating a return to baseline (all p<0.05). 
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Table 5.5 RESTQ-Sport subscales of stress and recovery in IT and NT groups over the course of the training study 

 
Measure Baseline Training week 1 Training week 2 Taper p value 

 IT NT IT NT IT NT IT NT Group Time X 

Stress subscales 

General stress 0.9 ± 0.9 1.1 ± 1.1 1.4 ± 1.0*† 0.9 ± 0.5 1.5 ± 1.2† 0.9 ± 0.5 1.0 ± 1.0* 0.8 ± 0.7 0.41 0.28 0.05 

Emotional stress 1.6 ± 0.7 1.3 ± 0.8 2.1 ± 1.1 1.3 ± 0.7 2.3 ± 1.1 1.2 ± 0.8 1.6 ± 1.3 1.2 ± 0.8 0.07 0.08 0.06 

Social stress 1.4 ± 0.7 1.5 ± 1.2 1.8 ± 1.1 1.1 ± 0.8 2.1 ± 1.1 1.3 ± 0.6 1.8 ± 1.4 1.4 ± 0.9 0.20 0.56 0.23 

Conflicts/Pressure 2.7 ± 0.8 2.5 ± 1.4 2.7 ± 0.8 2.1 ± 0.8 3.0 ± 0.5§ 2.0 ± 1.1 2.4 ± 1.0* 1.8 ± 0.9 0.09 0.014 0.12 

Fatigue 1.8 ± 1.0 2.4 ± 1.2 3.5 ± 1.2*†§ 1.8 ± 1.0 3.8 ± 0.9†§ 2.2 ± 0.9 1.9 ± 1.0* 1.9 ± 1.3 0.048 <0.001 <0.001 

Lack of energy 2.3 ± 1.3 2.1 ± 1.0 3.0 ± 1.0*†§ 2.1 ± 0.8 3.5 ± 1.3†§ 2.1 ± 0.6 1.6 ± 0.7*† 2.0 ± 1.0 0.13 <0.001 <0.001 

Physical complaints 1.5 ± 1.0 1.7 ± 1.2 2.9 ± 1.1*†§ 1.5 ± 0.9 3.1 ± 1.1†§ 1.4 ± 0.8 0.9 ± 0.6*† 1.1 ± 0.9† 0.04 <0.001 <0.001 

Disturbed breaks 1.0 ± 0.6§ 1.8 ± 1.0 2.6 ± 1.0*† 1.3 ± 0.8§ 2.7 ± 1.4† 1.3 ± 0.6§ 0.8 ± 0.5* 0.8 ± 0.7† 0.11 <0.001 <0.001 

Emotional exhaustion 1.1 ± 1.1 1.5 ± 0.9 2.5 ± 1.5*† 1.8 ± 2.0 2.9 ± 1.6†§ 1.0 ± 0.8 1.0 ± 1.3* 0.6 ± 0.5† 0.14 <0.001 <0.001 

Fitness/injury 1.7 ± 1.1 2.3 ± 1.3 3.5 ± 1.4*†§ 1.8 ± 1.4 3.9 ± 1.1*†§ 1.4 ± 1.2† 1.0 ± 0.6*† 1.4 ± 1.0† 0.053 <0.001 <0.001 
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Table 5.5 RESTQ-Sport subscales of stress and recovery in IT and NT groups over the course of the training study (continued) 

Measure Baseline Training week 1 Training week 2 Taper p value 

IT NT IT NT IT NT IT NT Group Time X 

Recovery subscales 

Success 3.0 ± 1.1 3.2 ± 1.0 2.6 ± 0.8 3.3 ± 1.1 2.5 ± 0.9 2.5 ± 0.8*† 3.3 ± 0.9* 2.8 ± 0.9 0.82 0.005 0.015 

Social recovery 3.3 ± 1.4 3.2 ± 1.4 3.1 ± 1.5 3.0 ± 1.1 2.6 ± 1.1 3.1 ± 1.3 3.3 ± 1.4 2.8 ± 1.1 0.88 0.18 0.08 

Physical recovery 3.2 ± 1.2 3.2 ± 1.1 2.4 ± 1.0*† 3.2 ± 1.0 2.2 ± 1.2† 3.1 ± 0.8 3.5 ± 1.0* 3.1 ± 1.1 0.40 0.004 0.007 

General well-being  3.8 ± 1.1 3.5 ± 1.3 3.2 ± 1.2 3.5 ± 1.0 2.7 ± 0.8 3.0 ± 1.2 3.8 ± 1.2 3.2 ± 1.0 0.90 0.003 0.06 

Sleep quality 3.0 ± 1.7 3.4 ± 1.4 2.7 ± 1.4 3.3 ± 1.7 2.5 ± 1.4 3.2 ± 1.3 2.7 ± 1.1 3.0 ± 1.3 0.33 0.47 0.87 

Being in shape 3.5 ± 1.2 3.1 ± 1.0 2.2 ± 1.0*† 3.1 ± 1.2 1.8 ± 1.2†§ 2.9 ± 1.2 4.2 ± 1.1*†§ 3.3 ± 0.9 0.61 <0.001 <0.001 

Personal accomplishment 2.7 ± 1.5 2.6 ± 1.3 2.5 ± 0.7 2.8 ± 0.9 2.0 ± 1.0 2.4 ± 1.1 2.6 ± 1.5 2.3 ± 0.8 0.81 0.13 0.33 

Self-efficacy  3.4 ± 1.2 3.4 ± 1.0 2.8 ± 0.9*† 3.4 ± 1.1 2.5 ± 1.0† 3.2 ± 1.0 3.8 ± 1.2* 3.3 ± 0.9 0.52 0.006 0.017 

Self-regulation  3.8 ± 1.4 3.6 ± 1.0 3.8 ± 1.1 3.5 ± 1.0 3.2 ± 1.2 3.3 ± 1.0 4.1 ± 1.4 3.7 ± 0.9 0.51 0.038 0.71 

Composite scores 

Total stress score 3.0 ± 1.3  3.7 ± 1.7 5.3 ± 1.7*†§ 3.2 ± 1.7 5.9 ± 1.9†§ 2.9 ± 1.1 2.5 ± 1.4*† 2.4 ± 1.3 0.051 <0.001 <0.001 

Total recovery score 6.6 ± 2.1 6.5 ± 1.8 5.6 ± 1.5*† 6.4 ± 1.8 4.9 ± 1.7*† 5.9 ± 1.7 7.0 ± 1.9*† 6.1 ± 1.7 0.75 <0.001 0.004 

Data presented as mean ± SD. *Significantly different to previous measure (p<0.05). †Significantly different to baseline week (p<0.05). 

§Significantly different between conditions (p<0.05). X = interaction 
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Figure 5.5 RESTQ-Sport recovery-stress measures in the IT and NT group across 

the study period. Data presented as mean ± SD. *Significantly different to previous 

measure (p<0.05). §Significantly different between conditions (p<0.05). †Significantly 

different to baseline week (p<0.001). #Time main effect (p<0.001)  

5.3.3 Perceived Sleep 

All data obtained from the KSD are presented in Table 5.6. Significant group main 

effects indicated that the IT group had lower ‘calm sleep’ (F(1,21)=6.67, p=0.017, ηp
2= 

0.24), poorer ‘sleep efficiency’ (F(1,21)=6.37, p=0.020, ηp
2= 0.23) and a greater ‘number 

of awakenings per hour’ (F(1,21)=4.62, p=0.043, ηp
2= 0.18) compared to the NT group. 

Time main effects were observed for ‘sleep quality (F(4,84)=3.17, p=0.018, ηp
2= 0.13) 

and feeling refreshed (F(1,21)=3.03, p=0.022, ηp
2= 0.13).  
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Table 5.6 Changes in perceived sleep measured in IT and NT cyclists throughout the study period 

Data presented as mean ± SD. ‡Significant group main effect (p<0.05). G = group; T = time; X = interaction. 1 Assessed on a scale of 1-5.

Measure Baseline Training week 1 Training week 2 Taper week 1 Taper week 2 P value 

 IT NT IT NT IT NT IT NT IT NT G T X 

   
Sleep quality1  3.5 ± 0.7 3.9 ± 0.8 3.2 ± 0.6 3.9 ± 0.7 3.3 ± 0.7 3.5 ± 0.5 3.8 ± 0.6 3.9 ± 0.7 3.2 ± 1.0 3.7 ± 0.6 0.11 0.02 0.22 

Feeling refreshed1   3.1 ± 0.7 3.4 ± 0.6 2.6 ± 0.7 3.4 ± 0.9 2.8 ± 0.7 3.2 ± 0.8 3.2 ± 0.7 3.6 ± 0.9 3.0 ± 0.7 3.2  ± 0.8 0.12 0.02 0.20 

Calm sleep1   3.5 ± 0.6 4.0 ±0.7 2.9 ± 0.8 3.9 ± 0.8 3.3 ± 0.7 3.7 ± 0.6 3.5 ± 0.8 3.8 ± 0.9 2.9 ± 0.9 3.8 ± 0.9 0.02‡ 0.08 0.40 

Slept throughout1 3.8 ± 0.9 4.2 ± 0.8 3.6 ± 1.0 4.1 ± 0.9 3.9 ± 0.9 3.9 ± 0.9 3.9 ± 0.9 4.3 ± 0.5 3.7 ± 0.9 3.9 ± 0.9 0.29 0.64 0.65 

Ease of wakening1 3.3 ± 0.9 3.3 ± 1.2 2.9 ± 0.9 3.2 ± 1.1 2.6 ± 0.6 3.2 ± 1.1 3.1 ± 0.6 3.2 ± 1.2 3.0 ± 0.8 3.4 ± 0.9 0.36 0.30 0.52 

Ease of falling asleep1 3.7 ± 1.0 4.3 ± 0.8 3.7 ± 1.0 4.0 ± 0.7 3.8 ± 1.0 4.1 ± 0.5 3.8 ± 0.7 4.4 ± 0.6 3.7 ± 1.1 4.0 ± 0.9 0.09 0.70 0.76 

Amount of dreaming1 1.8 ± 0.8 1.9 ± 0.7 2.2 ± 1.3 1.9 ± 0.7 1.8 ± 0.9 1.8 ± 0.8 1.9 ± 1.0 1.7 ± 1.0 2.1 ± 1.0 1.7 ± 0.7 0.57 0.82 0.74 

Number of awakenings1 2 ± 2 1 ± 1 2 ± 1 1 ± 1 2 ± 1 1 ± 1 1 ± 1 1 ± 1 2 ± 1 1 ± 1 0.08 0.12 0.38 

Sleep efficiency (%) 96.8 ± 2.7 98.3 ± 1.2 96.0 ± 2.5 97.8 ± 1.9 95.1 ± 5.1 98.3 ± 1.3 96.0 ± 2.3 98.7 ± 1.3 95.2 ± 5.3 97.6 ± 2.2 0.02‡ 0.45 0.75 

Number of awakenings 

per hour 

0.3 ± 0.2 0.1 ± 0.1 0.2 ± 0.2 0.1 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 0.2 ± 0.1 0.1 ± 01 0.2 ± 0.1 0.1 ± 0.1 0.04‡ 0.08 0.60 
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5.3.4 Training variables 

Post-hoc analysis following a significant interaction effect (F(3,58)=70.49, p=0.001, 

ηp
2=0.77) demonstrated a significant increase in weekly training volume in the IT 

group during the two-week IT period (110 and 108 % respectively) compared to 

baseline (p<0.001) and the NT group (p<0.001), who kept their training the same as 

their normal baseline regimen (5 and 3 % BL increase respectively) (Table 5.7). As a 

result, the large increase in training volume in the IT group resulted in a significant 

interaction effect for training load (F(3,53)=20.06, p<0.001, ηp
2=0.54) and strain 

(F(2,42)=15.60, p<0.001, ηp
2=0.43) indicating a significant increase in the individual 

training load (~116 %) and training strain (~151 %) compared to baseline (p<0.001) 

and the NT group (p<0.005). During the taper period training volume was significantly 

reduced by 50 % baseline values in both groups (p<0.001) which reduced training 

load (p<0.001) and strain (p<0.001). A significant time main effect (F(4,84)=20.59, 

p<0.001, ηp
2=0.50) was observed for training monotony with no group or interaction 

effect.  

Body mass did not change in either group throughout the study period (all p<0.05; 

Table 5.8).  
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Table 5.7 Training descriptives for weekly training duration, load, monotony and strain in the IT and NT groups throughout the study period   

 Baseline Training week 1 Training week 2 Taper week 1 Taper week 2 p value 

      Group Time X 

 
Training duration (minutes) 

IT 524.0 ± 96.6 1102.9 ± 222.1*†§ 1090.8 ± 167.0†§ 275.7 ± 89.4*† 297.7 ± 67.6† <0.001 <0.001 <0.001 

NT 574.8 ± 69.1 606.1 ± 107.0 590.0 ± 79.6 267.7 ± 64.5*† 314.9 ± 62.9*† 

Training load (AU) 

IT 2870 ± 745 6111 ± 1645*†§ 6278 ± 1865†§ 1516 ± 747*† 1677 ± 464†  0.004 <0.001 <0.001 

NT 3346 ± 609 3571 ± 1096 3279 ± 774 1353 ± 466*† 1965 ± 509*† 

Training monotony (AU) 

IT 1.2 ± 0.4 1.6 ± 0.6 1.4 ± 0.4 0.7 ± 0.2 0.9 ± 0.2 0.13  0.001 0.10 

NT 1.1 ± 0.5 1.2 ± 0.4 1.2 ± 0.4 0.8 ± 0.3 0.8 ± 0.3 

Training strain (AU) 

IT 3684 ± 1029 9852 ± 4398*†§ 8626 ± 3418†§ 1108 ± 950*† 1520 ± 462*†  0.001 <0.001 <0.001 

NT 3684 ± 1329 4068 ± 1278 3831 ± 1372 1055 ± 629*† 1553 ± 608*† 

Data presented as mean ± SD. *Significantly different to previous measure (p<0.05); †significantly different to baseline week (p<0.05); §significant 

difference between IT and NT groups (p<0.05). X = interaction  
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Table 5.8 Body mass in IT and NT groups over the course of the study period 

Data presented as mean ± SD. X = interaction

 Baseline Training week 1 Training week 2 Taper p value 

 IT NT IT NT IT NT IT NT Group Time X 

Body mass (kg) 74.8 ± 10.8 75.2 ± 8.6 74.9 ± 11.3 74.6 ± 8.5 74.7 ± 10.9 74.7 ± 7.9 74.6 ± 11.2 74.6 ± 7.7 0.99 0.41 0.43 
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5.3.5 Performance tests 

High-intensity exercise performance (V̇O2max) following intensified training in the IT 

group fell significantly compared to baseline performance, with reductions in PPO 

(p<0.001; Figure 5.5), HRmax (p<0.001) and maximum blood lactate concentration 

(p=0.001). No changes were observed in the NT group between baseline and the end 

of the training period. Though a time main effect was observed (F(2,42)=5.55, p=0.007, 

ηp
2=0.21), IT did not result in a significant reduction in absolute V̇O2max compared to 

baseline. Reductions in TT performance following intensified training in the IT group, 

but not the NT group, were also observed with declines in MPO (p<0.001), average 

HR (p<0.001) and post-TT blood lactate concentration (p=0.002). No significant 

differences in the IT group were observed between baseline and the taper period 

following both the V̇O2max and TT performance tests, demonstrating a return to 

baseline following the taper period (Table 5.9).  
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Figure 5.6 Training week two individual (a) MPO and (b) PPO percentage change 

from baseline in the TT and MT respectively 

(a) 

(b) 
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Table 5.9 Changes in V̇O2max and TT test variables in IT and NT groups over the course of the study period 

Data presented as mean ± SD. *Significantly different to previous measure (p<0.05); †significantly different to baseline week (p<0.05).  BLamax = 

maximum blood lactate concentration; BLarest = blood lactate concentration at rest; HRav = average heart rate; HRmax = maximum heart rate; 

PPO = peak power output; RPE = rate of perceived exertion; V̇O2max = maximum oxygen uptake. X = interaction

Measure Baseline Training week 1 Training week 2 Taper p value 

 IT NT IT NT IT NT IT NT Group Time X 

V̇O2max  

V̇O2max (ml/min) 4630 ± 618 4538 ± 601  - - 4374 ± 577  4473 ± 606  4577 ± 493  4534 ± 646  0.96 0.007 0.17 

V̇O2max (mL·kg–1 

·min–1) 

62.5 ± 7.9 61.1 ± 5.0 - - 59.1 ± 7.7 60.1 ± 5.0 61.8 ± 6.2 60.8 ± 5.7 0.85 0.005 0.17 

PPO (W) 426.8 ± 55.0 409.5 ± 45.1 - - 406.4 ± 55.7*† 414.2 ± 45.2 430.2 ± 49.2* 421.8 ± 47.0† 0.73 <0.001 <0.001 

HRmax (b·min-1) 188 ± 7 187 ± 9 - - 181 ± 8*† 186 ± 9 191 ± 6*† 189 ± 10 0.85 <0.001 <0.001 

BLamax (mmol/L) 12.7 ± 1.6 12.5 ± 1.5 - - 10.4 ± 2.0*†§ 12.6 ± 1.5 13.0 ± 2.0* 12.3 ± 1.7 0.44 0.018 0.004 

RPE 10 ± 1 10 ± 1 - - 10 ± 1 10 ± 1 10 ± 0 9.7 ± 0.9 0.66 0.41 0.58 

TT 

Distance (km) 37.6  ± 2.2 36.4  ± 1.7 36.2  ± 2.7*† 36.5  ± 1.6 36.2  ± 2.1† 36.6 ± 1.5 37.5  ± 2.2* 36.9  ± 1.5 0.72 0.001 0.009 

MPO (Watts) 276.2 ± 45.8 253.3 ± 30.4 260.7 ± 49.0*† 254.4 ± 29.4 250.2 ± 40.1† 256.4 ± 28.0 277.4 ± 46.5* 265.5 ± 28.0† 0.58 <0.001 0.007 

HRav (bpm) 164 ± 8 155 ± 10 147 ± 16*† 157 ± 11 147 ± 12† 154 ± 9 166 ± 7* 162 ± 8† 0.76 <0.001 <0.001 

BLarest (mmol/L) 1.6 ± 0.4 1.5 ± 0.5 1.4 ± 0.6 1.4 ± 0.4 1.5 ± 0.4 1.5 ± 0.4 1.3 ± 0.4 1.3 ± 0.3 0.73 0.13 0.25 

BLamax (mmol/L) 6.5 ± 2.8 5.7 ± 3.1 4.5 ± 2.9*† 6.0 ± 2.6 3.5 ± 2.5† 5.5 ± 2.7 6.0 ± 2.4* 6.0 ± 2.3 0.48 0.006 0.014 

RPE 9 ± 1 8 ± 1 8 ± 1 8 ± 1.0 9 ± 1 8 ± 1 9 ± 1 8.7 ± 1.1 0.54 0.07 0.92 
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5.4 Discussion 

The primary purpose of this study was to explore the exercise-cognition interaction 

by characterising the effect of a two-week IT period, immediately followed by a two-

week taper period, on cognitive function in trained cyclists. A secondary objective was 

to evaluate the effect of this training protocol on psychological disturbances including 

mood, recovery state and feelings of physical and mental energy and fatigue as well 

as physical disturbances in performance. 

