Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor

Li, Hao, Li, Zhijie, Sun, Mengxuan, Wu, Zhonglin, Shen, Wenzhong and Fu, Yong Qing (2019) Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochimica Acta, 319. pp. 716-726. ISSN 0013-4686

[img] Text
Li et al - Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor AAM.pdf - Accepted Version
Restricted to Repository staff only until 10 July 2020.
Available under License Creative Commons Attribution Non-commercial No Derivatives 4.0.

Download (1MB) | Request a copy
Official URL: https://doi.org/10.1016/j.electacta.2019.07.033

Abstract

Zinc cobalt sulfide (ZCS) is a promising and high performance electrode material for pseudocapacitors due to its good electrical conductivity, abundant active sites and rich valence states. In this work, zinc cobalt oxide (ZCO) nanoparticles are firstly synthesized via a hydrothermal method assisted by hexadecyltrimethyl ammonium bromide (CTAB), and then transformed into zinc cobalt sulfide nanoparticles (ZCS NPs) using a facile sulfuration process. The average diameter of ZCS NPs is estimated to be about 15 nm, which is beneficial for Faradaic redox reactions in energy storage process due to their numerous active surfaces. The ZCS NPs are then coated onto a nickel foam to form the working electrode of supercapacitors. Because the ZCS electrode has lower series and charge transfer resistance, and also higher ion diffusion rate than that of the ZCO electrode, it achieves a large specific capacitance of 1269.1 F g−1 at 0.5 A g−1 in 2 M KOH electrolyte, which is four times more than that of the ZCO electrode (e.g., 295.8 F g−1 at 0.5 A g−1). In addition, an asymmetric supercapacitor using the ZCS NPs as the positive electrode and activated carbon as the negative electrode is assembled, which delivers a high energy density of 45.4 Wh kg−1 at a power density of 805.0 W kg−1, with an excellent cycling stability (91.6% retention of the initial capacitance over 5000 cycles).

Item Type: Article
Uncontrolled Keywords: Zinc cobalt sulfide, Hydrothermal method, Nanoparticles, Electrochemical performance, Supercapacitor
Subjects: H600 Electronic and Electrical Engineering
J500 Materials Technology not otherwise specified
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Paul Burns
Date Deposited: 09 Jul 2019 09:29
Last Modified: 11 Oct 2019 09:54
URI: http://nrl.northumbria.ac.uk/id/eprint/39918

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics


Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence