The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database

Hollis, Christopher J., Dunkley Jones, Tom, Anagnostou, Eleni, Bijl, Peter K., Cramwinckel, Margot J., Cui, Ying, Dickens, Gerald R., Edgar, Kirsty M., Eley, Yvette, Evans, David, Foster, Gavin L., Frieling, Joost, Inglis, Gordon N., Kennedy, Elizabeth M., Kozdon, Reinhard, Lauretano, Vittoria, Lear, Caroline H., Littler, Kate, Lourens, Lucas, Meckler, A. Nele, Naafs, B. David A., Pälike, Heiko, Pancost, Richard D., Pearson, Paul N., Röhl, Ursula, Royer, Dana L., Salzmann, Ulrich, Schubert, Brian A., Seebeck, Hannu, Sluijs, Appy, Speijer, Robert P., Stassen, Peter, Tierney, Jessica, Tripati, Aradhna, Wade, Bridget, Westerhold, Thomas, Witkowski, Caitlyn, Zachos, James C., Zhang, Yi Ge, Huber, Matthew and Lunt, Daniel J. (2019) The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development, 12 (7). pp. 3149-3206. ISSN 1991-9603

[img]
Preview
Text
Hollis et al - The DeepMIP contribution to PMIP4 OA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (8MB) | Preview
Official URL: http://dx.doi.org/10.5194/gmd-12-3149-2019

Abstract

The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than those of the present day. As such, the study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model–model and model–data intercomparison of three early Paleogene time slices: latest Paleocene, Paleocene–Eocene thermal maximum (PETM) and early Eocene climatic optimum (EECO). A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO2. This paper establishes the protocols for a concerted and coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate “atlas” will be used to constrain and evaluate climate models for the three selected time intervals and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications.

Item Type: Article
Subjects: F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Paul Burns
Date Deposited: 29 Jul 2019 16:45
Last Modified: 11 Oct 2019 10:08
URI: http://nrl.northumbria.ac.uk/id/eprint/40196

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics


Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence