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Abstract 

To develop sustainable photovoltaic materials in a competitive power-generation market, 

several parameters such as cost, resource availability, environmental constrains in both 

material selection, and processing should be taken into account. In this context, 

Cu2ZnSnS4 (CZTS) compound can be a promising candidate for Photovoltaic (PV) 

applications since apart from its material properties, which make it a suitable choice for 

PV applications; all its constituent elements are abundant in the crust. This leaves us to 

focus on synthesising such a compound in order to improve the quality and consequently 

enhance the performance of devices fabricated from CZTS thin films. 

The purpose of the work proposed for this PhD project is to develop a low cost and energy 

efficient non-vacuum deposition processing and to gain an in-depth understanding of the 

key parameters required to synthesise the CZTS thin film absorber layers for PV solar 

cells. The research includes the processing technique to (i) prepare a precursor solution 

with the use of metal oxide/sulphide compounds, (ii) establish a scalable deposition 

technique, and (iii) study the sulphurisation process by varying the conversion condition. 

To achieve this, a preliminary study has been done on the established technology of 

fabricating the Cu2ZnSnSe4 (CZTSe) thin films via vacuum deposition technique in order 

to provide a key insight into critical process parameters in developing Kesterite formation 

and the CZTS thin films. Finally, the life cycle assessment of fabricating CZTS thin films 

using vacuum and non-vacuum deposition methods has been studied. The four main 

damage categories of climate change, human health, eco-toxicity, and resources have 

been estimated using SimaPro Software with regard to the consideration of CuInxGa(1-

x)Se2 (CIGS) (as a reference) processed via vacuum deposition technique.

The present study suggests an optimising route to prepare CZTS compound from metal 

oxide/sulphide compounds using a non-vacuum deposition technique. The study offers 

promising results using two techniques of spraying and slot-die for producing the 

deposition at lab-scale, which has a potential for large-scale processing. The results 

illustrated the impacts of conversion conditions on the micro and crystal structures of the 

CZTS thin films. In terms of environmental impacts, both vacuum and non-vacuum 

deposition techniques exhibited a significant potential benefit over CIGS thin films. 

However, the environmental impacts were found to depend critically on the compounds 

selected for the precursor and the processing. 
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“The day I become aware of my ignorance is 

 the day I can see myself as knowledgeable” 

Avicenna 
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Introduction 
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 Introduction 

1.1 Solar energy and the use of photovoltaic devices 

With increasing world population and over consumption, there is a growing concern on 

how to meet the energy demand. Moreover, the use of fossil fuels threatens the global 

climate due to the creation of greenhouse gases. One of best possible solutions is to reduce 

the world’s dependence on non-renewable resources as well as introduce new and clean 

energies. In this context, the use of solar energy can be an elegant technology. This 

involves the conversion of sunlight into electricity using an electronic device named a 

solar cell. The process of converting solar energy to electricity occurs due to the 

photovoltaic effect, and the specific materials (semiconductors) which facilitate such a 

phenomenon are called photovoltaic (PV) materials. 

It is estimated that the coverage of 0.16% of the earth’s surface with 10% efficient solar 

cells, would provide more energy than the estimated current global demand [1]. If the PV 

market would intend to promote a significant contribution to the global energy demand, 

the development of high performance solar devices is required. This should be provided 

alongside the fabrication and development of solar devices with the use of low cost and 

environmental friendly material and processing [2]. In this context, new materials and 

techniques are developed daily in laboratories with the aim of being reasonable for large-

scale production. 

1.2  Towards sustainable materials: solar cells thin film technology 

Silicon-based devices are highly known in today’s industry, showing a high 

efficiency of 20-25%. However, due to their low absorption coefficient and having an 

indirect band gap, a relatively large thickness of material is required to fabricate a silicon 

based solar device [3, 4]. This encouraged the idea of substituting thin film solar cells 

instead of the thicker solar devices (silicon based solar devices), in order to reduce the 

material usage and manufacturing capital costs. Thin-film PV cells includes a 

semiconductor layer with a direct band gap and few micrometres (μm) of thickness, which 

is about 100 times thinner than the current silicon solar cells. As examples of two 

successful thin film solar devices, CuInxGa(1-x)Se2 (CIGS) and CdTe have shown the 

efficiency of 22.6% and 21%, respectively at laboratory scale [5, 6]. The Miasolé 
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Company has recently reported the efficiency of 16% for commercialised CIGS thin films 

with an area of approximately 2m2 [7]. However, in spite of the high efficiency of CIGS 

and CdTe, due to the toxicity of cadmium and resource restrictions of indium, gallium, 

and tellurium, the production of solar devices based on CdTe or CIGS absorber layers at 

high level of gigawatt deployment of PVs, could be constrained. This limitation can affect 

the cost and production of solar devices in large-scale production. 

According to the reports stated by Fraunhofer-Institute for Solar Energy Systems, 

the total global PV production in 2016 was estimated at 75 GW with 4.9 GW (~7% of 

total PV production) attributed to the thin film technologies of CdTe, CIGS, CIS, and a-

Si [8]. With a relatively conservative estimation assumed by IEA 2014 on the cumulative 

PV installed capacity (4670 GW by 2050), and with regards to the ~7% contribution of 

thin films in PV market, as it was in 2016, it is expected that at least 327 GW of the PV 

market will be provided by thin film technology by 2050 [9]. Among the thin film PV 

cells, the Cu2ZnSnS4 compound (CZTS) could be regarded as a promising substitution 

since it consists of elements, which are present at relatively high concentrations in the 

crust and can be produced at a quantity of hundreds of thousands to millions of tonnes, 

annually. Moreover, CZTS has similar properties to that of the CIGS compound. CZTS 

was first synthesised in 1966 and the first CZTS solar cell with the efficiency of 0.66% 

was fabricated in 1988. Afterwards, the efficiency reached 2.3% in 1997 [10]. 

Consequently, the idea of using this compound as an absorber layer has been regarded as 

an attractive and promising research area [11-13]. The studies on fabricating CZTS 

compound have been developed alongside the Cu2ZnSnSe4 (CZTSe) and the 

Cu2ZnSn(S,Se)4 (CZTSSe) compounds. Although the selenium containing compounds 

have shown a higher efficiency compared to the pure sulphide (CZTS), the study on 

developing the CZTS thin film absorber layer is of great significance due to the absence 

of the toxic element of selenium [14]. Compared to sulphur, selenium has less abundancy 

in the earth’s crust. Nevertheless, selenium’s relative abundance in copper extraction, as 

being a by-product, and its potential to be extracted from coal, especially from high 

sulphur coal, might make Se-containing compounds reasonably attractive for large-scale 

thin film deployment [15]. The p-type chalcogenide semiconductor CZTS(e) has a high 

absorption coefficient (over ~104cm-1), and a direct band gap with the values of ~1.0 eV 

for pure selenide (CZTSe) and ~1.5 eV for the pure sulphide (CZTS). Strategies to 

improve the performance of devices have resulted in increasing the efficiency from 3.2% 
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in 2009 for CZTSe [16], to 12.6% in 2015 for a CZTSSe based solar device [17]. 

Although the production of Cu2ZnSn(S,Se)4 (CZTS(e)) thin films has not been 

commercialised yet, it is predicted that this material has a potential to meet a significant 

proportion of electricity generation without adverse impact on mining and refining 

capacity [9, 18, 19]. These factors have motivated researchers to develop CZTS(e) using 

processes compatible with large-scale production [20, 21].  

In the current research, the metal oxide powders has been used in order to fabricate the 

CZTS thin films, the reason being the more stable material during the processing and 

more environmentally friendly compared to the metal sulphide powders. Moreover, it is 

assumed that the non-vacuum deposition technique compared to the vacuum deposition 

techniques has the advantage of higher throughput less expensive and consequently it 

could be more appropriate for large-scale fabrication.    

1.3 The aims of the current research project 

The main objectives of this study can be summarised as follows: 

 Synthesising the CZTS precursor solution with a non-vacuum processing 

technique of ball milling. The precursor solution is made of the metal 

oxide/sulphide compounds using a carrier solution of isopropyl alcohol (IPA). To 

the best of our knowledge, this is the first time that such materials have been used 

to fabricate the CZTS compound. 

 Fabricating the CZTS thin films via non-vacuum deposition technique of 

spraying, and evaluating the influence of ‘precursor composition and conversion 

parameters’ on ‘material and optical characteristics’ of CZTS thin films. 

 Evaluating the environmental impacts of manufacturing CZTS thin films via 

vacuum and non-vacuum deposition techniques on four main damage categories 

of climate change, human health, eco-toxicity, and resources. This part of the 

research has been carried out with the use of SimaPro software.  

The above studies have been conducted with preliminary investigations on: 

 Synthesising the CZTSe thin films via a vacuum deposition technique (magnetron 

sputtering), and subsequently evaluating the synthesising processes on the 

composition and microstructure of fabricated CZTSe thin films. 

 Establishing a homogenous precursor solution with optimisation of the relevant 

parameters of Ball Milling and synthesising process. 
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1.4 The structure of the thesis 

The current thesis contains 7 chapters. As stated in the present chapter, chapter 1 contains 

an introduction of the thesis. Chapters 2 contains an overview on the theory of solar cell 

operation together with relevant previous studies, respectively. Chapter 3 presents the 

methodology used for the thesis, the experimental procedures, and an introduction of the 

characterisation techniques used for evaluating the acquired data. Chapters 4 and 5 

include the studies and the experimental results, which have been achieved through the 

PhD thesis. Chapter 6 presents an evaluation of sustainability for fabricating the CZTS 

absorber layer via two different methods of vacuum and non-vacuum deposition 

techniques by simulation using SimaPro Software. Chapter 7 provides a summary of the 

study presented in this PhD thesis. This chapter also offers several suggestions for further 

investigations.  
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 Theory and the literature review 

The first part of this chapter presents the principles of solar cells including several 

concepts such as the introduction of solar spectrum and solar irradiance as an input of a 

solar device, the importance of light absorption, the fundamental concepts of physics of 

p-n junctions and solar cells, and the performance of solar cells. Moreover, important 

parameters such as short circuit current, open circuit voltage, fill factor, and solar energy 

conversion efficiency will be explained as well as imperative concerns that contribute to 

losses in solar devices.  

This second part this chapter presents an overview of Cu-chalcogenide thin film solar 

cells and the development in the technology from Chalcopyrite to Kesterite structures. 

Special emphasis is put on the challenges and the development of synthesising CZTS(e) 

(Kesterite crystal structure), as one of the aims of this study is to develop the CZTS thin 

films. Moreover, a summary of the achievements so far and progress in synthesising 

CZTS(e) thin film solar cells using different fabrication techniques will be presented. 

Finally, the achievements that been reported in previous literature on LCA and PV 

sustainability evaluation will be presented. 

 The principle of solar cells 

 Solar Spectrum 

 

Sunlight is a portion of electromagnetic radiation. The Sun radiates sunlight over a range 

of wavelengths known as the solar spectrum (250-2500nm). According to the 

electromagnetic spectrum, the solar spectrum is divided into three bands of 1. Ultra-violet 

light (UV) (290 nm-380 nm), 2. Visible light (380 nm-780 nm), and 3. Infrared light (IR) 

(780-2500 nm). The visible and the IR light account for a considerably higher portion of 

solar spectrum than the UV light (see Figure 2-1) [22]. 

The spectral irradiance from the sun is very similar to black body radiation at ~6000K. 

However, when sunlight reaches the earth, the spectral distribution of solar radiation is 

attenuated. A significant portion of the visible irradiance is scattered and even reflected 

back to space by clouds and aerosols. Solar irradiance could also be affected by factors 

such as the sun’s location in the sky, the daytime, time of year, and the geographical 
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location. For more information on this topic the reader is referred to the related text books 

[3, 4].  

In this context, a Standard Test Condition (STC) for both industry and test laboratories is 

recommended to be used, which is an irradiance of 1000W/m2, with the Air mass (AM) 

of 1.5, and a cell temperature of 25ºC. The AMx is defined as a factor indicating the 

global spectrum on the earth’s surface with x=1/cos, where  is a deviation from normal 

incidence (see Figure 2-2) [3, 23].  

 

 

 

 

Figure 2-1. The spectrum of solar radiation with respect to wavelength [22]. 

 

 

 
Figure 2-2. A schematic illustrating the Air Mass definition. The angle Ɵ is a function of 

the time of day, longitude, and latitude 

 

 Semiconductor materials 

The study of semiconductors has been conducted for over 135 years when it was claimed 

that some materials may have a behaviour between metals and insulators, depending on 
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the occupation of electrons at energy levels. For semiconductor materials, all the electrons 

are present at the energy states in the valance band and at absolute zero temperature there 

is no electron at the energy states in the conduction band. The difference between the 

energy at the maximum valance band (EV) and the minimum conduction band (EC) is 

called the band gap energy (Eg) which is an important characteristic of all semiconductors. 

In this case, at higher temperature and depending on how narrow the band gap is, electrons 

present in the valence band can move to the conduction band. While, there is no band gap 

for metals and electrons can freely move at conduction level and at any temperature. 

However, the band gap energy of insulators is too large for electrons to shift from valence 

band to conduction band energy levels. 

Semiconductors are divided into two main categories of intrinsic and extrinsic 

semiconductors. The former include those semiconductors in which free electrons in the 

conduction band and holes in the valence band can be excited and freely move across the 

band gap with only thermal energy. A doping process can form the extrinsic 

semiconductors. Depending on the characteristic of the dopant, the n-type and p-type 

semiconductors will be created. N-type semiconductors are those accepting so-called 

donor impurities, giving them free electrons in the lattice which do not belong to any 

covalent bonds and can easily move to the conduction band. P-type semiconductors form 

when the guest atoms (impurities) have not enough electrons to satisfy the host structure. 

The space left behind by the electron allows a covalent bond to move from one electron 

to another, thus appearing to be a positive charge moving through the crystal lattice. This 

empty space is called a "hole" which has a positive charge and such impurities are named 

acceptors [3, 4]. 

 The Introduction of p-n Junction and Diode  

If the p-type and n-type semiconductors are interconnected to form a p-n junction, then a 

diffusion of electrons occurs from the region of high electron concentration into the 

region of low electron concentration. This will eventually lead to the recombination of 

electrons and holes across the p-n junction, creating a so-called depletion region or Space 

Charge Region (SCR) (see Figure 2-3). The presence of donor and acceptor atoms with 

positive and negative charges within the SCR lead to the formation of an electric field 

known as built-in electric field. This electric field forces the charge carriers to move in 

the opposite direction of the concentration gradient. The diffusion of carriers due to the 
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concentration gradient continues to flow until the internal electric field created across the 

SCR gets large enough to prevent further flow. Such an electrical component is called a 

diode [3, 4].  

 

 

Figure 2-3. A schematic diagram of a p-n junction and the depletion region or SCR. The 

figure is adapted from [24] 

 

 

Under equilibrium conditions when no external voltage, magnetic field, illumination, or 

other perturbing force is applied, the Fermi level is constant across the junction. Fermi 

level is the chemical potential of semiconductors which describes the average energy 

necessary to add or remove a small quantity of electrons to the system. This level as 

shown in Figure 2-4a, is located close to the conduction band and valence band for n-type 

and p-type semiconductors, respectively. When the n-type and p-type semiconductors are 

connected to each other, the band edges bend to equalise the Fermi level (see Figure 2-4b) 

[3, 4] 
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Figure 2-4. The location of Fermi level (a) before and (b) after p-n junction under 

equilibrium condition [25] 

 

However, if a voltage is applied to a diode, there is no equilibrium anymore and this can 

affect the width of the SCR. The external electric field can be in forward or reverse bias 

modes. In forward bias mode, the internal electric field and the width of SCR is decreased. 

Thus, current can flow through the external electrodes. While in reverse bias mode, the 

width of the SCR is increased and that prevents the flow of current through the electrode, 

as shown in Figure 2-5. 

(a)

SCR SCR

(b)
 

Figure 2-5. A schematic of diode a) Reverse bias, b) Forward bias [24] 

 

 Light Absorption  

For photovoltaic devices, reflection and transmission are typically considered as loss 

mechanisms, since photons that are not absorbed do not generate power. Photons falling 

onto a semiconductor material can be divided into three groups based on their energy 

quantity compared to that of the semiconductor band gap [3], E and Eg denote to energy 

of photons and band gap energy, respectively : 

 If E < Eg, photons interact weakly with the semiconductor and pass through it. 

 If E = Eg, photons will be absorbed and the generation of electron-hole pairs will 

occur. 

 If E > Eg, photons will be strongly absorbed. However, for photovoltaic applications, 

the photon energy larger than the energy value of the band gap will be wasted as 

thermalisation losses. 

The light intensity that passes through the material can be calculated using the Beer–

Lambert law (equation (2-1)). I is the light intensity, Io is the initial light intensity, α is an 
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intrinsic material parameter known as the absorption coefficient, and L is the total 

thickness (it should be noted that the effect of reflection is ignored in the equation (2-1)). 

I =Io e
 –αL                                                                                                                                                                                           (2-1) 

The absorption coefficient (α) is an indicative of the length that incident light with a 

certain wavelength penetrates into a material before being absorbed. As the name 

indicates, the absorption coefficient could determine the minimum thickness which is 

required to design a material in order to absorb the light effectively [3]. 

 Solar cell operation 

A solar cell, in principle, includes a p-n junction or semiconductor diode which can collect 

and absorb the electromagnetic energy coming from the sun and use that to generate 

electric power. This section presents a summary of the characteristics of ideal and non-

ideal solar cells. 

 Ideal solar cell: Diode in dark 

In a dark situation, the diode equation for an ideal p-n junction is calculated by the 

equation (2-2) known as Shockley equation. The term J0 is the saturation current density 

of the p-n junction (A/cm2) which is also called dark current density, V refers to the 

voltage at the junction, K is the Boltzmann constant, q is the electron charge, and T is the 

absolute temperature. It should be noted that the term I is the current which depends on 

the area of diode or solar cell. However, the current density (J) is independent of the solar 

cell area and is usually used to describe the current of solar cells [3]. For an ideal diode 

in dark, the J-V curve illustrates that J = JD (see Figure 2-6(a)). 

JD = J0  (e
qV

KT − 1)                                                                                                             (2-2) 

 Ideal solar cell: Diode under illumination 

Under illumination, an incoming light will produce electron-hole pairs and create a 

forward bias condition for a diode. Thus, as shown in Figure 2-6(b), the total current 

density follows the equation (2-3). Thus, under illumination, the current density-voltage 

curve of a solar cell shifts downwards, (see Figure 2-7). 

J =  JD − JL                                                                                                            (2-3) 

 

The total current density for a diode under illumination obeys the equation 2-4, where JL 

is the photo-generation current density. This term indicates the current created from those 

electron-hole pairs generated per unit of area due to the light excitation, and collected 
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before being recombined. In fact, in order to create the current, the free minority electron 

carriers in the p-type region and free minority hole carriers in the n-type region need to 

diffuse towards to junction, pass through the junction, diffuse to the other side, and finally 

pass through the external circuit. During the above stages, the minority charge carriers 

need to be safe and not be removed or recombined. Equation 2-5 shows that JL depends 

on Gest which is defined as the photo generation rate of the carriers. The terms of Ln and 

Lp (equation 2-6) representing the diffusion lengths of minority carriers; w denotes the 

depletion layer width, µ specifies the mobility of generated charge carriers, and τ indicates 

the mean life time. More details in this area are presented in several text books [3, 4]. 

J =  J0 (e
qV

KT − 1) − JL                                                                                                          (2-4) 

JL = qGest (Ln + Lp +w)                                                                                          (2-5) 

Ln = √µnτn
KT

q
                                                                                                           (2-6)    

                     

 
Figure 2-6. The equivalent circuit of (a) a diode in dark (b) a diode under illumination 

 

 
Figure 2-7. The J-V curve characteristics of a p-n junction in the dark and under 

illumination 
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 Solar Cell Parameters 

There are five main parameters that are usually used to characterise the performance of 

solar cells including maximum power, short circuit current density, open circuit voltage, 

fill factor, and conversion efficiency. This section presents the definition of the mentioned 

parameters. 

 The short-circuit current density: Jsc  

The short circuit current density refers to the current per unit area that can be achieved 

under illumination when the device is short-circuited and no bias voltage is applied.  

JSC = -JL                                                                                                                                                                            (2-7) 

 

 The open circuit voltage 

The open circuit voltage is the voltage when the circuit is open and thus the total current 

density is zero. 

Voc = 
kT

q
ln(

JL

J0
+ 1)                                                                                                               (2-8) 

 

 

 Maximum power point and Fill Factor 

A circuit needs both current and voltage. Thus, a point known as maximum power point 

(Pmax) on the curve (see Figure 2-8) is studied which shows the highest power that a solar 

cell can generate. The associated voltage and current density are Vm and Jm, respectively. 

The ratio between the theoretical power (Jsc × Voc) and the maximum possible power (Vm 

×Jm) is defined as Fill Factor (FF) [3]. Graphically, the fill factor is the area of a rectangle 

within the J-V curve, which is determined by Pmax (see Figure 2-8). 

FF =  
Jm ×Vm

JSc×VOC
                                                                                                              (2-9) 
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Figure 2-8. A schematic of J-V curve under illumination is shown. The figure is adapted 

from [26]. In case of an ideal solar cell, the J-V curve is a rectangular (green area) with 

the fill factor equal to one. 

 

 

 Conversion Efficiency 

The efficiency of a solar cell (ƞ) is determined as the ratio between the maximum power 

generated (Pmax) and the incident power of radiation (Pin).  

η =  
Pmax

Pin
= 

FF× JSC× VOC

Pin
                                                                                                (2-10) 

 

 Non-ideal Solar Cells: losses and efficiency limits 

A real solar cell experiences several losses, which limit its performance. Considering all 

the possible losses that might occur for a real solar cell, the conversion efficiency is 

defined through the Equation 2-11. The influence of each term is briefly presented in the 

following equation, for more details the reader is referred to the text books [3, 4]. 

 
1. Spectral mismatch: The first term of Equation 2-11 is indicative of the 

efficiency loss due to the non-absorption of long wavelength radiation. This 

can simply describe as spectral mismatch of the energy distribution of photons 

in the solar spectrum and the band gap of a semiconductor material (absorber 

layer). ∅𝑝ℎ denotes to the spectral photon flux of the incident light, 𝐸𝐺  is the 

energy of band gap, and 𝜆𝐺 denotes the wavelengths of photons corresponding 

to the band gap energy of the absorber layer of a solar device. 
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2. Reflection losses: Since the solar cell is not completely black, always a part 

of the incident energy that can be converted into a usable energy by the solar 

cell is lost due to the reflection. R* refers to the reflectivity in the wavelength 

range of interest (see part 2 of equation 2-11). 

3. Incomplete absorption due to finite thickness: When light penetrates into a 

material, it will be partially absorbed by the absorber layer, depending on the 

material thickness and its absorption coefficient. Besides, the absorption in 

other layers of a solar device may also take place which is regarded as parasitic 

absorption. Moreover, due to the limited thickness, not all the incoming light 

is absorbed across the absorber layer. The incomplete absorption loss is 

described by the internal optical quantum efficiency IQEop that is defined as 

the probability of a photon being absorbed in the absorber material (see part 3 

of equation 2-11). 

4. Recombination due to electronic and optical properties of materials: it should 

be noted that not all the carriers generated in a solar cell are collected at the 

front or rear contacts. The carriers can recombine in the bulk, at the interfaces, 

and at the surfaces of the junctions. Impurity atoms, lattice defects, and 

spurious phases can act as recombination traps. Reduction in the concentration 

of such impurities and defects can enhance the diffusion length of minority 

carriers and this can decrease the recombination losses in a solar cell [1, 27]. 

Thus, the chemical properties and the micro and crystal structure of absorber 

layers can affect the efficiency of solar cells. This is mainly dependent on the 

material utilised and the synthesising procedure employed. 

The term External Quantum Efficiency (EQE) is regarded as one of the 

common characteristics often used to evaluate the performance of a solar 

device. This indicates the ratio of those charge carriers successfully collected 

and the number of photons incident on the solar device creating electron hole 

pairs in the absorber. The External Quantum Efficiency (EQE) is presented 

versus wavelength (nm) (see Figure 2-9) [3]. The EQE can be approximated 

by part 2, 3, and 4 of equation 2-11 [3].  
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Figure 2-9. The EQE spectrum of a high quality crystalline silicon based solar cell [28]  

 

 

5. Shading losses: the design of the front electrodes is of great importance to 

minimise the loss which occurs due to shading phenomenon. Thus, the optimal 

design of front contacts is a trade-off between a coverage factor and the 

shading areas. This influences the efficiency (see part 5 of equation 2-11).  

 

6. Voltage drop due to series and shunt resistance; Electrical losses: In a real 

device, the reduction in efficiency is also defined by dissipation of power 

through parasitic resistance. Two common resistances are the Shunt (RSH) and 

Series resistance (RS). The voltage drop due to the (RS) of a solar cell could 

result from the bulk resistance of the junction, the contact resistance between 

the junction and electrodes, and the resistance of the electrodes themselves. 

The voltage drop due to the ’RSH’ can result due to the leakage current through 

the local defects in the junction (see Figure 2-10). 

J = 𝐽0 (e
q(V−AJ𝑅𝑆)

KT − 1) + (
V−AJ Rs

RsH
) − 𝐽𝐿                                                       (2-12) 
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Figure 2-10. Schematic diagrams showing the influence of (a) RS (b) RSH on the 

J-V curve for an ideal solar cell; the figure is adapted from [26]. 

 

In analysing the solar cells’ performance, the equation 2-11 can simply be expressed by 

equation 2-10, since all above parameters (1 to 6) affect the 𝐼𝑠𝑐 and 𝑉𝑜𝑐 of a solar device. 

 Possible materials for use in heterojunction solar cells 

In order to choose an appropriate material as an absorber layer, it is of great significance 

to consider the two initial characteristics: 1) having a large absorption coefficient (α) in 

that the incident light is absorbed in a few micrometres of thickness. Therefore, a thin 

layer of absorber layer can be sufficient for the purpose. 2) having an appropriate band 

gap in the range of 1-1.6 eV in order to achieve the highest possible efficiency, according 

to Shockley-Queisser limit. With only the consideration of these two factors, quite a lot 

of materials and compounds can be selected. However, some parameters such as 

availability, cost, and environmental safety, limit the choice of materials. Moreover, the 

synthesising processes is also a crucial factor in terms of cost and its influence on the 

properties of the finished material. In the next chapter, the Cu-chalcogenide compounds 

and the common synthesising methods that are often used for solar cell fabrication will 

be presented.   
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 Literature Review 

This chapter presents an overview of Cu-chalcogenide thin film solar cells and the 

development in the technology from Chalcopyrite to Kesterite structures. Special 

emphasis is put on the challenges and the development of synthesising CZTS(e) 

(Kesterite crystal structure), as one of the aims of this study is to develop the CZTS thin 

films. Moreover, a summary of the achievements so far and progress in synthesising 

CZTS(e) thin film solar cells using different fabrication techniques will be presented. 

Finally, the achievements that have been reported in previous literature on LCA and PV 

sustainability evaluation will be presented. 

2.2.1 Cu-Chalcogenide based absorber layers 

Cu2S was the first of Cu-chalcogenide materials used as an absorber layer. This was due 

to having a direct band gap of 1.2 eV and a high absorption coefficient. In 1981, Hall et 

al reported an efficiency of 10% using Cu2S based devices with Cd1-xZnxS as an n-

junction [29]. However, one of the problems of using CuxS/CdS (x=1.8-2) solar cells is 

the aging and the degradation of this material when it is exposed to illumination. This was 

attributed to the diffusion of copper into the CdS, forming the Cu2-xS. The loss of copper 

contributes to a reduction in minority carrier diffusion length and absorption coefficient, 

and also it leads to an increase in band gap value [30]. 

Further studies in order to find an alternative materials instead of CuxS led to the creation 

of ternary semiconductor compounds such as CuInSe2 (CIS). In 1976, Kazmerski et al 

reported the record efficiency of 5% fabricating CIS via co evaporation technique [31]. 

Some researchers have used sulphur instead of selenium to prepare CuInS2 which usually 

has the same abbreviation of CIS. These compounds were identified as promising 

candidates due to their high absorption coefficient of 105cm-1 and the band gap value of 

1.0eV for pure selenide and 1.5eV for pure sulphide. However, the former is not regarded 

as an environmentally friendly material compared to the latter because of the replacement 

of sulphur instead of toxic element of selenium [32]. Studies have shown that the partial 

substitution of Ga instead of In in CuInSe2 causes an increase in band gap to larger values. 

The band gap values of CuInSe2 can be changed to a range of 1.1-1.24 eV for Cu(InGa)Se2 

with a Ga/(Ga+In) ratio of 0.25 and 0.35, respectively [33]. It was also reported that a 

higher performance can be achieved in case of tuning the band gap value across the 

absorber layer via grading the gallium content [34]. 
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2.2.2 CIGS device configurations 

Thin film based solar cells can be fabricated with two configurations of substrate and 

superstrate (see Figure 2-11). In the substrate configuration, the substrate (usually glass) 

is an inert component which needs to be mechanically and thermally stable. In superstrate 

configurations, the glass substrate acts as a window which transmits light into the solar 

device. Although both configurations have been successful models, it is reported that the 

superstrate configuration is less favourable due to the diffusion of CdS into the absorber 

layer at high temperature of CIGS synthesising [35, 36]. Moreover, in case of the substrate 

configuration, the diffusion of sodium from the glass substrate into CIGS has resulted in 

a higher performance of CIGS based devices. Although the incorporation of sodium could 

improve the cell performance, in order to avoid the non-uniform Na diffusion from Sode 

Lime Glass (SLG) and the irreproducibility, several groups have conducted studies on the 

use of barrier layers such as Na2Se, NaF, Na2S on top of the Mo layer [37-39]. In the 

following, the common materials and techniques used for the fabrication of other layers 

of CIGS based solar cells will be presented. 

 

Figure 2-11. The schematic cross section of (a) substrate and (b) superstrate 

configuration of CIGS solar cell. The picture is adapted from [40]. 

 

 Back contact 

A Mo layer is often used as a back contact material for CIGS and CIS since it shows low 

resistivity, and a good adhesion between CIGS and SLG. It also has a very high melting 

temperature (~2600ºC) which contributes to a better stability at high temperature 

processing. Moreover, it acts as a reflector so it can reflect the unused light back into the 

absorber layer. However, a non-ohmic back contact may be created due to the formation 

of a thick layer of MoS(e)2 at the interface of CIGS/Mo. The thick layer of Mo(Se)2 will 

limit the device performance due to a high resistivity and weak adhesion [41], while, a 
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thin layer of MoS(e)2 could be beneficial in that the transportation of holes can occur via 

tunnelling across the junction [42].  

 Absorber layer 

The p-type conductivity of CIGS arises because of the copper, indium, and gallium 

vacancies (Vcu, VGa, VIn), and the antisite of CuIn/Ga acting as shallow acceptors. The 

Fermi level rises close to conduction band in case of In-rich or Se-poor conditions, since 

these defects act as shallow donors [43, 44]. Moreover, in Cu-rich conditions, a 

conductive compound of Cu2Se may form at the surface or may be created at the grain 

boundaries, which causes lower shunt resistance. In either cases, it leads to a reduction in 

solar cell performance [36].  

The highest record efficiency has been obtained in Cu-poor condition and with the 

Ga/(Ga+In) and Cu/(Ga+In) ratio of 0.26 and 0.88-0.92, respectively [36]. The Zentrum 

für Sonnenenergie-Wasserstoff-Forschung Baden-Württemberg (ZSW) and the Solibro 

GmbH reported the best efficiency of 22.6% and 17.5% in lab scale with an area of 0.5cm2 

and commercial scale with an area of 0.9 m2, respectively [45-47].  

 

 Buffer layer 

The advantage of using CdS as an n-type buffer layer (Eg ~ 2.4eV) has shown a 

considerable progress in improving the performance of CIGS solar cells [48]. The 

Chemical Bath Deposition (CBD) is often used for the fabrication of CdS buffer layer. 

The CBD is usually prepared using three components of cadmium salt, such as CdSO4 as 

a cadmium source, ammonia (NH3) as a complexing agent, and thiourea (CH4N2S) as a 

sulphur source. The presence of NH3 in CBD enables cleaning of the CIGS surface from 

the oxide compounds or any contamination before CdS nucleation. The CBD technique 

can provide thin layers of coating with a good coverage. The reduction of CdS thickness 

to 40-80 nm makes the n-junction act as a buffer layer rather than an emitter layer [36]. 

Moreover, the difference in lattice parameters of CdS and CIGS (aCIGS=5.76Aº, aCdS 

=5.83Aº) is not significant and that makes a good junction between these two compounds. 

This in turn, contributes to less structural defects at the interface [49]. Under illumination, 

the CdS layer transmits light up to 2.4eV to the absorber layer where electron-hole pairs 

are generated. The built-in electric field across the p-n junction (interface of CIGS/CdS) 

can sweep away and collect the generated electrons within the diffusion length region 

from p-type absorber to the n-type buffer layer. Oppositely, the holes are swept away 
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from n-type and collected by p-type layer. Moreover, the use of a CdS buffer layer can 

also protect the CIGS surface from ion damage during sputtering of the ITO layer, as a 

subsequent layer [36, 49]. Although the CdS buffer layer has shown good compatibility 

with CIGS absorber layer, due to the toxicity of cadmium and the material used in CBD, 

an alternative material has to be substituted in order to fabricate an environmentally 

friendly buffer layer. In this context, several studies have been done and for more details, 

the reader is referred to the related articles [50, 51]. As an example, the achievement by 

Solar Frontier can be referred, which was the  fabrication of CIGS thin films using of 

19.8% efficiency using the Cd-free buff er layer of (Zn,Mg)O/Zn(O,S,OH) and CBD 

method of deposition [5].  

 Transparent Conducting Oxide (TCO) 

A Transparent conducting oxide should have good electrical conductivity to collect and 

transport the charge carriers to the contacts. The TCO should also have a high 

transparency to transmit light to the absorber layer. Thus, it needs to have a high band 

gap value. In addition to optoelectronic properties, this layer needs to have thermal, 

chemical, and mechanical stability. Two common TCOs are ZnO:In (IZO) and In2O3:Sn 

(ITO) with a resistivity of  8×10-4 and 2×10-4 Ωcm and a transparency of >80 and 85% of 

visible light, respectively. Both mentioned TCOs have a band gap with values between 

3-4 eV, and can be fabricated via different techniques. One of the common techniques of 

deposition is sputtering [52, 53].  

2.2.3 Fabrication techniques and challenges of CIGS thin films 

The fabrication of CIGS thin films consists of the deposition of thin layers with a 

subsequent thermal processing at high temperatures in a chalcogenide atmosphere (S 

and/or Se). The heat treatment step has a key role in improving the crystallinity and the 

quality of the absorber layer. However, providing a uniform temperature for a large area 

is one of the difficulties in scale-up processing techniques. 

Various techniques have been used to synthesis the CIGS absorber layers. The most 

common approaches are sputtering, co-evaporation, and non-vacuum deposition. In the 

sputtering technique, the Cu/In/Ga are sputtered onto the substrate. Afterwards, the 

deposited layers are converted in an atmosphere saturated with chalcogen by the use of 

an elemental source (S and/or Se) or flowing H2S(e) gas during the heat treatment 

procedure. The co-evaporation technique has shown successful results in the fabrication 
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of CIGS thin films, especially when the development from two stage to three stage 

processing was reported. In such a technique, a precise control of the chemical 

composition and diffusion of elements across the absorber layer can be achieved. This 

provides the grading of gallium content by tuning the band gap which was led to a high 

efficiency. However, using a vacuum technique is time consuming and expensive in 

scale-up production [33, 54]. Thus, one of the challenges of the CIGS fabrication 

technique in industry is the high capital cost of processing.  

Furthermore, commercialisation of CIGS in large-scale fabrication is one of the main 

concerns due to the toxicity of indium, gallium, and selenium elements. More 

importantly, indium is mainly a by-product of zinc extraction which shows that its 

availability is restricted by zinc production. The annual production for zinc and indium is 

11900000 ton and 655 ton, respectively. Furthermore, gallium is regarded as a scare 

element. Only 5% of its global production is provided by zinc processing and 95% of that 

is processed as a by-product of bauxite ore or during aluminium processing. The scarcity 

of these elements increases the price of CIGS modules in scale-up production [36].   

In addition, selenium is a relatively unreactive element. Thus, in order to avoid the 

creation of shallow donor level due to selenium vacancies (VSe), it is necessary to provide 

an excess mass of selenium during the sintering process. This, at times, causes the 

condensation of selenium on the sides of reactor walls and this will need to be recycled. 

Since selenium is a toxic element, this process might be challenging for the environment 

and induces limitation for the CIGS processing in large-scale fabrication [36, 55]. 

2.2.4 CZTS(e) based absorber layer 

Kesterite semiconductor compounds have been introduced with the idea of substituting 

rare elements of Indium(In) in CIS with Tin(Sn) and Zinc(Zn) and preparing the 

Cu2ZnSnS4 (CZTS) or Cu2ZnSnSe4 (CZTSe) compound. Such a compound has several 

advantages over CIGS. Except selenium, all constitute elements in CZTSSe are non-toxic. 

It is reported that the abundance of Zn and Sn in earth’s crust is 500 times and 14 times 

greater than In, respectively. This makes it an appropriate candidate for the thin film 

photovoltaic solar cell [56]. The similarity of Kesterite and Chalcopyrite in structure and 

electronic properties, turns the CZTS(e) Kesterite structure into a promising substitute 

instead of Chalcopyrite CIGS thin films. Due to the certain similarities between these two 

compounds, similar fabrication processing has been suggested for the synthesising of 
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CZTS(e), as well [57]. Thus, the achievements in improving the CIGS PV cells have not 

only introduced a high efficiency of over 22%, but  have also led to a rapid progression 

in the fabrication of new promising material of CZTS(e) for thin film solar cells. 

Nevertheless, there is still a considerable gap between the highest efficiency achieved by 

CZTS(e) (with an efficacy of 12.6%[58]) and CIGS thin films (with an efficiency of 

22.6%[6]) which is mainly attributed to the existing differences between the two 

structures as will be explained later in this chapter. 

CZTS(e) is a quaternary semiconducting material based on the Kesterite mineral structure 

(AI
2B

IICIVXVI
4), in which A = Cu; B = Zn ; C = Sn; X = S or Se. This compound can be 

also correlated with the Stannite crystal structure. The difference between these two 

structures is the distributions of the cations A+, B2+, and C4+ (see Figure 2-12) [21, 59]. 

Theoretical calculations have shown that the Kesterite CZTS(e) has a lower energy than 

the Stannite structure and should be more stable. However, this difference is not very 

significant. Thus, both structures may coexist in the synthesised thin film but cannot be 

distinguished by X-ray diffraction. In literature, the Stannite structure is mostly reported 

as a partially disordered Kesterite structure. The disordered distribution of atoms may 

cause defects such as vacancies and antisites, which in turn may affect the electronic 

properties of materials. For more details, the reader is referred to related documents [21, 

60].  

 

Figure 2-12  A schematic of a unit cell representing the different arrangements of Cu 

and Zn atoms of the two crystal structures of (a) Kesterite (b) Stannite [61]  

 

According to the Shockley-Queisser limit, for a single junction solar cell, the absorber 

material with an energy band gap between 1eV and 2eV could have the maximum 

theoretical efficiency between 20% to approximately 32% [1]. CZTS and CZTSe thin 
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film absorber layers have the band gap of 1.5 eV and 1.0 eV, respectively. In case of the 

formation of penternary structure of CZTSSe, the energy band gap can be tuned between 

1 to 1.5 eV by controlling the S/(S+Se) ratio [62]. Therefore, a single junction solar cells 

made of these two compounds have the potential to yield the maximum conversion 

efficiency of 30%. Furthermore, due to having an ideal absorption coefficient of more 

than 104cm-1
, a thin layer of 1µm can absorb a most of the incident light, contributing to 

the creation of charge carriers across the thin film absorber layer, as well as reducing the 

material cost and weight.  

2.2.5 Challenges in fabrication of CZTS(e) thin films 

Although CZTS(e) Kesterite thin film could be a promising candidate to be regarded as a 

p-type semiconductor for solar devices, there is still a considerable gap between the 

performance efficiency of CIGS and CZTS, as noted before. CZTS(e) is quite a new 

material with considerable uncertainty with regards to the crystal structure, as well as the 

kinetics and thermodynamics of intermediate reactions during processing. Thus, in order 

to improve the performance efficiency and make this compound a better substitution of 

CIGS thin films, a better understanding of the crystal structure of materials, and their 

processing, is required.  Several studies have been carried out to identify the challenges 

in the fabrication of CZTS(e) thin films with this section presenting the most important 

challenges reported so far.  

2.2.5.1 Formation of secondary and ternary compounds 

The multitude of elements in CZTS(e) or CZTSSe compounds lead to a narrow 

compositional region (see Figure 2-13). This implies a very specific route of processing 

to synthesise the pure CZTS(e) absorber layer [63]. Thereby, the formation of secondary 

compounds that can be detrimental is highly likely to occur. Studies have shown that the 

high performance Kesterite based solar cells have been improved with the elemental 

composition of Cu-poor and Zn-rich [64]. Taking this into account, the presence of ZnS(e) 

in the process of Kesterite formation is highly probable. ZnSe and ZnS have wide band 

gaps of ~2.8 eV and ~3.5 eV, respectively. These value, especially for ZnS, is wide 

enough to be considered as an insulator. Such compounds could prevent the transportation 

of charge carriers, if formed at the surface of absorber layer. This is due to the large spike 

in the conduction band offset (CBO), (approximately 1.32eV) between ZnS(e) and 

CZTS(e), which leads to a reduction in Jsc and is also responsible for creating a high series 
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resistance through the device [65-69]. Other possible secondary compounds that can be 

formed are those in the Cu-S(e) system that appear under Cu-rich or Sn-poor conditions. 

These compounds are detrimental to the solar cells due to their high conductivity and 

small band gap of ~1.1-1.2 eV. They can reduce the open circuit voltage, especially when 

they are formed as large grains [20, 70]. In such a case, they may make a connection 

between the front and the back electrode and can shunt the device. As Saucedo et al and 

Temgoua et al showed in their studies, the presence of SnSe could be also detrimental for 

the solar cell performance due to its low band gap (Eg equal to 1eV) [71, 72]. The 

presence of such compound can act as a trap for minority charge carriers producing shunt 

paths, consequently, increasing the rate of recombination. Although the formation of 

ternary compounds such as Cu2SnSe3 (CTSe) and Cu2SnS3 (CTS) have been considered 

as thin film absorber layers [73], their presence together with CZTS(e) is detrimental. 

This is due to the smaller band gap of Cu2SnS(e)3 compared to that of CZTS(e). 

Depending on the crystal structure formed during the fabrication process, the energy band 

gap value of CTS and CTSe varies between 0.93 - 1.35 eV and 0.74 - 0.9 eV, respectively. 

These ternary compounds can act as a recombination centre or may create shunting effects 

within the cell, eventually decreasing the performance of solar device [70, 74]. 

Accordingly, the formation of secondary and ternary compounds is highly dependent on 

the composition of precursors and the synthesising procedure.  

Moreover, they can be formed at the front surface, in the bulk, or at the back contact of 

the absorber layer. If they form at the surface, etching with an appropriate etchant can be 

used to remove them; otherwise, the synthesising process should be manipulated to 

reduce the formation of such phases. The KMnO4, KCN, (NH4)2S, (Br2-MeOH) are the 

proper etchant for removing the ZnS(e), CuxS, SnS and Cu2SnS(e)3, respectively [11]. 
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Figure 2-13. Pseudo-ternary phase diagram (a) Cu2Se-ZnSe-SnSe2 (b) Cu2S-ZnS-SnS2 

at 670K [75, 76].  

2.2.5.2 Defects in CZTS(e) 

The probable defects for Kesterite can be divided into three groups including (i) vacancies 

such as VCu, VSe, (ii) interstitials such as Cui, Zni, Sei,…, and antisites like CuZn, SnCu, 

CuSn, ZnCu, and (iii) defect clusters due to the atomic substitutions such as [VCu+ZnCu] , 

[ZnSn+2ZnCu] ,… [77, 78]. These defects could be detrimental or beneficial depending on 

their concentration and also considering the position of their energy level within the 

bandgap of CZTS(e). 

Here, a summary of the impact of such defects on device performance is presented which 

is studied by Chen at el [27].  

(1) The formation of Se or S vacancies (VSe or VS) induce an energy level in the 

middle of CZTS(e) band gap, thus they act as active recombination sites. This is 

one the reasons that the sufficient sulphurisation/selenisation has been 

recommended in the synthesising process in order to improve CZTS(e) solar cell 

performance. 

(2) The formation of [CuZn+ZnCu] cluster has a very low formation energy and they 

might have high concentration in the sample. Although such a cluster decreases 

the band gap by ~0.1eV, it does not have a significant influence on the electronic 

structure and optical properties. Thus, these clusters are known as benign defects.  

(3) [CuSn + SnCu] and [ZnSn + SnZn] can decrease the band gap. For instance, [ZnSn + 

SnZn] decreases the band gap by 0.3eV in CZTS and 0.1eV in CZTSe. However, 

they have very high formation energy and the resulting population can be 

negligible. 
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(4) Copper vacancy (VCu) and CuZn antisite both act as acceptors. Such acceptors 

enhance the hole concentration in CZTS(e) that is responsible for the intrinsic p-

type conductivity of the material. The formation energy of VCu in Kesterites is 

higher than CuZn in the stoichiometric condition. In the Cu-poor and Zn-rich 

conditions, VCu becomes dominant. This reflects the situation of the Cu/(Zn + Sn) 

= 0.8 ratio which has been reported as the optimum composition to provide a high 

performance solar device. 

(5) The [2CuZn + SnZn] clusters induce electron-trapping states in the absorber 

materials, and are detrimental to the solar cell performance. The electron-trapping 

states formed due to the formation of [2CuZn + SnZn] in CZTSe are weaker than in 

CZTS. Moreover, the population of isolated deep donor defects such as SnZn and 

VSe in CZTSe is lower than CZTS. For these two reasons, the low S/(S+Se) ratio 

is often suggested in order to achieve a better performance. 

 

Bosson et al and Lafond et al have defined 8 models of CZTS types considering the non-

stoichmetric conditions. From all models, four types of A to D are presented in Table 2-1 

[63, 79]. According to previous studies and considering the influence of intrinsic defects 

on the electronic and optical properties of solar devices, the Cu-poor and Zn-rich region 

(A-type) is the most favourable stoichiometric type, since it contributes to the best device 

performance so far [64]. 

  

Table 2-1. Types of CZTS as defined by Lafond et al [79]. 

CZTS type Defect complex stoichiometry 

S-type [CuZn
− +ZnCu

+] stoichiometry 

A-type [VCu
− + ZnCu

+] Cu-poor, Zn-rich  

B-type [ZnSn
2- +2ZnCu

+] Cu-poor, Zn-rich 

C-type [2CuZn
− + SnZn

2+] Cu-rich, Zn-poor 

D-type [CuZn
− + Cui

+ ] Cu-rich, Zn-poor 

 

2.2.5.3 Interfaces of CZTS(e) thin film 

Although a significant progress has been achieved in the fabrication of Kesterite solar 

cells, the record efficiency of such devices is still much lower than that of CIGS. The 
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major reason for lower performance of Kesterite PV cells is claimed to be the large open 

circuit (Voc) deficit which is partly due to the interface recombination [80]. The interface 

recombination occurs due to several situations: (i) A non-optimal band alignment at 

CdS/CZTS(e) (ii) Secondary compounds at the interface (iii) A non-ohmic back contact 

(the over thick MoS(e)2) [70]. This section describes the effect of these three situations. 

 Band alignment at CdS/CZTS interface 

Band alignment is introduced with two kinds of conduction band offset (CBO): 

cliff-type and spike-type. It is reported that at the interface of CdS with CZTS or 

CZTSe, the cliff-type and the spike type band alignment will appear, respectively. 

The cliff-type configuration will contribute to an increase in recombination of the 

majority carriers via buffer/absorber interface. Whereas, the spike at CdS/CZTSe 

interface may block the transportation of photo generated electrons which leads 

to a current loss. Nevertheless, previous studies showed that when the CBO is less 

than 0.5eV, the photo-generated electrons can cross the spike barrier. It could be 

possible to improve the performance of a solar device by manipulating the CBO 

via variation in composition of absorber layer. In this context, substituting 

selenium instead of sulphur in CZTS PV cells could be beneficial [70, 81]. 

(b)(a)
 

 

Figure 2-14.Schematics of the band diagrams of window/buffer/absorber layers for (a) 

spike-type (b) cliff-type conduction band alignments [82]. 

 

 Secondary compounds at the interface 

As discussed in section 3.3.1, secondary compounds could easily form due to a 

narrow stable region of CZTS. Such compounds can reduce the performance of 

solar device.  

 Mo/CZTS interface - Non-ohmic back contacts 

A Non-ohmic back contact may be created due to the formation of a thick layer 

of MoS(e)2 at the interface of CIGS or CZTS(e) with the Mo back contact [41]. 
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Accordingly, to improve the performance of a solar device, the thickness of 

MoS(e)2 should be well-controlled. Decreasing the sulphurisation/selenisation 

temperature, time, and using low partial pressure of chalchoge would decrease the 

thickness of the MoS(e)2 layer. However, these variations in conversion procedure 

might affect the quality of the Kesterite grain size. Thus, an optimisation during 

the fabrication process is required [70]. 

2.2.6 Parameters affecting the quality of CZTS(e) thin films 

Since most of the current research has been concentrated on investigating the influence 

of fabrication techniques and processes to improve the crystal structure and morphology 

of CZTS(e) thin films, this subsection presents a review of other studies on (i) the 

chemical reactions and the thermodynamic models that have been reported during the 

synthesising of CZTS(e) thin films (ii) the effects of conversion conditions on the quality 

of CZTS(e) thin films.   

2.2.6.1 Phase evolution of CZTS(e) thin films 

The chemical reactions highly depend on the precursor materials and the synthesising 

processes. That is why different models have been suggested based on the use of different 

material composition and synthesising procedure. Schorr et al have proposed that the 

CZTS kesterite structure starts to form just below 300ºC with a mixture of CuS, ZnS and 

SnS. It is also reported that the Kesterite can be created by the reaction between the 

ternary compound of Cu2SnS(e)3 with ZnS [83]. In contrast to CIGS, the formation of 

CZTS needs more control over the synthesising conditions. This is due to the fact that the 

elements and compounds involved in the fabrication of CZTS are easily evaporated and 

this promotes the CZTS decomposition [84]. Redinger et al have demonstrated that the 

formation of CZTS Kesterite can be restricted at high temperatures (above 400ºC) and 

through this process tin is lost due to the volatility of SnS[85]. It is mentioned elsewhere 

that decreasing the conversion time could limit the time available for the decomposition 

reactions and therefore reduce the tin loss [86]. 

Scragg et al have proposed two models to explain the decomposition phenomenon of 

CZTS compound [86]. According to the first model, demonstrated in reaction 3-1, the 

SnS compound is formed directly in the vapour state. Thus, both SnS and sulphur are 

prone to move away from the reaction site and that exacerbates the decomposition rate of 

CZTS. 
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Cu2ZnSnS4 (s)                    Cu2S (s) + ZnS (s) + SnS (g) + 1/2 S2 (g)                       (3-1) 

 

The second model is represented in reaction 3-2 and 3-3. In such a condition, if the sample 

is converted under vacuum, the S2, which is the only product in gas state in reaction 3-2, 

will be removed from the system and the CZTS will decompose.  

Cu2ZnSnS4                      Cu2S (s) + ZnS (s) + SnS (s) + 1/2 S2 (g)                           (3-2) 

SnS (s)                     SnS (g)                                                                                        (3-3) 

Through reaction 3-3 of the second model, SnS molecules could be absorbed to the 

surface and might reconvert to CZTS with the other decomposed binary compounds. 

However, the SnS compound may evaporate into gas state. Thus, if the evaporated SnS 

molecules are not substituted, the decomposition rate of CZTS will increase [86]. In such 

a condition, the rate of decomposition is only affected by the partial pressure of sulphur, 

which is suggested to be sufficient to proceed the reaction towards the formation of the 

CZTS structure [86]. However, the high partial pressure of chalcogen (S/Se) could affect 

the formation of a thick layer of MoS(e)2 which can decrease the performance of a solar 

device [42].  

Zhong et al have introduced another model which is shown in reaction 3-4 to reaction 3-

6. They have stated that for the precursors with Cu-poor and Zn-rich composition, the 

following reactions will occur [87]. 

Cu2ZnSnS(e)4                Cu2+xZnSnS(e)4 + ZnS(e) + SnS(e) (g) + S(e)2 (g)                (3-4) 

SnS(e) (g) + S(e)2 (g)                   SnS(e)2 (s)                                                               (3-5) 

Cu2+xZnSnS(e) 4 + ZnS(e) (s) + SnS(e) 2                  Cu2ZnSnS (e)4                                          (3-6) 

Scragg et al reported similar trend for CZTSe synthesising procedure in that Sn (IV) is 

prone to evolve to Sn (II) in a chalcogen environment at low pressures (1mbar) at the 

temperature of ~550°C. This is claimed due to a much smaller free energy required for 

the formation of SnSe from SnSe2 at low pressures (reaction 3-7), comparing to that of 

the formation of other binaries in CZTSe processing. In addition, the SnSe has the highest 

vapour pressure in the temperature range of interest for Kesterite formation, as shown in 

Table 2-2. Because of Se2 lost from the system, it is expected that the SnSe2 phase 

decomposes more severely [84]. 

2SnSe2 (s)                       2SnSe (g) +Se2 (g)                                                             (3-7)  
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Table 2-2. Equilibrium vapour pressure of the by-products of Se loss from CZTSe [84]. 

Vaporisation Reaction Vapour pressure at 550°C (mbar) 

Cu2Se (s)                  Cu(s) + CuSe (g) 1.2 ×10-13 

ZnSe (s)                  ZnSe (g) 6.4 × 10-15 

ZnSe (s)                  Zn(g) + ½ Se2 (g) 5 × 10-6 

SnSe (s)                  SnSe (g) 3.6 × 10-3 

 

It is also proved that with the same conversion conditions, CZTSe compound is more at 

risk of being decomposed than CISe. This is due to significantly lower ΔGR for the 

reduction of Sn(IV) to Sn(II) and In(III) to In (I) with 45Kjmol-1 and 270Kjmol-1 at 550°C, 

respectively. Additionally, in the same study during the synthesising process of CZTSe, 

the number of moles of vapour evolved from CZTSe including the selenium and tin 

selenide is 106 times higher than that of the vapour products in the CISe [84]. 

2.2.6.2 Ambient gas composition and total pressure during conversion 

As explained in section 2.2.6.1, the quantity of ambient pressure can have a significant 

effect on the quality of the absorber layer. He et al demonstrated that when sulphur 

powder is used as a chalcogen supply together with precursors in a graphite box(GB), the 

pressure inside the GB would change through three stages in order to reach its equilibrium 

state including (i) evaporation of elemental S powders (ii) then the over-pressure S vapour 

released into the tube furnace since the GB is not absolutely sealed. This will continue till 

the internal pressure inside the GB is equal to the external pressure inside the tube furnace 

(iii) the equilibrium situation is achieved with a stable internal partial pressure of sulphur 

that can diffuse and react with the precursor [88]. According to the former study, the 

increase in the ambient pressure contributes to the increase in the average grain size, plus 

the smoother, and more uniform layer [88]. Increasing the ambient gas pressure can, to 

some extent, suppress the evaporated chalcogen source or any compounds that may form 

in vapour state inside the GB rather than allowing them to be emitted into the tube furnace 

[68]. The influence of escaping SnS(g) and S/Se(g) have been explained in section 

2.2.6.1. 

Besides the quantity of the ambient pressure, the gas composition is also important, 

especially when the precursor contains metal oxide compounds. As Hironori Katagiri et 
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al have reported, the metal oxides should be removed from CZTS thin films since they 

do not absorb the light and may decrease the conversion efficiency of the solar device 

[89]. The previous studies done at Northumbria University have shown that Cu2O is easily 

converted to Cu2S or CuS when it is heated under vacuum or inert gas atmosphere such 

as N2 or Ar, as long as the atmosphere is saturated with sulphur. However, the SnO does 

not easily convert to tin or tin sulphide. According to previous literature, removing 

oxygen from SnO2 requires the use of specific pressure of forming gas (H2/N2) and 

heating at high temperatures of 550ºC [90]. 

2.2.6.3 Conversion Time, Temperature, and Heating profile  

It has been demonstrated that varying the conversion time and temperature can 

significantly improve the grain size and crystallinity of CZTS thin films [91]. The grain 

growth would decrease the density of grain boundaries which are usually known as 

defects of a material due to the creation lattice mismatch between the grains. Thus, it is 

expected that they contribute to a reduction in electrical properties of a semiconductor. 

However, the studies have shown that grain boundaries could be beneficial or detrimental 

for a device performance depending on the composition and properties with respect to the 

grains. For instance, in Cu-poor condition, the grain boundaries can behave as hole 

barriers enhancing carrier collection by preventing recombination. On the contrary, in 

Cu-rich condition, grain boundaries act as active recombination sites. Moreover, the 

formation of any conductive compounds such as Cu2S(e) during synthesising process at 

the grain boundary may decrease the shunt resistance and eventually lead to a reduction 

in device performance [92, 93]. Nevertheless, one of the advantages of grain growth is to 

ensure a dense microstructure and decrease the pinholes across the absorber layer. The 

presence of pinholes cause a reduction in shunt resistance and reduce the device 

performance. Two effective strategies in order to avoid decreasing the shunt resistance 

are (i) passivating the grain boundaries with oxides or non-conductive compounds (ii) 

increasing the conversion temperature or time to improve the grain growth. However, it 

should be noted that an optimum conversion time and temperature is required for the 

synthesising process, since these two parameters could contribute to a loss of tin and 

subsequently the decomposition of the CZTS compound [86, 94]. Besides, it is 

demonstrated that at very high synthesising temperature, the effective film thickness 

might be reduced due to an increase in surface roughness contributing to a poor p-n 
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junction [95, 96]. Furthermore, the optimum conversion time and temperature is 

important due to preventing the use of high quantity of energy for manufacturing in large-

scale production [97-101].  

The reviewed literature has shown that the fast cooling contributes to the formation of 

disordered crystal structure in which a number of Cu and Zn atoms relocate to each other’s 

position. However, a slow cooling rate gives more ordered CZTS crystal structure [102]. 

It is revealed that when the cooling rate decreases to a rate of 1K/h, an approximate 70% 

of Cu and Zn atoms are located on the correct crystallographic sites. Nevertheless, even 

this amount of ordering contributes to a variation of 0.1eV in band gap value [103]. It is 

also stated that CZTS is fully grown with disordered crystal structure at the range of 

approximately 450-560ºC, and the ordered crystal structure forms only during the cooling 

when the temperature drops below 260ºC [103].  

2.2.6.4 Chalcogen Source (S and/or Se) 

The chalcogen source can be introduced in different methods such as (i) as a cap layer for 

a CZT substrate (evaporation) (ii) as pellets or powders (iii) H2S(e) during conversion 

(iv) as elemental or compound source during the sputtering (v) elemental or compound 

source during solution synthesising. 

When the chalcogen is in intimate contact with the precursor (using a cap layer), it 

requires a very precise control over the kinetics of reaction which makes the synthesising 

process very complex. It is believed that during the heat treatment, when a mixture of 

solid, vapour, and liquid states are present simultaneously, different routes may take 

place. These include (i) the melting or vaporization of a solid (ii) the solidification of a 

liquid or deposition of a vapour. According to previous literature, for several elements 

including sulphur, selenium, and tellurium, a liquid-liquid-solid triple point has been 

experimentally observed [104]. The investigation of viscosity drop for selenium showed 

a drastic structural reconstruction of Se, when it melts, indicating the liquid-liquid 

transition which occurs in the vicinity of selenium melting point [104]. On the other hand, 

the formation of metastable phase of selenium with the creation of two distinct liquid 

states could lead to even more complex phase changes and the nucleation processes. To 

trigger the change in the phase, some transition in chemical potential must be applied 

which in turn requires a very precise control on temperature, pressure, mass, and volume 

of each component in the system [105, 106]. 
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The use of chalcogen as pellets or powders is safer than the use of H2S (e) gas during the 

conversion procedure. The latter method of introducing the chalcogen has been avoided 

to use due to its toxicity despite the very good results achieved in similar processing [107]. 

As explained in section 2.2.6.1, in order to avoid the decomposition, it is important to 

provide sufficient pressure of chalcogen during the synthesising process. This can be 

performed by introducing enough mass of chalcogen (powders/pellets) in the graphite 

box. The partial pressure can be calculated according to ideal gas law PV=nRT, assuming 

that the conversion procedure has been carried out at near vacuum condition and there is 

no leakage of sulphur in its vapour state from the graphite box [108].  

A study on fabricating CZTS thin films was also conducted by Bjorkman et al. The former 

study has shown a comparison of the two sulphurised films of (i) when the sulphur 

quantity was directly applied as a component in precursor (ii) the sulphurisation of CZT 

thin films. It should be noted that their study was based on synthesising thin film 

precursors via sputtering. Results showed that sulphurisation of sulphide films had fewer 

voids and were denser compared to the sulphurisation of CZT films, but with smaller 

grain size of Kesterite. They have claimed that the large number of nuclei due to the 

presence of elemental sulphur in the precursor prevent the grain growth [109]. 

2.2.6.5 Surface etching 

Since one of the challenges in the current study was to remove SnS binary compounds 

from the surface, the explanation here is just concentrated on the method of etching this 

compound. 

The SnS compounds could appear either at the interfaces (surface and back contact) or in 

the bulk. If SnS compound forms in the CZTS/CdS interface, sub-energy levels may be 

created and the Voc of the device decreases. In such a case, the yellow (NH4)2S etchant 

can remove SnS compounds, as well as passivating the surface by removing the surface 

oxides. If the SnS compound is present in the bulk or at the CZTS/Mo interface, it cannot 

be removed easily by the use of etchant and the only solution is to use an ideal 

synthesising process. Nevertheless, it is reported that the SnS compound formed at the 

CZTS/Mo interface has the potential to improve the solar cell performance. This has been 

discussed due to the creation of spike like CBO at the interface of CZTS and back contact. 

Consequently, the electron cannot pass through the back contact. It is also stated that 

when the SnS is present at the CZTS/Mo interface, the back surface reflection of the near 
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infrared light could be increased, leading to a higher magnitude of light absorption. Such 

a claim shows that the presence of SnS binaries could be useful in facilitating the light 

management of the solar cell if it form at CZTS/Mo interface [72, 110]. For more 

information on the mechanism of dissolving SnS in (NH4)2S solution, the reader is 

referred to the related publication in this area [72]. 

2.2.6.6 Post-conversion heat treatment with extra chalcogen source (sulphur 

and/or selenium)  

A few studies have been published on post-conversion heat treatment of the CZTS thin 

film. According to one of these studies, the post treatment contributed to the ‘in diffusion’ 

and ‘out diffusion’ of elements from the CZTS structure and eventually, the creation of 

secondary compounds, defects, and inhomogeneity [67]. The post-conversion with 

selenium has demonstrated the grain growth and improvement in the crystal structure 

[111, 112]. It is believed that selenium is a better vapour transport agent than sulphur, 

which contributes grain growth forming densely packed grains. The fabrication of 

CZTSSe thin films would be beneficial for the solar cell performance since (i) it is 

expected that large grains may lead to less recombination of photo-generated carriers at 

the grain boundaries (ii) it is assumed that the passivation of grain boundaries with 

selenium results in a lower band gap surface layer, which removes the potential barriers 

for grain to grain carrier transport (iii) the selenium quantity increases the crystallinity of 

Kesterite structure [111, 112].  

2.2.7 Possible fabrication techniques to prepare CZTS(e) absorber layers 

Various techniques have been studied for fabricating CZTS(e) thin film absorber layers. 

These techniques can be classified into two main categories of Vacuum and Non-vacuum 

based deposition approaches.  

2.2.7.1 Vacuum deposition technique 

One typical method of coating is the vacuum processing in which the composition and 

thickness can be well-controlled across the thin film. Thus, a very good coverage and 

uniform thin film can be achieved. However, the complexity in vacuum processing may 

affect the final cost for mass production which could limit its application as a scale-up 

production route. The two major vacuum deposition routes that are used to process CZTS 

absorber layer are co-evaporation and sputtering [113].  
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Co-evaporation technique has been one of the earliest methods to fabricate CZTS thin 

films, conducted in the experiment by Katagiri et al in 2001. This was done by using 

sequential deposition of precursors of ZnS, Sn, and Cu. This technique has led to the 

CZTS solar cell with an efficiency of 2.62% [114]. During this process, the bulk of 

deposition material transforms from solid to vapour state by the use of thermal heating or 

electron bombardment. Then, the evaporated materials are carried to the substrate where 

the thin film is growing. The 9.15% and 11.6% efficiency of CZTSe, using the co-

evaporation technique, has been conducted by Repins et al and IBM, respectively [17, 

115]. The latter research group still holds the highest efficiency record among the 

fabricated CZTSe solar cells to date, using the vacuum deposition technique. 

Sputtering as a deposition technique is performed by the use of elemental target sources 

with a specific pressure and temperature in a high vacuum chamber. In 1988, Ito et al 

utilized the sputtering method to fabricate CZTS thin films for the first time [116]. They 

sputtered the CZTS film from target material by employing the method of atomic beam 

sputtering and obtained CZTS films with an optical band gap of 1.45eV. In 2009, a 3.2% 

efficient CZTSe solar cell was reported at Northumbria University using sputtering 

procedure [16]. In 2008, Katagiri et al, elaborated CZTS thin films via sputtering Cu, 

SnS, and ZnS targets, obtaining the efficiency of 6.7% [89]. In 2011, Ito et al studied the 

method of sputtering a Cu–Sn–Zn metal precursor and obtained the CZTS cells with an 

efficiency of 3.7% [117]. The world record efficiency of CZTS fabrication with the use 

of sputtering technique is held by Tajima et al in 2017 with a 9.4% efficient CZTS solar 

cell using Cu, Sn, and ZnS targets [118]. The use of this technique has still been one of 

the frequently investigated approaches in producing thin film absorber layers. Although 

the vacuum deposition technique can provide reproducible and high quality thin films, 

due to the necessity of vacuum chambers, load-lock, pumps, and heavy power units for 

sputtering or evaporation, this technique consumes a very high amount of energy. 

Consequently, it is regarded as an expensive method which limits its application in large-

scale production.  

2.2.7.2 Non-vacuum deposition techniques 

Electrodeposition and direct liquid coating approaches can be named as the most 

commonly used non-vacuum deposition routes. For electrodeposition, the reader is 

referred to the related literature [119]. The highest efficiency achieved with this technique 
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stands at 8% and 8.2% for CZTS and CZTSe thin films, respectively [120, 121]. The 

direct liquid coating approach refers to those techniques in which the precursor containing 

liquid or solution is deposited on the substrate by different methods such as spin coating, 

spraying, doctor blade, slot-die, etc. The deposition processing is followed by drying and 

heat treatment with the specific synthesising process depending on the material used in 

the precursor solution. 

Compared to vacuum processing techniques, the manufacturing facilities used for the the 

non-vacuum deposition technique are significantly less expensive. Moreover, some non-

vacuum deposition routes have the potential to prepare high throughput, especially in roll-

to-roll configurations. However, the use of reagents (i.e. metal sulphide, metal oxides, 

etc.), the solvent or suspension solution (i.e. respecting the parameters of stability, 

viscosity, boiling point, etc.), the additives (which is optional and might be used in case 

of increasing the stability of solvent), and the deposition processing parameters, can all 

affect the quality of the fabricated thin films. For instance, carbon and oxygen usually 

present in the solvents. These elements, if they remain in the final thin films, can decrease 

the grain growth [122]. Incomplete removal of such components during the conversion 

procedure may cause the deterioration of the device [89]. Therefore, a precise selection 

of additives and solvents is required. In order to fabricate the precursor solution, various 

studies have been carried out using metal oxides, metal chalcogenides, and metal acetates 

[123, 124]. As for the choice of appropriate solution, several parameters need to be 

considered including reactivity, volatility, toxicity, and cost. The precursor film usually 

needs to be dried in air or inert atmospheric condition so that the solvent residues 

evaporate from the surface.  

Moreover, the precursor films should be deposited uniformly and a high degree of 

adhesion. Thus, the choice of deposition route is of great significance. In this context, 

doctor blade, spraying, and slot-die, have the advantage of being scalable techniques with 

less waste of material compared to the spin coating method. More details of these 

techniques will be explained in Chapter 3. 

The first fabricated CZTS solar cells with non-vacuum deposition technique dates back 

to 2009 reported by Kunihiko et al with an efficiency of 1% via sol-gel deposition 

technique and the use of metal acetates [125]. In 2010, Todorov et al fabricated a 9.6% 

CZTSSe solar cell using hydrazine based solution processing with spin coating as a 

method of deposition [126]. In 2012, a 5.14% efficient CZTS was reported by Woo et al 
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using non-toxic precursor solution including Cu2S, Zn, Sn, and S dispersed in ethanol 

[127]. The use of nanoparticle solutions has been investigated and demonstrated 

promising results within the past few years with the highest efficiency standing at 9.0% 

CZTSSe solar cells [128]. The highest performances of solution based Kesterite solar 

cells so far have been reported in 2015 by IBM with a 12.6% efficient CZTSSe solar cells 

[129].  

In recent years, a few studies have been done using metal oxide compounds in order to 

fabricate the CZTS absorber layer with a record efficiency of 1.4% [130]. The idea of 

using metal oxide compounds is obtained from promising results reported where metal 

oxide particles have been successfully used to synthesise a 13.6% efficient CIGS absorber 

layer [131, 132]. The former study reported a relatively higher stability of tin oxides, 

compared to copper oxides and zinc oxides. Chen et al has claimed that the use of SnO2 

has an advantage compared to the use of SnS2. They believe that the probability of SnS 

loss could be less when the oxides are used as initial materials due to the high stability of 

SnO2 compared to SnS2 at temperatures of about 550°C [130]. On the other hand, the 

main issue for the conversion of the vacuum deposited precursors is the loss of tin due to 

the volatility of SnS during the conversion procedure. As mentioned before, this 

accelerates the decomposition rate of CZTS compounds [84, 86]. In another study by 

Chen et al, they have reported the fabrication of CIS and CZTSe thin film absorber layers 

using nano-particles of metal oxides, using doctor blade following by sintering the thin 

film at selenium vapour atmosphere. The research has led to the formation of 3.4% 

efficient PV cells made of CISe absorber layer [133].   

 Ball Milling 

Since the method of ball milling has been one of the most frequently used techniques for 

the current research to fabricate the precursor solution, the most important parameters 

together with the previous studies related to this method of solution production will be 

summarised in this subsection.  

Ball Milling technique can be considered at industrial-scale dimensions, and is a simple 

material processing technique which can be used to reduce particle size, mix materials, 

and synthesise the precursor solution. One of the distinct advantages of ball milling is that 

no expensive vacuum facilities are required [134-136]. Studies have shown that an 

increase of milling time and an increase in the ‘ball to powder ratio’ could lead to a 

reduction in particle size [137]. As reported by Kotake et al, the product size in wet 
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grinding is less than that of dry grinding [138]. A carrier or suspension solution needs to 

be used to suspend and disperse the metal compounds in the solution uniformly. The 

selected suspension solution should be compatible with the precursor powders and not 

create a complex reaction with the other components. It should also have a low boiling 

point to evaporate organic residuals. Moreover, it is preferred to be non-toxic, safe, and 

inexpensive [139]. Deionized water (DI) could be a safe and inexpensive solvent. 

Furthermore, the lack of carbon in DI water could make this option as a preferable 

suspension solution. Isopropyl alcohol with the chemical formula of C3H8O, Methanol 

(CH4O), and Ethanol (C2H6O) are the conventional solutions that have been used for the 

process of milling [140, 141]. Although the boiling point of IPA (82.6ºC) is a bit higher 

than the two latter options, it could be a better alternative since IPA is less toxic than 

Methanol and is considerably cheaper than industrial Ethanol. Finally, it is important to 

note that both mentioned solvents of water and IPA are easy to handle under ambient 

environment condition [139].  

In 2000, a study was published on the fabrication of CIS with the low cost technique of 

ball milling. The study employed the milling of Cu-In powder using water as a suspension 

solution, spraying the precursor solution on SLG/Mo layer, and selenisation in H2Se 

atmosphere at 440ºC. The efficiency of the fabricated device has been reported in the 

range of 7-8% [142]. In 2009, a Japanese group has fabricated a CIGSe device with an 

efficiency of 3.1% using ball milling of metal powders in an organic solvent [143]. Other 

researchers used non-vacuum processing techniques in order to synthesise the precursor 

solution from metal oxide powders [144-146]. In this context, Zhou et al in 2010, used 

ball milling to mix and grind the metal powders of Zn, Sn, and Cu with Ethanol as a 

suspension solution. The powders were milled, pressed, double milled and printed using 

screen-printing on the substrates, and finally converted. This technique contributed to a 

0.4% efficiency of fabricated solar devices [147]. In 2012, Woo et al  fabricated CZTS 

solar cells with an efficiency of 5.14% using the ball milling of Cu2S, Zn, Sn, S powder 

together with Ethanol as a suspension solution [127]. In 2015, the process of milling of 

Cu2S, ZnS, SnS2 with Ethanol has shown the efficiency of 4.2% [148]. Pareek et al 

synthesised CZTS and CZTSe absorber layers using ball milling of the metal powders of 

Sn, Zn, and Cu with S/Se in 1-Butanol solution [149, 150]. However, the use of metallic 

powder needs caution since the fine particles may explode in the air and can easily be 

oxidised. The use of metal-sulphide cannot be a favourable choice due to the generation 
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of many toxic waste solutions. In the following table (Table 2-3), the most important 

achievements and the record efficiency of CZTS(e) PV cells fabricated using vacuum and 

non-vacuum deposition techniques are presented and summarised. The research by Kapur 

et al was one of the successful studies of CIGS thin film fabrication using a nanoparticle 

precursor solution achieving an efficiency of 13.6% [131]. However, the use of ball 

milling and metal oxide powders to fabricate the CZTS precursor solution have not been 

studied before. 

 

Table 2-3. The highest record efficiencies of CZTS(e) PV device prepared using 

vacuum and non-vacuum deposition techniques. 
 

Material Method ɳ (%) Institute Year Ref 

V
a
cu

u
m

 

CZTS 

 

Sputtering 10.8 Solar Frontier 2013 [151] 

CZTS Sputtering 9.4 Toyota R&D Labs, Japan 2016 [152] 

CZTSe Sputtering 10.4 National University, 

Korea 

2016 [153] 

CZTSSe Sputtering 10.8% Erlangen University 2013 [154] 

CZTS Co-

evaporation 

8.6% Solar Frontier 2013 [155] 

CZTSe Co-

evaporation 

11.6 IBM 2016 [16] 

CZTSSe Co evaporation 7.5% IBM 2011 [156] 

N
o
n

-V
a
cu

u
m

 

CZTS(e) Solution 

Hydrazine/ 

12.6 IBM 2014 [129] 

CZTS Sol-gel/Spin 

coating 

9.2 NTU 2015 [157] 

CZTS(e) DMSO-

processed 

/Spin Coating 

11.2 IMPA 2015 [158] 

 

 

 

 

 

 

 

 

 

 



41 

 

2.2.8 Part of previous work at Northumbria University 

Among the research carried out at Northumbria University in the area of photovoltaics, it 

is worth referring to several important studies. Eric Don was a pioneer in synthesising the 

CISe thin films via co-evaporation of the copper, indium and selenium elements in 1986 

[159]. Studies on characterisation of CISe materials have been reported later on, in 2008 

and the CZTSe thin films have been fabricated and studied from 2009 to 2016 by several 

researchers [15, 16]. 

The most recent research which demonstrated promising results at the stage of initial trial 

was a study carried out by Guo Ming as a Master’s project in 2014, at Northumbria 

University. The metal oxide compounds of SnO and Cu2O together with a metal sulphide 

of ZnS for the first time was used to synthesise the CZTS thin films. The idea of using 

ZnS rather than ZnO was due to the sublimation of Zn at ~430ºC. It is suggested that in 

case of heat treatment at the presence of H2, the Zn loss can be prevented by the use of 

ZnS [21]. The study has revealed the formation of a CZTS thin film with the thickness of 

~10 µm using doctor blade. According to this investigation, Cu2O (1 hour) and SnO (4 

hours) have been reduced at temperatures of 400ºC and 550ºC, under 500mbar H2/N2, 

respectively. Moreover, a better reduction has been shown in the case of using extra 

sulphur quantity during the heat treatment procedure. Nevertheless, in the case of 

developing this technology for PV application, the film thickness should be taken into 

account. This requires establishing a uniform precursor solution, introducing a scalable 

and appropriate method of deposition, and finally developing the quality of CZTS thin 

films. The study in this area is the aim of the current research. 

2.2.9 Sustainability assessment of photovoltaics 

Since part of the study in this PhD thesis is devoted to the evaluation of sustainability of 

CZTS thin films, a brief background of previous literature will be presented in the current 

section.  

According to the definition proposed by Fthenakis (Brookhaven National Laboratory), 

the study on the sustainability of a system requires evaluating at least three main 

measurable aspects of cost, resource availability, and environmental impacts [160]. In 

case of considering the solar energy via the fabrication of solar devices as a system, the 

question of cost concerns the affordability of the solar energy (including the fabrication 

of solar device/modules, maintenance, and installation) compared to that for other energy 
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sources. The resource availability includes the restrictions of material resources for 

current and future generation. Finally, the environmental impacts include local, regional, 

and global effects that must be considered over a long term horizon [2, 160]. 

In this context, Life Cycle Assessment (LCA) is a useful tool for a systematic evaluation 

of the environmental aspects of a product or service for the entire life cycle of that product 

(the so-called “cradle to grave approach”). This involves a consideration of the input of 

materials and energy together with the output of pollutants and wastes during the life 

cycle stage of a system. The estimation of LCA, however, is a very extensive study 

including five stages of (i) the extraction of raw materials from the earth (ii) the 

processing and refining of these materials (iii) the fabrication of the modules and 

assembling the system components (iv) the transport, installation and use of the system 

(v) the decommissioning, disposal, and recycling procedure [161, 162]. Due to the very 

broad concept of LCA, the study on this area is often conducted by defining a system 

boundary as it is also recommended in the relevant standard (ISO 14040 (2006a)) [163].  

So far most of the studies in this area have been focused on the commercial solar devices 

mainly silicon based solar cells and partly thin film technology [164-166]. However, a 

few publications have considered thin film photovoltaics that have not yet been 

commercialised. That is due to the uncertainty of the processing challenges that arise 

during large-scale production, installation and the recycling process. 

In 2009, Fthenakis reported a study comparing three thin film options of CdTe, CIGS, 

and a-SiGe. The former study stated the concerns of cost and resource availability of some 

materials needed for the fabrication of thin film. They have reported that the PV growth 

rate and the final cost of PV modules would increase with (i) enhancing the extraction of 

primary ore, (ii) the development of techniques used for recovering and refining the by-

products, (iii) producing thinner layers, (iv) improving the efficiencies of solar devices, 

and (v) recycling the spent modules [167].  

Elsewhere, Fthenakis has reported an evaluation on the effect of environmental impacts 

of using solar devices. The former author has said that although operating the photovoltaic 

systems, in comparison with the use of non-renewable energies, do not generate any toxic 

or greenhouse gases, pollutions could be emitted in the manufacturing process. For 

instance, it is estimated that the in manufacturing CdTe thin film photovoltaics, under 

average US conditions, about 20g CO2/kWh is emitted to the environment. In case of 

using fossil fuel plants, 500-1000g CO2/kWh will be emitted to the environment. They 
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have also estimated that the photovoltaics can reduce the CO2 emissions in 2050 by 62% 

than in 2005 [167, 168].  

The report published by Celik et al [169], has focused on the effect of extracting/mining 

the elements on the environmental impacts. The study has shown that the environmental 

toxicity of elements such as indium, gallium, and cadmium are 1000 times higher than 

that of silicon, while this index for elements such as copper, tin, and selenium is 100 times 

more than that of silicon. In addition, the study has illustrated that a high degree of toxicity 

of tin and copper is mainly coming from their extraction/mining procedure. In another 

study published by Collier et al [170], the evaluation of several aspects of LCA by 

comparing CZTS (processed via vacuum processing), Zn3P2, CIGS, and CdTe thin films 

have been estimated. The results have shown that if CIGS replaced by CZTS thin films, 

it contributes to a less adverse effect for the ecosystem quality. However, the global 

warming index and the primary energy required for fabricating the CIGS is much higher 

than CZTS manufacturing.  

 Summary 

Despite the progress in the fabrication of thin film PV technology, the more development 

in this field requires more investigations on the fabrication of PV thin films in large-scale 

production. In this context, it is of great importance to focus on the use of sustainable 

materials and earth abundant elements together with a technique, which is reasonable to 

apply for large-scale production.  

According to the previous literature, the Cu2ZnSnS4 (CZTS) thin films is a promising 

compound to be used as an absorber layer. Among the so far studies in this context, the 

study on fabricating the CZTS thin films with the use of metal oxide compounds have 

been missed. On the other hand, it is supposed that the metal oxide compounds could be 

regarded as appropriate alternatives, the reason being the more stable materials during the 

processing compared to metal powders and the less toxic compared to the metal sulphides. 

The idea of using metal oxide compounds together with the use of a mechanochemical 

technique and a low cost and scalable technique of spraying is studies as the main aim of 

the current thesis. 
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 Methodology, Experimental Procedure, and Characterisation 

Techniques 

This chapter presents the methods which have been used to fabricate the CZTS(e) solar 

devices based on the established technology and facilities at the University of 

Northumbria. Since the main focus of this thesis has been devoted to the fabrication of 

thin film absorber layers, this process has been elaborated. The chapter also includes 

introducing all the characterisation techniques used for the analyses. To do so, the chapter 

presents (i); a summary of the theory underpinning the characterisation techniques (ii); 

the specifications of the particular equipment used in this research and (iii); the specific 

set up for the particular case of experiment and characterisation technique employed for 

the current research. 

3.1  Methodology 

The initial study on fabricating CZTS thin films via a non-vacuum approach using metal 

oxide/sulphide powders has been carried out as a Master Project by Ming et al at 

Northumbria University in 2014. Although the quality and the composition of the 

fabricated thin films in the aforementioned study were not sufficiently applicable to 

photovoltaic purposes, their study showed a potential for further investigations. The 

current study is aimed at developing that process further, to improve the formation of 

CZTS thin films using a scalable method of deposition. To do so, several stages are 

required to be investigated. These stages include (i); preparing and developing a 

homogenous precursor solution with a correct composition by adjusting the ball milling 

parameters together with using an appropriate choice of suspension solution (ii); 

establishing a deposition technique to provide a good coverage of thin film on the 

substrate (iii); adjusting the conversion (sulphurisation) procedure to improve the quality 

of composition and morphology of CZTS absorber layers. 

All the experiments in the current research were aimed at scrutinising the influence of 

various parameters on improving the quality of precursor solutions, the thin film 

uniformity, and the converted CZTS absorber layers. Based on previous literature, as 

mentioned in Chapter 2, one of the key points in fabricating the absorber layer is the 

conversion conditions. Therefore, in this thesis, most of the effort was devoted to examine 

the quality of microstructure and the composition of CZTS absorber layers by varying the 

conversion conditions.  
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The current study was initiated with evaluating the synthesising process in developing 

CZTSe thin films via vacuum deposition technique. This has been carried out in order to 

gain experience and knowledge on the influence of conversion factors for the fabrication 

of Kesterite absorber layer. The development of CZTSe thin films, together with 

fabricating a homogenous precursor solution, and establishing a scalable non-vacuum 

deposition route, were considered as preliminary investigations. Afterwards, the focus 

was put on synthesising the CZTS thin films by mainly adjusting the conversion 

parameters such as dwell time (sulphurisation time), temperature, heating profile, ambient 

gas pressure and its composition, and post heat treatment procedure. Moreover, the 

influence of chalcogen quantity (S) and precursor composition, together with, the impact 

of surface etching on the morphology and the composition of fabricated CZTS thin films, 

have been studied. 

In addition to the aforementioned studies, several investigations have been carried out in 

order to improve the quality of absorber layers. These investigations have been performed 

based on the challenges that emerged during the synthesising of CZTS thin films, which 

are listed below and are entitled as follow-up trials in this thesis. Although some of them 

have shown promising results, further investigations require additional time and 

collaboration, which was beyond the scope of this PhD thesis.  

(i) The use of the slot-die technique as a scalable method of deposition, and 

comparing its results with the samples prepared via spraying technique. The 

slot-die samples have been fabricated by Dr. Greenwood at Swansea 

University in collaboration.  

(ii) The use of elemental mass of sulphur in the precursor solution and 

sulphurisation procedure, rather than its use in only the sulphurisation process. 

(iii) The pre and post selenisation of CZTS samples prepared via non-vacuum 

deposition routes. This has been carried out based on the premise that 

selenium substitution in sulphur positions may contribute to grain growth, 

consequently forming a compact and dense thin film structure.  

Once the absorber layer was fabricated via either vacuum or non-vacuum deposition 

techniques, for a limited part of the study, the CdS to form a p-n junction, and 

subsequently, ITO as a TCO window layer have been developed. This has been carried 

out in order to prepare a complete solar device and to evaluate the optical characterisation 

of the p-n junction using EQE analysis. The following section in this chapter, 
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Experimental Procedure, a brief explanation of the methods, which have been used to 

fabricate each component of a device. The main characterisation techniques used to 

analyse the fabricated materials at each stage of processing are described and presented 

below (section 3.3). 

Finally, the study in this thesis will follow by evaluating the LCA of CZTS thin film 

production using vacuum and non-vacuum deposition techniques. In this study, CIGS 

prepared via vacuum processing was selected as a reference. This was due to the similarity 

of CIGS and CZTS in device structure, configuration, and to the significance of CIGS as 

a commercially produced thin film PV. This evaluation presents the impacts of material 

usage and energy consumption used for the processing of CZTS and CIGS absorber layers 

on the four main environmental issues of human health, ecosystem quality, climate 

change, and resources. This will be explained in further details in chapter 6. 

3.2 Experimental Procedure 

The CZTS(e) device structure with a substrate configuration has been used in this thesis 

(see Figure 3-1b). Therefore, the absorber layer (p-junction) is grown on top of the back 

contact/substrate. Subsequently, the buffer layer (n-junction) is deposited on top of the 

absorber layer. In this thesis, soda-lime glass (SLG) has been used as a substrate. On top 

of the SLG, a Mo metallic layer is deposited by vacuum deposition technique. The 

CZTS(e) absorber layer is grown as a coating on the surface of the back contact (Mo 

layer). This process has been carried out, either via vacuum or non-vacuum deposition 

technique. The process is followed by deposition of CdS layer as a buffer layer through 

Chemical Bath Deposition (CBD). The device is completed via deposition of a 

transparent layer of ITO (indium tin oxide) using pulsed DC magnetron sputtering. 

 

 

Figure 3-1. (a) IBM’s CZTS solar cell device [171] (b) a schematic of a thin film solar 

cell with Mo back contact, chalcogenide absorber (CZTS), CdS buffer, ITO window 

layer, and aluminium front contact [67]. 



48 

 

3.2.1 Preparing the substrates and the Mo back contact 

Soda-lime glass (SLG) has been used as a substrate for all processed samples. The 

cleaning and preparation processing of substrates have been done by brushing the surface 

of the samples with a nylon toothbrush using a 5% solution of Decon 90. This could 

remove any grease and dust particles from the surface. The cleaning process was followed 

by rinsing the glass substrates with deionized and ultra-pure water (18MOhm), in the 

order mentioned. Afterwards, the glass substrates were dried with flowing nitrogen gas. 

The molybdenum coated soda-lime glasses (Mo/SLG) were mainly supplied through 

PVTEAM project by M-Solv Ltd. They have been fabricated using the magnetron 

sputtering method of deposition. The molybdenum thickness of all samples was 

approximately 1µm. The dimensions of the SLG were either 76 mm x 26 mm x 1 mm or 

50 mm x 50 mm x 1 mm.  

3.2.2 Absorber layer processing techniques 

The fabrication of the absorber layer consists of two and three-stage processes for vacuum 

and non-vacuum (solution processed) technique, respectively. For the former, the 

processing stages include (i) the deposition of precursors (ii) the heat treatment 

(sulphurisation and/or selenisation). For the latter, the processing stages include (i) 

preparing the precursor solution (ii) the deposition of precursors on substrate (iii) the 

processing of heat treatment (sulphurisation and/or selenisation).  

The third stage for both mentioned techniques has been carried out in a tube furnace under 

vacuum or semi vacuum condition. In addition, Rapid Thermal Processor (RTP) has been 

used for a limited part of the research. 

3.2.2.1 Vacuum deposition  

The vacuum deposition technique involves deposition of the constituent elements on a 

substrate with the use of a high vacuum chamber.  

 Magnetron sputtering deposition 

This technique involves the use of a DC or RF voltage which is established between the 

target (cathode) and the substrate (anode). The chamber is filled with an inert gas with 

low reactivity such as argon. Since the target is kept at negative voltage, the argon atoms 

are ionized and the ions (Ar+) are accelerated towards the targets which is made of the 

precursor elements. If the energy of ions are higher than the binding energy of the target 

atoms, the target atoms are extracted from the target surface moving through the vacuum 
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atmosphere, and eventually deposited onto a substrate to form a thin film [172]. The 

presence of magnets located in the area of the target can enhance the density of the 

sputtering ions, contributing to an increase in the sputtering efficiency. The coating 

deposition rate depends on several parameters including the magnetic field, the electric 

accelerating field, and the gas pressure. 

The samples prepared for this thesis were fabricated using a DC magnetron sputtering 

deposition technique. The Cu-Zn-Sn metallic precursor layers were produced with a 

Nordiko 2000 magnetron sputtering system. The three targets were used with a diameter 

of 6” (15cm), and located in a sputter-down configuration (see Figure 3-2). The substrate 

table rotates with the speed of 2 rpm (revolutions per minute). A high purity of Cu, Zn, 

and Sn elemental targets (5N) were utilized. The chamber was evacuated to a base 

pressure of 10-7 Torr prior to deposition. During the deposition, the chamber was filled 

with argon with a typical working pressure of 10-3 Torr. The deposition time has been 

adjusted at 40 minutes, resulting in films with a thickness of ~0.8 m. The composition 

of sputtered thin films was Cu-poor and Zn-rich, with the atomic ratio of Cu/(Zn+Sn) 

=0.5-0.6 and Zn/Sn=1.1-1.3 for the precursor used in fabricating CZTSe thin films.  

 

Figure 3-2. A schematic of the side view of the Nordiko 2000 sputtering system displayed. 

The three targets (Cu, Zn, and Sn) are in a fixed position. The substrates are placed on 

four platens and rotate as shown by the arrow. 

 

 

 Thermal evaporator- Selenium cap layer 

For a limited part of the study, during preliminary investigations, a thermal evaporator 

has been used to fabricate selenium cap layer on top of the CZT precursors. 

Thermal evaporation is a PVD technique involving the fabrication of coating in a vacuum 

chamber when the solid material is located in a crucible and heated up to a temperature 

which allows for the formation of certain vapour pressures. Consequently, the evaporated 

material can fill the chamber and reach the substrate to create a coating [173]. 
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In the current study, the crucible of the evaporated system was filled with ~20g of 

selenium pellets and worked under a pressure of 10-7 Torr. Selenium melts in the crucible 

located at the bottom of the chamber, and then it evaporates. When the evaporation rate 

of selenium vapour reaches a constant rate, the shutter covering the crucible will be 

opened and the deposition commences. A selenium cap layer is formed on the surface of 

the precursor located at the top of the chamber.  

3.2.2.2 Non-vacuum deposition 

In order to use a non-vacuum deposition technique via using solution processing, the first 

step is to prepare the precursor solution. The technique implemented, involved the use of 

a mixture of binary metal oxide/sulphide powders suspended in a solvent that was 

subsequently deposited by wet processing (spray/printing) in order to form a precursor 

film. The solution suspension was prepared via ball milling to reduce and homogenise the 

particle size of the initial metal powders. The following sections detail the preparation of 

the precursor solution and the deposition techniques. 

 Ball Milling 

Ball milling, as a mechano-chemical approach, is a simple material processing technique 

that can be used to reduce particle size and mix materials. The ball milling apparatus 

consists of a hollow cylindrical shell which rotates on its own axis with a certain speed, 

being fed with the desired material using grinding balls [134-136]. In order to grind the 

materials, grinding balls made of zirconia, stainless steel, or alumina are often used. 

Zirconia is slightly cheaper than stainless steel. Moreover, stainless steel may react with 

the solvent (alcohol). Zirconia also has low wear loss. Moreover, due to its higher density 

compared to alumina, it has higher grinding efficiency [174]. 

In the current study, the Fritsch P6 Plantary Ball Mill has been used. It contained two 

bowls (80 ml each) made of Zirconia. The grinding bowl was filled with Cu2O, ZnS, SnO, 

grinding balls (with the composition of zirconia (ZrO2)), and isopropyl alcohol (IPA) (as 

a suspension solution). The zirconia (ZrO2) balls with three different sizes, D = 5mm, 

2mm and 0.5mm were used. According to the guide from the manufacturer, it is stated 

that the typical achieved particle size is 1/1000th of the ball size diameter after the milling 

process. This means using a ball size of 2mm can reduce the particle size down to 2µm. 

The precursor materials were mixed and grounded with a speed of 500rpm. To allow heat 

dissipation from the grinding bowls, after each step of milling, the sufficient pause time 

should be taken into consideration. This was fixed at 5 minutes of grinding and 7 min of 
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pause with total grinding time of 4 hours. Grinding can be carried out in either a wet or 

dry environment. In this study, three different compositions of carrier solvent were 

examined, including (i) 100 wt% ultra-deionized water (H2O) (ii) 90 wt% ultra-deionized 

water + 10 wt% Isopropyl alcohol (IPA, C3H8O), and (iii) 100 wt% IPA. A picture of ball 

milling apparatus has been shown in Figure 3-3a. The precursor solution was separated 

from zirconia balls by passing the prepared solution from the specific sieves with an 

appropriate mesh number. The picture of prepared precursor solutions is shown in Figure 

3-3c.  

It should be noted that after each time of milling the powder, the grinding balls (ZrO2 

balls) were cleaned. This process has been carried out with running the ball milling 

apparatus for at least 12 hours with the speed of 400rpm when a mixture of dirty ZrO2 

balls and 2-3g of play sand where placed in bowls. Afterwards, the grinding balls were 

separated from sands. The balls and bowls were then cleaned with IPA and DI water using 

ultrasonic cleaner for couple of hours and finally they have dried in a glassware-drying 

oven.    

(a) (b) (c)
 

Figure 3-3 (a) a picture of ball milling apparatus (b) a schematic of grinding process (c) 

a typical picture of precursor solution 

 

 

 Deposition Techniques 

To establish a deposition technique to cover the substrate with precursor solution, 

different deposition approaches have been performed using doctor blade, and spraying. 

As a follow-up trial, the slot-die technique has also been used. 
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I. Doctor Blade 

Doctor blade is one of the common methods of deposition for coating wet films with 

thicknesses ranging from 20 to several hundred micrometres [175, 176]. In contrast to 

spin coating, the use of the doctor blade technique has led to less solution waste during 

the coating process. The technique involves the use of a sharp blade which is placed at a 

fixed distance from the substrate surface. The precursor solution is discharged at the front 

of the blade. When the substrate moves, the fixed blade pushes the solution forming a 

coating [177, 178]. 

In the current study, as preliminary trials, the doctor blade technique was simulated using 

an edge of cleaned SLG slide which was drawn across a fixed Mo-coated SLG substrate. 

For each step of coating, between 4-6 droplets of precursor solutions have been poured 

on the substrates. The thickness of the deposited precursors was typically between 5-7 

micrometres. 

II. Spray Coating 

An airbrush is a small and air-operated tool that is often used for painting (see Figure 

3-4). The technique involves forcing the precursor solution through a nozzle where the 

fine aerosols are formed and dispatched to the substrate using a carrier gas [177]. The 

thickness of the wet thin film could be varied by several parameters such as the distance 

between the nozzle and the substrate, the viscosity of the solution, the formulation of the 

precursor solution, and the speed that the airbrush is moved during spraying. The fineness 

of the line is determined by multiple factors including nozzle size, particle size in the 

precursor solution, and the operating pressure. The gas and solution mix together inside 

the head assembly before spreading on the surface. This technique, if well-optimised, can 

be a promising method for fabricating thin films at both laboratory and scale-up 

production. In case of using this technique via a handheld strategy, practice is required to 

become proficient in developing the uniform and thin layer of coating on substrates. 

For the current study, the BADGER SOTAR airbrush model 20/20 has been used. Figure 

3-4 shows different segments of the airbrush. The nozzle at the front is the point where 

the precursor solution is spread onto the surface. The top-mounted cup with the capacity 

of 2.3 ml is where the precursor solution should be fed. The gas pressure and the amount 

of fluid spread on the surface increases by pressing down and pulling back the button 

located on top of the airbrush. The screw on the bottom needs to be connected to the gas 

source. The screws at the end of the airbrush can control the position of the needle which 
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comes out from the nozzle (see Figure 3-4, indicator 5). This screw, together with the one 

shown as indicator 6, can control the width of the sprayed line [179]. 

 

Figure 3-4. A picture of airbrush illustrating different parts: 1. Nozzle 2. Cup 3. Button 

to control the gas pressure and fluid quantity 4. Nozzle to connect the gas source 5. Screw 

to control the needle 6. Needle end knob [179]. 

 

In order to use spraying technique, the substrates were fixed and placed on a hot plate. 

When the temperature reached 50°C, the airbrush was moved manually in two X and Y-

axes directions for 4-6 times (see Figure 3-5). After each step of spraying, the thickness 

of samples was measured using DekTak profilometer. The target thickness of the 

precursor layers was between 2 and 4 µm. The deposited samples were left on a hot plate 

for 10 min at a temperature between 70°C-80°C. The as-deposited samples are shown in 

Figure 3-6. The working distance was set at ~ 8-10cm from the surface, and nitrogen has 

been used as a carrier gas.  

Connected to N2 Gas

(b)(a)

Connected to N2 Gas

 

Figure 3-5. A schematic of spraying technique using airbrush with two configurations of 

(a) horizontal (b) vertical is illustrated. The blue rectangular areas demonstrate the 

positions of substrates located on the hot plate. 
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Figure 3-6. A picture of as-deposited precursors with spraying technique is presented. 

The kapton tape is placed at the edges of all samples to measure the thickness of deposited 

coating on the substrates. 

 

III. Slot-Die coatings 

Slot-Die coating is a scalable method of deposition that is widely used to produce thin 

and uniform films [180]. In the slot-die coating technique, the precursor ink (precursor 

solution) is pumped through a coating head placed very close to the substrate, but without 

touching it. The constant quantity of precursor ink forms between the moving substrate 

and the slot-die head. The thickness of the coating is dependent on the width of the 

meniscus (the distance between the slot-die head and the substrate), and the web speed 

[178]. A schematic of roll-to-roll and single processes of the slot-die coating method is 

shown in Figure 3-7. 

The trial samples that were prepared with the slot-die technique for this research have 

been fabricated using a Smart coater with a web width of 100 mm and a speed of 1m/min. 

This part of the research has been carried out by Dr. Greenwood at Swansea University. 

(a) (b)
 

Figure 3-7.  The schematic of slot-die coating system (a) a roll-to-roll process (b) a single 

process [178]  
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3.2.2.3 Heat treatment 

The final step of fabricating absorber layer is the process of heat treatment or thermal 

conversion with a specific mass of chalcogen. This is a critical procedure for precursors 

processed via both vacuum and non-vacuum deposition techniques. The process is often 

performed in vacuum or semi vacuum conditions. The tube furnace and the Rapid 

Thermal Processing (RTP), as the most common techniques for this purpose, will be 

explained in this section. 

 

 Tube furnace approach 

Tube furnace is often used for heat treatment of small samples. The temperature, the 

heating/cooling rate, and the dwelling time at particular temperature can be controlled by 

the power. Moreover, these equipment can be ideal choices when heat treatment is desired 

to be performed in an inert, vacuum, or hydrogen atmosphere.  

In the current thesis, a 3-zone horizontal Carbolite tube furnace has been used for the 

purpose of sulphurisation and selenisation. The system can operate at temperatures of up 

to 1100°C. 

The heat treatment process for both vacuum and non-vacuum deposited precursors has 

been carried out in five stages (i) the precursor together with a specific mass of chalcogen 

(S or Se) were placed in a graphite box according to the particular experiment. (ii) the 

quartz tube was pumped and purged three times with an inert gas of nitrogen in order to 

remove any oxygen from the system. Finally, the system was evacuated to a pressure of 

~ 3 ×10-3 and ~ 2 ×10-2 for selenisation and sulphurisation, respectively (It should be 

noted that to avoid contamination and gaining accurate data, the sulphurisation and 

selenisation procedures have been carried out in two different tube furnaces). (iii) the 

specific ramp rate, temperature, and dwell time have been defined for the system (the first 

parameter was mainly fixed at a rate of 30ºC/min. The other two parameters have been 

determined based on particular conditions used for each specific experiment throughout 

the thesis). (iv) the tube was backfilled with a certain pressure of argon and/or forming 

gas ( H2/N2 which contains 10% H2 + 90%N2) as an ambient gas according to each 

specific experiment prior to running the tube furnace. (v) After running and when the 

dwell period completed, the system was cooled down to room temperature for several 

hours. Afterwards, the tube was pumped and purged again, before taking out the sample. 

To provide rapid thermal processing without breaking the vacuum of the system within 

the tube furnace, a simple strategy has been used. This was achieved using a push-rod 
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part moving the sample along the length of the quartz tube. The push rod part was located 

in another smaller quartz tube connected to the main tube of the furnace at its aperture 

(see Figure 3-8). The push rod is also connected to a magnet with an external handle to 

move the sample along the graphite tray. With such a configuration, the sample can stay 

at cold zone until the temperature reaches and fixes at a desired value. A picture of the 

tube furnaces used for sulphurisation and selenisation is shown in Figure 3-9.  

 

Figure 3-8. A schematic representation of quartz tube furnace used for sulphurisation is 

displayed. The vacuum tight quartz tube, equipped with a magnet, is used in case of 

providing a fast heat treatment. Otherwise, this part can be separated and the sample can 

be heated with a given heating ramp rate.   

 

 

Figure 3-9. Picture of the tube furnace used for heat treatment processing of (a) 

Selenisation (b) Sulphurisation 

 

Graphite boxes with two different configurations have been used to enclose the precursors 

inside the tube furnace. Figure 3-10 shows typical graphite boxes used for synthesising 

the CZTS(e) thin films. The specific graphite box used for heat treatment on the CZTSe 

thin film with selenium cap layer, had two different orientations; face up and face down. 

A schematic of a cross section view of this graphite box has been shown in Figure 3-10a. 

As can be seen, 4 samples can be placed in each graphite box. The second type of graphite 

box had a place for just one sample and the selenium pellets/sulphur powder were placed 
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at the sides (see Figure 3-10b and Figure 3-10c). The graphite box named a and b had an 

approximate internal volume of 12cm3 and 7cm3, with the sample dimensions of 7.6 ×2.6 

× 0.1 cm3 and 5 × 2.5 × 0.1 cm3, respectively. The volume and the sample dimension of 

graphite boxes of b and c are equal. 

The choice of the graphite boxes with the configuration shown in Figure 3-10 for the 

conversion procedure was based on the established facilities and the previous work done 

at Northumbria University. As it is reported elsewhere [15, 181], the better uniformity of 

absorber layer has been achieved using these configurations of graphite boxes. 

 

Figure 3-10. Schematic representations of (a) cross section of the graphite box utilised 

for the CZTSe thin film fabrication using selenium cap layer (the black layers show the 

selenium layers) (b) the top view of graphite box used to fabricate the CZTSe thin film 

with selenium pellets (the 4 black points illustrate the position of selenium pellets) (c) the 

top view of graphite box utilised for the CZTS thin film fabrication when the sulphur 

powder is used (yellow areas show the position of sulphur powder). The blue areas in all 

pictures indicate the position of precursor. 

 

 Rapid Thermal Processing (RTP) 

Rapid thermal processing is regarded as an advanced processing technology to provide 

heating procedure over a short period of time. The term RTP refers to that equipment 

having the ability to ramp temperature up and down with a high speed. 

For a limited part of the study in this thesis, the ‘Annelasys As-one RTP’ has been used 

to selenise the precursors or the sulphurised samples. According to each specific 

experiment, different quantities of selenium pellets were situated around the sample (see 

Figure 3-11b). Afterwards, the graphite box was placed inside the reactor and the samples 

were converted at 550°C for 15 min in atmospheric ambient pressure with the ramp rate 

of 270°C/min, for both heating and cooling steps. The heat treatment procedure has been 

used based on the optimum conversion conditions examined and reported in previous 

research performed by Dr. Jose Marquez at Northumbria University [15]. 
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Figure 3-11. (a) an image of the Annelasys As-one rapid thermal processor (taken from 

www.annealsys.com)  (b)  a top view schematic of an open graphite reactor (black points 

indicate the selenium pellets and the blue area displays the location of precursor) 

3.2.3 Preparing buffer layer by Chemical Bath Deposition (CBD) 

The choice of CdS and its fabrication via CBD has shown promising results in CIGS solar 

cell fabrication. This is due to the similarity in material and processing of CZTS and CIGS 

solar cells, as discussed in chapter 2. To prepare the buffer layer, a chemical bath 

deposition (CBD) method was prepared to deposit an approximately 50nm thick CdS 

layer. 

All the CZTS(e) absorber layers were etched in a 10 wt% KCN aqueous solution and/or 

20 wt% (NH4)2S for 0.5 and 3 minutes, respectively. The CBD was processed in a 

jacketed beaker, heated to a temperature of 67°C (see Figure 3-12). The 0.08g of cadmium 

sulphide (CdSO4) and 0.76g of thiourea (NH2)2CS were used as Cd and S sources, 

respectively. The 18.25 g ammonium hydroxide (NH4OH) solution has been used to 

control the PH of the solution. The corresponding chemical formulas are presented 

through Reaction 3-1 to 3-4 (shown below) [182]. The samples were immersed in the 

solution for approximately 8 minutes before being rinsed with deionized water. The end 

of the process can be determined by the appearance of the solution with a yellowish colour 

(see Figure 3-12). 

CdSO4 +4 NH3                   Cd (NH3)4SO4                                                                                                    

(33-1) 

(NH2)2CS + OH-                        CH2/N2   + H2O   +HS-                                                             (3-2) 

HS- +OH-                      S2- + H2O                                                                                

(33-3) 

[Cd (NH3)4]
2+

 + S2-                      CdS + 4NH3                                                            

(33-4) 

 

http://www.annealsys.com/
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Figure 3-12. The figure shows the jacketed beaker containing the solution which is used 

to develop CdS thin film via CBD technique. 

 

3.2.4 Front Contact 

After the chemical bath deposition, a transparent layer of doped indium tin oxide ITO 

was deposited by a DC pulsed magnetron sputtering. All CZTS(e) solar cells were 

mechanically scribed to produce individual cells with an area of 0.09 cm2. 

3.3 Characterisation Techniques 

This section presents the main characterisation techniques used to evaluate the material 

properties of precursor solutions, thin film precursors, and converted absorber layers. The 

section includes a description and specification of all used equipment and the 

experimental set up which has been used to carry out the analyses.  

3.3.1 DektakXT profilometer: film thickness 

A profilometer is a useful technique to measure the surface profile. It is mainly used to 

quantify the roughness and the thickness of thin films ranging from a few µm to 20 nm 

[183].  

In the current study, a Bruker DektakXT Profilometer has been used to measure the 

thicknesses of the prepared thin films. That ensured by using a thin strip of Kapton tape 

at the edge of substrates before film deposition. Consequently, with pulling off the tape 

after deposition processing, the film thickness can be identified with the formation of a 

sharp step between the fabricated film and the substrate. To do so, one point on the coating 

and one on the substrate need to be defined manually, which facilitate the tip contacts 

scanning the surface. When the scan measurement completes, a two-dimensional profile 

appears (see Figure 3-13b). The difference between the two levels (regions in red and 

green shown in graph), is depicting the thin film thickness. 
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(a)
(b)

 

Figure 3-13. (a) a picture of DektakXT profilometer (b) a typical graph of a thickness 

measurement. 

3.3.2 Mastersize Particle Analyser 

Mastersizer is often used to measure the particle size of materials, when they are dispersed 

in a carrier solvent (a dispersed medium) using the technology of laser diffraction. When 

the laser passes through the dispersed medium, it will be diffracted according to the 

specific particle size of the sample. This process is based on Fraunhofer or Mie theory. 

For more details, the reader is referred to the related paper [184]. As mentioned earlier, 

the sample needs to be dispersed in an appropriate liquid medium in which the particles 

are insoluble. The sample preparation is one of the important stages since an inappropriate 

carrier liquid could affect the agglomeration or a non-uniform dispersion of particles 

through the liquid medium. This, if it occurs, will lead to the wrong data being obtained. 

The Tween 20 solution is one of the common solutions which has been used for most of 

the analyses, and is also recommended to be used by Malvern Mastersize analyser Ltd 

[185]. 

In the current research, Malvern Mastersizer 2000 system has been used to determine the 

particle size of milled powders. The system can measure particle size ranging from 0.02 

to 2000 micrometres. The effect of using different ball sizes (grinders) on the final particle 

size of milled compounds has been evaluated by analysing the Cu2O powder when it is 

milled with three ball sizes of D = 5, 2, and 0.5 mm. The particle size of the Cu2O 

compound was measured before and after four hours of milling process. The ground 

compounds were dispersed, first in deionized water, but due to the weak dispersion of 

powders in the solution, they were then dispersed in a specific detergent called Tween 20 

with the chemical formula of C58H114O26. The sample was prepared by mixing 12 droplets 

of this solution in 1g of Cu2O powder. The mixture of Cu2O particles in the carrier liquid 

was placed in the ultrasonic cleaner for 10 min to be dispersed completely prior to 
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introducing the solution into the Mastersize analyser system. The system was filled with 

deionized water to a certain height level prior to the experiment. The sample solution was 

then added to the system by a rate of recurrence of one droplet per 3 seconds (between 7-

10 droplets for each experiment to achieve the laser obscuration of 10-20%). The 

measurements have also been repeated several times to find stable and reproducible 

results (see Figure 3-14). 

 

Figure 3-14. A picture of the Malvern Mastersizer 2000 is shown. The equipment and the 

typical graph achieved by the system (the Department of Geography in University of 

Northumbria) 

 

3.3.3 Contact Angle Analyser 

Contact angle analysis is a useful technique to determine the quantitative measurements 

of the wetting capability of a solid surface by a liquid. Thus, a droplet of liquid is placed 

on the surface and the angle between these two states is measured at a specific time range. 

For a limited part of the current study, the wettability of using IPA and/or water (as a 

suspension solution) on substrates (SLG, SLG/Mo), has been measured at Swansea 

University by Dr. Peter Greenwood. This experiment has been carried out as a preliminary 

trial to evaluate the proper solvent in order to make a precursor solution with a better 

wettability when it covers the substrate.  

 

3.3.4 Scanning electron microscope and elemental composition analysis 

(SEM/EDX) 

Scanning Electron Microscope (SEM) can be typically used for imaging the 

microstructure and characterisation of materials. The local elemental composition of 
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materials can be also measured if the SEM is equipped with energy-dispersive X-ray 

(EDX) detectors. 

In SEM, the electron beam is produced from the electron gun and is affected when it 

passes through the condenser and objective lenses. The roles of these lenses are to narrow 

and adjust the electron beam down to the specimen level. Once the electron beam is 

incident on the specimen, the electrons may be absorbed into, reflected from, or be 

transmitted through the specimen. The reflected electrons can be collected by certain 

detectors to identify a specific characteristic of the sample (see Figure 3-15) [186-188]. 

When the incident electrons interact with loosely bound electrons in the conduction band 

of the specimen, then they will emit secondary electrons. This emission rate is extremely 

sensitive to the height difference in the surface and has a great role in identifying the 

topography of the surface specimen or imaging. These electrons (secondary electrons) 

have a very small energy, approximately less than 50eV. Less reflected secondary 

electrons indicate the deeper regions of the surface and are shown by dark areas in the 

SEM image. More reflected secondary electrons show the higher regions of the surface 

and can be observed as brighter features in the image. Thus, with the difference in quantity 

of reflected secondary electrons, the SEM image will be created [186, 187]. 

 

(b)(a)

 

Figure 3-15. A schematic view of (a) Secondary Electron Microscope (SEM) and (b) 

signals emitted from different depths of the interacted sample is displayed. The figures 

are adapted from [189, 190]  
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As shown in Figure 3-15, when the electron beam hits the specimen, various electrons 

and electromagnetic waves can be emitted from the substance. The principle of the EDX 

function is based on detecting the X-rays (see Figure 3-15b), named ‘characteristic X-

rays’, because they could be indicative of individual elements. Accordingly, the 

compositional elements of substances can be revealed. When an electron in the inner shell 

of atoms of a specimen is emitted from the inner shell by the incident electron beam, the 

vacant state is then re-occupied by an electron from the outer shells which has a different 

energy state. The difference between these two states of energy (the outer shells and the 

inner shells) corresponds to characteristic X-rays and can be detected via EDX analysis 

[188].   

One of the important factors in analysing the surface through both SEM and EDX 

measurements is the acceleration voltage. This parameter should not be less than twice of 

the highest excitation energy of any element present in the specimen. This is to obtain 

sufficient intensity from all the presented elements. In the case of analysing CZTS 

compounds, the excitation energy should not be less than 7 KeV [191] . Moreover, an 

appropriate acceleration voltage is required to obtain sufficient X-rays from the specimen. 

According to the Grün range formula, each acceleration voltage corresponds to a specific 

range of penetration depth ‘R’ from the surface, when ‘⍴ ’ is the density of material and 

‘Eb’ is the energy of incident electron beam (see equation 4-1) [192].  

R (µm) = [0.0398/⍴ ] (Eb)
 1.75                                                                                        

(3-1) 

Another significant factor in EDX measurements is the working distance which refers to 

the distance from the final pole piece of the lens to the focused point on the specimen. It 

is important for the working distance to be adjusted, since the detector should be in line 

with the position at which the X-rays are generated. The working distance can be adjusted 

by the level of the stage and it depends on the type of microscope which is used. The X-

ray spectrum can also be used for qualitative analyses (EDX mapping) to obtain a 

spectrum from a specific area. In addition, it can be used for line scanning which displays 

a one-dimensional distribution of elements on a specific line. Mapping, as another 

qualitative analysis, is observed when the electron probe is scanned over a specific area. 

Therefore, an image can display the presence of different elements across that scanned 

area [188]. 
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SEM and EDX were widely used as characterisation techniques for the current study. The 

samples have been measured with two different system due to the substitution of new 

equipment at the laboratory of Northumbria University in April 2016. For further 

clarifications, it should be noted that all the data presented in chapter 4 (preliminary 

investigations) have been achieved using a FEI Quanta 200. The EDX measurements 

were achieved using a lithium-drifted silicon detector attached to the SEM. However, the 

data presented in chapter 5 have been analysed using TESCAN MIRA 3 scanning electron 

microscope which was equipped with an X-ray detector X-Max 150 mm2 for EDX, using 

Aztec Energy software. The picture of both pieces of apparatus are shown in Figure 3-16.  

All the EDX compositional measurements have been accomplished at 20kV for the 

fabricated CZTSe thin films, and 15 kV for CZTS and CZTSSe thin films, corresponding 

to a penetration depth of approximately 1.6 µm (for CZTSe thin films) and 1.0 µm (for 

CZTS and CZTSSe thin films). The working distance was set at 10 mm for all the EDX 

analyses. It should be noted that when the analyses are done by EDX, due to the overlap 

of the sulphur Kα peak and the Molybdenum Lα peak [193], both substrates of SLG and 

Mo/SLG have been used to detect the exact quantity of sulphur across the thin film. 

 

Figure 3-16. A picture of SEM and EDX equipment used during the current study (a) FEI 

Quanta 200 (b) Tescan Mira 3 

 

3.3.5 X-ray Diffraction (XRD) 

X-ray diffraction is one of the common non-destructive tests that is frequently used for 

the study of the crystal structure of materials. The X-ray diffraction is a consequence of 

reflected beams from the specific planes based on atoms’ position in crystal structure. 

When the incident X-ray, with an angle of Ө, hits an atomic plane in a crystalline material, 
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the energy transferred to atoms will be reflected with the same wavelength and energy, 

but with a different amplitude or intensity. The intensity is determined by the 

concentration of atoms in the specific planes of the crystal lattice. A signal which appears 

on the diffraction pattern is detected only if the atoms are located in a periodic manner 

through the atomic structure, meaning a crystalline material. The incoming X-ray 

radiation can be transmitted at different planes of atoms, which, in turn shows the 

arrangements of atoms within the structure. Thus, the material can be identified by its 

structural properties (i.e. the lattice) [194]. In 1913, William Lawrence Bragg represented 

an equation which shows the relationship between the X-ray diffraction and the lattice 

parameters. This equation is known as Bragg Law and is presented in equation (3-2). 

According to Bragg’s Law, constructive interference occurs when the path difference of 

the beam is reflected from an array of lattice planes with Miller Indices (h,k,l). The 

specific set of planes spaced via lattice spacing is indicated by d. The wavelength is 

represented by λ.  

As shown in Figure 3-17, the beams reflected from lower planes travel more than those 

reflected from upper layers by a magnitude of 2dsinӨ. When the conditions of Bragg's 

Law (nλ=2dsinθ) are satisfied, the scattered waves interfere constructively, resulting in 

the appearance of a peak at that specific angle. It should be noted that in case of using a 

configuration of Bragg-Brentano, since the position of the detector is always given by 

2Ө, only the parallel planes with respect to the surface of the films can be detected. Thus, 

as the Ө varies, different families of planes with different lattice spacing (d) can be 

detected. The crystal structure of a specimen can be evaluated by analysing the intensity 

and orientations of the diffracted patterns. Bragg-Brentano Geometry (BBXRD) is a 

popular configuration of X-ray diffraction. In this technique, both the X-ray, as source of 

incident radiation, and the detector move at the same angle velocity (see Figure 3-17) 

[194, 195]. 

λ = 2 d(hkl) sin θ                                                                                                          (33-2) 
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Figure 3-17.  A two-dimensional illustration of an X-ray beam reflection from two 

parallel crystalline planes separated by distance d.  

 

The system used for the current study was a Bruker D5000 diffractometer equipped with 

a Bragg-Brentano configuration. The X-ray source was Cu-Kα at 1.54056 A°, with a 

standard range of 2-theta degrees (2Ө) from 10 to 90 and a spot size of ~500 µm. The 

measurements have been carried out with a voltage of 40 kV and current of 40 mA. The 

calculations and analyses were studied using EVA, from Bruker, and Power Cell 

software. The databases, as a reference, were extracted from ICSD online databases 

(Inorganic Crystal Structure Data). In Table 3-1 and Table 3-2, the powder diffraction file 

(PDF) of CZTS and CZTSe are presented, respectively. The term I/Io is the relative peak 

intensity, d corresponds to the lattice space between the two neighbouring parallel planes, 

(hkl) denotes miller indices, and 2ϴ represents twice the diffraction angle.  
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Figure 3-18. (a) A picture of the XRD apparatus (b) A typical XRD pattern of Kesterite 

CZTS crystal structure (c) A schematic of X-ray diffractometer with Bragg-Brentano 

geometry. The schematic diagram of part (c) is courtesy of Dr. Pietro Maiello from 

Northumbria University.  
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Table 3-1. Lattice data of a single crystal Kesterite CZTS (ICSD database) 

miller indices (hkl) 2ϴ (degree) d (A
o
) I/Io (%) 

002 16.34 5.42 1 

101 18.21 4.86 6 

110 23.10 3.84 2 

112 28.53 3.12 100 

103 29.68 3.00 2 

200 32.99 2.71 9 

202 37.03 2.42 1 

211 37.97 2.36 3 

114 40.76 2.21 1 

105 45.00 2.01 2 

204 47.33 1.91 90 

132 56.18 1.63 25 

215 56.86 1.61 3 

224 58.97 1.56 10 

134 64.18 1.45 1 

400 69.23 1.35 2 

316 76.44 1.24 10 
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Table 3-2. Lattice data of a single crystal Kesterite CZTSe (ICSD database) 

miller indices (hkl) 2Ө (degree) d (A
o
) I/Io (%) 

002 15.61 5.67 1 

101 17.39 5.09 2 

110 22.03 4.03 2 

112 27.12 3.28 100 

103 28.30 3.15 2 

202 35.21 2.54 1 

211 36.08 2.48 1 

204 45.07 2.00 45 

312 53.28 1.71 13 

116 53.50 1.71 12 

400 65.44 1.41 6 
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3.3.6 Raman spectroscopy 

Raman spectroscopy is an optical non-destructive technique. Raman scattering 

spectroscopy is based on the measurement of the scattered light from a material. When 

the molecules of a material are exposed to a monochromatic light beam, the molecules 

are excited to a virtual state with higher energy. However, this virtual state is a transient 

state, meaning, the molecules fall back down to the ground state. According to the energy 

of the final state, a photon is scattered and can be detected as a Raman characteristic 

[196]. The use of excitation wavelength is important since it affects the efficiency of 

Raman characteristic in that if it is too high, the efficiency is very low by a factor of 1/λ4. 

While, if the excitation wavelength is very low, fluorescence emission will occur leading 

to the Raman peaks becoming sharp peak. The line shape and position of the Raman bands 

are determined by the crystalline structure and chemical composition of the measured 

samples. However, to identify different compounds, the excitation wavelength should be 

in a specified range [197, 198].  

The Raman spectra presented in chapters 5 were recorded by Dr. Sara Dale at Bath 

University and Dr. Wei Zhengfei at Swansea University. The analyses have been carried 

with a ‘T64000 Horiba-Jobin Yvon spectrometer’ using excitation wavelengths of 325nm 

and 532nm at Bath University. In addition, the analyses were also done by ‘Renishaw in 

Via Raman spectrometer’ using the excitation wavelengths of 532nm at Swansea 

University. This technique is quite a useful method, especially in characterising the 

Kesterite compounds, since with only the X-ray diffraction analysis, the indicative peaks 

of ZnS(e), CZTS(e), and CTS compounds overlap and cannot be distinguished. 

Consistent with previous studies, the Raman fingerprints at 325nm excitation wavelength 

for Cu2O should appear at 109 cm-1, 154 cm-1, 218 cm-1, 308 cm-1, 436 cm-1, 515 cm-1, 

635 cm-1, 665 cm-1, and 820 cm-1, while ZnS fingerprints at this excitation wavelength 

should be at 348 cm-1, 697 cm-1, and 1045 cm-1. The Raman fingerprints at excitation 

wavelength of 532nm for Cu2O observe the peaks at 150 cm-1, 220 cm-1, 218 cm-1, 308 

cm-1, 416 cm-1, 515 cm-1, 630 cm-1, and 645 cm-1, whereas SnO is characterised by peaks 

at 112 cm-1 and 210 cm-1 [199-203]. Typical Raman spectra of CZTS thin films at 

different excitation wavelengths are shown in Figure 3-19.  
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Figure 3-19. A typical Raman spectra of a CZTS thin films at different excitation 

wavelengths [203] 

 

3.3.7 Intensity modulated photocurrent spectroscopy (IMPS) 

The IMPS system is used to evaluate the optoelectronic characteristics of the absorber 

layer prior to depositing the subsequent device layers. This technique could be beneficial 

in both academic research and also in industry as a process of monitoring technique. 

The technique can be performed with the use by providing a p-semiconductor/electrolyte 

junction. The use of transparent redox electrolyte solution is required to permit the light 

to be transmitted to the surface of a solid (absorber layer) under illumination. Photo 

electrochemical analyses on CIGSe have shown that under illumination, the presence of 

Eu2+ ions in the electrolyte can act as collectors for the electrons (minority carriers) 

generated on the surface of the absorber layer. This will occur when the energy of 

illuminated photons is higher than the band gap of the p-type semiconductor [204].  

Two processes will occur under illumination: (i) photoexcitation (ii) electron transfer. 

When the light is incident, an overshoot effect can be seen due to the photoexcitation and 

generation of electrons and holes at the interface of p-n junction (see Figure 3-20). 

Afterwards, the electrons are transferred to the electrolyte side by Eu+2 ions and 

consequently leave the hole at the interface. The further behaviour of photocurrent 

transients can be explained by the separation or recombination of electrons and holes. 
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Surface defects could act as a recombination site and therefore can reduce the electron 

flow. Thus, the generation of majority carrier leads to an overshoot of photocurrent, while 

recombination causes the photocurrent to decay quickly [205]. The current can be 

generated if the external potential overcomes the internal bias and consequently, the 

electron-hole separates at the interface before being recombined [206]. Therefore, 

applying sufficient reverse bias voltage can contribute to collection of approximately all 

the photo generated charge carriers [3]. More details on the formation of the solid/liquid 

junction is presented in Appendix A. 

 

To study the photocurrent response of CZTS absorber layers, an optical measurement 

setup was used. The schematic view of the set-up is illustrated in Figure 3-21. The sample 

acts as a working electrode (WE) and was placed in a transparent glass box filled with a 

0.2M aqueous electrolyte solution of Eu (NO3)3. 6H2O, with the redox potential for the 

couple Eu3+/Eu2+ of 0.557V vs Ag/AgCl. The reference electrode (RE) is Ag/AgCl, and 

Pt/FTO is the counter electrode which is a platinum electrode in fluorine doped tin oxide 

used to allow the current to flow through the external circuit. The three electrodes are 

connected to potentiostat. The sample also needs preparation before immersing into the 

electrolyte. To do so, a small part of the analysed sample, which was produced on a 

molybdenum/glass substrate, was polished with an abrasive paste (1µm Alumina paste) 

to expose the molybdenum surface. The square wave is formed by a waveform generator 

by applying the frequency of 0.1 to 5kHz. This can be visualised through the oscilloscope. 

The sample is then illuminated by a beam emitted with a pulsed LED light (a Thorlabs 

C17 LED) with different wavelengths of 940 nm (IR), 565 nm (VIS), and a broad white 

source (425-650 nm) with a central wavelength of 430 nm. The typical power of the LED 

was 800 mW (940 nm (IR)), 880 mW (565 nm (VIS)), and 800 mW (425-650 nm (broad 

white source)). The spectra of these three collimated LEDs are shown in Appendix A. 

The signals demonstrated on the oscilloscope can be observed and analysed through light 

on-off cycle. In this manner, high photocurrent response is associated with a higher 

current density. Consequently, depending on its configuration, different interpretation can 

be explained (see Figure 3-20). 
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Figure 3-20. Three configurations of transient photocurrent responses to pulsed 

illumination with (a) no recombination (b) almost complete recombination (c) partial 

recombination [205]. 

 

 
Figure 3-21. A schematic of IMPS measurements set up 

 

3.3.8 External quantum efficiency (EQE) 

The EQE measurement, as explained in Chapter 2, measure the ratio of collected electrons 

per time per incident photons with a certain energy. As mentioned before, this factor is 

influenced by the rate of recombination or optical losses. The EQE spectrum can depict 

the optical losses. For short wavelengths, only a small fraction of light is absorbed by the 

absorber layer and most of the light is absorbed at the layers prior to the absorber layer. 

For long wavelengths, the absorber layer acts as a transparent component. In the case of 

surface recombination, the EQE plot has lower intensity at lower wavelengths, and if the 

minority carrier diffusion length is shorter than the wafer thickness, the plot shows lower 

intensity at higher wavelengths reflecting the bulk recombination. 

The band gap of the absorber layer can be calculated using the EQE measurements. For 

an ideal p-n junction, the EQE can be followed by the equation 3-3, where α is the 
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absorption coefficient, 𝑤 is the width of the SCR, and Ln is the minority carrier diffusion 

length. 

EQE= 1- 
𝐞𝐱𝐩(−∝𝐰)

 +∝𝐋𝐧
                                                                                                        

(33-3) 

Assuming αLn < 1, meaning a very short Ln, equation 4-3 changes to equation 4-4. 

EQE = 1- exp (-αw)                                                                                                     (3-4) 

For direct band gap semiconductors the equation 4-4 is approximated by equation 4-5. 

αℎ  ∝  (ℎ ν−Eg)
 1/2                                                                                                                                                                                 (3-5) 

Consequently, the band gap of absorber layer is approximated by extrapolating the plots 

of [hν × ln (1-EQE)]2 vs. hν [16, 207].  

The EQE measurements that have been reported in this thesis, presented in chapter 5, has 

been performed using a lock-in amplifier and a chopped white light source (900 W, 

halogen lamp, 360 Hz). It was combined with a grating monochromatic (calibrated with 

Si and Ge diodes) using 5 mM RuHex and 0.1 M sodium sulphate as an electrolyte 

solution. The illuminated area was approximately 2 mm2. The EQE measurement for this 

study has been carried out by Dr. Sara Dale at the University of Bath.  
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Chapter 4 

Preliminary Investigations  
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 Preliminary investigations 

This Chapter includes three parts consisting of (i) the establishment of a process that 

enables investigation of the conversion/synthesis of absorber layers by the established 

technology at Northumbria University (ii) the establishment of a uniform and 

homogenous precursor solution by a mechano-chemical procedure of ball milling (iii) the 

establishment of a scalable non-vacuum deposition method. 

4.1 CZTSe absorber layer fabricated by vacuum deposition technique 

This experiment provides an overview of the important parameters affecting the quality 

of the CZTSe absorber layer based on the vacuum deposition of precursors, which was 

an established technology at Northumbria University. The study of this experiment is also 

considered, as a preliminary investigation, to develop an appropriate synthesising 

approach in order to fabricate the CZTS Kesterite based thin films which will be presented 

in the next chapter.  

The fabrication parameters investigated for the synthesising of CZTSe Kesterite absorber 

layers included the following: (i) the influence of preheating and different methods of 

supplying selenium on macro/microscopic uniformity of absorber layer (ii) the influence 

of pre-treatment by varying conversion temperature and pressure on the micro and crystal 

structure of the absorber layers.  

4.2 Preheating and method of supplying the selenium 

This specific experiment has been developed from results of a Master’s Project by Guo 

Ming at University of Northumbria aimed at understanding the origin of ball like features 

that formed on CZTSe films converted using a Se-cap layer. The study has showed that 

the formation of ball like structures on the surface that were composed of zinc selenide 

compounds with some tin selenide. This resulted in non-uniformity of CZTSe thin films.  

One of the proposed mechanisms for this non-uniformity was that it may result from when 

the selenium melts. The molten selenium would be likely to exhibit poor wetting of the 

surface resulting in balling (formation of balls of molten Selenium on the surface) that 

could also attract low melting point elements from the precursor film to form the binary 

compounds. To assess whether this was a result of heating above the melting point (Tm) 
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of Se and Sn and whether the solid-state diffusion of Se into the films at T<Tm would 

reduce or prevent this, the behaviour below the melting point of Se (Tm Se) was 

investigated in the current study. 

To do so, the effect of preheating on the micro and crystal structure of CZTSe thin films 

using an evaporated cap layer of selenium has been examined. Afterwards, the process is 

compared with the CZTSe samples synthesised using Se pellets instead of Se-Cap layer. 

For all the executed experiments, the Cu-Zn-Sn metal precursors were deposited as 

described in section 3.2.2.1. Thin films were prepared with the composition of 

Cu/(Zn+Sn) = 0.5 and Zn/Sn = 1.3, and the thickness of 0.8 µm.  

To determine the required Se-Cap thickness that is sufficient for the fabrication of CZTSe 

Kesterite absorber films, layers of Se-cap with different thickness were deposited on top 

of the CZT precursors by thermal evaporation technique. The Se-Cap thickness was 

controlled by adjusting the deposition time. Three different values of cap thickness were 

used with the values of 0.5, 1, and 1.5 times the thickness of CZT thin film (with the 

thickness of 0.4, 0.8, and 1.2µm, respectively). The sample names for these are 1a, 1b, 

and 1c, respectively, and these are shown as highlighted in grey in Table 4-1.  

From X-ray patterns (see Figure 4-1), the mass of selenium required to produce Kesterite 

CZTSe thin films was equivalent to a Se-layer with the thickness of 1.2 µm 

(approximately 1.5 times the thickness of the precursor layer, sample 1c). The XRD 

pattern shows the presence of CZTSe Kesterite structure together with other binary 

compounds such as SnSe, when the cap layer of 1.2 µm was used (see Figure 4-1c). It 

should be noted that the presence of ZnSe cannot be determined by XRD pattern due to 

the overlap of its peaks with those from CZTSe. Nevertheless, as it will be explained later 

in this section, it is highly likely that ZnSe compound has also been formed across the 

thin film. However, when the thickness is less than 1.2 µm, Cu-Sn alloy and Cu1.8Se 

compounds are formed rather than the formation of CZTSe Kesterite (see Figure 4-1a, 

and Figure 4-1b). 
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Table 4-1. The table shows the pre-treatment and conversion (selenisation) conditions for 

samples 1a, 1b, 1c with different selenium thickness and 1d to 1h with different heating 

profiles. 

Sample  Method  

of 

supplying 

Selenium 

Selenium 

thickness 

(µm)  

[the ratio 

with 

regard to 

the 

precursor 

thickness] 

Pre-treatment Conversion (Selenisation) 

Temp. 

(°C) 

Pressure 

(mbar) 

Dwell 

Time 

(hours) 

Temp. 

(°C) 

Pressure 

(mbar) 

Dwell 

Time 

(hours) 

1a Cap layer 0.4 [0.5] 160 ±5 300 3 550±5 300 0.25 

1b Cap layer 0.8 [1] 160 ±5 300 3 550±5 300 0.25 

1c Cap Layer 1.2 [1.5] 160 ±5 300 3 550±5 300 0.25 

1d Cap Layer 1.2  160 ±5 300 3 - - - 

1e Cap layer 1.2  220 ±5 300 0.5 - - - 

1f Cap layer 1.2 160 ±5 300 3 300 ±5 300 0.5 

1g Cap layer 1.2 160 ±5 300 3 550±5 300 0.5 

1h Pellets 1.2 - - - 500 ±5 300 0.25 
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Figure 4-1. The XRD patterns of CZT thin films selenised with different Se-cap layers, 

heated at 550°C (1a) 0.4µm (tSe= 0.5 t CZT) (1b) 0.8µm (tSe = tCZT) (1c) 1.2µm (tSe = 

1.5tCZTS). 

 

After determining the optimum Se layer thickness, subsequent investigations used as the 

reference. CZT precursors with Se-Cap layer having the thickness of 1.2µm (~1.5tCZT) 

have been pre-heated at temperatures of 160±5°C (T < TmSe and TmSn), 220±5°C (TmSe < 

T < TmSn), 300±5°C (T > Tm(Se,Sn)), and 550±5°C (for the direct  formation of CZTSe 

Kesterite structure based on previous studies at Northumbria University). The samples 

were named 1d to 1g, respectively with details presented in Table 4-1. 

This experiment shows the formation of different binary compounds and interesting 

morphology on the converted thin films, as it will be discussed in the following.  

For Samples (1d) and (1e), heated to temperatures less than the melting point of selenium 

the formation of selenium island/star structures was observed (see Figure 4-2). The 

yellow and blue regions in Figure 4-2c indicate the precursor Cu-Zn-Sn and the selenium, 

respectively. This structure was also observed at 220±5°C where TmSe<T<TmSn. The star-

like island features are consistent with a recrystallization of the selenium layer when the 

sample is heated to just below Tm(Se,Sn).  
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Figure 4-2. The plan-view SEM images of Se-capped CZT (1a¥) before conversion (1e) 

after being heated to 220±5°C for 0.5 hour (1d) EDX compositional map created with 

INCA software of the sample heated at 160±5°C for 3 hours are displayed. The yellow 

and blue regions in image 1d indicate the precursor Cu-Zn-Sn and the selenium, 

respectively. 

 

The SEM images of samples 1d, 1f, and 1g are shown in Figure 4-3. The subsequent 

balling corresponds with the temperature exceeding the melting point of selenium and tin 

(~220.8°C and ~231.9°C, respectively) by ~80°C. When the temperature was increased 

to 300°C, (T>Tm (Sn,Se)), the ball-like features were seen to start growing on the surface of 

the thin films (see Figure 4-3b). The XRD pattern for this sample is consistent with the 

presence of Cu-Sn alloy, Sn, and ZnSe compounds, but no peaks that would correspond 

to SnSe were observed (see Figure 4-4, 1f). The SnSe binary compound appeared at a 

higher temperature (550°C), when the Cu-Sn alloy is melted (see Figure 4-4, 1f). 

The XRD pattern of sample (1g), when the temperature increases to 550°C, confirms that 

the Kesterite compound emerges together with the binaries such as SnSe and probably 

ZnSe (see Figure 4-4, 1g). Due to the limited availability of Raman technique to 

investigate the presence of ZnSe binary compound across the converted thin films, studies 

by Colombara et al and Vora et al are referenced here, in which the ZnSe binary 

compounds were shown as bright regions in SEM images [208-210]. Since similar 

features to those observed in the Colombara et al and Vora et al studies were detected by 

SEM analysis in the current research as well, the features pointed with red arrows in 

Figure 4-5(1g*) are attributed to the presence of the ZnSe compound. Together with the 

formation of binary compounds, the image shown in Figure 4-5(1g*) reveals the typical 

Kesterite morphology, which is also consistent with the Kesterite structure obtained in 

Colombara et al study [208]. 
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Figure 4-3. The plan-view SEM images of CZTSe (Se= 1.2µm, CZT=0.8µm) after (1d, 

1d*) 160°C, (1f, 1f*) 160°C - 300°C, and (1g, 1g*) 160°C - 550°C are illustrated. The 

images are observed with two different magnifications of (1d to 1g) 100X, and (1d* to 

1g*) 1000X. 

 

(1d)

(1f)

(1g)

 

Figure 4-4. The XRD patterns of CZT samples selenised at temperature of (1d) 160ºC 

(1f) 300ºC (1g) 550ºC.  
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In order to evaluate the influence of chalcogen supply on the morphology of the converted 

CZTSe thin films, an experiment has been carried out using Se pellets instead of Se-Cap 

layer. This experiment has been introduced as sample 1h in Table 4-1. The conversion 

condition used for sample 1h was selected as the optimum conversion condition achieved 

in the laboratory of Northumbria University and was re-examined during the work for 

this thesis (the details are presented in section 4.2.1). From the SEM images, the 

microstructure of absorber layer for the sample selenised using selenium pellets appears 

to exhibit greater uniformity (see Figure 4-5 (1h,1h*)), compared to those synthesised 

using the Se-cap layer (see Figure 4-5 (1g,1g*)). The area indicated by the red arrow in 

Figure 4-5 1g*, shows the presence of binary compounds formed across the surface for 

the sample prepared using Se-cap layer. However, the macroscopic view of the sample 

with Se-cap layer appears to be more uniform than the one prepared with Se pellets (see 

Figure 4-7). The XRD patterns confirm the presence of Kesterite compounds for sample 

(1h) in which Se pellets was used as a source of chalcogen (see Figure 4-6). EDX 

measurements for samples (1d) to (1h) are presented in Table 4-2. The results show that 

sample (1g), which was converted using Se-cap layer at 550°C, has a very Zn-rich 

composition (Cu/(Zn+Sn) = 0.5 and Zn/Sn =2.6). While, the composition ratio of sample 

(1h), in which Se pellets has been used, looks more promising compared to the other 

converted samples. Sample 1h shows the ratio of Cu/(Zn+Sn) = 0.8 and Zn/Sn = 1.0, 

which is close to the stoichiometric ratio have been suggested as having the best 

performance for solar devices, as explained in Chapter 2. 

 
Figure 4-5. The plan-view SEM images of samples (1g, 1g*) using Se-cap layer at 550°C, 

and samples (1h, 1h*) using Se pellets at 500°C, with two magnifications of (1g, 1h) 

1000X, and (1g*, 1h*) 10000X. 
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Figure 4-6. The XRD pattern of CZTSe thin film heated up to 500°C using Se pellets. 

 

 

Figure 4-7. The macroscopic view of CZTSe sample synthesised using (1g) Se-cap layer 

and (1h) Se pellets. 

 

 

Table 4-2. This table is showing the pre-treatment and conversion (selenisation) 

conditions for samples 1d to 1h. The table also presents the composition (at%) of the as-

deposited and converted thin films of CZTSe, sample 1d to 1h. 

Sample Method 

of 

Supplying 

Selenium 

Pre-treatment and 

Conversion 

status: 

Temp. (°C) / Dwell 

Time (hrs) 

Cu 

(at%) 

Zn 

(at%) 

Sn 

(at%) 

Se 

(at%) 

𝐂𝐮

𝐙𝐧 + 𝐒𝐧
 

 

𝐙𝐧

𝐒𝐧
 

 
Cap layer 

 

 

 

 

As-deposited  

precursor 

33 38 29 0 0.5 1.3 

1d (160 ±5 / 3) and no 

conversion 

6 7.5 5.5 81 0.5 1.4 

1e (220 ±5 / 0.5) and 

no conversion 

7.5 8 6.5 79 0.5 1.2 

1f (160 ±5 /3) and 300 

/ 0.5 

4 12 3 81 0.3 4.0 

1g (160 ±5/ 3) and 550 

/ 0.5 

16.5 26 10 47.5 0.5 2.6 

1h Pellets no pre-treatment, 

500±5 / 0.25 

21.5 13.5 13.5 51.5 0.8 1.0 
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For Se-cap layer, the ratio between the Se consumed during the evaporation to deposit 

the cap (Se placed in crucible) and the Se introduced into the graphite box is significantly 

high. However, supplying the Se pellets directly inside the graphite box reduces the 

amount of Se consumed and enables more efficient use of the chalcogen. Table 4-3 

represents a comparison of the quantity of Se used in both processes and shows the 

significant advantage associated with the use of Se pellets for the synthesising process.  

 

Table 4-3.  The table shows the mass of selenium that was used together with the mass of 

consumed selenium during the pre-treatment and conversion (selenisation) processes of 

using Se pellets and cap layer as a source of the chalcogen. 

Method of 

supplying 

Selenium 

The mass of Selenium required (♠) to 

fabricate the cap-layer, and  (†) to 

fabricate the CZTSe thin film based 

on its stoichiometric composition  

(mg) 

The mass of Selenium required 

to introduce (♣) into the 

evaporator chamber, and (¤) 

into graphite box during 

conversion 

(g) 

Cap Layer 

Cap layer 

6♠ 20 ♣ 

5† 

Pellets 5† 0.14 ¤ 

 

Further optimisation of the quality of CZTSe absorber layers using selenium pellets (with 

the same conversion condition as sample 1h) is published by Dr. Jose Marquez Prieto 

from Northumbria University. This study includes the reduction of CZTSe based solar 

devices synthesised at a conversion temperature of 500ºC using selenium pellets resulting 

in an efficiency of 8.1% [211]. 

4.2.1 Pre-treatment by varying conversion pressure and temperature 

This experiment has been done with the aim of evaluating the influence of preheating at 

different ambient pressure. To do so, the CZT thin films for this specific experiment were 

sputtered on molybdenum soda-lime glasses (Mo/SLG), as described in section 3.2.2.1. 

The thickness of sputtered CZT thin film was 0.78µm with a compositional ratio of 

Cu/(Zn+Sn) = 0.6 and Zn/Sn=1.1. Thereafter, the samples were selenised with different 

conversion conditions, as presented in Table 4-4. It should be noted that sample 2d has 

the same conversion condition as sample 1h, described in section 4.2. It should be also 

noted that argon was used as the ambient pressure for all the samples 2a to 2d. 
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Table 4-4. The table presnets the conversion conditions for selenisation of samples 2a to 

2d by varying the preheating temperature and the ambient pressure. 

Sample Pre-treatment Conversion 
 

Temp. 

(°C) 

Pressure 

(mbar) 

Dwell time 

(min) 

Temp. 

(°C) 

Pressure 

(mbar) 

Dwell time 

(min) 

2a 250 1 20 500 300 15 

2b 300 1 20 500 300 15 

2c 350 1 20 500 300 15 

2d - - - 500 300 15 

 

Analysing the XRD patterns of sample 2a to 2d have showed presence of Kesterite CZTSe  

together with SnSe2 compounds at 2Ө = 14.5º and 30.5º, when the precursors are 

converted with pre-treatment step operating under a low pressure of argon ambient (see 

Figure 4-8). The SEM images from the morphology of samples (2a) to (2d) are shown in 

Figure 4-9. The ball like structures are seen when the sample is pre heated at temperatures 

above 300ºC. However, performing a one-step conversion processing contributes to a 

reduction in the formation of ball like features (see Figure 4-9).  

 
Figure 4-8. The XRD diffraction patterns of selenised samples converted at (2d) 500°C 

with a pressure of 300 mbar (2a) 250°C-500°C with a pressure of 1-300 mbar (2b) 300°C-

500°C with a pressure of 1-300 mbar (2c) 350°C-500°C with a pressure of 1-300 mbar. 
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Figure 4-9. The plan-view SEM images of selenised samples with and without pre-

treatment steps, converted at (2a, 2a*) 250°C-500°C with a pressure of 1-300 mbar (2b, 

2b*) 300°C-500°C with a pressure of 1-300 mbar (2c, 2c*) 350°C-500°C with a pressure 

of 1-300 mbar (2d, 2d*) 500°C with a pressure of 300 mbar of argon. The images are 

observed with two different magnifications of (2a to 2d) 1000X, and (2a* to 2d*) 10000X. 

 

 

Table 4-5. Displaying the composition ratio (at %) of the pre-treatment/converted thin 

films of CZTSe for samples of 2a to 2d. 

Sample Temp. 

(°C) 

Time 

(min) 

Pressure 

(mbar) 

Cu/(Zn+Sn) Zn/Sn Se/(Cu+Zn+Sn) 

2a 250/500 20/15 1/300 0.7 1.3 1.0 

2b 300/500 20/15 1/300 0.6 1.1 1.1 

2c 350/500 20/15 1/300 0.6 2.1 1.0 

2d 500 15 300 0.8 1.0 1.1 

 

4.2.2 Summary of Results and Discussion 

In case of using Se-cap layer, it is expected that during conversion, some regions of the 

precursor surface would be in intimate contact with liquid Se or Se/Sn droplets together 

with Se-vapour. Thus, it is highly likely that the difference in reactant states would 

contribute to a non-uniform reaction of the Cu-Zn-Sn precursors with the selenium. In 

such a condition, the kinetic of reactions could be very complex. Therefore, the 

synthesising process requires a very precise control over pressure and temperature. In this 

context, it is assumed that the segregation of selenium at specific points of the surface 

(the star-like positions) could be a proper nucleation point for the formation of selective 

binary compounds during the conversion at higher temperatures. However, in solid-
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vapour equilibrium (in the case of using selenium pellets), the selenium does not start 

melting and segregating on the precursor surface. Ideally, the vapour pressure of the 

selenium could be partially controlled by adjusting the quantity of Se pellets in the 

graphite box. This might diminish the complexity of the kinetic of reactions; 

consequently, the formation of binary compounds will be restricted.  

The results observed in this study are consistent with data reported by Yoo et al, as they 

indicated that at temperatures below 415°C, tin would be expected to alloy with copper 

or remain as an elemental metal rather than reacting with selenium [212]. However, at 

higher temperatures (~550ºC), the SnSe was formed and the results have shown the 

formation of CZTSe Kesterite together with SnSe and ZnSe when the Se-cap layer was 

used as a source of chalcogen. 

As explained in Chapter 2 (literature review), the formation of binary compounds together 

with CZTS(e) Kesterite across the absorber layer, can reduce the solar cell performance. 

The presence of secondary compounds can be detrimental to device performance by 

acting as centres for Shockley-Read-Hall recombination and reducing the open circuit 

voltage [213]. 

Considering the cation ratios for all synthesised samples during the current experiments, 

the EDX analyses illustrate the relatively good contribution of elements across the CZTSe 

thin films fabricated using the selenium pellets, with the composition of Cu-poor 

(Cu/(Zn+Sn) = 0.8) and Zn-rich (Zn/Sn = 1.2). This could lead to the highest efficiencies 

for solar devices as it is close to the stoichiometric composition of the so far highest 

efficiency solar devices [15, 58, 214]. However, the very Zn-rich composition 

(Cu/(Zn+Sn) = 0.5) and Zn-rich (Zn/Sn = 2.6) of sample with the Se-cap layer converted 

at 550°C, could result in the segregation of ZnSe which has a negative impact for the 

device performance as discussed earlier. 

Moreover, the advantage of using selenium pellets is not only the formation of a relatively 

uniform microstructure, but also a more efficient material usage. Thermal evaporation of 

a cap layer requires the filling of the crucible with 20g of selenium. However, the majority 

of evaporated selenium is usually deposited on the walls of the evaporation chamber. 

Whereas, the mass introduced as Se pellets is significantly less when compared to the 

mass required in the stoichiometric composition of CZTSe thin films. 

Both Se pellets and cap layer use significantly more Se than is needed for stoichiometry 

CZTSe compound. This is due to the fact that the seleneium is a relatively unreactive 
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element. Thus, a sufficient partial pressure of chalcogen during the 

sulphurisation/selenisation process is necessary to (i) reduce the decomposition rate of 

CZTS(e) compound and (ii) to prevent the formation of VS(e) in the crystal lattice of 

Kesterite structure. The Se pellets appears to be more than the cap layer (considering what 

is inside the graphite box only) but is significantly less wasteful, compared to the huge 

mass of selenium waste during thermal evaporation processing. 

The study on the preheating at various pressure and temperature illustrated that the one-

step process (without the pre-treatment stage) utilises the ambient gas pressure during 

conversion aids the process of CZTSe formation. During the experiment, it was observed 

that when the tube furnace is in vacuum, the pressure inside the tube is approximately 

3×10-3 mbar. Since increasing the pressure at pre-treatment step to 1mbar is still very low, 

it is assumed that the situation at pre-treatment step is close to vacuum condition. As 

explained in Chapter 2, at low ambient pressures, the minimum temperature of 340°-

350°C is required for the transformation of selenium from liquid to vapour state. 

Preheating the sample at around 300-350°C with low ambient pressure contributes to an 

increase in the probability of the presence of solid, vapour, and liquid states. This in turn 

could lead to the formation of selenium droplets on the surface together with the 

complexity of reaction on the precursors, and possibly the formation of selectively binary 

compounds with the components of precursors. However, when the preheating step at low 

ambient pressures was omitted, less ball like features were observed. This can be 

attributed to the instability of liquid states resulting in a higher probability of the presence 

of solid and vapour states, compared to that of the liquid state. This in turn can ensure a 

better uniformity with fewer formation of ball like features. Thus, a temperature higher 

than 350ºC seems to be required to fill the graphite box with selenium vapour and avoid 

the creation of three complex reactions simultaneously in the system. Since, such a 

condition makes the reaction complex by the formation of selenium droplets on the 

precursor surface, the selectively binary compounds may create with the components of 

the precursor. It should be noted that the ball like features have also been observed when 

Se-cap layer had been used. Similarly, in that case, the formation of ball like features 

started to appear at temperatures higher than 300°C. 
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4.3 The fabrication of precursor solution via ball milling, non-vacuum deposition 

technique  

In non-vacuum deposition processing, the preparation of a precursor solution is one of 

the most important stages. In order to fabricate the precursor solution via ball milling 

process, several parameters were needed to be considered and these include the milling 

speed, ball-to-powder ratio, milling time, milling ball size, milling agent, and the use of 

an appropriate suspension solution. It is assumed that these factors could affect the quality 

of precursor solution and ultimately the quality of CZTS thin films. The milling speed 

and ball-to-powder ratio have been examined by Ming et al during an earlier study at 

Northumbria University. The investigation of the influence of other parameters was 

examined during the research reported in this thesis. 

4.3.1 Milling time  

Cu2O compound was ground via ball milling apparatus with a range of milling times as 

follows: 4, 8, 12 and 24 hours with the zirconia balls of diameter, D = 2mm. The particle 

size of the powders were estimated using SEM. The results revealed that after 4 hours of 

grinding, the Cu2O particle size decreased from 3-10µm to < 600nm-1µm (see Figure 

4-10). The SEM images illustrate that increasing the grinding time to more than 4 hours 

does not result in a further clear reduction in particle size. Therefore, the shorter process 

time was selected because it consumed less power and contributes to a higher throughput. 

The EDX mapping images of mixed ground powders (see Figure 4-11), clearly revealed 

that the Cu2O particles remained the largest particles when compared to those of ZnS and 

SnO, when all three compounds were milled for 4 hours. The identifications of samples 

is presented in Table 4-6. 

 

Table 4-6. Sample identification and associated synthesising milling conditions 

Sample Milling time Materials that are grounded 

3a No milling Cu2O 

3a4 4 hours Cu2O 

3a8 8 hours Cu2O 

3a12 12 hours Cu2O 

3a24 24 hours Cu2O 

4b 4 hours Cu2O +SnO +ZnS 
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Figure 4-10. The variation in Cu2O particle size after (3a) no milling (3a4) 4hrs (3a8) 8hrs 

(3a12) 12hrs and (3a24) 24hrs of milling. 

 

Figure 4-11. The EDX Mapping images are indicative of the elements in different colours 

of a mixture of Cu2O, ZnS, and SnO compounds milled and mixed for 4 hours (4b-Cu) 

Copper in green (4b-S) Sulphur in yellow (4b-Sn) Tin in blue (4b-Zn) Zinc in red. 

 

4.3.2 Ball size  

In order to assess the effect of using different ball sizes on the final particle size of milled 

compounds, the Cu2O compound was grounded with different ball sizes as it was 

mentioned in section 3.3.2 (results summarised in Table 4-7, shown in (see Figure 4-12). 

It can be concluded that the particle sizes of the milled Cu2O compound are quite similar 

to the quantity which was advertised by the company (the Fritsch P6 Planetary). 

Nevertheless, the very slight inconsistency between the actual and the expected particle 

sizes might be resulted due to the agglomeration of particles or the poor dispersion of the 

compounds in the carrier solution. Moreover, the results have shown that the smaller 
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particle size of powders in precursor solutions could contribute to a better dispersion in 

the suspension solution. 

Table 4-7. The table illustrates the results achieved using the Mastersizer for sample 5a 

to 5d, [d(0.5)] represents that the 50% of particles have the mean particle size of a given 

amount and [d(0.9)] represents that 90% of particles have the mean size of the given 

amount.    

Sample  Ball Size  

(mm) 

Expected Particle 

Size 

after milling 

based on the 

theory 

Particle Size 

after milling  

[d(0.5)] 

(Measured by 

Mastersizer) 

Particle Size 

after milling 

[d(0.9)] 

(Measured by 

Mastersizer) 

5a No milling - 8 µm 50 µm 

5b 5 mm 5 µm 4.5µm 18µm 

5c 2 mm 2 µm 2.2 µm 4 µm 

5d 0.5 mm 0.5 µm 1.2 µm 1.5 µm 

 

 

Figure 4-12. The graphs show the distribution of particle size (5a) un-milled Cu2O when 

they milled with the ball sizes of (5b) D = 5mm (5c) D = 2mm and (5d) D = 0.5 mm. 
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4.3.3 Suspension solution 

As it was mentioned in section 2.2.7.2 , the choice of carrier solution is of great 

importance. To evaluate this factor, three different precursor solutions using Isopropyl 

Alcohol (IPA) and/or DI water were used as suspension solutions during the milling 

process with the weight ratio of liquid/powder = 3. The milling time was set at 4 hours 

with the ball size of D = 2mm. Figure 4-13 illustrates the more porous structure for the 

as-deposited and the converted precursor if the precursor solution contains the 

90%water+10%IPA compared to the use of 100%IPA. 

 

Figure 4-13. The plan-view SEM images of (a,b) as-deposited precursors and (c,d) the 

converted samples using a suspension solution of (a,c) 100% IPA (b,d)  90% deionized 

water + 10% IPA. 

 

 

In order to assess the wetting of precursor solution on glass and molybdenum layer, the 

contact angle analysis has been performed at Swansea University by Dr. Greenwood. As 

shown in Table 4-8, changing the solvent from 90%water+10% IPA to 100% IPA, has 

shown a better wettability for the precursor solution. This in turn could contribute to a 

better uniformity of thin films on SLG/Mo. The results also indicate that the use of 90% 

water+10% IPA as a solvent has a better wettability if the substrate is only SLG. The 

experiments have been repeated three times for each sample. The average figures of 

contact angles are reported in Table 4-8. 
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Table 4-8. The table indicates the average figure of the contact angles analysed and 

reported by Dr. Peter Greenwood, Swansea University. 

Substrate Solvent Contact Angle (°) 

SLG 90% water +10% IPA 17.0 

SLG 100% IPA 14.4 

SLG/Mo 90% water +10% IPA 30.4 

SLG/Mo 100% IPA 8.2 

 

4.3.4 Thin film fabrication via various non-vacuum deposition techniques 

To provide a uniform and thin layer of coating on top of the substrates, several deposition 

techniques have been used. Initial trials have been carried out using the hand held rolling 

and doctor blade techniques. However, these methods were not that successful since the 

thickness of the coatings were relatively non-uniform and large (approximately 5-10 µm). 

Compared to rolling and doctor blade methods, the use of spraying technique with 

airbrush has shown the formation of thin and uniform coatings. This technique was the 

main and the only available technique for non-vacuum deposition processing at the 

laboratories in University of Northumbria.  

To increase the reproducibility of the coated films, the nitrogen pressure was set at its 

maximum degree by pushing pack the button (number 3, see Figure 3-4) to its maximum 

degree. The distance and the solvent rate have been adjusted by the airbrush screws. 

According to the visual inspections, the uniform layer of sprayed films have been formed 

at the working distance of ~8-10 cm from the substrate surface.  

4.3.5 Results and Discussion 

Preparing a uniform coating is a significant stage in solution processing. This requires a 

preparation of a homogenous precursor solution, the using of an appropriate carrier 

solution which aids materials to disperse uniformly, and eventually establishing a suitable 

method of deposition. 

It is speculated that reducing the particle size of metal oxide is beneficial for the reduction 

process since sulphur tends to diffuse from the surface of particles. Thus, for large 

particles, the only surface or specific depth of the particles might be sulphurised. By 

increasing the milling time or by using the smaller ball size, the particle size can be 

reduced. Moreover, the target thin film thickness is 2-4 um therefore it is reasonable to 

produce particles that are smaller than this to enable a film with complete coverage. This 
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is also consistent with performing multiple coatings (spraying or printing) if needed. 

Furthermore, the results in the current study have shown a considerable difference in 

terms of the particle sizes of SnO, Cu2O, and ZnS compounds. Thus, it could be 

advantageous to reduce the particle size in order to provide a well-dispersed precursor 

solutions, as it is reported by Kim et al that the finely milled precursor particles promotes 

the CZTS crystallisation when the precursor is heated at high temperatures [127]. 

The study has shown that the use of IPA is an appropriate choice since it has a low boiling 

point and is a volatile organic compound. Therefore, it leaves the surface of coated 

samples during procedures of deposition and subsequent heat treatment. This is beneficial 

since as reported elsewhere [122], the presence of carbon in the absorber layer, which 

may exist due to the use of solvents with high boiling point, can reduce the grain growth 

and consequently the solar cell performance. In the current experiments, the deionised 

water has been also replaced instead of using IPA. However, the results have shown that, 

water remains on the surface for a longer time allowing the less wetting and adhesion of 

the particles. It is expected that this will lead to the agglomeration. Although the use of 

water as a carrier solution can be a safe and environmentally friendly alternative, the 

creation of agglomerated structure is assumed to cause difficulties in sulphurisation 

process with similar reason as the presence of large particle size of compounds. This is 

presumed to reduce the rate of reduction in further steps of processing. 

Investigating the use of different deposition techniques resulted in the identification of a 

scalable and simple approach based on the use of an ‘Airbrush’. The spraying technique 

has shown a relatively thin and uniform coating compared to the preliminary trials using 

doctor blade and rolling methods. However, the spraying technique which was used in 

this research was controlled manually. Practice was needed to enable the production of 

uniform coatings. It is speculated that if the spraying technique is executed automatically, 

the development and the degree of reproducibility could be enhanced. 

 

4.4 Summary 

The use of Se pellets as a source of chalcogen was the starting point for further 

optimisation in order to develop CZTS absorber layers, considering the use of sulphur 

powders instead of sulphur cap layers. As the experiments have shown, the advantages of 

using an evaporated cap layer includes the macroscopically uniform surface of the film, 

allowing to control the amount of selenium in intimate contact with the precursor during 
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evaporation. However, this technique has demonstrated a microscopic non-uniformity 

with the formation of high degree of secondary compounds. By using Se pellets, although 

the macro-scale non-uniformity was significantly increased, the micro-uniformity and 

morphology improved. Moreover, the experiments have shown the more efficient 

material usage in case of using Se pellets. The investigation on varying various 

conversion conditions during heat treatment has shown the importance of pressure and 

temperature control on the formation of CZTSe absorber layer, which gives an 

understanding of the critical influence of ambient pressure and temperature on developing 

Kesterite structure. This in turn will be beneficial for the further study on the fabrication 

of CZTS Kesterite thin films which will be explained in next chapter.  

In the second part of the preliminary experiments, the investigations contributed to 

establish an optimised condition of ball milling, using 4 hrs of milling with the D = 0.5mm 

zirconia balls, and the use of IPA as a suspension solution. The results have shown a 

better wettability of using pure IPA, compared to the use of a mixture of IPA and water 

on SLG/Mo substrate. Eventually, a scalable spraying technique using an airbrush has 

been established to prepare a uniform and thin layer of coating.  
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Chapter 5 

CZTS thin films’ fabrication via non-

vacuum deposition technique   
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 CZTS thin films’ fabrication via non-vacuum deposition technique 

As was shown in Chapter 2 and shown in Chapter 4, one of the important issues in 

fabricating a good quality of absorber layer is to ensure an appropriate 

conversion/synthesising process. This chapter presents the fabrication of CZTS thin films 

via non-vacuum deposition technique based on the knowledge and optimised conditions 

achieved during the preliminary investigations. The main focus here is to study the 

influence of various conversion conditions on the quality of absorber layer. In addition, 

this study is followed by several follow-up trials aimed at improving the quality of 

absorber layer by investigating (i) the use of slot-die deposition technique and comparing 

it with the spraying method (ii) comparing the use of excess quantity of sulphur in both 

precursor solution and sulphurisation procedure, to use of sulphur only during the 

sulphurisation process and (iii) the fabrication of CZTSSe absorber layer by post 

selenisation of CZTS thin films.  

5.1 The influence of conversion parameters on the formation of CZTS thin films 

The following subsections detail the investigation of different synthesising parameters 

that are assumed to be significant in the formation of CZTS absorber layers. These include 

the composition and the pressure of ambient gas used for the sulphurisation process, the 

precursor’s composition, the dwell time and sulphurisation temperature, the heating 

profile, the quantity of sulphur, and post heat treatment procedure. It should be noted that 

adjusting an optimum condition is an iterative process and at times, it requires varying 

and re-examining the parameters to modify the conversion conditions.  

5.1.1 Ambient gas composition and total pressure 

As noted in Chapter 2 and 4, the ambient pressure during the synthesising of CZTS(e) 

thin films could have a critical impact on its final structure. Due to the importance of this 

having a key role during sulphurisation procedure on the quality of CZTSe Kesterite thin 

films, a study of optimising CZTS thin films was initiated that included the investigation 

of the influence of varying ambient gas composition and pressure. A combination of 

argon (Ar) and forming gas (H2/N2) was used to assess the role of a reducing atmosphere. 

To do so, all the samples were sulphurised at 550°C for 4 hours using different ambient 

pressures, as detailed in Table 5-1. At this stage, the other parameters such as dwell time 

and sulphurisation temperature were chosen based on the study conducted by Ming et al 

at Northumbria University.  
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Table 5-1. Showing the ambient gas composition and pressure used for conversion 

samples 1a to 1d. 

Sample Ambient pressure 

1a 500 mbar Ar 

1b 500 mbar H2/N2 

1c 100 mbar H2/N2 

1d 100 mbar H2/N2 + 400 mbar Ar 

 

The results from XRD patterns, as shown in Figure 5-1, indicate that the 100mbar H2/N2 

is necessary to transform tin oxide, to tin and/or tin sulphide. However, increasing the 

pressure of forming gas to 500mbar may raise the degree of decomposition rate and will 

cause the loss of precursor from the surface and non-uniformity across the converted thin 

films (see Figure 5-2). Thus, it is important to provide a sufficient pressure of forming 

gas in order to reduce the oxide compounds completely, without the creation of non-

uniformity across the thin films. The XRD patterns show that the use of argon as a 

background gas could be beneficial in providing well-crystallised Kesterite structure, 

compared to the use of only forming gas. The presence of unconverted SnO2 was clearly 

present when only argon was used during the conversion. Therefore, at this stage, a 

combination of argon and forming gas could be the best option in order to achieve the 

advantages of both ambient gases. The XRD results illustrated that using 100mbar H2/N2 

and 400mbar Ar could be appropriate to form Kesterite structure, although SnS crystals 

are still present across the CZTS thin films. The 100 mbar H2/N2 and 400 mbar Ar was 

selected as the optimum pressure and composition to prepare CZTS thin films during the 

subsequent study. This enabled the evaluation of other parameters to further improve the 

quality of absorber layers. The study on pressure was re-examined and this is presented 

later in this chapter, section 5.1.5 and 5.1.9. 
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Figure 5-1. The XRD patterns of CZTS thin films converted under different background 

pressures of (1a) 500 mbar Ar (1b) 500 mbar H2/N2 (1c) 100 mbar H2/N2 (1d) 400 mbar 

Ar + 100 mbar H2/N2. 

 

 
Figure 5-2. The plan-view SEM images shows the microstructure of CZTS thin films 

converted with the use of different background pressures of (1a) 100mbar H2/N2 (1b) 

500mbar H2/N2 (1c) 500mbar Ar (1d) 400mbar Ar + 100mbar H2/N2.  

 

5.1.2 Precursor’s composition 

As mentioned in chapter 2, one of the challenges in non-vacuum deposition techniques is 

the difficulty in controlling the chemical composition. Therefore, a specific experiment 

in this thesis was undertaken to evaluate the compositional changes of precursor solution 

and the converted thin films during the synthesising process. As a reference and in order 
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to compare the results with the data achieved earlier by Ming et al, the precursor solution 

was prepared with the ratio of Cu/(Zn+Sn) = 1 and Zn/Sn = 1. 

The results, as shown in Table 5-2, illustrated that the ratio of converted thin films was 

Cu-rich. This result, as mentioned earlier (in chapter 3) is not recommended for the 

Kesterite absorber layers. Thus, the theoretical atomic ratio has been changed to 

Cu/(Zn+Sn) = 0.7 and Zn/Sn = 1.2 (Cu-poor and Zn-rich). The latter atomic ratio for 

precursor solution was resulted in the fabrication of converted thin films with a very Zn-

rich composition. Consequently, the precursor composition has been changed to 

Cu/(Zn+Sn) = 0.7 and Zn/Sn = 1. The latest converted thin films was still obtained a very 

Zn-rich and Sn-poor composition (Zn/Sn ~1.7), even though the sulphurisation time 

decreased from 4 hours to 1 hour. Nevertheless, the results of this converted sample (2d) 

have shown a better consequence compared to the previously examined experiments (2a, 

2b, and 2c). Therefore, this initial ratio (Cu/(Zn+Sn) = 0.7 and Zn/Sn = 1) has been chosen 

for the following experiments in this thesis. In the rest of this chapter, the study is focused 

on varying the other conversion parameters in order to improve the quality of 

compositional ratio as well as the micro and crystal structure of converted thin films.  

Table 5-2. The table shows the conversion time of samples 2a to 2d. It also presents the 

compositional changes (at %) of the thin films before and after conversion/sulphurisation. 

Sample  Conversion 

time 

Cu/(Zn+Sn)  

As-

deposited 

Zn/Sn 

As-

deposited 

Cu/(Zn+Sn) 

After 

conversion 

Zn/Sn 

After 

conversion 

2a 4 hours 1 1 ~1.02 ~ 1.1 

2b 4 hours 0.7 1.2 ~ 0.7 ~ 2.0 

2c 1 hour 0.7 1.2 ~ 0.7 ~ 1.8 

2d 1 hour 0.7 1 ~ 0.7 ~ 1.7 

 

5.1.3 Sulphurisation time (conversion time) 

An experiment that used to evaluate the dwell time required for a complete reduction the 

oxide compounds and developing a compact structure with the correct composition is 

presented in this section. Whilst the conversion time may also influence the diffusion of 

elements and impurities from the substrates into the thin film (such as Sodium), this did 

not form part of the study reported here. 

To evaluate the conversion time, Cu2O and SnO were first heated separately in a tube 

furnace under a mixture of argon and forming gas (400 mbar Ar + 100 mbar H2/N2) at a 
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temperature of 550°C as identified in section 5.1.1. The dwell time decreased from 4 

hours to 1 hour, with no supply of sulphur in the graphite box. However, the tube furnace 

was previously used for the sulphurisation process and consequently, the atmosphere 

inside the tube furnace contained residual sulphur. As can be seen in XRD patterns (see 

Figure 5-3), the SnO requires at least 3 hours of heating at temperature of 550°C to be 

reduced completely within the sensitivity of the measurement, while Cu2O needs only 1 

hour of heating with the same temperature to be reduced to Cu. Due to the presence of 

extra sulphur in the atmosphere of tube furnace, the XRD patterns indicate the presence 

of CuS, Cu2-xS, and SnS. A similar experiment has been carried out for the samples coated 

with the precursor solutions made of all three compounds of Cu2O, ZnS, and SnO. In this 

case, the excess quantity of sulphur has been used. The results indicate the formation of 

CZTS Kesterite structure even after 1 hour of conversion. In apparent contradiction to 

SnO needing at least 3 hours of heating to reduce to SnS or Sn. This might have been due 

to the small portion of SnO in precursor layer, compared to the only SnO coated samples, 

or the presence of excess quantity of sulphur in the tube furnace and graphite boxes or the 

presence of other compound in the precursor films. SEM images (see Figure 5-6) show a 

slight grain growth when the dwell time is increased, this difference does not clearly 

justify the additional energy consumed during 4 hours heat treatment. Accordingly, the 

study used a 1 hour dwell time for sulphurisation and to improve the quality of CZTS 

crystal structure the other conversion factors will be investigated in the following. 

 

Figure 5-3. The XRD patterns of the (3¥) SnO powders, and a thin film of SnO for (3a) 1 

hour (3b) 2 hours (3c) 3 hours (3d) 4 hours of conversion at a temperature of 550°C. 
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Figure 5-4. The XRD patterns of (3¥') Cu2O powders, and a thin film of Cu2O for (3e) 1 

hour (3f) 2 hours (3g) 3 hours (3h) 4 hours of conversion at a temperature of 550°C. 

 

  

Figure 5-5. The XRD patterns of CZTS thin films after (3i) 1 hour (3j) 2 hours (3k) 3 

hours and (3l) 4 hours of conversion. 
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Figure 5-6. The plan-view SEM images of CZTS thin films after (3i) 1 hour (3j) 2 hours 

(3k) 3 hours and (3l) 4 hours of heat tretament. 

 

5.1.4 Heating profile during the sulphurisation process 

To examine the influence of heating profile on the morphology and composition of CZTS 

thin films, three experiments have been defined, as described in Table 5-3. The schematic 

of sample 4a to 4c is presented in Figure 5-7. The tube furnace was filled with an ambient 

pressure of 400 mbar Ar + 100 mbar H2/N2, a conversion temperature of 550°C, and a 

dwell time of 1 hour. 

Table 5-3.The table shows the compositional changes of elements on the converted 

samples sulphurised at 550°C for 1 hour at an ambient pressure of 400mbar Ar + 100mbar 

H2/N2. The measurement has been carried out with and without the considering of 

molybdenum. 

Batch No. Heating Profile Mo 

(at %) 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

𝐙𝐧

𝐒𝐧
 

𝐒

(𝐂𝐮 + 𝐙𝐧 + 𝐒𝐧)
 

4a Heating fast 

Cooling fast  

37.5 0.9 2.5 0.8 

  
exclude 0.7 2.5 2.0 

4b Heating gradually 

Cooling naturally 

21 0.8 1.8 1.0 

  
exclude 0.7 1.8 1.5 

4c Heating fast  

Cooling naturally 

8.5 0.8 1.4 0.6 

  
exclude 0.9 1.4 1.0 
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Figure 5-7. The figure shows the examples of heating profile for the sulphurisation 

process of samples (4a) heating fast and cooling fast (4b) heating gradually and cooling 

naturally (4c) heating fast and cooling naturally. The brown arrows display the positions 

at which the graphite box (GB) including the precursor was inserted into the hot zone and 

taken out from the hot zone of the tube furnace. 

 

 

Figure 5-8. The plan-view SEM images of converted precursors with three different 

heating profiles of (4a) heating fast and cooling fast (4b) heating gradually and cooling 

naturally (4c) heating fast and cooling naturally. The red arrows exhibit the loss of 

precursor from the surface by showing the molybdenum substrate.  

 

 

The results indicate that samples 4a and 4b are more vulnerable in terms of losing the 

precursor materials compared with sample 4c. This is shown by the detection of a high 

degree of molybdenum (the substrate) and a large quantity of pinholes on the surface of 

thin films, observed by SEM and EDX compositional analyses (see Figure 5-8 and Table 
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5-3). Although according to XRD patterns the SnS has been formed during the 

sulphurisation process of sample 4c, the final thin films include a better composition and 

microstructure compared to samples 4a and 4b. Therefore, the heating profile in which 

the sample is heated fast and cooled down naturally (sample 4c), appears to be an 

appropriate model to fabricate the CZTS thin films. However, its morphology and 

composition still needs to be modified. Another advantage of such a heating profile is the 

possibility of controlling the exact temperature of the conversion process. This is due to 

the fact that when the sample is inserted into the hot zone of the tube furnace at room 

temperature, it will undergo a gradual heating process. Thus, it is affected by the 

fluctuation of temperature from 550°C, which in turn contributes to an uncertainty of the 

exact processing temperature (The fluctuation of temperature using this particular system 

has shown a variation of ± 10°C). 

5.1.5 Ambient gas composition and conversion/sulphurisation dwell time 

This part of the study involves investigation of two parameters (i) the development of 

CZTS formation by decreasing the conversion time from 60 min to 15 min (ii) the effect 

of the total ambient gas pressure and composition during sulphurisation, as stated in Table 

5-4. 

Table 5-4 Sample identification and the associated synthesis conditions. 

Sample Pressure (mbar) Time Sample Pressure (mbar) Time 

5a. 400Ar +100 H2/N2 60 min 5f 500 H2/N2 30 min 

5b 250Ar + 250 H2/N2 60 min 5g 450Ar + 50 H2/N2 15 min 

5c 450Ar + 50 H2/N2 30 min 5h 400Ar + 100 H2/N2 15 min 

5d 400Ar + 100 H2/N2 30 min 5i 250Ar + 250 H2/N2 15 min 

5e 250 Ar + 250 H2/N2 30 min 5j 500 H2/N2 15 min 

 

XRD patterns (see Figure 5-5) illustrate the presence of CZTS compound for the thin 

films converted with 400mbar Ar +100mbar H2/N2, however, the XRD cannot make a 

clear distinction between the CZTS and other possible compounds such as Cu2SnS3 and 

ZnS.To address this, Raman spectroscopy was carried out by partners to compliment the 

analysis and clearly identify the CZTS and other ternary or binary compounds. The 

Raman spectra (see Figure 5-9) indicate the formation of Kesterite compound even after 

15min. SEM images, however, show that the sample sulphurised for 15min exhibited a 

slightly smaller grain size than those sulphurised for 30 min (see Figure 5-10). Raman 
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spectra have shown the formation of CZTS Kesterite with indicative peaks at the 

approximate values of  98 cm-1, 287cm-1, 340cm-1, and 375 cm-1 together with MoS2 

having an indicative peak of ~400 cm-1. Peaks detected at the approximate values of 218 

cm-1 and 310 cm-1 could be an indicator of Cu2O compound. However, the peaks at about 

218 cm-1 can be also corresponded to SnS compound. There is no trace of this peak when 

the conversion time is increased from 15 min to 30 and 60 min. The ZnS compound, 

however, needs a wavelength excitation of 325nm, and could not be detected at λ = 532 

nm. The Raman spectra shown in Figure 5-9 were measured at Swansea University by 

Dr. Wei Zhengfei. 

 

Figure 5-9. Raman spectra of the thin films converted at 550°C for (5b) 60min in grey 

line (5e) 30min in dashed line and (5i) 15min in black line ( The data have been taken at 

Swansea University by Dr.Wei Zhengfei ) 

 

 

Figure 5-10. The plan-view of SEM images of (a, b, c, d) converted samples of 5c to 5f 

for 30min each, and (e,f,g,h) converted samples of 5g to 5j for 15min; The best 

morphology is highlighted in the yellow line. 
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Additional Raman spectra (Figure 5-12 and Figure 5-13) were measured at three different 

locations on the as-deposited and the converted sample that was sulphurised under the 

conditions as sample 5e. The measurements at three points were used in order to estimate 

the uniformity of samples. These analyses have been done by Dr. Sara Dale at University 

of Bath. The results indicate similar patterns for all three locations of 1, 2, and 3, (see 

Figure 5-11 ) representing the formation of uniform structures across the thin film. The 

Raman spectrometer has confirmed the formation of CZTS thin films together with SnS 

and ZnS binary compounds. While, there is no trace of oxide compounds through the 

structures of converted thin films (see Figure 5-12 and Figure 5-13). However, it should 

be noted that the use of two excitation wavelengths of 325nm and 532nm are not 

appropriate for the purpose of detecting the SnO characterisation peaks. This is due to the 

approximate overlap of Cu2O and SnO peaks. Nevertheless, the ZnS and Cu2O 

compounds can clearly be demonstrated through the Raman spectra. As reported in 

previous literature, the most appropriate Raman excitation wavelength to detect SnO 

compound is 632nm [199-203].  

 

Figure 5-11. The schematic of a sample showing the approximate positions in which 

Raman analysis have been carried out (left picture), and converted sample (right picture). 
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(1)

(2)

(5m) (5e)

(3)

 
Figure 5-12. The Raman scattering with the excitation wavelength of 325nm shows the 

compounds formed on across the thin films for samples 5m (the as-deposited precursor) 

and 5e (the converted precursor). The positions of 1, 2, and 3 that the measurements have 

been carried out are displayed in the spectrum (The data have been taken by Dr. Sara Dale 

at Bath University). 
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Figure 5-13. The Raman scattering with the excitation wavelength of 532nm shows the 

compounds formed on across the thin films for samples 5m (the as-deposited precursor) 

and 5e (the converted precursor) are shown. The positions of 1, 2, and 3 that the 

measurements have been carried out are displayed in the spectrum (The data have been 

taken by Dr. Sara Dale at Bath University). 

 

 

 Optoelectronic characterisation 

The optical properties of the samples have been examined via IMPS and EQE at 

Northumbria University and at Bath University, respectively.  

The IMPS study was carried out by using three applied bias voltages of 0.35, 0.45, and 

0.55V to the electrodes while the other parameters such as light flux and illumination area 

remained unchanged during the experiment.  
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As shown in Figure 5-14, the typical patterns achieved by CZTS thin films have shown a 

pattern corresponding to no recombination (similar to the configuration shown in Figure 

3-21). The results show no sign of recombination of electrons and holes after 30 ms. When 

the light is switched off, the steady state moves to zero. The influence of using different 

wavelengths of incident light on the photocurrent response was also investigated. A 

photocurrent signal was not obtained when the wavelength of 450nm was applied. 

However, the signal started to appear at the wavelength of 565nm. When the wavelength 

increased to 940nm, similar patterns were obtained, but with considerably lower intensity 

than the one which emerged at the wavelength of 565nm. A typical configuration of 

photocurrent transient response versus time is presented in supplementary data (Appendix 

A). By varying the external applied voltage, a sharper initial response has been observed 

when the light cycle is at 0.35V, compared to the two applied voltages of 0.45V and 

0.55V.  

 

Figure 5-14. The figure shows the photocurrent transient responses of sample 5e with bias 

voltages varying from 0.35V to 0.55V at two different wavelengths of (a) 565 nm (b) 940 

nm. 

 

The EQE spectrum has obtained an approximate efficiency of 20% for the converted 

samples (see Figure 5-15a). Figure 5-15b shows the Tauc plot extrapolated from the EQE 

spectrum, as can be seen the band gap values is reported equal to 1.42 eV for the converted 

sample. 
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Figure 5-15. The figure shows (a) the EQE spectrum versus wavelength of sample 5e, (b) 

The Tauc plot showing the band gap and resulted by extrapolating the EQE spectrum 

(The Data have been taken by Dr. Sara Dale at Bath University). 

 

5.1.6  Phase evolution by varying the conversion temperature 

In order to analyse the phase evolution from oxide compounds to sulphide and CZTS 

Kesterite structure, several experiments were performed that heated the precursors at 

temperatures of 250°C, 350°C, 450°C, and 550°C for 1 hour. The XRD patterns 

illustrated in Figure 5-16 have revealed that at 250°C, a combination of oxide and 

sulphides of tin and copper is present across the thin film. While, the sample heated at 

350°C, has shown the presence of SnO compounds, but not the copper oxides. Increasing 

the temperature to 450°C has shown no indicative peaks of oxide compounds. 

Nevertheless, the CZTS compounds are not well crystallised yet. When the temperature 

is increased to 550°C, the XRD shows the formation of CZTS together with the binary 

compound of SnS across the thin film. The CZTS Kesterite structure with tetragonal 

configuration is characterised with distinctive peaks at 2-theta values at diffraction plane 

(hkl) of 28.53° (112), 32.99° (200/004), 47.33° (220), and 56.18° (312). Figure 5-16 

indicates the morphology of the precursors when the samples are heated at various 

temperatures. 
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Figure 5-16. The X-ray patterns show the evoloution of compounds of the thin films 

heated at different temperatures of (6a) 250°C (6b) 350°C (6c) 450°C (6d) 550°C. 

 

 

5.1.7 Supplying the Sulphur during the conversion/sulphurisation  

According to the data achieved in Chapter 4, with similar reasons as using Selenium as a 

chalcogen supply for the fabrication of CZTSe thin films, it was speculated that the use 

of sulphur powder could be more efficient than the use of sulphur as a cap layer. Thus, in 

order to fabricate the CZTS thin films in this thesis, the sulphur powders was used. 

Besides the method of supplying chalcogen, the mass of chalcogen should also be 

sufficient for the converted CZTS thin films. Thus, an experiment has been done with the 

aim of providing enough partial pressure of sulphur for the CZTS thin films, the graphite 

boxes were supplied with different amounts of sulphur from 0.05g to 2g. It should be 

noted that in order to measure the exact influence of sulphur on the quality of converted 

thin films by EDX compositional analysis, both Mo/SLG and SLG were used as a 

substrate. The reason being, the sulphur Kα peak overlaps with Molybdenum Lα Peak, as 

mentioned in section 3.3.4, and this leads to an inaccurate data of the thin film 

composition.  From Table 5-5, it can be seen that increasing the mass of sulphur powder 

from 0.05g to 0.5g, showed a great difference in S/(Cu+Zn+Sn) ratio from 0.7 to 0.9, 

respectively. However, a further increase in the mass of sulphur from 0.5g to 2g does not 

result in a considerable improvement in the sulphur content of CZTS converted thin films. 
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Table 5-5. The table presents the experiments evaluating the influence of varying the mass 

of sulphur together with the information of the compositional changes of CZTS thin films, 

samples 7a to 7j. The samples 7a to 7f were fabricated on SLG as a substrate and samples 

7g to 7j were prepared using molybdenum coated soda-lime glass (SLG/Mo). 

Sample Substrate Mass of 

supplying 

sulphur (g) 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

𝒁𝒏

𝐒𝐧
 

𝐒

(𝐂𝐮 + 𝐙𝐧 + 𝐒𝐧)
 

7a SLG  0.05 0.9 1.5 0.7 

7b SLG 0.1 0.7 1.2 0.8 

7c SLG 0.5 0.7 1.2 0.9 

7d SLG 0.7 0.7 1.2 0.9 

7e SLG 1 0.7 1.2 0.9 

7f SLG 2 0.7 1.3 0.9 

7g Mo/SLG 0.1 0.8 1.3 0.95 

7h Mo/SLG  0.5 0.9 1.2 0.95 

7i Mo/SLG 0.7 0.8 1.0 0.95 

7j Mo/SLG 1 0.9 1.1 0.95 

 

5.1.8 Conversion/ Sulphurisation temperature 

To evaluate the influence of conversion temperature on the quality of absorber layers, the 

precursors are placed in graphite boxes containing a large excess sulphur (1g). The 

precursors were converted with an ambient pressure of 250mbar Ar + 250mbar H2/N2 

with the dwell time of 30 min (based on the optimum conversion condition have been 

achieved to this point). The temperature, however, has been varied from 500°C to 570°C, 

as described in Table 5-6. The XRD, SEM, and EDX analyses of this study are reported 

below. 

 

 

 



113 

 

Table 5-6. Introducing the various sulphurisation/conversion temperatures used for the 

synthesising the CZTS thin films, samples 8a to 8g.   

Sample Conversion temperature (°C) 

8a 500 

8b 520 

8c 540 

8d 550 

8e 560 

8f 570 

8g 580 

 

 

 

Figure 5-17 The figure shows the XRD patterns of sulphurised thin films at various 

temperatures of (8a) 500°C (8b) 520°C (8c) 540°C (8d) 550°C (8e) 560°C (8f) 570°C 

(8g) 580°C. 
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Figure 5-18. The plan-view SEM images of sulphurised thin film at the various 

temperatures of (8a) 500°C (8b) 520°C (8c) 540°C (8d) 550°C (8e) 560°C (8f) 570°C 

(8g) 580°C are displayed. 

 

 

 

Figure 5-19. The plan-view SEM images of sulphurised samples at temperatures of (8f) 

570°C and (8g) 580°C are displayed. The red highlighted arrows are pointed to the 

regions at which the loss of precursor has occurred. 
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Figure 5-20. The graph shows the compositional changes (Zn/Sn ratio) of converted 

samples identified by the axes on the right and the elemental concentration in at% 

identified by the axes on the left. The data illustrate the EDX analyses of the converted 

samples sulphurised at different temperatures (samples 8a to 8g). 

 

  

The XRD patterns illustrate a better crystallinity when the temperature is increased from 

500°C to 570°C (see Figure 5-17). Furthermore, the XRD pattern of sample 8g reveals 

the formation of Mo2S3 compound. The SEM images illustrate that increasing the 

temperature from 500°C to 570°C contributes to a grain growth of CZTS Kesterite 

structure (see Figure 5-18). However, a partial loss of precursor and the glass bending 

have been observed when the sample was converted at a temperature of 580°C (see Figure 

5-19). The compositional changes of the converted samples are reported in Figure 5-20. 

According to the outcomes achieved through these experiments, the conversion 

temperature of 570°C (sample 8f) can be considered as a temperature in which a better 

degree of compactness and less formation of binary compounds have been noticed, 

compared to the other examined cases (samples 8a to 8e, and 8g). 

5.1.9 Total ambient pressure and Temperatures 

The key parameters including the pressure and composition of ambient gas, the 

conversion temperature and time, together with the quantity of sulphur powder have been 

investigated to improve the quality of the CZTS absorber layers. However, it was 

anticipated that this was an iterative process and therefore having achieved an optimum 
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set of each in a first iteration it was considered necessary to re-examine the certain 

parameters  in order to further  improve composition, crystal and micro structure of CZTS 

absorber layers. To do so, several experiments were undertaken that involved variation 

of the total ambient pressure, as detailed in Table 5-7, the table also presents the 

compositional changes of converted precursors. The results illustrate similar 

compositional changes for all examined samples (9a to 9f). The XRD, SEM, and EDX 

analyses are reported below. 

 

Table 5-7.  The table shows the variation of ambient pressures for examined samples of 

9a to 9f, the compositional changes of sulphurised samples using EDX analysis have been 

also presented. 

Sample Pressure 

(mbar) 

Temp. 

(°C) 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

 𝐙𝐧

𝐒𝐧
 

𝐒

(𝐂𝐮 + 𝐙𝐧 + 𝐒𝐧)
 

9a 5 H2/N2 550 0.8  1.2 0.9 

9b 250 H2/N2 550 0.9  1.1 0.9 

9c 250H2/N2+250 Ar 550 0.8  1.0 0.9 

9d 5 H2/N2 570 0.8  1.1 0.9 

9e 250 H2/N2 570 0.9  1.2 0.9 

9f 250H2/N2+250 Ar 570 0.9  1.3 0.8 
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(9a)

(9b)

(9c)

(9d)

(9e)

(9f)

 

Figure 5-21. The XRD patterns of converted samples (9a to 9c) at temperature of 550°C 

and samples (9d to 9f) at temperature of 570ºC are presented. The experiments have been 

done under various background pressures of (9a) and (9d) 5mbar H2/N2, (9b) and (9e) 

250mbar H2/N2, (9c) and (9f) 250mbar H2/N2 + 250mbar Ar. 

 

 
Figure 5-22. The plan-view SEM images of converted samples (9a to 9c) at temperature 

of 550°C and samples (9d to 9f) at temperature of 570ºC are presented. The experiments 

have been done with various background pressure of (9a) and (9d) 5mbar H2/N2, (9b) and 

(9e) 250mbar H2/N2, (9c) and (9f) 250mbar H2/N2 + 250mbar Ar. 
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Figure 5-23. The plan-view SEM images of precursors converted at 570ºC and with an 

ambient pressure of (9d) 5mbar H2/N2, (9e) 250mbar H2/N2, (9f) 250mbar Ar + 250mbar 

H2/N2. 

 

 

The results illustrate that the peaks indicating SnS formation are less intense for the 

samples sulphurised at low ambient pressure of 5 mbar H2/N2 compared to the other 

examined samples with higher total ambient pressures of 250 mbar and 500mbar. 

Although all XRD patterns show a similar trend (see Figure 5-21), the related peaks for 

CZTS crystal structures of samples (9e) and (9f) indicate a slightly better crystallinity 

when the temperature raises from 550°C to 570°C. The morphology of the sulphurised 

samples, however, indicate a significant difference when the total pressure is changed 

from 5mbar to 250 mbar of forming gas. The results revealed that the grain size formed 

slightly larger in case of using the 250mbar of H2/N2 and a temperature of 570°C, 

compared to the other examined conditions (see Figure 5-22). Both XRD and SEM results 

indicate the presence of SnS compounds on the surface, when the total ambient pressure 

is increased to higher pressures (250 mbar or 500 mbar) (see Figure 5-23). However, the 

quantity of SnS compounds seems higher at the total ambient pressure of 500 mbar, 

compared to the use of 250 mbar. 

5.1.10 Conversion/Sulphurisation time with the new conversion conditions 

To re-examine the influence of sulphurisation time on the quality of CZTS absorber layers 

with the new conversion conditions, four experiments have been defined, as described in 

Table 5-8. The XRD, SEM, and EDX analyses are reported below. 

Table 5-8. Introducing the samples converted at various dwell time during conversion 

Sample Dwell time (min) 

10a 30 

10b 40 

10c 50 

10d 60 
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Figure 5-24. The plan-view SEM images of sulphurised samples with different dwell time 

of (10a) 30 min (10b) 40 min (10c) 50 min (10d) 60 min. 
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Figure 5-25. The XRD patterns of the sulphurised samples at 570°C with different dwell 

time of (10a) 30 min (10b) 40 min (10c) 50 min (10d) 60 min. 

 

The XRD and SEM analyses indicate a slightly better crystalline structure and less 

secondary compounds, when the precursor was converted for 40 min, with the conversion 

temperature of 570°C, and an ambient pressure of 250 mbar of H2/N2. However, 

increasing the time to 60 min does not show a significant improvement in crystallinity 
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and grain growth (see Figure 5-24 and Figure 5-25). Thus, it is preferred to use the 

conversion time of 40 min considering the consumption of less energy for the processing 

of absorber layer. Figure 5-26 shows the cross section and plan-view SEM images of as-

deposited and the sulphurised thin film of sample 10b which has shown the better 

morphology than the other examined samples to this point. 

 
Figure 5-26. (a,b) The cross-section and (c,d) the plan-view SEM images of sample 10b 

which is described in Table 5-8, (a,c) as-deposited and (b,d) sulphurised thin films at 

570ºC with 250mbar H2/N2 for 40min displayed above. 

 

5.1.11 Post-conversion heat treatment with excess mass of Chalcogen 

In order to compensate for the sulphur deficiency of CZTS thin films, the sulphurised 

samples have undergone a post-conversion heat treatment procedure (post-sulphurisation) 

using two different ambient pressures of 5 and 500 mbar of argon. The details of the 

experiments are presented in Table 5-9. The SEM, XRD, and EDX analyses are presented 

below. 

 

 

 

 



121 

 

Table 5-9. The compositional ratio of CZTS samples after sulphurisation and post 

sulphurisation using two substrates of glass (SLG) and molybdenum coated glass 

(SLG/Mo) are listed. The highlighted parts in green are showing the experiments have 

been done on SLG substrates. 

Sample 

 

Substrates Sulphurisation 

(S)/ 

Post 

Sulphurisation 

(PS) 

Ambient 

Pressure 

(mbar) 

𝐙𝐧

𝐒𝐧
 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

 

(𝐂𝐮 + 𝐙𝐧 + 𝐒𝐧)
 

11a SLG S 250 H2/N2 1.2 0.6 0.8 

11b SLG PS 5 Ar 1.3 0.7 0.7 

11c SLG/Mo S 250 H2/N2 1 0.6 0.8 

11d SLG/Mo PS 5 Ar 1.1 1.1 0.8 

11e SLG S 250 H2/N2 1.2 0.7 0.8 

11f SLG PS 500 Ar 1.2 0.6 0.9 

11g SLG/Mo S 250 H2/N2 1.1 0.8 0.9 

11h SLG/Mo PS 500 Ar 1 0.8 0.9 

 

 

 
Figure 5-27. The SEM image of some of the samples described in Table 5-9, (11¥) as-

deposited (11g) sulphurised with 250mbar H2/N2 of ambient pressure (11h) post 

sulphurised CZTS thin films with ambient pressure of 500mbar argon can be observed. 
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Figure 5-28. The XRD patterns of the post-sulphurised thin films at the ambient pressure 

of (11d) 5mbar Ar and (11h) 500mbar of Ar. 

 

According to the results achieved and presented in Table 5-9, when the CZTS samples 

are post sulphurised under a low ambient pressure (5 mbar Ar), the sulphur deficiency is 

higher compared to the use of a high ambient pressure (500 mbar Ar). The XRD patterns 

illustrated that in case of using a high pressure of ambient gas (500 Ar), the SnS2 is formed 

for the post sulphurised CZTS samples. However, this compound does not show a 

significant intensity when the sample was sulphurised at a low ambient pressure (5 mbar 

Ar). The formation of SnS2 under high pressure of argon as an ambient gas, can be 

explained due to the higher concentration of sulphur vapour inside the graphite box. 

5.1.12 Surface etching  

Contemplating the results achieved by EDX mapping, XRD, Raman scattering, cross 

section and plan-view SEM analyses, it is perceived that SnS secondary compounds are 

often formed together with the CZTS compound. The plan-view SEM images clearly 

show the presence of a high amount of SnS crystal structures on the surface, while the 

indicative peaks of SnS in XRD patterns have a very low intensity. Thus, it seems that 

this compound is mainly located at the interface of CZTS/CdS, rather than in the bulk or 

at the CZTS/Mo interface. Consequently, surface etching could be an appropriate strategy 

to remove the SnS compounds. 

In this experiment, the etching process of CZTS thin films has been carried out with an 

etching duration of 1 min, 2 min, and 3 min. The experiments have been done at a room 

temperature of 22°C using the ammonium sulphide ((NH4)2S). The SEM and EDX 
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mapping have been recorded after each step of the etching procedure. The results indicate 

that at least 3min of etching is required to remove the SnS binary compounds from the 

surface of thin films (see Figure 5-29, Figure 5-30).  

 

Figure 5-29. The SEM image of CZTS samples processed with (a) no etching (b) 1min 

of etching (c) 2 min of etching (d) 3 min of etching are illustrated. The red arrows in the 

images exhibit the presence of SnS crystal structures. 

 

 

Figure 5-30. The EDX mapping of CZTS thin films before etching are indicative of the 

elements in different colours (a) SEM image (b) copper in green (c) tin in blue (d) zinc in 

red (e) sulphur in yellow. 
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5.1.13 Summary of Results and Discussion 

The study on optimising the conversion conditions of CZTS thin films was initiated by a 

study on evaluating the influence of the composition and pressure of the ambient gases 

using forming gas and argon on the microstructure of thin films. The results have shown 

that although increasing the total ambient pressure would suppress the compounds in their 

vapour state to remain inside the graphite box, it is of great importance to optimise the 

pressure of applied ambient gas, especially when non-inert gases are used. In this 

experiment, due to the presence of SnO in the material precursor, the use of forming gas 

to reduce the oxide was required. As reported by Kim et al, and mentioned in section 

2.2.6.2, SnO2 can be reduced to tin in the atmospheres saturated by specific pressure of 

hydrogen and a temperature of 550℃. According to their study, increasing the pressure of 

forming gas would increase the rate of reduction. The results in the current study has 

confirmed the necessity of the presence of sufficient pressure of forming gas to reduce 

the SnO to SnS or Sn. However, the results achieved in this thesis also indicated that 

increasing the ambient pressure to 500 mbar, using the only forming gas, contributed to 

the loss of adhesion between the thin film and the Molybdenum back contact (non-

uniformity of converted thin films). In fact, the morphology of converted thin films have 

shown that part of the thin film was removed and large area of molybdenum was appeared 

on the plan-view SEM images. Optimising the pressure of forming gas and dwell heating 

time has been examined in this thesis in order to remove oxygen from the initial 

compounds as well as preparing a uniform thin film with a right composition of CZTS 

Kesterite structure. 

Varying the precursor composition ratio of Cu:Zn:Sn from 1:1:1 to 0.7:1:1.2, and finally 

0.7:1:1, together with decreasing the conversion time from 4 hours to 40 min, have shown 

the formation of a better compositional ratio for the converted thin films (less Zn-rich and 

Sn-poor). Accordingly, a higher dwell time leads to a higher rate of SnS evaporation 

compounds contributing to a very Zn-rich and Sn-poor Kesterite structure across the 

absorber layer. This is in agreement with the previous literature [85], where it is said that 

decreasing the conversion time could limit the time available for the decomposition 

reactions and therefore reduce the tin loss. As Fella et al have reported when the 

composition of precursors prepared by non-vacuum processing are Zn-poor and Sn-rich 

(with a ratio of Zn/Sn<1), the converted thin film has the composition of Zn-rich and Sn-
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poor (with a ratio of Zn/Sn>1). This is due to the Sn loss during crystallisation and a 

typical decomposition of CZTS compound. They have also reported that conversion in a 

sulphur saturated atmosphere could increase the rate of decomposition and the formation 

of SnS since the sulphur vapour bind the Sn excess. According to their study the initial 

precursor ratio of Zn/Sn<1 can significantly enhance the grain growth if the 

sulphurisation process take place in an inert atmosphere [100]. The study here confirms 

the aforementioned study in that the use of precursor ratio with the composition of 

Zn/Sn=1 was led to the formation of converted thin films with Zn/Sn >1. However, in 

this thesis due to the presence of metal oxide compounds, the presence of forming gas 

and excess sulphur source during the conversion was necessary. Thus, decreasing the 

Zn/Sn ratio to less value than 1 could contribute to an increase in the rate of 

decomposition or forming CZTS crystal structure with considerable sulphur deficiency 

(Vs).  

Investigating of the role of the heating profile on the morphology and composition of 

converted films, has showed that the tin lost is more critical in the case of fast heating and 

fast cooling procedure (ramp rate of ~1100ºC/min). This could be due to the volatility of 

SnS and Sulphur in their vapour states at high temperatures during the sulphurisation. In 

fact, SnS(g) compound prefers to leave the system or even condense on the surface during 

cooling down, rather than contributing to the formation of CZTS. As a result, a very Sn-

poor crystal structure of Kesterite CZTS has been formed. The SnS crystals have been 

observed on the surface of those samples heated fast and cooled down naturally. This 

demonstrates that SnS tends to condense on the surface at the cooling down procedure. 

In the case of heating gradually and cooling naturally, less SnS crystals were formed on 

the surface compared to the case of heating fast and cooling down naturally. This can be 

resulted from the reduction of SnS compounds during the heating procedure (at 

temperatures lower than 550ºC). Thus, the SnS in its vapour state have had sufficient time 

to leave the surface of the thin film. That is also consistent with the results achieved earlier 

which showed that SnS disappears by increasing the conversion dwell time. It should be 

noted that the use of SnO instead of SnS in this research was beneficial due to SnO being 

a stable compound. Hence, the formation of SnS in vapour state will occur with a delay. 

This could be advantageous to alleviate the rate of tin lost in case of using SnO instead of 

tin as an element. Furthermore, the Cu2SnS3(CTS) mainly appears from the combination 
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of SnS2 and Cu2S at 300°C, as kim et al have reported [215]. Accordingly, the stability of 

SnO at high temperatures could be also beneficial in order to prevent the formation of 

CTS compounds at early stages of sulphurisation process. 

Examining the influence of temperature and conversion time on the fabrication of CZTS 

thin films as it was expected has shown the considerable impact on the grain growth and 

the crystallinity. These parameters have been optimised in order to achieve the correct 

composition of converted thin films together with the formation of CZTS compound from 

metal oxide compounds. The results achieved in this thesis have shown that the quality 

of thin films was significantly improved by adjusting the conversion time and temperature 

to 40 min and 570°C, under the sufficient pressure of forming gas (250 mbar H2/N2). All 

the evidence from XRD, SEM, Raman, and also EDX mapping have shown the formation 

of SnS binary compounds, are mainly formed on the surface, together with CZTS 

Kesterite crystal structure. This illustrates that the atmosphere during the synthesising of 

CZTS is saturated with SnS(g). According to the experiments have been done to remove 

the SnS binary compounds from the surface by (NH4)2S, it was concluded that the surface 

etching of at least 3min at a temperature of 22ºC (room temperature) is required to remove 

the SnS secondary compounds from the surface of converted thin films. Furthermore, the 

study on the post-conversion heat treatment of the converted samples has shown a slight 

compensation in the sulphur deficiency of converted thin films if the post-conversion heat 

treatment has been carried out under high ambient pressure with extra sulphur supply 

during the conversion. 

Contemplating the results achieved through this research together with the literature 

review, which was explained in section 2.2.6.1, Reaction 5-1 to 5-5 are highly probable 

to occur in the specific study carried out through the current research. Thus, the metal 

oxides first react with sulphur (see reaction 5-1 and 5-2). Afterwards, the CZTS can be 

formed if the partial pressure of sulphur is sufficient (see reaction 5-3). At this stage of 

conversion, tin will partially be lost due to the volatility of SnS in vapour state. However, 

tin will be also condensed on the surface in the form of SnS(s). This process, as mentioned 

before, will occur during cooling step. This is due to the high partial pressure of sulphur 

during the conversion at high temperatures. 

Cu2O (s) + H2 + 1/2S2 (g)                 Cu2S + H2O                                                       (5-1) 
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SnO (s) +H2 + 1/2S2 (g)                    SnS +H2O                                                          (5-2) 

2SnS (s) + Cu2S (s) + 2ZnS (s) + 1/2S2              Cu2ZnSnS4 (s) + SnS (g) + ZnS (s)   (5-3) 

SnS (g)                       SnS (s)                                                                                      (5-4) 

As for the optoelectronic analyses, the results achieved by IMPS technique have shown 

no signal (overshoot when the light is incident) at low wavelength of 430nm. In fact, at 

this wavelength the energy of photons are higher (E ~2.8eV) than the band gap energy of 

CZTS compound (Eg ~1.5eV). When the wavelength increases to 565nm, the signals 

appeared with a considerable overshoot effect at light on cycle. This indicates that at the 

incident of this wavelength (λ= 565nm), the electrons are collected by Eu2+ (positively 

charged ions of the electrolyte). In comparison, increasing the wavelength to 940nm had 

shown signals but with less intensity. Considering the band gap energy of CZTS 

compound, it is expected that no signal appear by increasing the wavelength to 940nm. 

This can be attributed due to the use of non-monochromatic light source, as it is shown 

Appendix A.  

At low voltage (reverse bias voltage), the generated electrons and holes can be separated. 

Accordingly, the electrons move towards the electrolyte side and they are attracted by the 

Eu2+ (positively charged ions of the electrolyte). In theory, when the external bias voltage 

increases, the electrons and holes will be separated with larger force contributing to 

signals with higher intensity. However, in the current experiment, increasing the bias 

leads to a decrease in the photocurrent response that can be attributed to the degradation 

of the Eu2+ ions in the electrolyte. Moreover, it is also assumed that the surface of films 

have been corroded and the results affected by the corroded compounds on the surface.  

The EQE measurements had shown similar results in terms of the obtained spectrum not 

having a significant intensity at 430nm, while, the highest intensity has been observed at 

<600nm, with a lower intensity at higher wavelengths of ~940nm. According to the 

corresponding spectra in this particular experiment, the recombination losses in the bulk 

and/or probably low diffusion length are more dominant than surface recombination. 

5.2 Follow-up trials 

Although the conversion factors, especially the ambient pressure, time, and temperature 

indicate that there is a significant influence of these on the morphology and crystal 

structure of CZTS thin films, several issues were observed during the research. These 
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include (i) the formation of more porous structure across the converted CZTS thin films 

when they have been prepared via non-vacuum processing, compared to films fabricated 

via vacuum deposition techniques (ii) the sulphur deficiency of the examined experiments 

even with using large quantities of chalcogen during the conversion (iii) low degree of 

reproducibility of deposited thin films which occurs due to the deposition technique (hand 

held technique of spraying).  

In order to address these issues, several follow-up studies have been carried out and will 

be presented in this section. However, more focus on these topics were beyond the scope 

of this PhD thesis and could be considered as future studies. 

5.2.1 CZTS thin film fabrication using Slot-Die as a method of deposition 

In order to evaluate the influence of deposition technique on the uniformity of precursors 

and the fabricated CZTS thin films, an experiment has been done comparing the two 

techniques of slot-die and spraying. The spray deposition technique (with Airbrush at 

Northumbria University) was used to deposit sample 13b. The slot-die coating (with a 

Smart coater at Swansea University) was used to produce sample 13c. The precursor films 

were deposited on molybdenum coated soda-lime glass substrates. The sulphurisation 

was completed by heating the samples to 550°C for 30 min in an Ar : H2/N2 ambient with 

the ratio of 4:1, and the total pressure of 500 mbar. It should be noted that the conversion 

condition used for the current experiment was based on the optimised conditions by the 

time this experiment has been carried out. As mentioned earlier the conversion conditions 

have been investigated and re-examined several times during the study. 

The results reported by Swansea University indicated that in the process of deposition, 

the precursor solution has dried before it reaches the substrates. This is due to the very 

early evaporation of IPA. Figure 5-31 shows the dried precursors within the syringe. The 

delivery tube is used to conduct the precursor solution from the syringe to the slot-die 

head. However, the precursor solution could not be spread on the surface entirely, due to 

a blockage in the delivery tube (see Figure 5-31). 
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Figure 5-31. The two above pictures show part of the slot-die processing technique (13a) 

the syringe (13a*) the tube which delivers the IPA from the syringe to the slot-die head. 

 

 

The SEM images of as-deposited via slot-die and spraying technique are shown in Figure 

5-33. The spray-coated samples exhibit localised agglomerated features in converted 

precursors that are not observed in slot-die coated films. This is attributed to the droplets 

of sprayed solution that may have settled on the surface of substrate during spraying. 

According to the visual inspections (see Figure 5-33); the as-deposited samples using 

slot-die coated technique were limited in number and have been damaged seriously which 

was possibly due to the packaging or posting. The XRD analyses have shown similar 

patterns for both slot-die and sprayed coated samples, illustrating the formation of CZTS 

Kesterite structure (see Figure 5-34). However, the Kesterites are not well-crystalised 

across the thin film. The presence of SnS crystals for all samples has been detected both 

with XRD and SEM analyses. The composition of converted thin films was characterised 

by EDX analysis. The results are detected in atomic percent and summarised in Table 

5-10 which indicate a similar compositional changes for samples prepared via both slot-

die and spraying method of deposition (Cu/(Zn+Sn) =0.8 and Zn/Sn = 1.1-1.2). 
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Figure 5-32. The SEM images show the morphology of (13b,13b*) converted via 

spraying technique and (13c,13c*) converted via slot-die technique are displayed. The 

images are observed with the magnification of (13b, 13c) ~20 kx and (13b*, 13c*) ~5 kx. 

The marked areas with red arrows show the agglomerated-like structures. 

 

 

 

Figure 5-33. The images of visual inspection of (13b¥) as-deposited slot-die coated 

precursor and (13c¥) sprayed precursor. 

 

 

Table 5-10. The EDX analyses of the samples prepared via two techniques of (13b) 

spraying and (13c) slot-die deposition technique.  

Sample Method of 

deposition 

Cu 

(at%) 

Zn 

(at%) 

Sn 

(at%) 

S 

 (at%) 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

𝒁𝒏

𝐒𝐧
 

13b  Spraying 22 14.5 12.5 46 0.8 1.1 

13c  Slot-Die 24.3 16 13 46.5 0.8 1.2 

 

 

Figure 5-34. The XRD patterns of converted CZTS of (13b) spray coated sample and 

(13c) slot-die coated sample. 
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5.2.2 Supplying sulphur in precursor solution 

In spite of a significant progress in improving the quality of CZTS thin films by adjusting 

the conversion parameters, it seems that there is still room to develop the CZTS thin films 

with a compact and dense structure with no sulphur deficiency. To do so, two precursor 

solutions have been prepared with (i) Cu2O + SnO + ZnS + IPA with the atomic ratio of 

Cu:Zn:Sn:S equal to 0.7:1:1:0 (ii) Cu2O + SnO + ZnS + S +IPA with the atomic ratio of 

Cu:Zn:Sn:S equal to 0.7:1:1:4. The as-deposited thin films were sulphurised at 570°C 

under the ambient pressure of 250 mbar H2/N2 for 40 min with a given sulphur quantity 

as mentioned in Table 5-11. 

Table 5-11. The table indicates the compositional variations of the sulphurised samples 

when a mass of sulphur is added to the precursor solution. The mass of sulphur is 

presented in the table refers to the excess amount added into the graphite box during the 

sulphurisation/conversion. 

Sample Substrate Sulphur quantity 

 (g) 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

𝐙𝐧

𝐒𝐧
 

S 

(at%) 

Mo 

(at%) 

14¥ SLG  - 0.7 1.2 26 S 

37.5 O 

- 

14a SLG/Mo  0 1.0 0.5 33 17.5 

14b SLG/Mo  0.5 0.7 1.1 45 6 

14c SLG  0.5 0.7 1.5 43 - 

14d SLG  1 0.7 1.6 43 - 

14e SLG/Mo  1 0.7 1.3 44.5 7 

 

 

 

Figure 5-35. The plan-view SEM images shows the morphology of the samples 

sulphurised (10b) without sulphur in the precursor solution and (14d) with 1g sulphur 

added in the precursor solution. 
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Figure 5-36. The XRD patterns of the sulphurised samples are shown with the precursors 

containing a mass of sulphur powder. (14a) (14b) (14e) patterns show the samples 

contained sulphur in precursor solutions and sulphurised with (14a) no excess sulphur 

during conversion, (14b) 0.5g excess sulphur during conversion, and (14e) 1g excess 

sulphur during conversion. The results have been compared with sample (10b) which was 

prepared without adding sulphur in the precursor solution but the use of 1g sulphur 

powders during the sulphurisation. 

 

 
Figure 5-37. The plan-view SEM images of sulphurised sample with precursor including 

(14a) no sulphur (14e) 1 g sulphur during the conversion.  

 

The results indicate the formation of very fine particle size of the CZTS crystals when the 

precursor solution contains elemental sulphur powder. This is clearly shown by SEM 

images (see Figure 5-35). The XRD patterns illustrate the very poor crystalline structure 

(see Figure 5-36). It is also perceived that if the sulphur only is provided via the precursor 
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solution and not during the conversion step, a considerable loss of material from the 

surface will occur (see Figure 5-37 ). This is due to the low partial pressure of sulphur 

during the conversion. The evaluation of compositional changes using EDX analysis, as 

shown in Table 5-11, indicates a very Zn-rich and Sn-poor structure for those samples 

prepared using the precursor solutions that contained of elemental sulphur. 

5.2.3 CZTSSe thin film fabrication via non-vacuum deposition technique 

The study on fabricating the CZTSSe thin films is divided into two sections including (i) 

pre and post selenisation of as-deposited samples using RTP technique, and (ii) post-

seleniation of sulphurised thin films using the tube furnace. 

 Pre and Post selenisation with Rapid Thermal Processing (RTP) 

The as-deposited precursors via non-vacuum deposition technique have been pre-

selenised with different mass of selenium. The samples were heated at 550°C for 15 min 

in an atmospheric ambient pressure (ATM) with the ramp rate of 270°C/min for both 

heating and cooling procedure. The specification of the examined experiments are 

presented in Table 5-12. The table also illustrates the compositional changes of the 

converted thin films. The results from the EDX compositional analyses have shown that 

oxide compounds were reduced by 50% when samples were selenised for 15 min, as it 

presents in Table 5-12. However, increasing the further reduction of oxide compounds 

does not occur if the quantity of selenium is increased. Nevertheless, large grains of 

CZTSSe crystals have been formed and detected by SEM and EDX mapping analyses 

(see Figure 5-38 and Figure 5-39).  

Table 5-12. The table summarises the experiments’ specifications and the compositional 

changes. All selenisation processes mentioned here were performed in RTP system. 

Sample  Sulphur and/or  

Selenisation time 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

𝐙𝐧

𝐒𝐧
 

S or S+Se 

(at%) 

O 

(at%) 

15a after spraying and drying 0.7 1 6.37 ~35 

15b 60 min 0.7 1.3 34.56 ~ 4 

15c 15 min 0.8 1.3 47.61 ~ 6 

15d 15 min 0.7 1.3 42.44 ~16 

15e 15 min 0.7 1.2 45.23 ~16 

15f 15 min 0.68 1.2 40.31 ~19 

Sample 15a: The as-deposited precursor 

Sample 15b: Sulphurised in tube furnace  

Sample 15c: Post-selenisation of sample 15b using RTP technique 
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Sample 15d, 15e, and 15f: Pre-selenisation of the as-deposited precursors using RTP technique with 0.07g, 

0.14g, and 0.28g of mass of selenium, respectively. 

 

Figure 5-38. The plan-view SEM images shows the microstructure of (15a) as-deposited 

precursor (15d) selenisation with 0.07g mass of selenium (15e) selenisation with 0.14g 

mass of selenium (15f) selenisation with 0.28g mass of selenium. 

 

The composition of two different structures that have been appeared through the SEM 

image of sample 15d have been characterised by EDX analysis with the mode of “Point 

and ID”. The results are shown in Figure 5-39 and Table 5-13. 

 

Figure 5-39. The plan-view of SEM image shows the microstructure of sample 15d. The 

points highlighted in red have been characterised by EDX analysis and the compositional 

changes of these points are presented in Table 5-13. 

 

Table 5-13. The table indicates the atomic composition of highlighted points in Figure 

5-39 using the Point and ID mode of EDX analysis. 

Position Cu (at %) Zn(at %) Sn(at %) S (at %) Se (at %) O (at%) 

1 10 10.5 15 1.0 39.5 24 

2 26.5 12.5 14 0.3 44.2 2.5 
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 Post-selenisation with tube furnace 

For this experiment, the process of conversion consists of three stages: sulphurisation, 

post sulphurisation, and selenisation with different mass of selenium. This is done with 

the purpose of providing enough mass of chalcogen to investigate the microstructure of 

the converted samples and to evaluate the influence of introducing selenium on the 

morphology and compactness of the final thin films. The details on the specification of 

the experiments are summarised in Table 5-14. This table also present the compositional 

changes of the converted thin films. It should be noted that the conversion condition for 

the post-selenisation (shown with ♣ in Table 5-14) is based on the optimum conditions 

have been achieved through preliminary study, Chapter 4. 

Table 5-14. The compositional changes of sulphurised, post-sulphurised, post-selenised 

precursors are presented. The samples’ specifications are displayed. (a, b, c  refers to the 

samples sulphurised for 40min at a temperature of 570°C with an ambient pressure of 250 

mbar H2/N2). (♠ symbol is used for those samples post-sulphurised for 10 min of heating 

at 550°C with an ambient pressure of 500 mbar Ar), (♣  symbol is used for those samples 

that post-sulphurised and then selenised for 15min of heating at a temperature of 500°C 

with an ambient pressure of 300 mbar Ar). 

Sample Mass of 

chalcogen 

Ambient 

pressure 

(mbar) 

S 

(at%) 

Se 

(at%) 

𝐙𝐧

𝐒𝐧
 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

(𝐒𝐞 + 𝐒)

(𝐂𝐮 + 𝐙𝐧 + 𝐒𝐧)
 

16a 1g of 

sulphur 

250 

H2/N2 

47 0 1.3 0.9 0.9 

16a♠ 1g of 

sulphur 

500 Ar 46.5 0 1.8 0.8 0.9 

16a♣ 0.07g of 

selenium 

300 Ar 9.5 39 1.3 0.7 0.9 

16b 1g of 

sulphur 

250 

H2/N2 

47.5 0 1.2 0.8 0.9 

16b♠ 1g of 

sulphur 

500 Ar 48.5 0 1.2 0.8 1 

16b♣ 0.14g of 

selenium 

300 Ar 8 40.5 1.4 0.7 0.9 

16c 1g of 

sulphur 

250 

H2/N2 

48 0 1.3 0.8 0.9 

16c♠ 1g of 

sulphur 

500 Ar 49 0 1.1 0.8 1 

16c♣ 0.28g of 

selenium 

300 Ar 7.5 42 1.3 0.7 1 
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The results illustrate that increasing the selenium quantity for selenisation process will 

lead to a grain growth (see Figure 5-40). 

 The quantity of x in the Cu2ZnSn (S1-xSex) 4 thin films can be controlled by varying the 

mass of selenium and sulphuriused during the conversion procedure. When x changes 

linearly from 0 to 1, the diffraction angles (2θ) of the main peaks vary from 27.07° to 

28.42°. The x quantity is 0.7, 0.65, and 0.6 for samples selenised with 0.07g, 0.14g, and 

0.28g mass of selenium supply, respectively. Figure 5-41 and Figure 5-42 indicate the 

formation of well-crystallised Kesterite structure in case of post-sulphurisation and post-

selenisation. The XRD and SEM analyses indicate the partial substitution of selenium 

instead of sulphur in SnS crystal structure. This is shown with the formation of Sn(S,Se)2 

across the CZTSSe thin films (see Figure 5-42). The XRD patterns also exhibit a shift of 

diffraction angles of the indicative peaks of Kesterite structures towards lower values 

when large selenium atoms are replaced by smaller sulphur atoms in the crystal lattice 

structure. 

 

Figure 5-40. The plan-view SEM images shows the morphology of the post-selenised 

samples with (a) 0.07g mass of selenium, (b) 0.14g mass of selenium, and (c) 0.28g mass 

of selenium. 
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Figure 5-41. The plan-view SEM images shows the microstructure of the sample 16c 

which is described in Table 5-14, (a) sulphurised, (b) post-sulphurised, and (c) post-

sulphur/selenised thin films. The SEM images are presented with two different 

magnifications of ~5kx and ~20kx presented with and without (*), respectively. 

 

 
Figure 5-42. The XRD patterns of sample 16c which is described in Table 5-14, (a) 

sulphurised (b), post-sulphurised, and (c) post sulphur-selenised thin films. 



138 

 

 

5.2.4 Summary of Results and Discussion 

Although the slot-die coated samples were limited in number, the analyses based on the 

initial trials of these samples have shown promising results, since the samples were more 

uniform compared to the sprayed ones. Nevertheless, one of the challenges with the slot-

die coating technique was the very early evaporation of IPA from precursor solutions. 

This caused a problem in the floating of precursor solution when it passes through the 

tube towards the substrates. In order to address this issue, one of the strategies could be 

the addition of surfactant to the precursor solution so that the precursor solution can be 

stable for longer time. This experiment has been carried out as a trial study by Dr. Peter 

Greenwood at University of Swansea and its outcome is presented in Appendix C. More 

collaboration on developing CZTS thin film with the slot-die technique and substituting 

it instead of the spraying technique is predicted to enhance the degree of reproducibility. 

However, this requires more time which was beyond the scope of this research.  

As for the use of excess sulphur supply in the precursor solution, the results have shown 

a very different morphology of final thin films, compared to those samples synthesised 

with the typical precursor solutions (containing the only Cu2O, ZnS, and SnO). In the 

case of using excess quantity of sulphur in precursor solution together with using the 

sulphur source during the conversion procedure, the SEM images have revealed the 

formation of very small grains. According to a study published by Bjorkman et al, the 

formation of small grains can be due to the large number of nuclei, which prevent the 

grain growth. However, it should be noted that their study was based on a comparison of 

precursors prepared via sputtering with and without elemental sulphur in the precursor 

[109]. The reason of such a different morphology might be also due to the complex 

reaction which may take place when the sulphur melts on the precursor surface having 

close contact with the precursor components, consequently similar to the use of Se-cap 

layer. However, the more investigation is required to make a clear verdict on this specific 

study. Since the precursor composition and processing has a great role in the final quality 

of converted thin films, this study could be improved by optimising the conversion 

condition for the particular experiment of using excess sulphur supply in precursor 

solution. 

As it was mentioned before, one of the challenges in the fabrication of CZTS thin film by 

non-vacuum deposition technique was the formation of porous structures. The study has 
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shown that a better crystalline structure has been observed across the CZTSSe thin films, 

compared to the CZTS thin films. This is in agreement with the previous studies [112, 

140], where it was explained that partial replacement of sulphur atoms with selenium 

could lead to the formation of larger crystals and eventually grain growth. The formation 

of Kesterite with large grain size and consequently less grain boundaries can affect the 

performance of solar device. This is due to the fact that grain boundaries can increase the 

rate of charge carrier recombination. 

Thus, the selenisation (CZTSSe) shows a considerable grain growth contributing to a 

more compact structure. However, the use of toxic element of selenium instead of sulphur 

is a matter of concern when it comes to the consideration of developing the sustainable 

PV materials. 

All the follow-up trials have been carried out in order to evaluate whether the three 

mentioned parameters can improve the quality of CZTS absorber layers. However, more 

focus on these investigations are required and that was beyond the time scale of this thesis. 

Nevertheless, the initial trials here could be a starting point for future investigations. 

5.3 Conclusion 

The study in this chapter demonstrated the fabrication of CZTS thin film from 

metal/oxide/sulphide compounds by a low cost non-vacuum deposition technique. In the 

first part, the influence of different parameters including precursor composition, 

sulphurisation time, temperature and pressure, heating profile, chalcogen partial pressure, 

and post-conversion heat treatment have been investigated and presented. A model for 

the current particular experiment has been suggested based on the results achieved by the 

analyses and the previous literature. 

The samples characterised by IMPS obtained a promising photocurrent response when 

the sample was exposed to an incident light with an specific wavelength. The EQE 

measurements also shown an approximate efficiency of 20% and a band gap energy of 

~1.42 eV by the advantage of Tauc plot. According to the follow-up trials, in spite of the 

promising results achieved by the use of spraying technique compared to doctor blade, 

the limited experiments using slot-die technique have resulted to the formation of uniform 

thin films superseding the spraying technique. In addition, the selenisation of CZTS thin 

films have shown a considerable grain growth contributing to a compact microstructure. 
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However, the study on the use of excess sulphur supply in precursor solution needs more 

investigation and modification of the conversion parameters. 

Since the main aim of this study was to fabricate CZTS thin film via non-vacuum 

deposition technique, there was not enough time to optimise the fabrication of CZTS thin 

films via vacuum deposition technique and make a comparison between the optimised 

thin films fabricated by the two techniques. Although the previous literature showed that 

the precursor and the initial material processing has a great role in synthesising absorber 

layer, as a trial study, the sulphurisation of precursors processed by vacuum and non-

vacuum deposition techniques have been examined and the results are presented in 

Appendix C.   
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 Sustainability assessment of CZTS thin films as an absorber layer 

of PV solar device  

 

So far, the focus of the research has been on the fabrication of a good quality CZTS 

absorber layer which can affect the performance of the PV device. Consequently, it is 

reasonable for it to be introduced to the PV market. The use of photovoltaic devices are 

inherently sustainable, unless they are too expensive and/or environmentally unsafe to 

produce. However, if the PV market would intend to promote a significant contribution 

to the global energy demand, issues of sustainability and cost will need to be addressed 

as well as the development of high performance solar devices. 

To make an inline study with the experimental evaluations discussed in previous chapters, 

here in this Chapter, several aspects of environmental issues of PV thin films fabricated 

from Cu2ZnSnS4 (CZTS) via vacuum and non-vacuum deposition techniques, will be 

presented and discussed. The main approach here is based on simulation by means of Life 

Cycle Assessment (LCA) and the IMPACT 2002+ is used as a framework with the 

advantage of the SimaPro software.  

6.1 Introduction 

As mentioned in section 2.2.9, in order to evaluate the sustainability of a system, it is 

required to study at least three main measurable aspects of cost, resource availability, and 

environmental impacts. The study in this chapter involves the estimation of mainly 

environmental impacts. However, the resource availability is also evaluated since this 

factor is considered as a sub category in IMPACT 2002+ framework. The IMPACT 

2002+ will be explained in section 6.2.3. 

As mentioned earlier, the study here is conducted using the LCA as an approach to 

evaluate the environmental impacts of the PV thin films. To do so, the methodology used 

for the current study is based on the guidelines stated for this purpose (LCA study) in the 

relevant standards. According to ISO 14040 and ISO 14044, study on LCA can be broken 

down into four main phases, as mentioned below [163, 216]. 

I. Goal and Scope Definition 

II. Life Cycle Inventory Analysis (LCI) 

III. Life Cycle Impact Assessment (LCIA) 

IV. Life Cycle Interpretation 
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It should be noted that since the LCA approach has been used for the current study, to 

make the study comprehensible, the structure of this chapter has been organised using the 

methodology suggested in ISO14040 (through the four phases introduced above).  

6.2 Experimental design and System description 

The current research presents the definition of the four main phases of LCA, considering 

the particular study of CZTS thin films processed via vacuum and non-vacuum deposition 

techniques. 

6.2.1 Goal and Scope of the study 

According to ISO 14040 (2006a), the goal of an LCA states the intended application and 

reasons for carrying out the study. The scope includes items such as an introduction of 

the functional unit of a product system, system boundary, data requirements, assumptions, 

and limitations. Introducing the functional unit is of great importance since it provides a 

reference to which the input and outputs are related [163]. 

In the current study, the goal is to evaluate the environmental impacts of the CZTS 

absorber layers that are currently being produced at laboratory scale, but may 

commercially be fabricated in scale-up production in the near future. The focus is to 

investigate several environmental impacts of using vacuum and non-vacuum deposition 

techniques to make the CZTS absorber layers. The study gives an overview on 

manufacturing the PV solar devices using different materials and processes in the future 

market. 

6.2.1.1 Functional Unit 

In PV LCA studies, the functional unit is expressed either in unit area of the solar module 

or the electricity generation capacity produced within one year. In this study, two 

functional units are defined including (i) the fabrication of 1m2 of PV module, and (ii) 

1GW electricity generation capacity manufactured per year. 

Even though the specific fabrication of CZTS at commercial scale has not yet been 

realised, the study of LCA by considering 1GW electricity generation capacity per year, 

as a functional unit, is beneficial. This is because it could necessitate recognising the 

specifications that are needed to replicate the technology from lab-scale to manufacturing 

scale. Moreover, it could give an overview of the consequences and impacts of the solar 

cell fabrication prior to developing the technology in large-scale. The choice of electricity 
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generation capacity, as a functional unit, would require the consideration of conversion 

efficiency, as will be clarified in the next paragraph. However, since the databases are 

usually stated with regard to the production of 1m2 as a functional unit, in order to 

compare the CZTS thin films with a reference, the functional unit of 1m2 of PV module 

has also been considered. In the current study, CIGS thin film has been used as a 

reference. This is due to its similarity in the configuration and device structure with CZTS 

thin films. In the following, the other assumptions are stated. 

A value of 15% efficiency was assumed for the fabricated CZTS thin films based on this 

being close and competitive to the commercialised CIGS PV modules [7]. The irradiation 

level is assumed to be ~1700 kWh/m2.year with the performance ratio of 75%, the lifetime 

of 30 years, and 0.5% output degradation per year [217]. Clearly, the two parameters of 

life time and the degradation rate are not yet verified for CZTS PV modules, but these 

presumed values allow some comparison with studies reported from other materials. 

Moreover, it is important to note that the average European electricity mix (UCTE) was 

used for all modelling and calculations. 

6.2.1.2 System Boundary 

The system boundary for this study is limited to only the fabrication process of absorber 

layer. The other steps in the module production processing are assumed to be equivalent 

to those for CIGS modules. Figure 6-1 shows the entire process of PV system 

manufacturing. It should be also noted that this study excludes manufacturing the other 

components of solar device including the buffer layer, anti-reflection coating, the back 

and front contact [197, 218, 219]. 

 

Figure 6-1. The highlighted blue boxes indicate the system boundary in this study. 
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6.2.1.3 Modelling of CZTS via vacuum and non-vacuum deposition technique 

CZTS thin films were fabricated via two main methods in the laboratory at University of 

Northumbria. The conventional structure of solar cells was shown in Figure 3-1b 

consisting of a substrate, a back contact, an absorber layer, a buffer layer, a transparent 

conductive oxide layer, and a front contact.  

The first approach was the use of vacuum deposition technique. The details of the 

processing have been presented in section 3.2.2.1. The second approach was the use of 

non-vacuum deposition technique. The details of processing have been presented in 

section 3.2.2.2. It must be remembered that the Slot-Die coating technique has been 

assumed instead of spraying method. This was due to the availability of Slot-Die coating 

equipment as a scalable deposition technique. 

The time and temperature of the heat treatment for the samples prepared via both vacuum 

and non-vacuum deposition techniques were estimated to be 30min and 550ºC, 

respectively. The pressure and composition of ambient gas used for the above two 

processes were different. However, due to the very small contribution of argon and 

forming gas (ambient gas) that were used for both synthesising processes (compared to 

the mass of other materials), their effects on environmental impacts have been neglected 

in this study. 

The vacuum co-evaporation deposition technique was considered for CIGS thin film 

production, which is regarded as a reference in the study. The Copper (Cu), Indium (In), 

Gallium (Ga), and Selenium (Se) are co-evaporated simultaneously from multiple sources 

in a single or sequential process. This is followed by the heat treatment at a temperature 

between 400-600°C. The inline process was designed with stationary sources and 

substrates moving past the targets (see Figure 6-2) [220]. The environmental impact of 

CIGS as a reference was modelled using SimaPro software, which will be described in 

section 6.2.4. The assumptions are provided by the Ecoinvent database according to the 

LCA study reported by Jungbluth et al 2012 [221]. 
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Figure 6-2. The schematic of an inline deposition system for co-evaporation of CIGS 

absorber layer [220] 

 

Table 6-1. Introducing the fabrication processing of CZTS and CIGS absorber layers with 

the techniques assumed for the current study 

Compound Substrate Back 

Contact 

Absorber Layer                     

Material (Process) 

Buffer 

layer 

Window 

layer 

Front 

Contact 

CIGS Glass Mo coated 

layer by 

Sputtering 

(i) Copper, Indium, 

Gallium                           

(ii) Co-evaporation                                               

(iii) Sulphurisation 

using tube furnace 

CdS  

via 

CBD 

Sputtering 

of ITO 

Thermal 

evaporation 

of Al 

CZTS Glass Mo coated 

layer by 

Sputtering 

(i) Copper, Zinc, 

Tin                                            

(ii) Sputtering 

(vacuum deposition 

tech.)                                                          

(iii) Sulphurisation 

using tube furnace  

CdS via 

CBD 

Sputtering  

of ITO 

Thermal 

evaporation 

of Al 

CZTS Glass Mo coated 

layer by 

Sputtering 

(i) Cu2O, SnO, ZnS, 

IPA                                       

(ii) Mixing/Milling 

Cu-O, Sn-O, Zn-S 

using ball milling 

apparatus                                                

(iii) Slot-Die non-

vacuum deposition 

tech.)                                      

(iii) Heating on hot 

plate                                   

(iv) Sulphurisation 

using tube furnace 

CdS via 

CBD 

Sputtering  

of ITO 

Thermal 

evaporation 

of Al 

6.2.1.4 Limitations and assumptions for CZTS modelling 

Since CZTS is regarded as a new PV compound, limited data is available relating to its 

commercial production and the study on this particular PV thin film technology is still 

restricted to laboratories. Thus, the assumptions presented in this study are mainly based 

on laboratory investigations, which were then used as a basis to allow simulation of an 

inline production process. The assumptions were also based on available equipment with 

the size and capacity that are currently applicable for similar manufacturing such as CIGS 
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PV cells or other similar devices. This has been estimated with regard to the specifications 

of the presumed equipment, as it is summarised in Table D1-D4 presented in Appendix 

D. Once the technology of CZTS PV devices is scaled up from lab to commercial scale, 

it is expected that equipment manufactured could be more appropriate and efficient in 

terms of material usage and energy consumption. This in turn can contribute to a reduction 

in adverse environmental impacts.  

The thin films that were fabricated at the University of Northumbria at laboratory scale 

had an area of 2.5  5cm2, for both mentioned techniques, with a thickness of 1 and 3µm 

for CZTS thin films fabricated via vacuum and non-vacuum deposition techniques, 

respectively. The deposition efficiency of all used materials for each stage of the 

manufacturing process is provided in Table 6-2 and Table 6-3. It must be noted that the 

deposition efficiency is the ratio between the mass of material deposited on the substrates 

and the mass of material required to make the CZTS thin film [170].  

6.2.2 Life Cycle Inventory analysis (LCI) 

In the Life Cycle Inventory (LCI) analysis, relevant data on inputs and outputs of a 

product system are required for conducting the LCA. Inventory analysis involves data 

collection and calculation procedures [220]. During the process, new data requirements, 

limitations, or other issues may be discovered to ensure that the goal of the LCA is still 

met [163]. Inventory analysis is regarded as a time consuming and demanding step of 

LCA because some data may be publicly available, and some often require to be collected 

for the particular case being studied. This can be done by contacting companies/industries 

involved in similar fabrication techniques. If achieving first hand data from industry is 

impossible, data from databases and previous literature could be used instead. However, 

the uncertainty in data might be relatively large.  

The current study was carried out using the latest available version of the SimaPro 

software (version 8.2 [222]). The data used for the scale-up manufacturing was estimated 

based on the availability of equipment in industry, which is currently applicable for 

similar processes (see table D1 and D3 in Appendix D). To calculate the mass of material 

required for the fabrication of the absorber layer, the layer volume was measured 

considering the module area, thickness of absorber layer, density of material, and 

deposition efficiency. The input data required for each step, such as electricity usage, time 

consumption for each production step, material usage, and deposition efficiency, were 
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estimated based on laboratory scale and the specifications of the assumed manufacturing 

equipment. These data are summarised in Table 6-2 and Table 6-3. According to the 

specification of the equipment, the total energy consumption used to process the CZTS 

thin films, via vacuum and non-vacuum deposition techniques in large-scale production, 

is supposed to be approximately 5.02 E+7 kWh and 4.3 E+5 kWh, respectively. More 

details on the calculations of these figures and the specifications of the equipment are 

presented in Appendix D (Table D1-D4).  

 

Table 6-2. The assumptions on material usage during the CZTS thin film processing using 

vacuum deposition technique are presented. Part A considers the material requirements 

for 1GW production per annum, whilst Part B provides the requirements for 1m2 of 

absorber layer. 

material 

usage 

Part A. To produce 1GW electricity per year Part B. To Produce 1 m2 of PV panel 

 Considering a thickness of 1 µm 

  Require 

(ton) 

Consume 

(ton) 

Waste 

(ton) 

Dep. 

efficiency 

(%) 

Require 

(g) 

Consume 

(g) 

Waste 

(g) 

Dep.  

efficiency 

(%) 

  30.66 ton CZTS is required to produce the 

thin film 

4.6 g CZTS is required to produce the thin film 

Copper 

target 

 

7.3 9.2 1.9 80 1.1 1.38 0.28 80 

Zinc 

target  

5.8 7.25 1.45 80 0.87 1.09 0.22 80 

Tin 

target  

 

8.8 11.06 2.26 80 1.33 1.66 0.33 80 

Sulphur 

 

8.7 1733 1724 0.5 1.3 260 258.7 0.5 

Water 0 4795 4795 0 0 720 720 0 

 

 

 

 

 

 

 



149 

 

Table 6-3. The assumptions on material usage during the CZTS thin film processing using 

non-vacuum deposition technique is shown. Part A considers the material requirements 

for 1GW production per annum, whilst Part B provides the requirements for 1m2 of 

absorber layer. 

Material 

usage 

Part A. To produce 1GW electricity per 

year 

Part B. To Produce 1 m2 of PV panel 

 
Considering a thickness of 3 µm                                                                                                                                                                             

  Require 

(ton) 

Consume 

(ton) 

Waste 

(ton) 

Dep. 

efficiency    

(%) 

Require 

(g) 

Consume 

(g) 

Waste    

(g) 

Dep. 

efficiency 

(%) 

  92 ton CZTS is required to produce the thin 

film 

 13.8 g CZTS is required to produce the thin 

film 

Cu2O 24.64 27.92 3.28 90 3.7 4.2 0.5 90 

ZnS 26.64 29.97 3.33 90 4 4.5 0.5 90 

SnO 29.97 37.3 7.33 90 4.5 5.6 1.1 90 

S 26.64 5328 5301 0.5 4 800 796 0.5 

IPA 0 303.3 303.3 0 0 45.3 45.3 0 

 

As mentioned earlier, the database usually contains many products and processes, but not 

all that are required. In this study, all the data have been found from the database except 

the one for tin (II) oxide. Thus, due to the lack of data for this specific component, the 

LCI data of tin (II) oxide were simplified by using the category “chemical inorganic” as 

it was used elsewhere [223].  

As for the waste created through the processing, the unused metals (targets) remaining 

after the use of vacuum deposition techniques are expected to be recycled and reused for 

further applications. However, emissions and waste streams associated with deposition 

were simulated as being released to different mediums during the production stages. The 

volatile organic compounds to be emitted into air and solid wastes from deposition are 

supposed to be emitted into ground. Solid wastes in the solution-based methods, which 

may form during the non-vacuum deposition processing, are assumed to be released in 

ground. These assumptions have been considered based on similar studies that were 

carried out by Collier et al [170]. It should be noted that at large-scale production, it might 
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be possible to recycle some of these wastes and prevent emissions with an economically 

feasible policy or approach, which would reduce the impacts below those calculated.  

6.2.3 Life Cycle Impact Assessment (LCIA) 

The LCIA provides information for the life cycle interpretation stage [163]. To do so, it 

is important to introduce the framework and the software that were used for the current 

study. 

 The IMPACT 2002+  

IMPACT 2002+ is an impact assessment framework, which is originally developed at the 

Swiss Federal Institute of Technology. According to this framework, the environmental 

impacts are divided into 14 midpoint categories (see Figure 6-3), which all link to four 

endpoint damage categories consisting of Human Health, Ecosystem Quality, Climate 

Change, and Resources. Figure 6-3 shows the overall scheme of the IMPACT 2002+ 

framework [224]. 

 

Figure 6-3. Overall scheme of the IMPACT 2002+ framework, linking the 14 midpoints 

of environmental impacts to the four main damage categories [224] 

 

 

The definition of all 14 midpoints are summarised in the following, according to the User 

Guide published by ‘Swiss Federal Institute of Technology Lausanne’ on ‘IMPACT 

2002+’ (see Table 7-4) [223-225].  
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 Human toxicity (carcinogenic and non-carcinogenic effects), respiratory effects 

(inorganic and organics), ionization radiation, and ozone layer depletion all 

contribute to “Human Health” damages. All above factors are expressed in 

“DALY/kg of emissions”. Human health impact is expressed in “DALYs” 

(Disability-Adjusted Life Years) which is sum of the years of life lost (YLL) and 

the years lost due to disability (YLD). Human toxicity is considered as two 

separate categories of carcinogenic and non-carcinogenic effects, which are 

related to the chemicals that may increase the risk of cancer and non-cancer 

diseases, respectively. The chronic toxicological effects on human health are 

expressed in “kg chloroethylene into air-eq”. 

 The respiratory effect is expressed in “kg PM 2.5 into air-eq/kg”. Particle Matter 

(PM) 2.5 is defined as any particle smaller than 2.5 µm in diameter, which is 

emitted from various sources into the air. This could be linked to serious health 

problems including heart, lung diseases, and premature deaths. It can also affect 

people from regions far from the source, since the particles can be transported in 

the air for long distances. 

 Ionization radiation is expressed in “Bq Carbon-14 into air-eq”. The Becquerel 

(Bq) is a unit for the definition of the level of radioactivity. One Becquerel is 

defined as the quantity of decayed nuclei per second due to the radioactive 

material. The Bq is equivalent to s−1. 

 Ozone layer depletion is expressed in “CFC-11 into air-eq” (an organic compound 

that contains carbon, chlorine, and fluorine) emissions into air only, since it is 

assumed that these pollutants are barely emitted into soil or water.  

 The photochemical oxidation refers to the formation of chemical compounds from 

certain air pollutants when they are exposed to sunlight. These pollutants can 

create breathing problems, eye irritation, and damage to crops as well as human 

health. Ozone (O3) is one of the examples of these compounds which is formed 

through the photochemical reactions. The Unit to evaluate the photochemical 

oxidation impact is considered as being approximately equivalent as “kg Ethylene 

into air-eq “. 

 The “Ecosystem Quality” damage category is the sum of the midpoint categories 

including “Aquatic eco-toxicity”, “Terrestrial eco-toxicity”, “Aquatic 

acidification”, “Aquatic eutrophication”, and “Land occupation”. Ecosystem 

https://en.wikipedia.org/wiki/Second
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quality impact is expressed in “PDF.m2.y”. This means the potentially 

disappeared fraction of species per 1m2 of land within a year.  

 The eco-toxicity refers to the impact of toxic substances emitted to terrestrial or 

aquatic ecosystems. The terrestrial ecosystems refer to the environments such as 

grasslands, forests, or deserts. The aquatic environment refers to freshwater, lakes, 

rivers, ocean, and sea. 

 Acidification is mainly caused by the emission of sulphur dioxide (SO2) into the 

environment. The effect of acidification is expressed in “kg SO
2
 into air-eq”. 

 Eutrophication or excess nutrients (nitrification) in aquatic and terrestrial 

environment can be caused by an excess of nitrogen, phosphorus, and 

biodegradable organic matter. The aquatic ecosystems that are enriched with 

nutrients would induce the growth of plankton algae and higher aquatic plants that 

deteriorate water quality due to the depletion of oxygen. This in turn could 

contribute to the death of organisms living in water. The reference substance for 

the assessment of the eutrophication potential for each emission is expressed in 

“Kg (PO4)
3- into water-eq” [224, 226]. 

 The land occupation refers to the use of land area for specific human-controlled 

purposes such as agriculture, forestry, or buildings. The land occupation is 

expressed in “m2 organic arable land-eq.y”. It should be noted that the thin film 

solar panels can be installed and used on different areas such as rooftops, 

windows, buildings, desert lands, etc. Since in this particular thesis, the 

deployment phase is excluded, the impacts induced by land occupation are not 

regarded as a concern and are not included. 

 Global Warming is linked to the environmental category of climate change. This 

is caused by greenhouse gas emissions, such as carbon dioxide and methane, 

which increases the heat radiation absorption of the atmosphere, contributing to 

the earth’s surface temperature rising. This factor is associated with only 

emissions into the air. The result of such a phenomenon might involve a change 

in climate pattern. The impact of an emitted gas is expressed in Global Warming 

Potential (GWP) in “kg CO2 into air-eq”.  

As for the units which are mentioned in Table 7-4, it should be noted that the kg 

equivalence of a reference substance indicates the amount of a reference material 
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that is equal to the impact of the considered pollutant (e.g. the GWP of fossil based 

methane is 27.75 times higher than CO2, thus its impact is defined as 27.75 kg 

CO2-eq). 

 Non-renewable energy consumption refers to the total primary energy required 

for production, use, and disposal processes per kg unit of extracted or processed 

material. All energy resources that can be found in nature, such as coal, crude oil, 

and natural gas are called primary energy resources. This indicator could be an 

interesting parameter, especially for the current study. The reason being, it shows 

the quantity of non-renewable energy consumed for the processing of a solar 

device, which is supposed to reduce the dependency on non-renewable sources of 

energy to produce electricity! 

 Mineral extraction is expressed as the energy needed in Mega Joule (MJ) per kg 

extracted of minerals and fossil fuels. This indicator refers to the resource 

availability for current and future generations, who may need to put greater 

investment and effort in extracting/mining the remaining resources.  
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Table 6-4. Characterisation factors, references substrates, and damage units according to 

IMPACT 2002+ framework [224] 

Midpoint category Midpoint reference 

Substrates 

Damage  

category 

Damage Unit  

Human toxicity  

(Carcinogens + non 

carcinogens) 

kg Chloroethylene into air-eq Human Health DALY 

Respiratory effects kg PM2.5 into air -eq Human Health DALY 

Ionization radiation Bq Carbon-14 into air-eq Human Health DALY 

Ozone Layer Depletion kg CFC-11 into air-eq Human Health DALY 

Photochemical oxidation 

(=Respiratory organic 

human health)  

kg Ethylene into air-eq Human Health, 

Ecosystem 

Quality 

DALY 

n/a 

Aquatic eco-toxicity kg Triethylene glycol 

into water -eq  

Ecosystem 

Quality 

PDF.m2.y 

Terrestrial eco-toxicity kg Triethylene glycol into 

soil-eq 

Ecosystem 

Quality 

PDF.m2.y 

Terrestrial acidification kg SO2 into air-eq Ecosystem 

Quality 

PDF.m2.y 

Aquatic acidification kg SO2 into water-eq Ecosystem 

Quality 

PDF.m2.y 

Aquatic eutrophication kg (PO4)3- into water -eq Ecosystem 

Quality 

PDF.m2.y 

Land occupation m2 Organic arable land-eq·y Ecosystem 

Quality 

PDF.m2.y 

Global warming kg CO2 into air-eq Climate change Kg CO2 into air-eq 

Non-renewable energy MJ or kg Crude oil-eq  Resources Primary MJ 

Mineral extraction MJ or kg Iron-eq (in ore) Resources Surplus MJ 
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 SimaPro Software/Databases 

SimaPro is a tool which is often used for quantifying the environmental performance of 

products. This software is produced by the Dutch company Pré Consultants. SimaPro 

software has a 25-year reputation in industry and academia in more than 80 countries 

worldwide [222].  

6.2.4 Life Cycle Interpretation 

The interpretation phase is the last step of the LCA study and involves the iterative 

process of reviewing and revising the scope of LCA [163]. At this stage, the influence of 

using different processes and emissions should be investigated and discussed. Since this 

step has similar concepts to the results and discussion of the current chapter, the LCI will 

be explained in more detail in section 6.3.  

6.3 Results and Discussion 

As discussed earlier, the study was divided into two sections. Part (i) will describe the 

environmental impacts considering only the material input, and Part (ii) will present the 

analysis extending to include the energy input to the processing. 

6.3.1 Part (i). The environmental impacts of fabricating CZTS thin films 

considering only material input 

In this section, a comparison of environmental impacts derived from CZTS thin films 

(prepared via vacuum and non-vacuum techniques) and CIGS absorber layers (as a 

reference) is presented, considering only the materials input to the layer. This analysis 

was carried out due to the fact that it demonstrates the generic potential of CZTS as a 

sustainable material, without the influence of the processing assumptions. 

Figure 6-4 shows the comparative influences of CZTS fabrication via two approaches and 

the reference material of CIGS. The results indicate that the CIGS processing has a larger 

impact in almost all environmental aspects. However, in terms of the organic emissions 

and the energy requirement for mineral extraction, the risk is much higher in the cases of 

preparing CZTS thin films via the non-vacuum and vacuum deposition technique, 

respectively. The adverse effect of respiratory emissions (organic emissions) may result 

from the use of IPA during non-vacuum deposition technique. According to the safety 

data sheet of IPA, this product may cause transient irritation to the respiratory system. 

Moreover, inhalation of a high vapour concentration of IPA may cause central nervous 
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system depression [139]. Since IPA can produce carbon oxides when exposed to heat 

treatment, there is also an expectation that the use of IPA contributes to have an adverse 

effect on GWP (see Figure 6-6). The results observed showed that the vacuum processing 

of CZTS has a lower impact in almost all categories than the non-vacuum processing, 

except for the mineral extraction indicator. This happens when the study is only based on 

the material usage and the effect of energy consumption is excluded. The four endpoint 

environmental damages for the CZTS processed via vacuum and non-vacuum together 

with CIGS are presented in Table 6-5. The figures that highlighted in yellow in all tables 

presented in this chapter are indicating the item that has the higher adverse environmental 

impact in each category. Figure 6-5 to Figure 6-7 show the assessment of each material 

input individually for the fabrication of CZTS and CIGS absorber layer.  

 

Figure 6-4. The environmental damages (the 14 midpoint categories) of the material usage 

of CZTS, via vacuum and non-vacuum deposition techniques, considering CIGS as a 

reference, with a functional unit of 1m2 of absorber layer is shown. The bar charts for 

CZTS fabrication via vacuum has been displayed in blue, CZTS fabrication via non-

vacuum is presented in orange, and CIGS fabrication via co-evaporation is illustrated in 

purple.  
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Table 6-5. The four endpoint environmental damages of material usage of the CZTS 

absorber layer prepared via vacuum and non-vacuum deposition techniques, considering 

CIGS as a reference and the assumption of 1m2 production facility is presented. 

Damage category 

(unit) 

CZTS thin films 

fabricated via 

vacuum deposition 

processing 

CZTS thin films 

fabricated via non-

vacuum deposition 

processing 

CIGS thin films  

fabricated via co-

evaporation 

processing 

Human health 

(DALY) 

1.86 E-07 3.64 E-07 3.49 E-06 

Ecosystem 

quality 

(PDF.m2.y) 

1.07 E-01 4.33 E-01 6.17 E+00 

Climate 

change 

(kg CO2 eq) 

1.66 E-01 5.19 E-01 3.04 E+00 

Resources 

(MJ) 

1.01 E+01 2.9 E+01 4.84 E+01 

 

 

 

Figure 6-5. The environmental impacts of material usage for 1m2 of CZTS fabrication via 

the vacuum deposition technique is displayed (copper in brown, zinc in pink, tin in black, 

and sulphur in yellow). There is also a small contribution from consumed water (required 

for cooling and processing), which is not large enough to be visible in the figure. The 

total quantity of each category is presented on the right hand side of the bar chart. 
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Figure 6-6. The environmental impacts of material usage that is used for 1m2 of CZTS 

fabrication via non-vacuum deposition technique are demonstrated (copper oxide in 

brown, zinc sulphide in pink, tin oxide in black, sulphur in yellow, and IPA in light blue). 

The total quantity of each category is presented on the right hand side of the bar chart. 

 

 

Figure 6-7. The environmental impacts of material usage for 1m2 of CIGS fabrication 

(copper in brown, gallium in purple, indium in green, and selenium in grey) are illustrated. 

The total quantity of each category is presented on the right hand side of the bar chart. 
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The results show that in case of preparing CZTS via both vacuum and non-vacuum 

deposition technique, there is a large contribution from the use of sulphur, for all impacts 

except eco-system quality. These consequences can be resulted due to the assumption of 

a low sulphur deposition efficiency (approximately 0.5%), consequently the use of large 

quantity of sulphur for processing. It also can be resulted due to the lack of treatment of 

the waste sulphur. This deposition efficiency is assumed based on laboratory scale 

analysis (which was optimised in Chapter 5) and the calculations have been done based 

on the capacity of assumed equipment, as stated in Table 6-2 and 6-3, and Appendix D. 

It is expected that a suitable design for extraction and recycling process would reduce 

adverse environmental impacts. If the CZTS thin films are fabricated via non-vacuum 

processing, the disposal of zinc sulphide to the ground is a point deserving attention, since 

it significantly affects ecosystem quality (see Figure 6-6). The considerable adverse 

influence of copper and tin can be related to the mainly extraction and using procedures 

that contributes to a considerable environmental toxicity, as it is also reported in previous 

literature [169]. 

The results achieved by the analysis of CIGS absorber layer have illustrated that the use 

of gallium and indium has an adverse effect for all endpoint environmental damages (see 

Figure 6-7). The results achieved here are consistent with the data stated by Celik et al 

[169], as they also reported that the toxicity of gallium and indium is much higher than 

the toxicity of copper and tin. Although selenium is a toxic element, its effect on 

environmental damages seems to be less significant than that for gallium and indium. 