Training volume in the IT group was successfully increased by an average of 109 %, 

as well as an average increase of 116 % in training load and 151 % in training strain 

compared to the NT group. In line with this increase in volume, the performance data 

indicated significant fatigue states during both training weeks in the IT group. 

Compared to baseline, reductions were observed in PPO (-5 %), HRmax (-4 %), and 

BLamax (-18 %). The reduction in PPO observed in the current study is similar to the 

5.4 % decrement reported by Halson et al. (2002) following a similar protocol after 2-

weeks of IT. Furthermore, reductions in MPO of 6 % and 9 % were observed during 

the TT following each intensified week alongside reduced average HR and reduced 

post-TT blood lactate values. There was a daily variation in the NT group of 1.9 % 

and 1.7 % for the V̇O2max test and TT respectively, thus indicating that the decline in 

performance was most likely due to the effects of the intensified protocol.  

Despite substantially increasing training volume and significantly impairing physical 

performance, no change in cognitive performance was observed over the study 

period. These results are in line with others who similarly found no change in cognitive 

function following a period of IT (Jeukendrup et al., 1992, Nederhof et al., 2007). 

Physical fitness and athletic status are known moderators of cognitive performance 

(Chang et al., 2012, Voss et al., 2009) and thus, it could be suggested that the failure 

to observe any change in cognitive performance may be due to the trained and 

experienced athletic population recruited for this study. However, studies have 

reported detrimental effects of IT on cognition in trained and professional cyclists 

(Decroix et al., 2016, Rietjens et al., 2005) whilst others have found no change in 

recreational cyclists (ten Haaf et al., 2017) and thus, it seems unlikely that fitness or 

performance level account for the lack of effect in the current study.  

It is understood that during both acute fatiguing exercise (Millet and Lepers, 2004) 

and prolonged IT (Meeusen et al., 2013), central and peripheral fatigue manifests. It 
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is generally considered that central fatigue is a consequence of inadequate 

neurotransmission (Meeusen et al., 2007), expression of brain-derived neurotrophic 

factors (Duman and Monteggia, 2006), and/or control of cerebral blood flow by the 

autonomic nervous system (Thayer et al., 2009). Moreover, central fatigue is 

associated with disturbances in perception, coordination and concentration (Lehmann 

et al., 1993). In the current study however, despite increases in peripheral and central 

fatigue evidenced through a reduction in physical performance, physical and mental 

energy, alertness and recovery state in addition to increased ratings of physical and 

mental fatigue, no evidence was observed for an effect of IT on cognitive processing.  

As previously stated, confidence that the training volume and load were high enough 

is provided by similarity of training loads (Coutts et al., 2007) and resultant 

performance decrements (Halson et al., 2002) with other studies. Furthermore, 

cognitive tasks similar to those used in previous studies were used in the current 

study and thus differences in cognitive task is unlikely to account for our reported 

results. A main methodological difference between the current study and previous 

reports is the inclusion of a NT control group in addition to strict control of potential 

confounding variables. To ensure any observed changes in cognitive function could 

be attributed to IT, control groups and control of potential confounding factors are 

imperative for robust study designs in addition to reliable and valid conclusions. The 

current study employed rigorous controls for confounding variables within the 

inclusion criteria and throughout the study, including controlling for; exercise prior to 

performance testing, the intake of stimulants, cycling experience, medicinal intake 

and recent head collisions alongside the employment of a matched control group for 

comparison. Interestingly, compared to similar studies that did include a control group 

(Le Meur et al., 2013, Nederhof et al., 2007, Rietjens et al., 2005), only Rietjens et al. 

(2005) found a difference in RT following IT and this was not a direct increase in RT, 

but rather a reduced improvement compared to the control group. A meta-analysis by 

Etnier et al. (1997) examining the effect of fitness on cognitive performance found 

that as experimental rigor decreased, effect size increased and thus, the true 

magnitude of effect of IT on cognitive performance may not be truly observed in 

studies failing to implement experimental rigor. 

In the present study, significant group main effects were found for calm sleep, sleep 

efficiency and numbers of awakenings per hour, with all being lower in the IT group 

throughout the study period with no differences at baseline. Although caution must be 

taken when interpreting main effects with no interaction, it is surprising that the 

perceptions of reduced sleep did not have an impact on cognitive function considering 
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the large amount of literature evidencing detrimental effects of sleep disturbance on 

cognition (Durmer and Dinges, 2005, Fullagar et al., 2015a, Fullagar et al., 2015b, 

Killgore, 2010). Sleep deprivation studies in athletes have reported slower and less 

accurate cognitive performance (Fullagar et al., 2015b) with increased errors, 

impaired decision making and increased fatigue (Reilly and Edwards, 2007). 

Furthermore, it has also been proposed that strenuous exercise in particular may be 

disruptive to sleep by causing decreased rapid eye movement sleep and increasing 

wakefulness (Driver and Taylor, 2000). Evidence of reduced sleep quality in an IT 

paradigm has also been reported, with 9-days of IT causing a significant and 

progressive decline in sleep quality (Killer et al., 2017).  

It could be suggested that the cognitive measures used were not sensitive enough to 

detect an effect as they have not been used in this paradigm before. This is unlikely 

however as the tests used have been demonstrated to be sensitive to the effects of 

nutrition (Haskell et al., 2010, Haskell-Ramsay et al., 2018, Kennedy et al., 2017, 

Wightman et al., 2015), which are expected to be more subtle to detect than sleep 

impairment and IT. Surprisingly this is the only study the authors are aware of that 

examines sleep and cognitive performance throughout an IT period and thus further 

studies are warranted to determine the interaction between sleep and cognition in this 

paradigm. Furthermore, more research surrounding the conservation of good sleep 

during periods of IT is required; this will be particularly useful to athletes performing 

in congested training and tournament fixtures. 

In support of our second hypothesis, large disturbances in psychological measures 

were observed following IT. These results are in line with previous observations that 

IT and HIE cause reductions in mood, leading to a negative psychological state 

(Comotto et al., 2015, Peluso and Andrade, 2005). The present study found a 57 % 

and 63 % increase in TMD following 7 and 14 days of IT respectively, in addition to 

significant increases in the specific subscales fatigue, vigour and confusion. This 

increase is markedly higher than the 28 % increase following two-weeks of IT reported 

by Halson et al. (2002) and 37 % increase following one-week of IT reported by 

Piacentini et al. (2016). Further psychological disturbance following both IT weeks 

included reductions in alertness, contentedness, physical energy, mental energy and 

total recovery as well as increases in physical fatigue, mental fatigue, total stress and 

significant disturbance in the recovery-stress balance in the IT group. The reduction 

in physical performance taken together with the changes in mood and recovery-stress 

balance suggest significant fatigue was induced after only 7 days. In the following 
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week, further reductions were observed, exacerbating the magnitude of fatigue within 

the IT group.  

It has previously been suggested that a two-week taper period consisting of a 41-60% 

reduction in training volume is the most efficient strategy to optimise performance 

gains (Bosquet et al., 2007) for a supercompensation effect (Meeusen et al., 2013). 

During the current study however, no difference was found between TT performance 

at baseline and following the two-week taper period in the IT group. These results are 

similar to those of Halson et al. (2002) and may suggest the length of the taper for 

the IT group was not sufficient to show full recovery. This is unlikely however, as 

subjective responses were found to be superior to baseline at the end of the taper, 

with benefits observed for measures of stress, recovery, physical energy and aspects 

of mood including alertness and calmness. Interestingly, this may suggest that the 

benefits of IT are more psychological than physical, which has important implications 

for athletes and coaches who incorporate IT with the expectation of performance 

enhancement for competition. 

The mood results are in support of previous reports that mood disturbances are dose-

dependent in a progressive manner with increments in training load (Filaire et al., 

2004), where reductions in training load are accompanied by either improved mood 

state or return to baseline (Coutts et al., 2007, Morgan et al., 1987). Though the 

behavioural effects of IT on mood appear to be well characterised, less is known on 

the neurophysiological mechanisms of mood disturbance. It is suggested however, 

that excessive exercise contributes to negative mood states due to modifications in 

opioid receptor activity (Saanijoki et al., 2018) and brain noradrenaline concentration, 

which is considered a major modulator of brain neural activity and a regulator of mood 

and motivation (Filaire et al., 2004).  

