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Abstract:  Mucosal- like ZnS nanostructures were synthesized on surface of ST-cut 

quartz surface acoustic wave (SAW) device using a chemical bath deposition method 

for ammonia sensing applications. Results showed the SAW device with ZnS mucosal 

nanostructures achieved a good sensitivity, e.g., with a frequency shift of ~190 Hz 

upon exposure to 1 ppm ammonia gas. This is mainly attributed to the large specific 

surface areas and more active sites on the surfaces of the ZnS mucosal nanostructures. 

Selectivity of the SAW device with the ZnS mucosal nanostructure for ammonia 

sensing was excellent in comparisons with those for other types of gases such as 

hydrogen sulfide, hydrogen, nitrogen dioxide, carbon monoxide and ethanol.  
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1. Introduction 

Ammonia sensing and monitoring are of great importance in environmental gas 

analysis, automotive industry, chemical industry, and medical applications [1], and 

high-performance ammonia sensors with high sensitivity, good selectivity and 

reliability, as well as high precision are critically required. Surface acoustic wave 

(SAW) technology is considered to be one of the effective methods to prepare high 

performance gas sensors due to their fast response speed, high sensitivity, good 

stability and ease of subsequent processing. Many researchers have used SAW 

technology to prepare different types of gas sensors and achieved good sensing results 

[2-8]. The principle of the SAW based gas sensing is that the sensitive layer on the 

SAW device adsorbs the target gas molecules, which causes the changes of mass, 

conductivity and/or viscoelasticity of the sensitive film, thereby changing the 

frequency of the SAW device [9-11]. 

Metal oxides are the most commonly investigated materials for the SAW sensing 

layer [12]. Various metal oxide semiconductors such as ZnO [5, 7, 8, 13, 14], SnO2 

[15-17], WO3 [18-20], TiO2 [3, 21-23], CuO [24-26] have been successfully applied as 

the gas sensing layers on the SAW devices. Metal sulfides are rarely reported being 

used in gas sensors compared to those widely reported metal oxides. However, as 

reported in ref. [27-30], sulfides often show good selectivities for the specifically 

targeted gases. ZnS has a similar crystal structure with ZnO, with a wide band gap 
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(3.72 eV) and abundant sulfur vacancies on its surface. Xu et al investigated gas 

adsorption and electronic properties of ZnS using first-principle calculations, and 

showed that ZnS is a promising candidate for high-performance sensing applications, 

especially for NH3 [31]. In recent years, different types of ZnS nanostructures such as 

nanorods [32], nanowires [33], nanobelts [34], nanoribbons[35], nanotubes [36], and 

hollow spheres [37, 38] have been widely used in various fields. These nanostructures 

have larger specific surface areas and more active sites than the dense ZnS film, and 

thus can be applied to various applications such as in catalysts, photo-detection and 

gas sensing, which require gas sensors having high sensitivity and good selectivity. 

Recently researchers have been inspired by many biological structures in nature 

and have produced similar structures for specific applications, which is often called 

bionic design methodology [39-45]. For example, Jian et al. prepared a flexible 

piezoelectric sensor based on bionic structure with high sensitivity, low detection limit, 

fast response time and stable performance [43]. Translucent snake- like bionic sensor 

system prepared by Cai et al. can not only be used to monitor tensile strains, but also 

achieve a high sensitivity to odorless CH4 gas [45].  

As is well known, small intestinal mucosa has an extremely large surface area. 

For example, our human being’s small intestine is about 5 meters long, but has a 

surface areas of nearly 300 square meters. The reason is that intestinal mucosa has a 

great number of folds, which make itself much efficient in fast absorption of food. 

Therefore, if such types of sensing layers with an intestinal mucosa- like structure can 
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be made on the SAW sensor, the absorption and sensing of the target gas should be 

much easier and faster. Therefore, we believe that the ZnS based mucosal structures 

would be a good sensing layer for the SAW gas sensor. 

In this paper, mucosa- like ZnS nanostructures were fabricated on the surface of a 

ST-cut quartz SAW device using a chemical bath deposition method, and their 

sensitivity and selectivity to ammonia gas were systematically investigated.   

2. Experimental Details 

2.1. SAW device and sensing layer preparation 

SAW devices were fabricated on ST-cut quartz (42°75´) using the conventional 

photolithography and metallization processes. Aluminum layer of 200 nm thick was 

sputtered onto ST-cut quartz substrate and then interdigital transducers (IDTs) were 

prepared using a lift-off process. The SAW devices had 30 pairs of IDTs and 100 pairs 

of reflectors. The width of each finger was 4 μm, and the width of the reflectors finger 

was also 4 μm. The aperture of the IDTs was 3 mm. The resonant frequency of SAW 

devices was designed to be ~200 MHz.  

Chemical bath deposition method [46-48] was used to fabricate the ZnS 

nanostructures. In order to make the aqueous solution of the ZnS, a mixture was made 

using 0.045 M zinc acetate dihydrate (Zn(CH3COO)2·2H2O), 0.065 M thiourea 

(H2NCSNH2), 0.133 M tartaric acid (COOH(CHOH)2COOH) and 80% hydrazine 

hydrate [46]. Firstly, 10 ml zinc acetate solution and 10 ml tartaric acid solution were 

mixed and stirred for 5 minutes. Then 10 ml thiourea solution was added inside the 
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above solution and continuously stirred for another 3 minutes to obtain a clear and 

homogeneous solution. Thereafter, 5 ml of 80% hydrazine hydrate was added into the 

above solution and stirred for 3 minutes. Finally, ammonia water (25 wt%) was added 

drop-by-drop into this solution to adjust the pH value of the solution to be ~10.  

An ST-cut quartz SAW device was attached onto a glass slide with its IDTs and 

reflectors fully protected with a polyimide tape. It was then placed inside the ZnS 

growth solution inside a water bath at a fixed temperature of 85 °C for 30 min. The 

illustration of the preparation set-up is shown in Figure 1. After a layer of film was 

deposited onto the device’s sensing area between the two opposite IDTs, the quartz 

SAW device was taken out and then immersed into ethanol for several minutes. It was 

then ultrasonically cleaned with de- ionized water to remove any residues on the 

device surface. In order to optimize the ZnS nanostructure, six different ZnS 

nanostructured samples were prepared onto the quartz SAW devices. The preparation 

parameters were same, but the growth time was different, e.g., 5, 10, 20, 30, 35 and 

40 minutes, respectively. The corresponding samples were named as sample 1, sample 

2, sample 3, sample 4, sample 5 and sample 6, respectively. 

2.2. Characterization and ammonia sensing techniques  

Surface morphologies of ZnS nanostructures were observed using a 

field-emission scanning electron microscope (FE-SEM, Carl Zeiss 1530 VP, USA). 

Crystallinity of the prepared ZnS nanostructures was characterized using an X-ray 

diffractometer (XRD, Rigaku D/max-2400, Japan), with a Cu Kα radiation source and 
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a wavelength of 0.15406 nm. The scanning rate of the XRD tests was 4 o/min and the 

step length was 0.02o.   

Figure 2(a) shows a structural illustration of SAW sensor and its corresponding 

electronic components. The SAW sensor is based on an oscillator which consists of a 

sensing film coated SAW resonator with its corresponding amplification and 

phase-shift circuits. Figure 2(b) shows the gas sensing set-up using the SAW ammonia 

sensor, which includes a SAW resonator coated with the ZnS nanostructures and the 

corresponding oscillator circuits. The frequency responses of the sensors were 

recorded using a frequency counter (Agilent 53210, Keysight Technology). A large 

plexiglassbox with a volume of 20 L was used as the testing chamber. Standard target 

gases, such as NH3, H2, H2S，NO2 and CH3CH2OH, were purchased from the National 

Institute of Testing Technology, China. All the target gases have a concentration of 

2%, which was obtained by diluting with pure N2. During the measurement, different 

volumes of test gases were injected into the test chamber through a precision syringe 

pump to obtain different concentrations of the tested gas, All the tests were done in a 

fume cupboard. The ambient temperature was controlled at 25 °C in an air 

conditioned environment and the ambient relative humidity (RH) value was controlled 

to be 45% using both a humidifier and a mass flow controller which controls the flow 

rate of dry air. A network analyzer (Hewlett-Packard 8714C, USA) was used to detect 

the center frequency of the quartz SAW resonator coated with ZnS nanostructure 

before and after the targeted gas was injected. When the response reached an 

equilibrium condition and the test was finished, the chamber was opened and quickly 

purged with dry air, and the frequency of the SAW devices was monitored.   

3. Results and Discussions 

Figure 3 shows the XRD results of the ZnS film layer which was deposited for 

30 min (sample 4). The morphologies of those film groups that were deposited less 
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than 30 min are not shown in Figure 3 because those films are too thin to obtain high 

quality images. The XRD pattern shown in Fig. 3 indicates the characteristic peaks at 

2θ=26.91°, 47.56° and 56.29°, which correspond to (100), (110), and (103) diffraction 

peaks of the wurtzite zinc sulfide crystals (JCPDS card No 36-1450), respectively.  

Fig. 4 shows SEM images of ZnS nanostructures on ST-cut quartz substrates 

prepared with different deposition durations, revealing a dynamic growth process of 

ZnS nanostructures. After 5 min deposition, a smooth ZnS nanofilm has already 

formed on the device surface. During the further growth, there are a great number of 

ball-shaped microstructures formed on the surface of ZnS nanofilm. After 20 min film 

growth, there are some folds formed on the surface of ZnS nanofilm. With the further 

increase of deposition time, the mucosal structures can be clearly seen, but the spaces 

between the folds become much smaller, indicating formation of dense mucosal 

nanostructures. The thicknesses of samples 2, 3 and 4 are 42, 105 and 210 nm, 

respectively. The thickness of sample 1 is too thin to be measured clearly using the 

SEM.  

Resonant frequencies and insertion losses values of the six groups of SAW 

resonators are shown in Figure 5. Generally, with the increase of film thickness, the 

insertion loss is increased and the center frequency is reduced, which is mainly due to 

the mass loading effect. For example, the center frequencies of sample 1 and sample 3 

are ~199.15 and 198.85 MHz, respectively. According to Figure 5, the insertion losses 

of sample 1 and sample 2 are -11.92 dB and -15.97 dB, respectively. Whereas for 
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sample 5, the insertion loss is -31.23 dB, while the center frequency is ~ 198.45 MHz. 

Considering the amplified ability of the amplifiers in circuits and the detecting 

limitation of frequency counter, the SAW sensors of sample 5 and sample 6 (whose 

insertion losses are more than -30 dB) will not be used in the following sensing tests. 

Figure 6 shows the responses of the SAW devices exposed to the ammonia gas 

with a concentration of 20 ppm. We can clearly see from Fig. 6(a) that the longer time 

the ZnS grows, the more significant response of the SAW sensor to ammonia. Figure 

6(b) shows the response and recovery times of these SAW sensors to 20 ppm 

ammonia. Here, the response time is defined as the time required for the frequency 

shift to reach 90% of its final value. Similarly, the recovery time is defined as the time 

required for the frequency shift to return to 10% of its total frequency shift value after 

the target gas is released. These SAW sensors have short response times (e.g., from 6 s 

to 45 s) but relatively long recovery times (e.g., from 100 s to 148 s) to 20 ppm 

ammonia. In addition, the recovery time of the SAW sensor becomes longer as the 

thickness of ZnS layer is increased, which is mainly because the thicker the sensing 

layer, the larger the surfaces areas, thus the longer time to release the gas molecules. 

The frequency shifts of the SAW devices based on ZnS nanostructures of sample 

1 and sample 4 were measured when they were exposed to different concentrations of 

ammonia gas. The measurement results are shown in Figs. 7(a) and 7(b), respectively. 

Both these two SAW sensors have a negative frequency response to ammonia. In 

addition, the SAW sensor of sample 4 is found to be more sensitive to ammonia than 
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that of sample 1, because the mucosal structures in sample 4 have a larger specific 

surface area. 

The main factors that change the frequency of SAW gas sensors are mass loading, 

acoustoelectric effect (electrical loading) and elastic loading, which can be expressed 

using the following equation [17] : 
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(1) 

where 1k = -8.7 × 10-8 m2s kg-1 and 2k = -3.9 × 10-9 m2s kg-1 are material constants 

of the ST- cut quartz substrate; 0f  is the center frequency of the SAW device which 

has not been changed (~200 MHz); s  is the surface density of the layer; 2k (0.11% 

for quartz) is the electromechanical coupling factor; 0v  (3158 m/s for quartz) is the 

unperturbed wave velocity for the SAW device; and sc  (0.5 pF cm-1) is the sum of 

the dielectric permittivity of the substrate and the environment; s  is the surface 

conductivity; ec  is the sensitivity coefficients of elasticity, h is film thickness;   is 

the bulk modulus of elasticity; and u is the shear modules of elasticity. Effects of 

mass loading, electrical loading and elastic loading on the sensing response are 

represented by 1st, 2nd, and 3rd term of equation (1), respectively. 

When the ZnS-based SAW gas sensor is exposed to the ammonia atmosphere, 

the ZnS sensitive layer quickly adsorbs ammonia gas molecules and thus causes the 

mass loading effect. According to the first part of equation (1), the mass load ing will 
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reduce the frequency of the SAW, thus resulting in a negative frequency shift, and this 

is consistent with our experimental results. 

Generally, the surface of the ZnS film adsorbs oxygen molecules through 

intermolecular forces. Due to the strong oxidizing properties of oxygen molecules, the 

sensing layer surface will capture a large amount of electrons, resulting in the 

formation of a depletion layer on the surface of ZnS. At the same time, the oxygen 

molecules that capture electrons will become O2- ions [49]. 

O2(gas)  O2(ads)                                               (2) 

O2(ads) + e- O2
-(ads)                                            (3) 

When the ZnS film is exposed to ammonia atmosphere, the active O2- ions react 

with the ammonia molecules adsorbed on the surface of the film to release electrons,  

as shown in the following reactions [50]:  

NH3（gas） →  NH3 （ads）                                      (4) 

4NH3（ads）  + 3O2
- →  2N2  +  6H2O  +  3e-                                      (5) 

These will result in a decrease in the depletion layer and an increase in the film 

conductivity. From the second part of Equation 1 (e.g., electrical loading), the 

frequency is decreased as the conductivity is increased, which will result in a negative 

frequency shift, and is also consistent with the results of our experiments. 

If the SAW sensor adsorbs ammonia, the viscoelasticity of the membrane 

changes, causing the changes of its wave velocity and frequency. This is generally 

called elastic loading effect. However, the adsorption of ammonia will increase the 
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elastic modulus of the sensing film and produce a positive frequency shift [3, 51, 52]. 

Therefore, the elastic loading is not the main reason for the negative response of the 

SAW sensor in this study. In summary, the negative frequency shift of the SAW 

sensor is mainly caused by the mass loading and the acoustoelectric effect. 

The selectivity of the ZnS SAW sensor was further tested and compared with 

those with different types of gases. Figures 7(c) and 7(d) show the responses of 

sensors (sample 1 and sample 4) to different targeted gases but with a fixed volume of 

100 ppm. These two types of SAW devices have shown good selectivity to ammonia, 

compared with the other five different testing gases, including CO，NO2 , H2 , H2S, 

and CH3CH2OH. 

   

4. Conclusion 

In this study, we prepared mucosal structures of ZnS-based SAW sensor based on 

the bionic design methodology, which can improve the sensitivity of the sensor. The 

SAW sensor showed negative frequency shifts towards ammonia gas, which was 

caused by mass loading and the electrical loading. The good performance of these 

mucosal- like ZnS nanostructures is mainly attributed to their large specific surface 

areas and more active sites on their surface. The selectivity of the SAW device with 

the ZnS mucosal nanostructure to ammonia gas was excellent in comparison with 

sensing results for other gases such as hydrogen sulfide, hydrogen, nitrogen dioxide, 

carbon monoxide and ethanol. 
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Fig.1 An illustration of preparation of ZnS sensing layer on the SAW device. 
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(a) 

 

(b) 

Figure 2. (a) A structural illustration of SAW sensor and its electronic components, 

and (b) Experimental set-up of SAW gas sensing system. 
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Figure 3. XRD patterns of ZnS nanostructure of sample 4 (deposition for 30 

minutes). 
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Figure 4. Top-view and cross-section SEM images of ZnS nanostructure for the 

different film samples. (a) sample 1 (5 min deposition); (b) sample 2 (10 min 

deposition); (c) sample 3 (20 min deposition); (d) sample 4 (30 min deposition); (e) 

sample 5 (35 min deposition); and (f) sample 6 (40 min deposition). 
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Figure 5. Insertion losses and center frequencies of SAW resonators with 

different ZnS nanostructured sensing layers.  
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(b)  

Figure 6. (a) Dynamic responses, and (b) response and recovery times of SAW 

sensors with different ZnS nanostructures, when exposed to 20 ppm Ammonia. 
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(d) 

Figure 7. Dynamic responses of SAW sensors to different concentrations of NH3 

gas: (a) sample 1 (5 min deposition), and (b) sample 4 (30 min deposition); and to 100 

ppm different gases: (c) sample 1 (5 min deposition), and (d) sample 4 (30 min 

deposition). 
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Highlights 

 Mucosal- like ZnS nanostructures were synthesized using a chemical bath 

deposition method on surface of ST-cut quartz surface acoustic wave (SAW) 

device for ammonia sensing applications. 

 The SAW device with ZnS mucosal nanostructures achieved a good sensitivity 

and selectivity to ammonia. 

 The negative frequency shift of SAW sensor is associated to the effects 

of mass loading and electrical loading. 
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