This is due to the less toxicity of selenium compared to gallium and indium during the 

extraction and using procedure, as it is mentioned in previous literature [169]. It also 

might be due to the use of selenium targets for the CIGS fabrication processing rather 

than the use of selenium powders or pellets (see Figure 6-7). In fact, the selenium target 

would be expected to produce less waste and the unused part of the target can be recycled. 

A comparison between the use of vacuum and non-vacuum techniques in the fabrication 

of CZTS thin film has been shown in Figure 6-8. 
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Figure 6-8. The environmental damages (the 14 midpoint categories) of material usage of 

CZTS thin film via vacuum (in blue) and non-vacuum deposition technique (in orange), 

with the functional unit of 1GW electricity generation per year is displayed. The total 

quantity of each category is presented on the right hand side of the bar chart. 

 

 

When the quantity is increased from the production of small scale (1m2 of PV modules) 

to large-scale (1GW electricity production per year), the endpoint environmental impacts 

of CZTS fabrication via non-vacuum processing are higher for all of the midpoint 

environmental categories with the exception of the mineral extraction and global warming 

indicators (see Figure 6-8). As can be seen in Figure 6-8, the adverse effect of using non-

vacuum deposition technique on respiratory organics is still a matter of concern, as it was 

in the fabrication of small-scale production of CZTS thin films. Table 6-6 shows the 

influence of manufacturing CZTS thin films via vacuum and non-vacuum deposition 

technique on the four environmental impacts (endpoints) for large-scale production. 
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Table 6-6. The environmental damages (the endpoint categories) of material usage in the 

fabrication of CZTS thin film via vacuum and non-vacuum deposition techniques, with 

the functional unit of 1GW electricity generation per year is exhibited. 

Damage Category (unit) CZTS thin films 

fabricated via vacuum 

deposition technique 

CZTS thin films 

fabricated via non-

vacuum deposition 

technique 

Human health (DALY) 1.2  2.4 

Ecosystem quality (PDF.m2.y) 7.1 E+05 2.8 E+06 

Climate change (kg CO2 eq) 2.1 E+06 6.7 E+05 

Resources (MJ) 6.3 E+08 1.5 E+07 

 

The results of this section, as discussed earlier, show the importance of considering the 

use of material selection for non-vacuum deposition processing in order to reduce the 

environmental impacts, if this approach is going to substitute the expensive method of 

vacuum deposition technique. In the next section, the study is expanded to the 

consideration of both material and energy usage for the fabrication processing of the 

absorber layer. 

6.3.2 Part (ii): The environmental impacts of fabricating CZTS thin films, 

considering material input and energy consumption 

The comparison of the derived impacts of CZTS and CIGS processes for the fabrication 

of 1m2 of absorber layer has been shown in Figure 6-9. The results indicate that the 

influence of the CIGS thin film fabrication on all environmental impacts (midpoint 

categories), for small-scale production (1m2 of absorber layer), has higher quantities 

compared to the other two techniques, with the exception of respiratory organics indicator 

(see Figure 6-9).  
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Figure 6-9. The environmental damages (the 14 midpoint categories) of material usage 

and energy consumption of CZTS thin films fabricated via vacuum (in blue), via non-

vacuum deposition technique (in orange), considering CIGS as a reference (in purple) is 

displayed. The functional unit is 1m2 of PV module.  
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Noting that the scale of the production assumed for CIGS in the Ecoinvent database is not 

clearly stated for large-scale production, here, the results are presented per kWh of output 

from the PV module (considering 75% performance ratio, 0.5% degradation per year, and 

lifetime equal to 30 years for the device (absorber layers)) (see Figure 6-10). Analyses 

have also been done, comparing only the vacuum and non-vacuum deposition techniques 

for the fabrication of CZTS thin film (see Figure 6-11). 

 

 

Figure 6-10. The environmental damages of material usage and energy consumption of 

the CZTS absorber layer via vacuum (in blue) and non-vacuum deposition techniques (in 

orange), considering CIGS thin film fabrication as a reference (in purple) is shown, with 

the functional unit of 1GW per annum production facility. 
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Figure 6-11. The environmental damages (the 14 midpoint categories) of material usage 

and energy consumption of CZTS via vacuum (in blue) and non-vacuum deposition 

techniques (in orange) is displayed. The fictional unit of 1GW electricity generation per 

year is considered. The total quantity of each category is presented on the right hand side 

of the bar chart. 
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deposition technique, results from the use of IPA during the process, as discussed before 

(see Figure 6-11). 

Figure 6-12 and Figure 6-13 show the environmental impacts of each initial feedstock for 

the manufacturing process of CZTS thin films via vacuum and non-vacuum deposition 

techniques, respectively. The bar charts clearly indicate the considerable influence of high 

energy required for the vacuum processing technique on the environmental impacts. As 

for the influence of materials in the non-vacuum processing, the more critical ones for the 

environment could be the IPA for nearly all environmental issues, and the zinc sulphide 

for eco-toxicity, since zinc sulphide waste is supposed to be inserted into the ground. 

Furthermore, copper oxide seems to contribute human toxicity, as well. Moreover, Figure 

6-12 shows the restriction of tin extraction for current and future generations. This might 

be due to limited number of mines and the difficulties in reduction of tin from its ores, 

which is mainly Cassiterite (SnO2). The other available ores are complex sulphides such 

as Stannite (Cu2FeSnS4), Teallite (PbSnS2), Canfieldite (Ag8SnS6), and Cylinderite 

(PbSn4FeSb2S14). The results here cause concern for the deficiency of tin resources and 

the high amount of energy required for mining tin when those resources become scarce. 

According to the tin recovery process, the reduction of SnO2 is performed using carbon 

and heat treatment in a furnace up to a temperature of ~1371ºC [227, 228].  Consequently, 

due to the above issues, a considerable quantity of the mineral extraction indicator is 

expected (see Figure 6-12). 
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Figure 6-12. The environmental damages (the 14 midpoint categories) of material usage 

and energy consumption of CZTS thin films fabricated via vacuum deposition techniques, 

with the functional unit of 1GW electricity generation for one year is shown (copper in 

brown, tin in black, zinc in pink, sulphur in yellow, electricity consumption in red). The 

total quantity of each category is presented on the right hand side of the bar chart. 
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Figure 6-13. The environmental damages (the 14 midpoint categories) of material usage 

and energy consumption of CZTS thin films fabricated via non-vacuum deposition 

techniques, with the functional unit of 1GW electricity generation for one year is 

displayed. The different feedstocks are illustrated in different colours (copper oxide in 

brown, tin oxide in black, zinc sulphide in pink, sulphur in yellow, IPA in light blue, and 

electricity in red). The total quantity of each category is offered in the right hand side of 

the bar chart. 
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Table 6-7. The environmental damages of energy and material usage of the CZTS 

absorber layer via vacuum and non-vacuum deposition techniques, considering CIGS as 

a reference, for an assumed 1GW per annum production facility 

Impact category CZTS thin films via 

vacuum deposition 

technique 

CZTS thin film 

fabricated via non-

vacuum deposition 

technique 

CIGS thin film 

fabricated via co-

evaporation 

technique 

Human health 

(DALY/kWh) 

4.57 E-10 3.05 E-11 3.91E-09 

Ecosystem quality 

(PDF.m2.y/kWh) 

9.42 E-05 8.07 E-05 3.71E-03 

Climate change  

(kg CO2 eq/kWh) 

7.97 E-04 2.62 E-05 5.29E-03 

Resources 

(MJ/kWh) 

4.1 E-02 8.7 E-04 1.02E-01 

 
Figure 6-14. The environmental damages of energy and material usage of the CZTS 

absorber layer via vacuum (in blue) and non-vacuum (in orange) deposition techniques, 

considering CIGS as a reference (in purple) is displayed for an assumed 1GW per annum 

production facility. The total quantity of each category is given on the right hand side of 

the bar chart. 
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reference. The effects of material and energy consumption for each process were analysed 

by SimaPro software. The CZTS process is at the research and development stage and the 

material is not yet in commercial production. Therefore, the purpose of this analysis was 

to estimate (a) if the material itself is likely to yield environmental benefits over CIGS, 

(b) the effects of process assumptions on the environmental impacts, and (c) the important 

issues to address in the ongoing development from an environmental viewpoint. With 

regard to these, analysis of the input materials for the absorber layer shows that the CZTS 

films exhibit a significant potential benefit over CIGS, with the non-vacuum technique 

having a slight advantage over the vacuum deposition technique. This result does not 

mean that the vacuum deposition technique cannot have the potential to be produced at 

large-scale. In fact, this study would be beneficial for future research to take account of 

material selection and processing techniques as well as the effort to improve the 

performance of PV devices. A consequence that acquired from large-scale fabrication of 

absorber layers when only material usage have been considered was that the material used 

for non-vacuum processing could be harmful for the ecosystem and human health, while 

the climate change and resources are more affected by vacuum processing than non-

vacuum technique. Extending the study onto estimating the environmental impacts, 

considering both material and energy consumption, the results indicated that the vacuum 

deposition technique could have more adverse influence on all the environmental 

indicators, compared to non-vacuum deposition technique. Moreover, the analysis 

showed that the use of sulphur, in terms of material usage and recycling of unused 

material, dominates for both vacuum and non-vacuum approaches. The disposal of zinc 

sulphide is also important for the non-vacuum processing. Since the assumptions of this 

study were held according to the projections of a large-scale production, it is clear that 

energy consumptions dominate the environmental impacts for the vacuum processing and 

so it is important to ensure that development of the process prioritises energy efficiency. 

Finally, it should be recognised that the analyses presented here are for a pre-commercial 

stage and should not be taken to represent the final values of the commercial processes. 

Rather than that, the analyses are useful to investigate the potential for sustainability and 

the fabrication aspects of interest. Moving forward, the impact of the rest of the module 

manufacturing process must also be considered, once the processes have been more fully 

defined.  
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 Conclusion and outlook 
This chapter presents a summary of the current research and the main outcomes achieved 

during this PhD thesis. It also offers several suggestions as recommendations for future 

studies. 

7.1 Development in Kesterite absorber layer 

7.1.1 CZTSe absorber layers through preliminary investigations 

 The study has shown that in case of using Se-cap layer, the CZTSe Kesterite 

crystal structure can be formed when the thickness of Se-cap layer is at least 1.5 

times the thickness of CZT metallic precursors. This is when the conversion 

conditions to fabricate the CZTSe is adjusted at the preheating temperature of 

160ºC for 3 hour, the conversion time of 15 min at a temperature of 550ºC, and 

300 mbar ambient pressure of argon. 

 The advantages of using an evaporated cap include the macroscopically uniform 

surface of the film and the possibility to control the amount of selenium in close 

contact with the precursor surface during the evaporation. However, this 

technique results in a microscopic non-uniformity by the formation of secondary 

compounds which can be attributed to the formation of star-like features at 

preheating temperatures (less than the melting point of selenium). The regions 

with the star-like features can be regarded as nucleation points and can be 

responsible for the selective creation of binary compounds. The formation of 

secondary compounds can be detrimental to the absorber layer quality by acting 

as centres of SRH recombination contributing to a reduction in open circuit 

voltage. By using selenium pellets, although the macro-scale non-uniformity is 

considerably increased, the micro-uniformity and morphology are significantly 

improved. This enabled the research group to achieve an 8.1% device efficiency.  

 The advantage of using selenium pellets is not only the formation of a relatively 

uniform microstructure, but also a more efficient material usage. The study here 

has shown that in the case of using thermal evaporator to fabricate the Se-cap 

layer, the evaporation technique requires a quantity of selenium with a magnitude 

of ~140 times higher than that required for the case of using Se pellets in graphite 

box. This considerable mass of material usage and subsequently, the high quantity 

of material wastes together with the processing time and energy required for 
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thermal evaporator technique, makes this method less favourable than the use of 

Se pellets during the conversion processing. 

 The study on the investigation of preheating steps at low ambient pressures has 

been compared to the one-step selenistaion at high ambient pressure (without 

preheating). The results indicated the formation of micro non-uniformities across 

the surface of thin films for those samples preheated at low temperatures and low 

pressures. While the one-step selenisation at 500ºC under the ambient pressure of 

300 mbar of argon has shown a relatively uniform morphology with fewer 

formation of secondary compounds. This study offers the need for the use of a 

high ratio of ambient pressure during the conversion (selenisation) when the 

conversion temperature is higher than ~350ºC. This is required to prevent the 

formation of liquid/vapour states of selenium and the subsequent complex 

reactions at lower temperatures, which are expected to increase the possibility of 

the formation of selective secondary compounds at early stages of conversion.  

7.1.2 Development of the precursor solution and deposition technique for 

the fabrication of CZTS thin films through preliminary investigations 

 The study in this thesis offers a low-cost and simple technique to fabricate a 

precursor solution. This has been done using a mechano-chemical approach. To 

do so, the metal oxide/sulphide powders including Cu2O, ZnS, and SnO have been 

mixed and milled in a ball milling apparatus. This process have been carried out 

with the advantage of using IPA as a suspension or carrier solution. In addition, 

the ZrO2 balls were used as grinders for the process of milling. In order to prepare 

a homogenous precursor solution three parameters have been investigated. These 

include (i) the reduction of particle size of initial powders by increasing the 

milling time, (ii) the reduction of particle size of initial powders using ZrO2 balls 

with three different diameters (D = 5, 2, 0.5 mm), and (iii) the choice of 

appropriate carrier solution.  

The investigations on the effect of milling time have shown that in general, 

increasing the milling time causes a reduction in particle size of powders. 

However, milling the powders for 24 hours, compared to the milling for 4 hours 

has less contribution in providing fine particles. Thus, the choice of 24 hours of 

milling is less favourable. This is because of the importance of time and energy 
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consumption for the processing, especially when the technology is aimed to be 

used in a large-scale production. The study of using different ball sizes has shown 

than the reduction in particle size can be significantly achieved with reducing the 

ball size from 5 mm to 0.5 mm. The experiment has also shown a better 

homogeneity and distribution of particles across the solution when the smaller 

grinding balls were used (D = 0.5 mm).  

 In order to choose an appropriate carrier solution, the use of water and/or IPA has 

been used. Although water is less toxic and safer for environment than IPA, the 

study has shown a better disparity of powders in the case of using pure IPA. The 

study indicated that the formation of agglomerated features in the case of using 

90%water + 10%IPA. Therefore, it is preferable to use pure IPA as a suspension 

solution as it is expected that the agglomerated structure of particles decreases the 

rate of reduction of oxide compounds in further steps of processing. 

 Establishing a method of non-vacuum deposition technique has been achieved by 

offering a simple and scalable technique of spraying with an airbrush. The results 

have shown the formation of relatively uniform and thin layer of precursor on 

substrates. Moreover, a limited study on fabricating the precursor thin films via 

slot-die technique also indicated promising results, since the microstructure of 

fabricated thin films were even more uniform than those samples prepared by 

spraying method. Both techniques of spraying and slot-die have the advantage of 

using in large-scale production and less waste compared to the conventional 

method of spin coating deposition technique. 

 Finally, the optimised conditions achieved in the current research were the 

fabrication of precursor solution by mixing and grinding metal compound 

powders (Cu2O, ZnS, and SnO) with IPA as a carrier solution in a ball mill 

apparatus for 4 hrs with a speed of 500 rpm. Zirconia balls with the size D = 0.5 

mm have been used and the milling process has been done with 5 min and 7 min 

of grinding and pause time, respectively. 

7.1.3 Development of the conversion conditions for the fabrication of CZTS 

thin films 

 The study in the current thesis indicates the importance of precursor composition, 

conversion time, temperature, and ambient pressure on the morphology and 
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crystal structure of the final CZTS thin films. The influence of all these parameters 

have been examined and presented in Chapter 5.  

 The investigation on the composition of sulphurised absorber layers has been 

carried out and the optimum composition for this particular experiment is 

suggested to follow the atomic ratio of Cu:Zn:Sn equal to 0.7:1:1 for the precursor 

composition. 

 The use of sufficient pressure of forming gas is necessary in order to convert the 

relatively stable SnO compound and remove the oxygen from the precursors. 

Besides, a control of the total ambient pressure has shown to be a critical 

parameter in the fabrication of uniform thin films, since the use of high rate of 

forming gas may lead to the loss of adhesion between the converted thin films and 

the back contact; consequently it causes the converted films to be separated from 

the substrates. A high total ambient pressure is important to prevent the tin loss. 

Thus, an optimisation of total ambient pressure was needed. The current study has 

suggested the use of 250 mbar H2/N2 for the process of CZTS Kesterite thin films 

in this particular experiment.   

 The influence of conversion time and temperature on the final quality of CZTS 

thin films have been investigated. The results have shown that the increase of both 

factors can affect the grain growth of CZTS Kesterite structures, subsequently 

creating a denser absorber layer. The study on the temperature profile has shown 

a better compositional result when the sample is heated fast and cooled down 

naturally. This could be due to the delay in the reduction of SnO in solid state to 

SnS in solid, and subsequently SnS in gas state. This will postpone the tin loss 

from the system. However, the results indicated that during the cooling step, the 

SnS can condense on the surface. Since the formation of SnS has been mainly 

observed on the surface of converted thin films, these compounds can be removed 

via surface etching.   

 The experiment on surface etching has shown that SnS crystal structures can be 

completely removed from the surface when the sample is placed into the solution 

of 20 wt% (NH4)2S for at least 3 min at room temperature.  

 The use of different supply of sulphur during the conversion have been 

investigated in order to provide adequate partial pressure of sulphur and prevent 

the deficiency of chalcogen quantity across the absorber layer. Moreover, the 
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post-conversion heat treatment under high ambient pressure of argon (500 mbar) 

with an excess sulphur supply (1g) has shown a slight decrease in sulphur 

deficiency of the converted thin films. 

 The material characterisation and optoelectronic study on the fabricated CZTS 

thin films have revealed promising results showing approximately no surface 

recombination using IMPS technique. The XRD patterns and Raman spectra have 

shown the successful formation of CZTS Kesterite structure using the metal 

oxide/sulphide powders and the non-vacuum deposition technique. The EQE 

spectrum has illustrated a 20% efficiency.   

 The follow-up studies on the selenisation of CZTS thin films have shown a 

considerable grain growth and a dense morphology of the CZTSSe thin films. 

However, the follow-up trial on investigating the use of extra elemental sulphur 

source in the precursor solution plus using sulphur powders during the conversion 

processing shows the formation of small grain of CZTS compounds with a more 

porous morphology of converted films compared to the use of extra elemental 

sulphur source only during the conversion procedure. 

7.2 Environmental impacts of the fabrication of CZTS absorber layers via 

vacuum and non-vacuum processing techniques 

 In order to estimate the environmental impacts, the study was conducted using 

LCA approach with the use of IMPACT 2002+ as a framework and SimaPro as a 

software has been used. The system boundary defined for the current study only 

includes the fabrication of absorber layer. In this thesis, the fabrication of CZTS 

thin films prepared via vacuum and non-vacuum deposition technique have been 

considered. The CIGS absorber layer manufactured via co-evaporation technique 

has been used as a reference due to its similarity with CZTS in terms of device 

structure and configuration. Considering the assumption that the materials and 

processing techniques for fabricating a complete device are the same for the three 

examined absorber layers, the outcome of the study could be an indicator of the 

environmental impacts of the whole solar device. According to the study on LCA, 

the investigations have shown that regardless of the low efficiency of CZTS based 

solar cells, the use of this compound has a considerable advantage over the CIGS 

based solar cells. Comparing the two technique for fabrication of  CZTS thin 
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films, the results have shown that in large scale production, the material used 

during non-vacuum processing are more harmful for the ecosystem and human 

health, but they have less adverse impacts on climate change and resources 

compared to the vacuum processing technique. However, considering the impacts 

of both material and the energy required for the processing, the vacuum technique 

seems to have more adverse influence on all environmental impacts than non-

vacuum fabrication route. 

 Regarding the results achieved by the study on LCA, if the non-vacuum deposition 

technique improves in terms of device performance, it could be a more 

environmentally friendly approach than the use of vacuum deposition route. 

Nevertheless, if the non-vacuum processing substitute instead of vacuum approach, it 

is required to address the issue of waste with an appropriate design for extraction, 

processing (considering the deposition efficiency), and recycling steps. That could be 

beneficial to reduce the environmental toxicity occurs during the processing and use.  

7.3 Suggestions for future research 

 One of the challenges in the current study has been the low degree of reproducible 

results in case of using the handheld spraying technique. Thus, replacing this 

technique with slot-die method could provide a high degree of reproducibility 

with the formation of more uniform precursor layer. Optimising the precursor 

solution viscosity with an ideal binder to make the precursor solutions being stable 

for longer time could make a significant progress in the fabrication of a uniform 

absorber layer. Otherwise, the precursor solution will be dried while travelling 

through the delivery tube before it reaches the substrate. A trial study on this topic 

has been done by Dr. Greenwood at University of Swansea and the results are 

presented in Appendix B. This study could be an starting point for future 

investigations. 

 It is expected that developing a strategy to provide a compact structure with less 

pinholes would be possible via the compressing of the precursor thin films using 

a table press that ensures an equal and even pressure across the surface. Chen et 

al have reported a promising results when they have used similar strategy for the 

fabrication of CIGS thin films [133]. It is assumed that similar approach could be 

beneficial to fabricate the CZTS thin films with a better degree of compactness. 
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 The study here have shown promising results on the fabrication of CZTS Kesterite 

structure using the metal oxides as initial materials. However, due to the necessity 

in optimising the precursor solution, deposition technique, and conversion 

conditions, less time has been devoted to the fabrication of a complete device. The 

limited manufactured devices have not been shown a considerable efficiency. 

Thus, future study can be devoted to the use of two mentioned suggestions, and 

subsequently the fabrication of a complete device. 

 As the CZTS device develops, the LCA analyses can be revisited and, at that time, 

it may be reasonable to extend the study with considering the environmental 

impacts arises from the processing of the other components of solar device. 

7.4 Original Contribution 

This study has shown a successful synthesising of CZTS Kesterite structure from the 

metal oxide/sulphide compounds of Cu2O, ZnS, and SnO. To the best of our knowledge, 

this is the first time that the combination of these compounds have been used to prepare 

the CZTS absorber layer. This PhD thesis offers (i) the fabrication of a homogenous 

precursor solution via a mechano-chemical approach (ball milling), (ii) the establishment 

of a scalable and simple method of deposition to prepare a uniform and thin layer of 

precursor on substrate, (iii) the investigation of the conversion conditions on the 

morphology and crystal structure of CZTS thin films, and (iv) the study on the 

sustainability of the material usage and processing technique to fabricate the CZTS 

absorber layer. The morphology and the composition of CZTS thin films have been 

significantly improved by optimising the synthesising process and the conversion 

conditions. Investigating the micro and crystal structure together with the optoelectronic 

characteristic of fabricated CZTS thin films have revealed that the use of metal 

oxide/sulphide powders with a mechano-chemical technique could have the potential to 

be considered for PV technology. In order to evaluate whether the use of metal 

oxide/sulphide compounds and the non-vacuum processing is beneficial over the use of 

metal targets and the vacuum processing, the sustainability of these two techniques have 

been studied and compared via LCA approach. Such a study can provide an overview on 

the importance of the material selection and the processing used for the production of a 

solar device. Furthermore, it is expected that the use of solar device offers a cleaner and 

greener earth for current and future generation. Thus, the advantage of using solar energy 
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should not be sacrificed by the use of materials and processes which damage the human 

health, ecosystem quality, climate change, and resources.    



179 

 

   



180 

 

Appendices 

Appendix A: Liquid redox electrolyte and p-semiconductor junction 

 

A Schottky junction can be formed when a p-semiconductor is immersed in a liquid redox 

electrolyte. The Figure A-1 shows the situation before and after the semiconductor and 

the electrolyte reach the thermodynamic equilibrium. As shown the Fermi level for the 

two sides have different values. Thus, an exchange of charges at electrolyte and the 

semiconductor is required to equalise the Fermi level. During the equilibrium condition, 

a depletion region is created into the semiconductor side of the interface together with a 

layer in the electrolyte side known as Helmholtz Layer in the electrolyte side. The band 

bending will occur as it forms an electrolyte-semiconductor junction.  

The kinetics of electron-transfer processes can be measured by perturbing the potential 

and measuring the periodic current response via short light flashes [205]. Thus, the 

minority carriers (electrons) are generated by illumination and move towards the 

interface. They are then collected from the bulk of the semiconductor by the positive 

charge carrier in the electrolyte. With a choice of an electrolyte having the redox potential 

higher than the semiconductor Fermi level, the electrons can transfer through the 

electrolyte and reach the electrode (Counter Electrode). This produces a photocurrent in 

a short-circuited system and also it leads to the reduction of oxidised species in the 

electrolytic solution [229, 230]. A typical image of oscilloscope that have been observed 

during the experiments at University of Northumbria is presented in Figure A-2. The 

spectrum of the three collimated LEDs used for the experiments have been also shown in 

Figure A- 3. 
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Figure A-1. The formation of a Schottky junction between a liquid redox electrolyte and 

a p-type semiconductor (a) before (b) after the thermodynamic equilibrium [2]. 

 

 

 

Figure A-2. A typical graph observed by oscilloscope using IMPS technique. 

 

 
Figure A- 3.The spectrum of three collimated LEDs used for the experiments (a) 940cnm 

(b) 565 nm (c) board white source [231]. 
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Appendix B: The use of surfactant in precursor solution preparation 

Thermogravimetric analysis (TGA) is a method of characterising the mass loss of a 

material as a function of temperature or time. The analysis normally proceeds in a 

controlled atmosphere. This technique can be used to evaluate stability and lifetime of 

materials, the rate of decomposition, oxidation or dehydration of a product, and the degree 

of volatility over a range of temperature or a period of time. 

In this study, an equipment with the identification of ‘PerkinElmer STA6000’ has been 

used to evaluate the weight lost. The experiments have carried out using nitrogen gas with 

a flow of 20 ml/min, temperature range of 30ºC to 800°C, an isothermal hold for 1 minute, 

and a temperature scan of 10ºC/min. The sample volume was prepared with the mixture 

of 30µL of precursor solution plus 10µL of surfactant. The non-ionic Alkanol 6112 (a 

combination of Polyethylene oxide monooctadecyl ether, Decon 1-ol, and water) with the 

boiling point of 100ºC and the density of 0.91g/ml has been used as a surfactant. The 

solvent is relatively toxic and has a higher boiling point compared to IPA (~82.6°C). The 

four samples were prepared with the addition of 0%, 1%, 5% and 10% (by volume) to the 

initial precursor solution containing Cu2O, ZnS, SnO, and IPA. The four examined 

samples were stored on a rolling table for 48 hours, then the samples were removed and 

shaken vigorously. Afterwards, the samples were allowed to rest for 8 hours, the picture 

of the samples after this process as shown in Figure B-1, illustrates the difference in 

uniformity of the solutions. 

 
Figure B-1.The picture shows the precursor solutions after mixing with Alkanol 6112 as 

a surfactant with different values (by volume) of (a) 0%  (b) 1% (c) 5% (d) 10%. 

 

The results of a complete scan from 30ºC to 800ºC have shown that the initial mass-loss 

from dispersions of precursor solution prepared without surfactant occurred by 

approximately 100ºC while with the use of surfactant in precursor solution, the mass loss 

plateau after 175ºC, followed by a gradual decrease to 500ºC (see Figure B-2). The results 

have shown that the dispersion mass-loss plateaus occurred at 10-12 wt% by 800°C, while 
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the surfactant mass-loss plateau at 0.5% by 560°C. No significant mass-loss has been 

observed from dispersion between 500ºC and 560°C. 

 

Figure B-2. The Thermo-gravimetric analysis of CZTS precursors 

 

One of the major concerns of the use of surfactant was its influence on the micro and 

crystal structure of the converted thin films. Although due to the packaging and posting, 

the examined samples were not uniformly coated, the SEM/ XRD analyses of the samples 

coated with the solution formulated by surfactant did not show any new compounds. The 

examined samples have shown Kesterite crystal structure with partially binary 

compounds of SnS similar to the quality has been observed with the use of only IPA. 

 

 

Figure B-3.The Plan-view SEM images of converted samples prepared using (a) 

precursor solutions without surfactant using spraying technique (b) precursor solution 

with surfactant using slot-die technique. 
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Figure B-4. The figure shows the XRD patterns of the converted samples prepared using 

(a) precursor prepared from the solution including the surfactant fabricated by slot-die 

technique (b) precursor prepared by the solution without surfactant fabricated by spraying 

technique 
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Appendix C: Comparison of converted samples prepared via vacuum or non-

vacuum deposition technique 

 

The study here presents a trial of the conversion of the two precursors prepared via 

vacuum and non-vacuum deposition techniques. Of various processing methods for 

depositing the absorber layer, two methods were used (A) conversion of magnetron 

sputtered metal precursors (vacuum processing), and (B) reactive conversion of spray 

deposited films (non-vacuum processing). 

The samples prepared via method (A) involved magnetron sputter deposition of Cu-Zn-

Sn metal precursors on Mo/SLG substrates with composition of Cu/(Zn+Sn) = 0.7 and 

Zn/Sn = 1 and the thickness of 0.5 µm. The samples prepared via method (B) made with 

the same preparation and heat treatment procedure that was introduced as the optimum 

situation in chapter 6 (conversion time and temperature of 40 min and 570°C, 

respectively). However, the ambient pressure has been varied between two pressures of 

5 and 250 mbar H2/N2 for samples processed via both methods of A and B. 

The plan-view and cross-section SEM images have shown the morphology of the 

converted samples (see Figure C-1 and Figure C-2). The X-ray diffraction of four 

experimental samples are shown in Figure C-3. The compositional changes are also 

presented in Table C-1. 

 
Figure C-1. The SEM images of samples processed via sputtering are displayed (a,a*) 5 

mbar Ar (b,b*) 250 mbar H2/N2. The images are observed with two different 

magnifications of (a, b) ~24kx, and (a*, b*) ~5kx. 
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Figure C-2.The plan-view SEM images of non-vacuum deposited sample sulphurised 

under (a,a*) 5 mbar Ar and (b,b*) 250 mbar H2/N2. The SEM images have been observed 

with two different magnification of (a, b) ~48kx and (a*, b*) ~5kx. 

 

 
Figure C-3. The XRD patterns of (a, b) samples processed via non-vacuum deposition 

technique (NVD) (c, d) samples processed via vacuum deposition technique (VD) under 

(a, c) 5H2/N2 and (b, d) 250 mbar H2/N2.  

 

 

Figure C-4. The cross-section SEM images of (a, c) the sample prepared via sputtering 

(b, d) the samples prepared via spraying with the ambient pressure of (a, b) 250 mbar 

H2/N2 (c, d) 5 mbar H2/N2 
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Table C-1.The table shows the compositional changes of the samples before and after 

sulphurisation, the first three samples named AN, BN, and CN indicate the samples 

prepared via non-vacuum deposition technique and those named AV, BV, and CV 

prepared via vacuum deposition technique.  

Sample-Process  

of deposition 

Ambient 

pressure 

(mbar) 

Cu 

(at%) 

Zn 

(at%) 

Sn 

(at%) 

S 

(at%) 

𝐂𝐮

(𝐙𝐧 + 𝐒𝐧)
 

𝒁𝒏

𝐒𝐧
 

AN-(as-deposited)  - 15.5 12 11 13.5 0.7 1 

BN 5 H2/N2 24 15 14 46 0.8 1.1 

CN  250 H2/N2 25 15 13 47 0.9 1.1 

AV-(as-deposited)  - 40 29 31 - 0.7 0.9 

BV 250 H2/N2 18.5 28.5 8.5 44.5 0.7 1.6 

CV 5 H2/N2 23 17 11 49 0.8 1.5 

 

The results have shown that the samples prepared via non-vacuum deposition technique 

exhibited better uniformity in terms of composition while the microstructure of these 

samples indicates a high degree of porosity together with the formation of small grain of 

CZTS Kesterite. Samples prepared via vacuum deposition technique have shown a very 

zinc-rich composition of the converted samples, while the microstructure shows larger 

grains and well-crystallised Kesterite structure but lack of uniformity at some parts of the 

converted thin films. The results illustrated that at low ambient pressure, the more 

compact and well-crysrtallised CZTS structure has been created for the converted thin 

films prepared via sputtering deposition technique. However, using low ambient pressure 

for the precursors processed via non-vacuum deposition technique shows a poor quality 

of CZTS crystal structure (having small grains and poor crystallinity). Therefore, in the 

case of using forming gas as an ambient pressure, the higher pressure for the non-vacuum 

deposited precursors and lower pressure for vacuum deposited precursors yielded the 

better quality of CZTS thin films.  
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Appendix D: Process Assumptions 

 

Table D-1. Introducing the scalable equipment assumed for the fabrication of CZTS thin 

film using vacuum deposition technique, considering the established technology in large-

scale. 

Name of 

Apparatus 

Identification 

of the system 

Capacity 

(Dimension) 

Roll-to-

roll 

capability 

Link to the website 

Sputtering 

Machine 

FHR Line 

2500, with 

rotatable 

targets  

width 0.5m   Yes http://www.fhr.de/cms/en/91/FHRLine

-product-series---for-glass-and-rigid-

substrates  

Furnace Belt Furnace 

HSH 2503-

0310 

width 0.5m Yes http://www.beltfurnaces.com/HSHsolar

.html  

 

 

Table D-2. The assumptions on energy consumption during the CZTS thin film 

processing using vacuum deposition technique for 1 m2 of PV module and 1GW per year 

production facility.  

Name of 

Apparatus 

Assumed 

Speed 

Assumed Power 

required per hour 

(kW) 

Hours of 

Operation 

Energy 

Consumption 

(kWh) 

Functional unit 1 m2 1GW 

per year 

1 m2 1GW 

per year 

Sputtering 

machine 

 
82 m2/h 600 0.012 8.10 E+04 7.20 E+00 4.86 E+07 

Pumping for 

sputtering 

machine 

12 hours for pumping 250 12 5.76 E+03 3.00 E+03 1.44 E+06 

Furnace 
 

120 m2/h 2.07 0.008 5.56 E+04 1.66 E-02 1.15 E+05 

Total Energy 

Consumption 

(kWh) 

     
3.01 E+03 5.02 E+07 

 

 

 

http://www.fhr.de/cms/en/91/FHRLine-product-series---for-glass-and-rigid-substrates
http://www.fhr.de/cms/en/91/FHRLine-product-series---for-glass-and-rigid-substrates
http://www.fhr.de/cms/en/91/FHRLine-product-series---for-glass-and-rigid-substrates
http://www.beltfurnaces.com/HSHsolar.html
http://www.beltfurnaces.com/HSHsolar.html
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Table D-3. The introduction of the scalable equipment assumed for the fabrication of 

CZTS thin film using non-vacuum deposition technique, considering the existing 

technology in large-scale. 

Name of 

Apparatus 

Identification 

of the system 

Capacity 

(Dimension) 

Roll-to-

roll 

capability 

Link to the website 

Ball Milling EBF-7.5 100-500L No http://en.elemix.cn/productDet

ail/productId=34.html  

Slot Die RSC-300  Width 0.45 m Yes http://www.pems-

korea.com/eng/030106 

Drying 

Process 

RSC-300  Width 0.45 m Yes The slot die system is 

equipped with heating system. 

Furnace Belt Furnace 

HSH 2503-

0310 

4m × 0.5 m × 3 

µm 

Yes http://www.beltfurnaces.com/

HSHsolar.html  

 

 

Table D-4. The assumptions on energy consumption during the CZTS thin film 

processing using non-vacuum deposition technique for 1GW per year production. 

 

Name of 

apparatus 

Assumed 

speed 

Assumed power 

required per hour 

(kW) 

Hours of operation Energy 

Consumption 

(kWh) 

Functional unit 1 m2 1GW 

per year 

1 m2 1GW 

per year 

Ball Milling 500rpm 7.5 4 3.2 E+03 30 2.4 E+04 

Slot-die 810 m2/h 2.2 1.2 E-03 8.2 E+03 2.7 E-03 1.8 E+04 

Hot plate 810 m2/h 7.48 1.2 E-03 8.2 E+03 8.9 E-03 6.13 E+04 

Furnace 120 m2/h 2.07 0.008 5.56 E+04 1.66 E-02 1.15 E+05 

Total Energy 

Consumption 

(kwh) 

     
3.00 E+01 4.3 E+05 

 

  

http://en.elemix.cn/productDetail/productId=34.html
http://en.elemix.cn/productDetail/productId=34.html
http://www.beltfurnaces.com/HSHsolar.html
http://www.beltfurnaces.com/HSHsolar.html
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