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Using microwave current injection at room temperature, we demonstrate parametric excitation of a

magnetic tunnel junction (MTJ)-based spin-torque oscillator (STO). Parametric excitation is

observed for currents below the auto-oscillation threshold, when the microwave current frequency

fe is twice the STO free-running frequency f0. Above threshold, the MTJ becomes parametrically

synchronized. In the synchronized state, the STO exhibits an integrated power up to 5 times higher

and a linewidth reduction of two orders of magnitude, compared to free-running conditions. We

also show that the parametric synchronization favors single mode oscillations in the case of

multimode excitation. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4864166]

Spin-torque oscillators (STOs) are nano-devices based

on the spin transfer torque effect (STT) in which a dc current

transfers spin angular momentum from a fixed ferromagnetic

layer to the magnetic moment of a second free ferromagnetic

layer, inducing coherent precession of the magnetization.1–4

The microwave signal generated from STOs can be poten-

tially useful for communication applications due to advan-

tages such as large frequency tuning range,5–7 efficient

spin-wave emission in magnonic devices,8–11 very high mod-

ulation rates,12–14 sub-micron footprints,15 and compatibility

with semiconductor technology.16,17 However, linewidth and

power of the STOs do not yet match requirements for practi-

cal applications.

The synchronization of many STOs has been proposed

as a solution to overcome both these issues.18–27 Similarly,

STOs can also synchronize to an external microwave

current or field source, a phenomenon known as injection

locking.28–32 More recently, parametric synchronization32–35

was reported, where the frequency of an external microwave

field, fe, is close to twice the STO’s free-running frequency,

f0, hence allowing measurements without interference from

the external signal. A related phenomenon is parametric ex-

citation in which the device is biased in a subcritical regime

while maintaining the external signal at fe � 2f0. Urazhdin

et al.36 have demonstrated a first experimental observation of

parametric excitation in a nano-contact based STO at

cryogenic temperatures, where a microwave field at 2f0 was

provided via a separately fabricated strip line on top of the

STO.

Recently, a simpler, room-temperature approach was

demonstrated by Bortolotti et al.,37 where a microwave

current flowing through a vortex-based Magnetic Tunnel

Junction (MTJ) STO provided enough Oersted field to para-

metrically excite the vortex gyration.

Here, we show that room-temperature parametric excita-

tion can also be achieved of the non-vortex high-frequency

modes in MTJ STOs by using the STT from a microwave

current instead of a magnetic field. We also show parametric

synchronization for currents above threshold. The parametric

synchronization is shown to induce a single mode precession

and a significant reduction of the linewidth. These studies

are promising for successful synchronization of electrically-

connected arrays of MTJ-based STOs.

The MTJ nanopillars used in this work are similar

to those in Refs. 38 and 39. The layer structure consists of

IrMn (5)/CoFe (2.1)/Ru (0.81)/CoFe (1)/CoFeB (1.5)/MgO

(1)/CoFeB (3.5) (thicknesses in nm), where the bottom CoFe

layer is the pinned layer (PL), the composite CoFe/CoFeB

represents the reference layer (RL), and the top CoFeB layer

is the free layer (FL). We discuss results from circular devi-

ces with an approximate diameter of 240 nm, resistance-area

product of 1:5 X lm2, and tunneling magnetoresistance of

75%. The RL magnetization equilibrium direction is along

the positive x̂-direction, which is also u ¼ 0� of the applied

field. We use the convention that a positive current corre-

sponds to electrons flowing from the RL to the FL.

Microwave emissions are recorded on a spectrum analyzer

and the microwave current, Ie, is injected to the device by

adding a broadband (dc-12 GHz) resistive power divider

between the bias tee and the low-noise amplifier (LNA)

with a gain of þ30 dB. The amplifier operating frequencies

(4–8 GHz) were chosen to prevent it from saturation due to

the injected signal (8.5–11 GHz).

We first measure the precessional motion of the free layer

magnetization from our device in the absence of external

microwave current at H¼ 350 Oe and u ¼ 188�.38 While

weak thermally driven signals were observable at Idc¼ 2 mA,

the transition to spin torque driven auto-oscillations occurs

only at a threshold current, Ith¼ 6.3 mA.39 We then vary the

frequency of the external microwave signal around 2f0. Actual

root mean square values of the microwave current Ie received

by the device were calculated by measuring losses due to im-

pedance mismatch7 and the transmission line including the

power divider. Fig. 1(a) shows the development of the power

spectral density for Idc¼ 4 mA (below Ith) when subjected to

external signals of strength Ie¼ 2.4 mA. When fe is between

9.11 GHz and 9.23 GHz, the oscillation peak is exactly located

at f ¼ fe/2. For frequencies outside this range, the thermally
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excited signal at f0¼ 4.57 GHz and an intermodulation at

fe� f0 independently appear in the spectrum. Within the exci-

tation bandwidth of 9.11 GHz < fe < 9:23 GHz, a drastic

decrease in linewidth is observed, dropping from 60 MHz to

11 MHz [Fig. 1(b)], accompanied by a peak power increase

from 300 nV2/Hz to 3000 nV2/Hz [Fig. 1(c)]. However, unlike

in the case of injection locking experiments,32,33 the total inte-

grated power is found to increase by a factor of two, as shown

in Fig. 1(d). This behavior is consistent with the sub-threshold

parametric excitation as the thermally activated oscillation

becomes coherent due to the external signal.36

Further proof of parametric excitation is provided by

the excitation bandwidth, Dxe ¼ 2p fe;max � fe;minð Þ, where

fe,max(min) is the maximum (minimum) external frequency

when fe¼ 2f. The excitation bandwidth is shown in Fig. 2

(squares) as a function of Ie for Idc¼ 4 mA. It is observed

that fe,max and fe,min approach each other as Ie decreases,

eventually merging at 2f0¼ 9.18 GHz. Below a critical Ie, it

is not longer possible to observe a parametrically excited

signal for any fe. According to Ref. 36, the excitation band-

width can be quantitatively described by

Dxe ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2I2

e � C2
I

q
; (1)

where V is a parameter to describe the coupling between the

external signal and the STO and CI is the linear damping pa-

rameter in the sub-threshold bias current: CI ¼ C0 1� Idc=Ithð Þ.
The solid black line in Fig. 2 is a fit to measured data using the

above equation. We use C0 ¼ 240 MHz and Ith¼ 6.3 mA,

determined from the free-running behavior. The coupling pa-

rameter V obtained from the fitting was found to be

V¼ 90 MHz/mA. For the data presented in Fig. 2, a threshold

microwave current of Ie,th¼ 0.97 mA is needed for parametric

excitation. Further measurements show that Ie,th decreases line-

arly as a function of Idc [inset of Fig. 2], as expected for para-

metric excitation, reaching zero at Ith� 6.3 mA.36

When the MTJ-STO is driven with currents above

threshold, we observe parametric synchronization. Fig. 3

shows an example of parametric synchronization measured

at Idc¼ 7 mA for Ie¼ 2.6 mA. The linewidth of the oscilla-

tion decreases by two orders of magnitude down to a mini-

mum of 185 kHz [Fig. 3(c)]. This reduction in linewidth is at

FIG. 1. Parametric excitation of the MTJ-STO at Idc¼ 4 mA: (a) Measured

spectra for various values of fe at Ie¼ 2.4 mA. Variation of (b) linewidth,

(c) peak power, and (d) integrated power as a function of fe.

FIG. 2. Excitation bandwidth as a function of the external signal strength Ie

at Idc¼ 4 mA and Idc¼ 7 mA. The corresponding solid lines for 4 mA and

7 mA are fits to Eqs. (1) and (2), respectively. Inset: The excitation threshold

Ie,th as a function of dc bias current.

FIG. 3. Parametric synchronization

of the MTJ-STO at Idc¼ 7 mA. (a)

Spectrum of the STO as a function of

fe at Ie¼ 2.6 mA, variation of (b) line-

width and (c) integrated power as a

function of fe. The inset shows the

increase of integrated power vs Pe.
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least an order of magnitude higher than Ref. 40 for a compa-

rable Ie/Idc ratio.

The excitation bandwidth as a function of Ie for the case

of parametric synchronization at Idc¼ 7 mA is shown in

Fig. 2. Following the notation of Ref. 36, the expression for

Dxe above threshold is given by

Dxe ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
VIe; (2)

where � is the dimensionless nonlinearity coefficient. The

above equation implies that there is no threshold microwave

current requirement for parametric synchronization. The

solid red line in Fig. 2 is a fit of Eq. (2) for Idc¼ 7 mA.

The good fit indicates a nearly zero threshold within the

uncertainties of experimental data. In fact, we could see

parametric synchronization down to a microwave current of

0.54 mA. From the fit we obtain � � 1, which is in agree-

ment with our previous results39 as well as other studies of

MTJ-STOs.41 Here, the value of the coupling constant

(V¼ 62 MHz/mA) is taken to be same as that from paramet-

ric excitation.

We also found that parametric synchronization favors

single mode excitation as shown in Fig. 4. We tune the ex-

perimental conditions (H¼ 340 Oe and u ¼ 184�) to obtain

two bulk modes with equal power, denoted by FL1 and

FL2.38 When FL1 is locked, its power (linewidth) increases

(decreases) while the inverse behavior is observed for FL2

[Figs. 4(b) and 4(c)]. Such a behavior of the modes’ power

can be parameterized by DP ¼ Pmax � P0, where P0 is the

free running STO power and Pmax is the maximum possible

power during parametric synchronization. The corresponding

increase (decrease) in power of FL1 (FL2) is shown in

Fig. 4(d) as a function of the injected power, Pe. This implies

that parametric synchronization promotes single mode oscil-

lations. The behavior of Fig. 4 also shows that FL1 and FL2

are coupled, in agreement with a recent two-mode analytical

model for STOs.39,42

In contrast to previous studies,32,33 we found a significant

increase of the integrated power during parametric synchroni-

zation. As shown in Fig. 3(c), the integrated power increases

from 10 nW to about 50 nW, a value significantly higher than

the maximum possible free-running integrated power.

Similar behavior is also observed for the case of two modes

in Fig. 4. In order to understand this behavior, we quantita-

tively calculate the increase of integrated power due to (1)

single mode oscillation induced by parametric synchroniza-

tion and (2) electrical mixing. For the case of two modes, it is

expected that the extinction of mode FL2 upon parametric

synchronization would transfer its energy to mode FL1.

Assuming that the total power of the mode FL2 is transferred

to the mode FL1, we expect the power of mode FL1 to

increase by a factor �2. However, we find that the power of

FL1 increases to 2 nW (by a factor 4). The contribution of

electrical mixing to the integrated power of the synchronized

state can be estimated by extrapolating the influence of the

intermodulation signal, fe� f0, which was observed outside

the locking bandwidth. However, such calculation (not

shown) leads to an increase of at most 1/3 of the observed val-

ues in all cases. Hence both these contributions can not fully

explain the observed increase of integrated power, indicating

that parametric excitation may even contribute to the increase

of the total power at 7 mA, since this current value is not too

far from threshold.

As a final comment, we discuss the influence of thermal

noise. In a previous work40 on similar devices, it was shown

that the linewidth of a STO during synchronization exceeds

that of the injected signal due to thermal fluctuations. The

minimum linewidth (185 kHz) we achieved is significantly

lower than Ref. 40. While we were not able to apply micro-

wave currents higher than 3 mA (to avoid breakdown), our

FIG. 4. Parametric synchronization for

the case of two excited modes meas-

ured at H¼ 340 Oe and u ¼ 184�. (a)

Spectrum of the STO as a function of

fe at Ie¼ 3 mA. Variation of (b) line-

width and (c) integrated power as a

function of fe for both modes. (d)

Integrated power vs Pe for both modes.
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results indicate that a further reduction in linewidth should

be possible. However, we see random unlocking of the STO,

especially at low Ie which we attribute to thermal fluctua-

tions. A more detailed temperature dependence study is

needed to understand this behavior.

In summary, we show parametric excitation of MTJ-

based STOs by means of the STT provided by an external

microwave current. Furthermore, we show parametric excita-

tion of STOs in a room temperature environment. Our results

show an excitation bandwidth consistent with theory and the

increase of the integrated power in both situations. Although

expected for parametric excitation, we show evidence that

the increase of power during parametric synchronization is

due to both a coherent oscillation and the electrical mixing

of the measured signals. These results are important for the

synchronization of STO arrays. Our results also open up

another possibility of using STOs as a parametric down con-

verter, a device that can convert an external frequency to its

half within the excitation bandwidth.
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29Y. Zhou, J. Persson, and J. Åkerman, J. Appl. Phys. 101, 09A510 (2007).
30B. Georges, J. Grollier, M. Darques, V. Cros, C. Deranlot, B. Marcilhac,

G. Faini, and A. Fert, Phys. Rev. Lett. 101, 017201 (2008).
31Y. Zhou, J. Persson, S. Bonetti, and J. Åkerman, Appl. Phys. Lett. 92,
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