5.5 Practical applications 

The current study highlights the importance of scientific rigor for useful and practical 

recommendations. In contrast to previous studies, the cognitive results show no 

deterioration in performance across an IT period, though it is important that these 

results are considered within the context of the cognitive domains assessed. Whilst 

these results encourage future research to assess other cognitive processes, there 

are many practical applications that can be derived. The maintenance of sleep quality 

in addition to the adequate calorie intake, as demonstrate by no change in body mass, 



 

150 
 

likely contributed to the maintenance cognitive performance throughout the training 

period and thus highlights the importance of both sleep and nutrition for cognitive 

performance. Indeed, previous research examining cognitive recovery strategies 

suggest interventions that aim to restore fuel, such as nutritional strategies, as well 

as sleep are likely to have the largest effect. Currently however, there is little known 

on the effect size of any particular recovery strategy on the brain and its role in 

subsequent performance (Rattray et al., 2015). The failure to observe any benefit on 

IT to sporting performance questions the true benefit of IT and suggests that there 

may be more to be gained psychologically than physically. As demonstrated in Figure 

5.6 however, there are clear individual responses to training paradigms and thus one 

of the greatest practical applications this study highlights is the need for individual 

evaluation with regards to training techniques, interventions and performance.   

5.6 Limitations 

A benefit of the current study is the ecological validity of the training regimen 

participants underwent; however, this strength of the study also presents itself as a 

limitation as the training sessions could not be controlled. To overcome this, 

participants completed an online training log (appendix F) which could be viewed by 

both the participant and the investigator; with extensive monitoring the investigator 

was able to remind participants how many hours they had left to complete to avoid 

them falling short. A second limitation of this study was the reliance on a fitness watch 

and HR monitor to capture training duration and intensity. As with many wearable 

technology devices, issues arose regarding loss of battery power. When this occurred 

(two occasions), data from similar sessions was used to account for the missing data 

as best as possible, though it is appreciated that this is not ideal. A further caveat that 

must also be acknowledged is the self-report nature of the subjective sleep 

assessment. To ensure accurate results, participants were required to complete the 

sleep diaries within 30-minutes of awakening whilst at home. As with any data 

collected away from the laboratory however, confidence cannot be given regarding 

the time at which subjective sleep measures were completed. 

5.7 Conclusion & perspectives 

Two-weeks of increased training volume successfully induced fatigue and caused 

significant performance decrements in trained male endurance cyclists. It was 
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hypothesised that an increase in training volume over a two-week period would impair 

cognitive function; this hypothesis was rejected however. It was found that when 

assessed in a rested state following two-weeks of IT, cognitive processes including 

RT, information processing, VSM and executive function were unaffected, despite 

significant increases in physical and mental fatigue. The effect of sleep on cognitive 

performance following IT remains unclear and requires further investigation. In 

agreement with our second hypothesis, impairment to psychological measures was 

observed during IT. Interestingly when compared to baseline, a two-week taper had 

beneficial effects on parameters of mood, energy, recovery and stress while no 

beneficial effects on physical performance were observed. Together these results 

suggest greater benefits of IT on psychological state than physical performance. 

These findings have implications for coaches and athletes who deliberately induce 

states of fatigue through IT as part of the normal training process, and suggest 

consideration over the purpose, desired outcomes and necessity of IT on an individual 

basis. 

This chapter addressed the final aim of this thesis, to `Characterise the effect of an 

intensified training intervention on cognitive performance, mood, energy and fatigue`. 

No changes in cognitive performance were observed during or following two intense 

weeks of significantly increased training volume, despite clear reductions in physical 

performance. Whilst these findings are discussed within the chapter, it is perhaps of 

greater interest that this study found superior effects on psychological state than on 

physical performance following a two-week taper period. This study highlights the 

importance of individual responses to IT and proposes that the greatest advantages 

to performance may be in psychological preparation. In terms of application, this study 

provides interesting findings for athletes and applied practitioners of many sports who 

frequently undergo IT camps, and promotes consideration of the desired IT outcomes 

prior to implementation. The ease of administration and portability of both cognitive 

and mood assessment make it a viable prospect for future research to further 

increase the ecological validity of this work by assessing similar parameters during 

training camps and competition.       

 

 

 

 

 



 

152 
 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: General discussion 
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6.1 Experimental chapter synopsis  

Exercise is a powerful stimulus, both physiologically and cognitively. Though still in 

its infancy, research examining the exercise-cognition interaction is growing, with 

advances in technology enabling a greater insight into behavioural effects and 

mechanisms of action. Previous research has mostly focussed on ageing populations 

in an effort to alleviate cognitive decline; young populations in an effort to promote 

cognitive development; and diseased populations in an effort to reduce negative 

symptoms. In comparison, healthy adult populations have received much less 

attention, particularly trained individuals who engage in regular exercise. The studies 

within this thesis aimed to contribute to, and build upon, existing knowledge by 

investigating cognitive performance and mood following different HIE paradigms in 

trained healthy populations (for study synopsis schematic see Figure 6.1).  

The first study in this thesis (Chapter 2) attempted to identify and evaluate the current 

understanding within the area by systematically investigating existing literature. A 

review of this nature, assessing the effect of several combined moderators on the 

exercise cognition interaction, is needed as highlighted in a previous meta-analysis, 

due to their inherent limitations (Chang et al., 2012). As has been discussed 

throughout this thesis, multiple moderators influence the exercise-cognition 

interaction and thus Chapter 2 aimed to conduct a specific examination on the 

cognitive effects of acute HIE in trained populations. Following systematic review of 

seven databases, only 9 studies met the eligibility criteria to be included, which in 

itself highlighted the need for greater research within the area. Examination of the 9 

studies revealed that information processing was the most examined cognitive 

domain, with 18 outcome measures of which 2 were positive, 15 were negligible and 

1 was negative. Moreover, there appeared to be no effect of acute HIE on simple 

cognitive processes in trained individuals. The consensus behind higher-order 

processes however was unclear, with there being similar support for both negligible 

and detrimental effects, in addition to a greater variety of cognitive assessments used. 

The results of this section identified a gap in the literature and emphasised the need 

to assess a variety of cognitive domains. 

The limited research identified in Chapter 2 supported the structure of the subsequent 

three experimental studies. The literature review reported an average time of previous 

HIE research protocols of 5.6 minutes. This was due to most of the protocols using 

continuous exercise models where exercise intensity is fixed. Most sports however, 

are of greater durations, often involve intermittent bursts of energy and in many 
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situations involve stress to the muscular and cardiovascular system. Due to this, the 

first experimental investigation (Chapter 3) aimed to identify the effects of prolonged 

strenuous exercise on cognitive performance and mood in trained male cyclists. This 

study used an exercise model that has previously been shown to induce both 

metabolic and mechanical stress. Supporting the results of the systematic review, 

there was no effect reported on simple reaction time (SRT) or four-choice reaction 

time (FCRT) but there was a negative effect on speed of information processing 

(Stroop task congruent stimuli), indicating an impairment in selective attention. 

Furthermore, prolonged strenuous exercise had detrimental effects on mood, with 

reductions in alertness and contentedness alongside increases in both physical and 

mental fatigue. The findings from this chapter add to the limited literature investigating 

HIE and indicate deleterious effects on cognition and mood in trained individuals that 

are accustomed to this type of exercise. In addition, this chapter also identified the 

ability of physical work to cause an increase in mental fatigue; a concept to date that 

has not been explored much in this context.  

Chapter 4 was designed to extend upon the findings of Chapter 3 by exploring 

prolonged HIE within a different paradigm. In many sports, athletes are regularly 

exposed to consecutive days of competition and training. Recently, congested 

tournament fixtures have become a hot topic within the literature (Coutts, 2016), with 

concerns over insufficient recovery time being a catalyst for increased injury rates 

(Williams et al., 2017). The focus of this literature has predominantly surrounded 

physiological recovery, with little acknowledgement towards the impact that 

congested exercise may have on cognitive performance. Much of the previous 

literature has focussed on cognition during or following acute exercise (Lemmink and 

Visscher, 2005, McMorris and Rayment, 2007, Tsukamoto et al., 2016a), but the 

cumulative effects of multiple acute HIE bouts has rarely been explored and therefore 

this study aimed to address this gap. The results of Chapter 4 demonstrated a 

deterioration in cognitive performance across day 2 compared to day 1 in trained 

rugby players (familiar with both the type of exercise performed and congested fixture 

tournaments). Specifically, reductions in accuracy on the Stroop task assessing 

executive function were observed, alongside a slowing of RT on the FCRT task; 

furthermore, VSM following each exercise bout was worse as each day progressed. 

These reductions hold particular meaning when considered in a sporting context, with 

reductions having both performance and injury considerations. The mood results 

mirrored the cognitive findings, with significant reductions in alertness, 

contentedness, physical energy and mental energy, and increases in physical and 
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mental fatigue on day 2 compared to day 1. Furthermore, reductions in mood also 

occurred over time, getting worse from the first to the last exercise session. This is 

the first study to consider the effect of congested tournament fixtures on cognitive 

performance and mood and presents important considerations for any individual, 

sport and occupation that participate in repeated physical activity/exercise.  

Extending on the findings from the first two empirical studies, the final study within 

this thesis (Chapter 5) was designed to investigate the effect of a two-week IT period 

on cognitive performance and mood alongside perceived sleep, physical performance 

and various physiological markers. Often in the form of training camps, many athletes 

incorporate high training volumes and limited recovery periods into their training 

regimen, with the intention of inducing a temporary reduction in physical performance 

after IT followed by a supercompensation effect after an adequate period of recovery 

(Meeusen et al., 2013). The purpose of this study was to explore the effects of IT on 

cognitive performance and mood throughout the training period. Results of Chapters 

3 and 4 alongside previous literature led to the hypothesis that IT would cause 

significant reductions in cognitive performance alongside disturbances in mood. 

Despite this, the results reported in Chapter 5 provided no indication of a disturbance 

in cognitive function following a significant increase in training load. Conversely, 

significant mood, stress and recovery disturbances were observed during both IT 

weeks; this was followed by either a return to baseline or superior mood state after a 

two-week taper period. Reductions in physical performance were also observed, 

though there was a failure to see a super-compensatory effect of IT on performance 

markers. These results provide several points for discussion and add interesting 

debate to the literature. Namely, the results suggest that IT may provide greater 

psychological benefits over physiological benefits, whilst also proposing that in well-

trained cyclist’s cognitive performance, within the domains considered, is not affected 

when assessed in a rested state. The results also highlight the importance of 

subjective performance markers, which may be more sensitive to change and can 

provide equally as important information as objective markers. As ever, further studies 

are required to confirm these findings. 
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Figure 6.1 Schematic representation of the main findings of this thesis. Study 1 identified a gap in the literature, which was addressed in the 

subsequent 3 chapters. Following prolonged strenuous exercise, a reduction in executive function, namely selective attention and mood was 

observed in study 2. Study 3 reports reduced inhibitory control, FCRT and mood following a day of congested strenuous exercise. Lastly, study 

4 found no change in cognitive performance despite reductions in mood and physical performance following two-weeks of IT. EF = executive 

function; SRT = simple reaction time; FCRT = four-choice reaction time; M & P = mental and physical; TT = time trial; V̇O2max = maximum oxygen 

consumption; ↑ = increase; ↓ = decrease
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6.2 Main Findings 

The overall aim of this thesis was to investigate the effect of strenuous, high-intensity 

exercise on cognitive performance and mood in trained and athletic populations. A 

number of relevant issues have been discussed throughout each of the experimental 

chapters; the following section of this thesis aims to bring together the main findings 

in relation to the existing literature and provide further context and scope or 

application of the findings as well as discuss the limitations of the work and potential 

future areas of investigation. 

6.2.1 Cognitive function and high-intensity exercise 

There is an overwhelming amount of literature surrounding the effects of exercise on 

physical and mental processes. However, Chapter 2 identified a gap amongst this 

with minimal investigations examining the effects of HIE on cognitive performance in 

healthy trained populations. Indeed, trained sporting populations are an interesting 

population to examine for numerous reasons. As discussed in Chapter 1, chronic 

exercise is associated with several peripheral and central adaptations and 

participation in sport is believed to train cognitive abilities, with athletes being 

suggested to have superior cognitive abilities on fundamental laboratory cognitive 

tasks (Voss et al., 2009). Theoretically, it is tenable to suggest that trained sporting 

populations may be more resistant to exercise-induced fatigue and hold cognitive 

prowess compared to less trained populations following fatiguing exercise. The 

research presented in Chapter 2 contributes the first systematic review, within this 

specific area, to the literature. In total, 9 studies were identified that had examined 

trained populations during or following HIE according to the eligibility criteria outlined. 

The results are in line with that of earlier reviews, identifying exercise to have 

differential effects on specific cognitive domains (Chang et al., 2012, Colcombe and 

Kramer, 2003, Etnier et al., 1997, Lambourne and Tomporowski, 2010, McMorris and 

Hale, 2012). Neuroimaging studies have attempted to elucidate the underlying 

neurobiological processes of these findings, illustrating different task-related 

connectivity patterns (Bressler and Menon, 2010). Indeed, this is not surprising since 

the brain consists of multiple complex network systems that are finely integrated 

across all brain regions (van den Heuvel and Sporns, 2013). The results associated 

with each of the cognitive domains assessed throughout the thesis are discussed 

individually in the following sections.  
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6.2.1.1 Executive function  

The findings from the systematic review in Chapter 2 support previous reports that 

suggest the effects of exercise on executive function are the most ambiguous, but 

also the most sensitive to change (Chang et al., 2012, Colcombe and Kramer, 2003, 

Dietrich and Audiffren, 2011, Dietrich and Sparling, 2004, Wang et al., 2013). The 

findings of Chapter 3 and Chapter 4 support this, with exercise having a detrimental 

effect on Stroop task performance in both experimental studies. This aligns with 

electrophysiological evidence from Pontifex and Hillman (2007) who found that 

exercise not only selectively reduced inhibition, but also reduced the activation (i.e. 

reduced N2 amplitude), increased the inefficiency of attentional resource allocation 

(i.e. reduced P3 amplitude) and delayed the cognitive processing speed related to 

the inhibitory response and stimulus discrimination (i.e. slower N2 and P3 latency). 

These results are in agreement with the conclusions of Dietrich and Audiffren (2011), 

where the authors note that tasks involving complex, top-down, conscious and 

effortful characteristics (such as those required by the Stroop task), are impaired 

during exercise compared with processes involving simple, bottom-up, unconscious 

and automatic features. It has been suggested that higher fitness levels may alleviate 

these effects due to a greater oxygen-carrying capacity compensating for the negative 

effects of vigorous exercise (Wang et al., 2013); the results of the current thesis 

however do not support this, at least with regards to response inhibition. However, as 

the current thesis did not directly compare participants of different fitness levels, firm 

conclusions cannot be drawn and require further investigation.  

The Stroop task is one of the most extensively used tasks for assessing the ability to 

inhibit habitual responses in addition to selective attention, cognitive flexibility and 

information processing speed (Chang and Etnier, 2009). Interestingly, deteriorations 

in performance were found within different components of the Stroop task in each 

chapter, with RT on the congruent trials impaired following prolonged HIE (Chapter 

3) and a reduction in accuracy on incongruent trials deteriorating on day 2 following 

one day of congested HIE (Chapter 4). Though both are subdomains of executive 

function (Vandierendonck, 2014), performance on congruent trials of the Stroop task 

predominantly assesses selective attention, whilst incongruent trial performance 

assesses inhibition. Indeed, incongruent trials have additional attentional demands 

relative to congruent trials as the word identity conflicts with the word ink colour. 

Furthermore, Mead et al. (2002) identified differences in brain activation patterns 

between congruent and incongruent interference conditions, highlighting the different 
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demands of the task. The reasons behind the differences observed in Stroop task 

performance in this thesis cannot be determined; it can be hypothesised however that 

either the type of exercise, the duration of exercise or the type of athlete used in the 

study contributed to the observed differences.   

One of the largest mechanistic theories within the acute exercise-cognition literature 

postulates that of all the cognitive domains, executive function will be the most 

affected by exercise (Dietrich 2003). Exercise is a highly demanding activity for the 

brain which requires substantial resources, involving areas such as the primary 

sensory cortex, primary and supplementary motor cortices and the anterior region of 

the cerebellum (Christensen et al., 2000). The transient hypofrontality theory 

(Dietrich, 2003), which has since been expanded into the reticular-activating 

hypothesis (Dietrich and Audiffren, 2011), postulates when overtaxed by strenuous 

exercise, there is a downregulation in brain areas irrelevant to the motor task from 

areas supporting the highest cognitive functions. The PFC, being the primary higher-

order area of the brain, is the first region affected by the heavy metabolic burden of 

HIE. This impact on PFC function makes its computations less likely to be supported 

sufficiently in any subsequent decision making process. Exercise intensity and 

duration are key components of this theory, which maintains that the brain has a 

limited information processing capacity (Broadbent, 1958) due to global cerebral 

blood flow, global metabolism and global oxygen uptake to the brain remaining 

constant despite an increased demand (Ide and Secher, 2000). In combination with 

this, it is well-accepted that exercise increases arousal and catecholamine 

concentrations; this may have created neural noise (the unsystematic, inherent, 

electrical oscillations found in neural networks) (Sanders, 1983) during post-exercise 

cognitive assessment, which may explain the observed results in Chapters 3 and 4. 

It is important to emphasise openly that many of the theoretical models commonly 

used in current literature to explain post-exercise changes in cognitive function were 

designed specifically to account for the psychological effects during exercise. Given 

the lack of detailed data about the time it takes for the brain to resume pre-exercise 

status, there should be caution when using these frameworks to explain post-exercise 

changes in cognition. 

The overall results of this thesis are in agreement with the literature that suggest 

executive measures, such as selective attention and response inhibition, are the most 

sensitive to homeostatic disruption. Following prolonged and congested strenuous 

exercise, detrimental effects to Stroop task performance were observed in trained 

participants familiar to the exercise bout and intensity. This has important implications 
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for individuals that engage in these types of exercise paradigms, highlighting the 

importance of athlete monitoring and player rotation for both well-being and 

performance reasons.  As untrained counterparts were not used as comparators, the 

difference and/or size of effect differences between trained and untrained populations 

cannot be established. It may be hypothesised however, based on the cognitive 

benefits of chronic training that untrained counterparts would have had greater 

deterioration in cognitive performance. 

6.2.1.2 Visual spatial memory 

Throughout this thesis VSM was assessed as it is pertinent to sporting performance 

(Furley and Memmert, 2010a). Interestingly, significant changes in VSM were only 

observed in Chapter 4. Results revealed a reduction in performance post-exercise 

during sessions 2 and 3 that was not observed in the control condition. Span score 

was also significantly lower in the exercise condition when compared to the control 

when assessed pre- and post-session 2 and post-session 3. As memory is an 

overarching cognitive concept that consists of multiple subdomains, it is important to 

compare like with like to avoid confounding conclusions. Indeed, VSM is a part of the 

central executive system according to Baddeley and Hitch`s WM model (Baddeley 

and Hitch, 1974) and refers to the short-term storage of visual and spatial information 

(Baddeley, 2007). Performance on the Corsi blocks task has been linked to 

dorsolateral prefrontal cortices (Nemmi et al., 2013, Toepper et al., 2010) as well as 

the hippocampus – the brain region most commonly associated with memory tasks – 

(Burgess et al., 2002), and has been justified as a measure of WM (Berch et al., 1998, 

Vandierendonck et al., 2004). Thus, the detrimental effects of congested exercise on 

VSM performance may have been associated with the reductions observed in the 

Stroop task, which also relies on central executive WM processes (McMorris et al., 

2011).  

Despite the relevance of VSM in sporting situations, particularly ball sports (Furley 

and Memmert, 2010a), there are no intervention studies to our knowledge that have 

assessed the effect of acute strenuous exercise on this domain in trained individuals, 

and thus the empirical studies in this thesis add the first to the literature. Indeed, 

improved vocabulary learning has been observed following acute high-intensity 

running (2 x 3 minute sprints at increasing speed) (Winter et al., 2007) however this 

cannot be likened to VSM as they are separate cognitive constructs. In young adults, 

Stroth et al. (2009a) found three 30-minute running sessions per week for 6 weeks 
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had a significant positive effect on VSM; however this assesses the chronic rather 

than acute effect of exercise. The lack of studies investigating the effect of strenuous 

exercise in trained populations is surprising, especially as athletes have been shown 

to perform better than non-athletes on sport-specific tasks of spatial memory (Mann 

et al., 2007) which suggests this to be a cognitive skill that is important for sporting 

performance and thus requires further research.  

6.2.1.3 Simple cognitive processes  

The results of Chapter 2 highlighted a preference of previous studies to assess simple 

cognitive processes such as SRT and CRT. Though this is likely due to the limited 

number of studies within this specific area of cognitive research, this finding does 

coincide with criticism of the literature from over 15 years ago, with it being highlighted 

that the types of tasks used by researchers mainly assessed basic information 

processing skills (Etnier et al., 1997, Tomporowski, 2003). Nevertheless, analysis 

showed there to be minimal effects of acute HIE on tasks of simple processing in 

trained individuals. 

Interestingly these results were consistent in the subsequent three empirical 

investigations, particularly regarding SRT. There are many potential explanations for 

this. First, the trained status of the participants being tested. Individuals that regularly 

engage in HIE become familiarised with the high physiological task constraints; this 

may reduce the attentional demands associated with the control of the movement, 

subsequently leaving simple processing unaffected (Brisswalter et al., 1997). This 

supports the argument that individuals accustomed to HIE may be more resistant to 

fatigue, which may explain the maintenance of performance on simple tasks following 

heavy exercise found within this thesis. Indeed, trained individuals that engage in 

sport have been found to have faster reaction times than non-trained individuals (Kaur 

et al., 2006). This improvement comes directly from exercise training affecting motor 

functions and indirectly through other modes of information processing, such as 

attention and response preparation (Arcelin et al., 1998). As there is a ceiling effect 

with SRT (e.g. where there is a limit as to the quickest feasible RT humanly possible 

when accounting for stimulus detection and efferent response), it is of greater difficulty 

to see a facilitation of RT with exercise in trained individuals due to already having a 

fast baseline. The issue with some SRT tasks, such as the one used throughout this 

body of work, is that the simple nature of the task, that is, it only requires a simple 

finger movement, does not enable total RT to be separated into RT and movement 
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time and thus no distinction can be made between CNS response and motor 

response. If this is to be more closely investigated, whole body tasks are perhaps 

more suitable. 

The only significant finding in what can be considered as basic information processing 

throughout the thesis was observed in Chapter 4, where FCRT performance 

deteriorated on day 2 following one congested day of exercise. This was 

accompanied by a reduction in accuracy on the more complex Stroop incongruent 

task condition used to assess inhibition, a domain of executive function. This is the 

first empirical study to assess cognitive performance following multiple congested 

exercise bouts and thus the findings cannot be directly compared to previous 

literature. However, the results of slower RT and reduced accuracy do support studies 

reporting reductions in performance (Ronglan et al., 2006), with decreases in 

technical skill (Moreira et al., 2016) and associations with increased injury rates 

(Carling et al., 2016) across congested matches and tournaments. When it is 

considered that there is increasing interest in the ramifications of cumulative fatigue 

and congested match fixtures, it is surprising that this is the first study to consider 

cognitive function when it is widely appreciated as a fundamental part in successful 

sporting performance (Coutts, 2016, Walsh, 2014).  

With particular relevance to Chapters 4 and 5, it is also important to consider that 

periods of high physical workloads and competition can have deleterious effects on 

sleep (Fullagar et al., 2015b, Juliff et al., 2015). As discussed within the thesis, 

subjective measures of sleep in Chapter 4 would have been a positive addition to the 

study design; as a learning of this, subjective sleep was assessed in Chapter 5. Based 

on previous findings of adverse effects of IT on sleep (Halson et al., 2014, Killer et 

al., 2017), detrimental effects on subjective sleep and cognitive performance were 

expected. Despite disturbances to sleep parameters however, cognitive function 

remained unaffected. To ensure the effects observed on all measures assessed in 

Chapter 5 were due to the effects of IT and not acute exercise, cognitive performance 

was assessed in a rested state following 24-hours abstinence from strenuous 

exercise. The assessment of chronic HIE compared to acute HIE highlights the main 

methodological difference between Chapter 5 and the previous two chapters, which 

may explain the difference in findings. Though cognitive function remained 

unchanged, it is clear that IT disrupted the recovery-stress balance which, alongside 

congested tournament fixtures, has important implications for performance, well-

being and injury prevention (Brink et al., 2010, Kellmann, 2010).   
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Overall, the studies presented in this thesis suggest prolonged, congested and 

intensified strenuous exercise have minimal effects on simple cognitive processing 

tasks such as SRT and FCRT, in trained populations. These findings are in general 

agreement with the previous literature as identified in the systematic literature review 

conducted in Chapter 2.  

6.2.2 Mood, high-intensity exercise and cognitive function  

In accordance with the main aims of this thesis, mood was investigated within multiple 

exercise paradigms across Chapters 3, 4 and 5. There is presently few studies on 

mood following strenuous exercise in trained populations and thus the current thesis 

contributes needed data and builds upon previous understanding. This is particularly 

important following suggestions that there may be a critical threshold intensity for 

disturbances in mood (Raglin and Morgan, 1985, Reed and Ones, 2006) and that 

optimal exercise-induced mood benefits may be subject to large individual differences 

(Berger et al., 2016, Brümmer et al., 2011, Motl et al., 2000, Raedeke, 2007, 

Schneider et al., 2009). Indeed, the “exercise preference hypothesis” suggests that 

the relaxation effects of exercise are linked to an individual’s physical activity history 

and exercise preferences, where the ‘preferred’ mode and intensity of exercise is 

what an individual is most familiar with (Boutcher et al., 1997, Brümmer et al., 2011, 

Schneider et al., 2009). Accordingly, reports of mood effects following exercise in the 

general population may not be appropriately applied to individuals that participate in 

regular training and/or competitive sport. Previous work supports this, demonstrating 

an increase in positive affect in trained individuals following HIE, while untrained 

participants experienced a reduction in positive affect and an increase in negative 

affect during and after exercise (Boutcher et al., 1997).  

The results of this thesis are contrary to these previous reports however, as Chapters 

3, 4 and 5 demonstrate a negative effect of strenuous exercise on mood in trained 

populations. Within all of the empirical studies, the Bond-Lader mood scale was used 

to assess alertness, contentedness and calmness. The scale was completed 

immediately at the time of testing (pre- and post-exercise) in Chapters 3 and 4, and 

following each training week in Chapter 5. Interestingly, a consistent finding 

throughout the experimental chapters was significant reductions in alertness and 

contentedness. This suggests strenuous exercise and IT loads have negative effects 

on these two specific aspects of mood in trained populations, irrespective of exercise 

duration or mode. These results support the notion that strenuous exercise has 
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negative implications for mood despite trained status. Calmness on the other hand 

showed a less consistent response, with no effect observed in Chapter 3, a positive 

effect post-exercise in Chapter 4 and a negative effect in Chapter 5 following a 2-

week taper. As this final observation in Chapter 5 was not observed in the control 

group, it is postulated that the reduction in calmness following the taper period may 

be due to an excitement or anxiousness for the forthcoming trial. In support of this, 

alertness was significantly greater at the same time point, showing an increased state 

of arousal.  

The findings in this thesis regarding alertness are particularly interesting. Exercise of 

sufficient intensity significantly increases stimulation of the adrenergic system, 

causing large increases in hypothalamic-pituitary-adrenal axis hormones such as 

adrenocorticotropic hormone, which stimulates the adrenal release of cortisol 

(McMorris et al., 2016). This `stress` response stimulates adrenaline synthesis, 

connecting high-intensity exercise with an increase in alertness (Buono et al., 1986). 

Interestingly, Davranche and Audiffren (2004b) found low (20% Wmax) and moderate 

(50% Wmax) intensity exercise significantly increased alertness (also assessed by the 

Bond-Lader mood scale). In the present thesis however, reductions in alertness 

following strenuous exercise were reported throughout the experimental chapters. 

These results may be explained in part by the findings of significant disturbances to 

both mental energy and fatigue. Specifically, a novel finding that has been present 

throughout this thesis is a significant increase in mental fatigue following exercise, 

despite minimal demands on mental exertion. This finding adds new knowledge to 

the existing literature as mental fatigue is most commonly associated with prolonged 

cognitive activity, not physical activity (Lorist et al., 2005). Not only does this support 

the negative effects observed on mood following strenuous exercise, but it also 

highlights the high demand exercise has on the brain which presents important 

considerations for prolonged, congested and chronic training paradigms. 

Until relatively recently, little was known about the effects of mental fatigue within a 

sporting context. Recent evidence however provides convincing evidence that mental 

fatigue has a detrimental impact on sports performance (Van Cutsem et al., 2017) 

including intermittent running (Smith et al., 2015), endurance performance (Martin et 

al., 2018) and skill acquisition (Smith et al., 2016b). Most studies have focused on the 

consequences of induced mental fatigue (via sustained cognitive task performance) 

on physical performance (Van Cutsem et al., 2017). The current work however 

suggests that strenuous physical exertion itself, both acutely and chronically, causes 

significant increases in mental fatigue, which may subsequently have a negative 
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effect on sports performance. When practically applying this work, it is important that 

mental fatigue and mood are monitored and strategies are in place to help alleviate 

potential performance decrements, particularly in competition scenarios.  

Chapters 3 and 4 assessed mood, energy and fatigue ratings prior to and immediately 

following exercise. In a different study design, Chapter 5 assessed cognitive function 

and mood chronically over an IT period, that is, following intensified weeks of training. 

Interestingly, similar results were found in this paradigm. To assess weekly mood and 

recovery-stress balance, the POMS-65 and RESTQ-Sport were administered. In 

support of the acute mood, energy and fatigue results observed in previous chapters, 

significant deteriorations in TMD and energy index were found across both IT weeks 

alongside a significant negative recovery-stress balance. These results are in support 

of previous work (Halson et al., 2002, Killer et al., 2017, Piacentini et al., 2016) and 

reiterate the negative effect of high training loads on mood, energy and fatigue as 

well as perceived recovery-stress balance.  

In summary, the experimental chapters within this thesis indicate that there is a 

negative effect of strenuous exercise on mood and ratings of mental and physical 

energy and fatigue in trained individuals. The subjective markers used throughout this 

study have been consistent in finding reductions, particularly in alertness, 

contentedness and mental and physical energy alongside increases in mental and 

physical fatigue. These findings hold great value for sports performers and coaches 

as mood responses have been found to predict athletic performance (Beedie et al., 

2000). As the maintenance of a functional mood profile when training and competing 

in strenuous and/or stressful conditions can underpin success, it is important to teach 

athletes strategies to regulate mood states that may threaten performance (Terry, 

1995).  In agreement with the conclusions of Saw et al. (2015), the work in this thesis 

supports the use of subjective measures to monitor change in well-being in response 

to exercise and training. Considering the results of the final empirical chapter, 

subjective ratings may be more sensitive and indicative of performance than objective 

measures, but this finding needs to be further validated. For now, practitioners could 

be advised to implement subjective measures of well-being and mood within a mixed 

methods approach to gain a holistic perspective of their athlete’s performance.   
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6.3 Practical applications 

The current thesis has examined and contributed new knowledge to the area 

surrounding strenuous exercise paradigms on cognitive performance, mood, energy 

and fatigue states in trained sporting individuals. Specifically, Chapters 3, 4 and 5 

investigated the effect of prolonged, congested and intensified exercise respectively 

and practical implications specific to each of these paradigms are discussed in the 

respective chapters. All together, the evidence presented in this thesis suggests there 

to be negative effect of strenuous exercise on executive processes in trained sporting 

individuals and highlights the need for cognitive recovery strategies to be 

implemented in a similar fashion and with equal importance as are physiological and 

nutritional recovery strategies.  

With increasing research investigating the interaction between exercise and 

cognition, it is well-established that cognitive function is fundamental to sporting 

success, yet there is still little knowledge on effective recovery strategies and ways to 

implement them. In a recent review examining central mechanisms for post-exertional 

recovery strategies and performance, Rattray et al. (2015) suggest interventions that 

aim to restore fuel, such a nutritional strategies, and sleep are likely to have the 

largest effect on the brain. The appreciation and understanding for cognitive recovery 

strategies that has been developed over recent years has opened up a new and 

promising area for future research, especially considering that there is currently little 

known on the effect size of any particular recovery strategy on the brain and its role 

in subsequent performance. Reference to psychological literature demonstrates well-

known and effective mental recovery strategies including muscle relaxation, listening 

to calming music, systematic breathing and ‘power naps’ (Kellmann et al., 2018). 

More recently, an emerging cognitive recovery strategy for sports performance, as 

well as many other aspects of life, is that of meditation. In a recent study, Colzato and 

Kibele (2017) discuss how different types of meditation can enhance athletic 

performance, helping to actively control cognitive processes and emotions.  

There is currently a need for strategies both during and following strenuous exercise 

to elicit and maintain optimal cognitive performance for sporting success. Whilst 

emphasising the importance of cognitive function and mood to sport performance, the 

current thesis highlights the negative effect heavy physiological load can have on 

cognitive processes and mood and suggests new avenues of research to practically 

benefit sports performance and athlete well-being. 
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6.4 Limitations of findings  

A number of limitations exist in the interpretation of the findings from this thesis, which 

have been discussed in each chapter. The controls put in place allow for targeted 

analyses, however in most instances, this is at the expense of a degree of ecological 

validity. The following over-arching limitations are potential issues and criticisms of 

the work. 

 

A pertinent issue when measuring cognitive function, particularly when wanting to 

make conclusions regarding sports performance, is the ability, or lack of ability, to 

accurately reflect cognitive behaviours that occur in a real-life environment. There is 

still a large question as to whether general laboratory tests of cognitive function, such 

as those used in this thesis, represent and transfer to performance in ecologically 

valid environments (Voss et al., 2009). Sport-specific cognitive tasks have been 

developed to try and address this issue by creating greater ecological validity. 

However, these tasks face similar limitations in that they are not validated to assess 

specific domains of cognitive function and similarly the transfer of performance to 

real-world environments is not currently known (Broadbent et al., 2015).  

 

Alongside the cognitive tasks, the ecological validity of the exercise paradigms used 

is also a limitation within the first two experimental chapters. In Chapter 3, a protocol 

was selected that has been shown to significantly induce metabolic and mechanical 

stress (Bell et al., 2014). The purpose of this was to impose a known large stressor 

and examine the effects on cognitive performance. It is acknowledged however that, 

despite the cycling trial being validated against a cycle race, the ecological validity of 

the protocol in its entirety was low. An attempt was made in Chapter 4 to enhance the 

ecological validity of the study protocol by using previously reported GPS data 

regarding average sprint distance and work to recovery ratio assessing the demands 

of rugby sevens (Suarez-Arrones et al., 2012). The lab based protocol used however 

does not incorporate the multi-directional change, skill and cognitive components 

associated with invasion sports (Russell et al., 2011), each of which may influence 

the cognitive and mood response. In taking into account the limitations of the previous 

studies, Chapter 5 did employ a protocol with greater ecological validity concerning 

the exercise prescribed. 

 

A further limitation is recognised with the use of subjective measures. Mood is a 

complex paradigm and is influenced by a plethora of both internal and external 
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factors. Whilst it is possible to control the environment in which mood is measured, 

certainty can never be entirely provided that any observed fluctuations in mood are 

purely due to interventional effects. A second subjective measure, perceived sleep, 

was also assessed in Chapter 5 with participants being required to complete sleep 

diaries within 30-minutes of awakening whilst at home. As with any data collected 

away from the laboratory, confidence cannot be given regarding the time at which 

subjective sleep measures were completed.  

 

The premise of exercise interventions makes it impossible to blind participants to the 

study intervention. To reduce bias, repeated measures designs were used in the first 

two studies and participants were randomly allocated into the control or intervention 

condition in Chapter 5, which implemented a matched pairs design. This however 

does not solve the problem of participant blinding to the intervention. It is possible 

therefore, that preconceived expectancies regarding cognitive and physical 

performances may have influenced subjective responses.  

 

The participant cohorts used in this series of studies also limits the application of the 

findings from this thesis. Only males were recruited and as such, the findings may not 

be applicable to females. Cognitive function and mood have been shown to fluctuate 

depending on menstrual cycle phase (Hampson, 1990, Symonds et al., 2004) and 

thus, for the purpose of control, only men were recruited throughout this series of 

work. More work is required in this area to gain a greater understanding behind the 

causes and effects of strenuous exercise on cognitive function and mood; particularly 

in women in which there is already limited research across many fields.  

6.5 Future research and summary  

The data from this thesis has provided an insight into the effect of strenuous exercise 

on cognitive performance and mood and has shown how this may be relevant and 

applied to various fields. Consequently, a number of potential avenues for future 

research have been identified. These include: 

 

1. Chapter 2 highlighted that the mechanisms underpinning the effect of 

strenuous exercise on cognition and mood in humans are still not fully 

understood. Though the limitations of practicality are appreciated, greater 

research with neuroimaging technologies may provide a deeper insight into 
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the neurobiological underpinnings of disturbances to cognitive function and 

mood in both trained and untrained individuals.  

 

2. Within the literature and throughout this thesis it is discussed that 

cardiovascular fitness may provide cognitive and mood benefits during 

exercise-induced stress. It is also apparent that expert athletes may have 

superior cognitive benefits, which are likely derived from years of practice 

within a particular domain. This opens discussion as to whether fitness level 

(e.g. V̇O2max) or sporting expertise (e.g. the direct interaction between the 

athlete and their environment of expertise) is more important in this 

relationship. 

 

3. Chapter 3 used an exercise paradigm that caused both metabolic and 

mechanical stress. However, little research has investigated the effect of 

resistance exercise on cognitive function and mood despite its increasing 

popularity and importance for ageing populations. The limited information 

within this area alongside the important practical implications makes this a 

lucrative area for further work.  

 

4. Most studies consider increased injury rates in congested tournament to be 

associated with increased physical demands. With considerations to the 

findings in Chapter 4 of reduced inhibitory control and FCRT, it would be 

interesting and meaningful to see if reductions in cognitive performance during 

congested tournaments were associated with increased injury rates.   

 

5. Chapter 5 found no effect of IT on cognition. Indeed, the research within this 

area is ambiguous and requires further work in a greater variety of sports, 

whilst keeping individual responses at the forefront. This area would benefit 

from a comprehensive meta-analysis which would help researchers, coaches 

and athletes better understand the current state of research, and assist with 

the appropriate implementation of IT programs in training regimens.  

 

6. The concept of individual critical thresholds in mood is intriguing both inside 

and outside of sport. This may help with exercise adherence and motivation, 

in addition to potential clinical applications. 
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7. Mental fatigue and sports performance is a relatively new concept within the 

sport and exercise literature. The observations within this thesis open new 

avenues for research within this area. These include investigations into the 

interactions between physical and mental fatigue and how these may affect 

individuals in both a sporting and occupational environment.  

 

The aims of this thesis have been addressed and more importantly have contributed 

to the existing literature. While in the general population it is largely found that intense 

exercise has detrimental effects on cognition, there are limited studies investigating 

the effects of strenuous exercise on cognitive performance and mood in trained 

populations. The current body of work found negative effects of prolonged and 

congested exercise on certain domains of cognitive function, mood, energy and 

fatigue states in trained sports persons when assessed immediately after exercise. 

Conversely there was no effect found during or following 2 weeks intensified training 

on any cognitive domain when assessed in a rested state though detrimental effects 

were observed on parameters of mood, energy, fatigue and recovery states as well 

as physical performance. The work of this thesis supports the aforementioned 

consensus and extends the scope of study on this topic to trained and athletic 

populations. The practical application of the present work was a key consideration 

throughout and unique application seems most fitting to high-intensity sports that 

involve prolonged, congested or IT paradigms. Undoubtedly, three studies are 

insufficient to irrefutably demonstrate evidence of any intervention, its effects and its 

optimal application. Nevertheless, the results from this thesis suggest there to be 

domain specific effects on cognitive function and mood following strenuous exercise 

and thus encourage monitoring strategies to be put in place to ensure athlete well-

being and promote optimal performance.  
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Appendix A: Example informed consent document 

 

 

 

INFORMED CONSENT FORM 
 
 

Project title:  

Participant ID: 

Principal Investigator:  

Investigator contact details:  

 

               please tick or initial  
  where applicable 

I have carefully read and understood the Participant Information Sheet.  
 

I have had an opportunity to ask questions and discuss this study, and I 
have received satisfactory answers. 

 
 

I understand I am free to withdraw from the study at any time, without 
having to give a reason for withdrawing, and without prejudice. 

 
 

I agree to take part in this study.  
 

I would like to receive feedback on the overall results of the study at the 
email address given below.   
 
Email address…………………………………………………………………… 

 
 

 
 

 
Signature of participant.......................................................    Date.....……………….. 
 
(NAME IN BLOCK LETTERS)....................................................………………………. 
 

 
Signature of researcher.......................................................    Date.....……………….. 
 
(NAME IN BLOCK LETTERS)....................................................………………………. 
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INFORMED CONSENT FORM FOR REMOVAL AND 
STORAGE OF HUMAN TISSUE 

 
 

Project title:  

Participant ID: 

Principal Investigator:  

Investigator contact details:  

 
I agree that the following tissue or other bodily material may be taken and used for 
the study:  
 

Tissue/Bodily material Purpose Removal Method 

Blood For the assessment of 
lactate 

via finger/ear lancet skin 
puncture 

 
I understand that if the material is required for use in any other way than that explained 

to me, then my consent to this will be specifically sought. I understand that I will not 

receive specific feedback from any assessment conducted on my samples, but should 

any kind of abnormality be discovered then the investigator will contact me.  

 
 
Method of disposal:    

Clinical Waste               

Other                            
 

 

If other please specify........................................................... 
 

                                                              
 
                                                        
Signature of participant.......................................................    Date.....……………….. 
 
 
 
Signature of researcher.......................................................    Date.....……………….. 
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Appendix B: Example health questionnaire document 

 

                      

 Date: .............................................             Subject ID: .................................... 

Health Questionnaire 

 STRICTLY CONFIDENTIAL 

Please answer these questions truthfully and completely. The purpose of this 

questionnaire is to ensure that you are fit and healthy to follow the proposed 

research programme. 

Please 
tick 

Yes No 

 
You are not required to provide specifics of any condition that precludes you from 
taking part in the study. However, if you are not sure if any such condition will affect 
your ability to participate, please feel free to discuss this with the research team, 
although you are not obliged to do so. 
 

Participant signature ____________________________ Date ________________ 

Authorised (signed by HPL Scientist) _______________ Date ________________ 

How would you describe your present level of activity? (please circle) 

Less than 1x per month Once a month 

Once a week Two/three times a week                    

Four/five times a week More than five times a week 
 

Do you feel faint or have spells of severe dizziness when undertaking 

exercise or otherwise? 

  

Have you had cause to suspend physical activity in the last two weeks for any 
reason? 

  

Are you suffering from any form of illness, injury, bone or joint problem, or 
have you done so in the last 4 weeks? 

   

Are you currently on any prescribed medication and/or have you taken any 
medication today? 

   

Do you have any allergies?    

Are you currently, or have you previously been a smoker?   

If you currently suffer from or have previously suffered from any of the 
following conditions, you will be unable to take part in the study. Please 
inform the researcher (without specifics) if as a result you will now be unable 
to take part in the study. 

 heart complaint/condition 

 asthma 

 diabetes (Type 1 or 2) 

 high blood pressure 

 blood borne disease or infection 

   

Is there any reason why you should not embark on the proposed research 
programme? 

   



 

211 
 

Appendix C: Example training history questionnaire 

 

 

 

 

 

Date: .............................................                 Subject ID: .................................... 

 

Exercise History 

STRICTLY CONFIDENTIAL 

 

1. How often do you take part in high-intensity intermittent sport/exercise 

activity (e.g. training sessions, matches)? 

Less than 1x per month                                Once a month 

Once a week                                                 Two/three times a week 

Four/five times a week                                  More than five times a week 

 

2. For how long have you taken part in the above exercise regimen? 

Less than 1 month                                        1-3 months 

3-12 months                                                  12-24 months 

24 or more months 

 

3. How would you consider your current level of fitness with regards to your 

own sport? 

Untrained                      Moderately trained                     Highly trained 

 

4. How long have you been competitive in your sport (years)? 

 

……………………………………………………………………………………. 

 

5. How many times, on average, do you train in your sport per week? 

 

……………………………………………………………………………………. 
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6. What is the duration, on average, of each training session (in minutes)? 

 

……………………………………………………………………………………. 

 

7. What is your estimated 16.1 km TT time (in minutes)? Experimental studies 

1 and 3 only  

 

…………………………………………………………………………………… 

 

8. What level of rugby do you currently play? Experimental study 2 only  

 

……………………………………………………………………………………… 

 

9. Is there any reason why you feel you are not sufficiently trained to 

complete the protocol outlined in the Participant Information document? 

 

 

 

 

 

 

Participant signature : _____________________________ Date : _____________ 

 

 

Sports scientist signature : _________________________ Date : ______________ 
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Appendix D: Bond-Lader mood scale (Bond and Lader, 1974) 

 

“HOW DO YOU FEEL RIGHT NOW?” 

Alert  Drowsy 

Calm  Excited 

Strong  Feeble 

Muzzy Headed  Clear Headed 

Well-Coordinated  Clumsy  

Lethargic  Energetic  

Contended  Discontented  

Troubled  Tranquil 

Mentally Slow  Quick Witted 

Tense  Relaxed 

Attentive  Dreamy 

Incompetent  Proficient 

Happy   Sad 

Antagonistic  Friendly 

Interested  Board 

Withdrawn  Sociable 

(Not to scale)  
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Appendix E: Mental and physical energy and fatigue scale (O`Connor 2006) 

Directions.  This part of the questionnaire asks about your current feelings of energy 

and fatigue. We are interested in how you feel right now, even if it is different than 

how you usually feel. Therefore, it is important that you focus on how you feel right 

now at this moment in responding to each item. There are no right or wrong answers.  

Please be as honest and accurate as possible in your responses. Make a vertical line 

through each horizontal line below to indicate the intensity of your current feelings. If 

you have a complete absence of the feeling described then place a vertical mark at 

the left edge of the horizontal line. If your feelings are the strongest intensity that you 

have ever experienced then place a vertical mark at the right edge of the horizontal 

line. If your feelings are between these two extremes, then use the distance from the 

left edge to represent the intensity of your feelings. 
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Appendix F: Example of online training log  

 

Example of training load and heart rate data monitoring across an IT period, unseen 

by participants in a hidden excel tab.  


