Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy

Iacocca, Ezio, Silva, T. J. and Hoefer, Mark A. (2017) Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy. Physical Review B, 96 (13). p. 134434. ISSN 2469-9950

[img]
Preview
Text
Symmetry_broken_dissipative_exchange_flows_in_thin_film_ferromagents_with_in_plane_anisotropy.pdf - Accepted Version

Download (729kB) | Preview
Official URL: https://doi.org/10.1103/PhysRevB.96.134434

Abstract

Planar ferromagnetic channels have been shown to theoretically support a long-range ordered and coherently precessing state where the balance between local spin injection at one edge and damping along the channel establishes a dissipative exchange flow, sometimes referred to as a spin superfluid. However, realistic materials exhibit in-plane anisotropy, which breaks the axial symmetry assumed in current theoretical models. Here, we study dissipative exchange flows in a ferromagnet with in-plane anisotropy from a dispersive hydrodynamic perspective. Through the analysis of a boundary value problem for a damped sine-Gordon equation, dissipative exchange flows in a ferromagnetic channel can be excited above a spin current threshold that depends on material parameters and the length of the channel. Symmetry-broken dissipative exchange flows display harmonic overtones that redshift the fundamental precessional frequency and lead to a reduced spin pumping efficiency when compared to their symmetric counterpart. Micromagnetic simulations are used to verify that the analytical results are qualitatively accurate, even in the presence of nonlocal dipole fields. Simulations also confirm that dissipative exchange flows can be driven by spin transfer torque in a finite-sized region. These results delineate the important material parameters that must be optimized for the excitation of dissipative exchange flows in realistic systems.

Item Type: Article
Subjects: F300 Physics
F500 Astronomy
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Elena Carlaw
Date Deposited: 17 Sep 2019 13:15
Last Modified: 01 Aug 2021 10:22
URI: http://nrl.northumbria.ac.uk/id/eprint/40714

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics