Randomized Controlled Trial of Fish Oil and Montelukast and Their Combination on Airway Inflammation and Hyperpnea-Induced Bronchoconstriction

Tecklenburg-Lund, Sandra, Mickleborough, Timothy, Turner, Louise, Fly, Alyce, Stager, Joel and Montgomery, Gregory (2010) Randomized Controlled Trial of Fish Oil and Montelukast and Their Combination on Airway Inflammation and Hyperpnea-Induced Bronchoconstriction. PLoS ONE, 5 (10). e13487. ISSN 1932-6203

[img]
Preview
PDF
Turner_randomized_controlled_trial.pdf - Published Version
Available under License Creative Commons Attribution.

Download (455kB) | Preview
Official URL: http://dx.doi.org/10.1371/journal.pone.0013487

Abstract

Both fish oil and montelukast have been shown to reduce the severity of exercise-induced bronchoconstriction (EIB). The purpose of this study was to compare the effects of fish oil and montelukast, alone and in combination, on airway inflammation and bronchoconstriction induced by eucapnic voluntary hyperpnea (EVH) in asthmatics.

In this model of EIB, twenty asthmatic subjects with documented hyperpnea-induced bronchoconstriction (HIB) entered a randomized double-blind trial. All subjects entered on their usual diet (pre-treatment, n = 20) and then were randomly assigned to receive either one active 10 mg montelukast tablet and 10 placebo fish oil capsules (n = 10) or one placebo montelukast tablet and 10 active fish oil capsules totaling 3.2 g EPA and 2.0 g DHA (n = 10) taken daily for 3-wk. Thereafter, all subjects (combination treatment; n = 20) underwent another 3-wk treatment period consisting of a 10 mg active montelukast tablet or 10 active fish oil capsules taken daily.

While HIB was significantly inhibited (p<0.05) by montelukast, fish oil and combination treatment compared to pre-treatment, there was no significant difference (p>0.017) between treatment groups; percent fall in forced expiratory volume in 1-sec was −18.4±2.1%, −9.3±2.8%, −11.6±2.8% and −10.8±1.7% on usual diet (pre-treatment), fish oil, montelukast and combination treatment respectively. All three treatments were associated with a significant reduction (p<0.05) in FENO, exhaled breathe condensate pH and cysteinyl-leukotrienes, while the fish oil and combination treatment significantly reduced (p<0.05) urinary 9α, 11β-prostaglandin F2 after EVH compared to the usual diet; however, there was no significant difference (p>0.017) in these biomarkers between treatments.

While fish oil and montelukast are both effective in attenuating airway inflammation and HIB, combining fish oil with montelukast did not confer a greater protective effect than either intervention alone. Fish oil supplementation should be considered as an alternative treatment for EIB.

Item Type: Article
Subjects: C600 Sports Science
Department: Faculties > Health and Life Sciences > Sport, Exercise and Rehabilitation
Depositing User: Ay Okpokam
Date Deposited: 15 Dec 2011 16:14
Last Modified: 24 Oct 2017 21:39
URI: http://nrl.northumbria.ac.uk/id/eprint/4147

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics


Policies: NRL Policies | NRL University Deposit Policy | NRL Deposit Licence