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Abstract: In future 5G systems, the millimeter wave (mmWave) band will be used to support a large 
capacity for current mobile broadband. Therefore, the radio access technology (RAT) should be 
made available for 5G devices to help in distinct situations, for example device-to-device 
communications (D2D) and multi-hops. This paper presents ultra-wideband channel measurements 
for millimeter wave bands at 19, 28, and 38 GHz. We used an ultra-wideband channel sounder (1 
GHz bandwidth) in an indoor to outdoor (I2O) environment for non-line-of-sight (NLOS) scenarios. 
In an NLOS environment, there is no direct path (line of sight), and all of the contributed paths are 
received from different physical objects by refection propagation phenomena. Hence, in this work, 
a directional horn antenna (high gain) was used at the transmitter, while an omnidirectional antenna 
was used at the receiver to collect the radio signals from all directions. The path loss and temporal 
dispersion were examined based on the acquired measurement data—the 5G propagation 
characteristics. Two different path loss models were used, namely close-in (CI) free space reference 
distance and alpha-beta-gamma (ABG) models. The time dispersion parameters were provided 
based on a mean excess delay, a root mean square (RMS) delay spread, and a maximum excess 
delay. The path loss exponent for this NLOS specific environment was found to be low for all of the 
proposed frequencies, and the RMS delay spread values were less than 30 ns for all of the measured 
frequencies, and the average RMS delay spread values were 19.2, 19.3, and 20.3 ns for 19, 28, and 38 
GHz frequencies, respectively. Moreover, the mean excess delay values were found also at 26.1, 25.8, 
and 27.3 ns for 19, 28, and 38 GHz frequencies, respectively. The propagation signal through the 
NLOS channel at 19, 28, and 38 GHz was strong with a low delay; it is concluded that these bands 
are reliable for 5G systems in short-range applications. 

Keywords: 5G; 19 GHz; 28 GHz; 38 GHz; NLOS; path loss; RMS delay spread 
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1. Introduction 

The spectrum with a range of 1–100 mm (3–300 GHz band) wavelengths can be classified as 
millimetre-Wave (mm-Wave) bands [1,2]. There is an excellent interest in short range 
communications using mm Waves (mmWave) [3–6]. Because of their mainly unaccredited or light-
licensed bandwidth, these bands are now promising applicants for next-generation wireless 
communication, such as device-to-device (D2D) communications [7]. Millimeter wave spectrum 
bands for 5G were also identified by the World Radio Conference (WRC) 2015 [8], and are expected 
to be finalized by WRC 2019. 

Many researchers have studied the characteristics of the wideband channel in different 
frequency bands in order to meet high data-rate demands. For a wideband channel at a low frequency 
band, in the early 2000s, Durgin et al. [9] studied angle delaying and dispersion characteristics in the 
case of an indoor peer-to-peer (P2P) channel centered at 1920 MHz. In the work, the omnidirectional 
and directional antennas for measuring the angles of arrival and delay propagation statistics have 
been used. The typical results for the root mean square (RMS) delay spreads were 17–219 ns for the 
outdoor cross-campus measurements, and three indoor-to-indoor locations exhibited 27–34 ns RMS 
delay spreads and normalized angular spreads of multipath power between 0.73 and 0.90 [9]. Recent 
measurement campaigns were conducted to obtain propagation measurements and channel 
modeling at 28, 38, 60, and 73 GHz in an urban microcell, urban macrocell, rural area, indoor hotspot, 
and vehicle scenarios, respectively [10–13]. In the literature [14], the measurements were carried out 
in rural and urban locations at frequency bands of 50 MHz–6 GHz. Alvarez et al. [15] used an indoor 
radio channel over a range of 1–9 GHz, using omnidirectional antennas and four environments (line-
of-sight (LOS), soft non-LOS (NLOS), hard NLOS, and a corridor). The path loss exponents (PLEs) 
with verity reference distances were high in the hard-NLOS scenario compared with the others 
[13,15,16]. Additionally, Shu Sun et al. studied indoor propagation measurements at 2–73 GHz in 
LOS and NLOS for offices and shopping malls, and the measured path loss as a function of distances 
[13]. They have carried through measured information and ray tracking of 28 to 73.5 GHz in the 
mmWave frequency bands, comparing trajectory models. Their work revealed that the studied path-
loss models were very comparable in their prediction accuracy, given large datasets, even though 
some of these models required more model parameters and lacked a physical basis for their floating 
intercept value. Indoor channel propagation studies are reported in [17–19], while outdoor channel 
propagation studies are reported in [20–22], as listed in Table 1. Wang et al. [16] carried out 26 GHz 
open office LOS measurements of the wideband channel. In the literature [18], the first sounding 
channel and the original outcomes are provided for synthesized omnidirectional findings of the 28 
GHz band. In the literature [19], in a line-of-sight (LOS) situation, mmWave propagation features 
were studied in 6.5, 10.5, 15, 19, 28, and 38 GHz bands in the indoor corridor setting. For outdoor 
cellular propagation, the world’s first empirical measurements were conducted at 28, 38, and 73 GHz 
in New York [20–22]. 

Table 1. Overview of some outdoor and indoor studies at millimeter wave bands. 

Source Environment Frequency 
(GHz) 

Bandwidth 
(MHz) 

Distance 
(m) Parameters of Study 

Wang et al. [17] Indoor 26 1000 2–67 
Path loss, delay, and 

angular spreads 
Hur et al. [18] Indoor 28 250 – Power delay profile 
Al-samman et 

al.[19]  
Indoor 6.5–38 GHz 1000 1–40 

Path loss and delay 
spread 

Azar et al. [20] Outdoor 28 400 30–500 
Path loss and power 

delay profile 
MacCartney et 

al. [21] 
Outdoor 28 and 38 400 50–200 Path loss 

Sun et al. [22] Outdoor 28 and 73 400 27–190 Path loss 
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While propagation studies for the coexistence of 5G in the mmWave bands have been 
aggressively performed for some time, the characterization of the 5G channel model still requires 
further investigation. This is because most of the measurement campaigns are conducted using 
different settings, including measurement environments; morphologies; equipment like channel 
sounder, antennas, and clock synchronization; and even the post-processing method, which may 
influence the propagation characteristics. As a result, more mmWave channel measurements and 
characterizations are still needed in order to fully characterize and later develop a unified channel 
model framework for large mmWave bands. To fill the aforementioned gaps, we carried out an 
extensive mmWave channel measurement campaign on a particular NLOS indoor-to-outdoor (I2O) 
scenario, covering frequencies of 19, 28, and 38 GHz. The contributions of this paper are threefold. 
First, this work compares the propagation characteristics of different mmWave frequency bands, 
where the 19, 28, and 38 GHz channel measurements are carried out with the same configuration. In 
addition, the measurement campaign is conducted using a 1000 mega chips-per-second (Mcps) high-
band correlation channel with a greater chip-rate than the measurement conducted in the literature 
[2,16,23,24]. The second contribution of the paper is the study of path loss for a single frequency based 
on the close-in (CI) space-lost reference path model, while the path loss for the multi-frequency is 
based on CI and alpha–beta–gamma (ABG) models. Finally, the third contribution constitutes of the 
computation of the root mean square (RMS), the average excess (MN-EX), and the maximum excess 
delays (MAX-EX), to characterize the time dispersion parameters for all of the measured frequencies. 

The rest of this article is structured accordingly. The measurement method and environment are 
described in Sections 2 and 3, respectively. The post processing of the data is explained in Section 4. 
Sections 5 and 6 discuss and analyze the path-loss patterns and time dispersion parameters, and 
provides the outcomes and discussions, respectively. In Section 7, this work is compared with the 
state of art. The conclusion of the paper is drawn in Section 8. 

2. Measurement Technique 

This section describes the configuration of the equipment of the 5G channel sounder that was 
used for our experiment. The time domain measurements were conducted in an I2O NLOS 
environment at 19, 28, and 38 GHz frequencies. The block diagram of the measurement equipment is 
shown in the Figure 1. An arbitrary waveform generator (AWG) was applied to a transmitter (Tx). 
The receptor (Rx) was equipped with a 12-bit (1 GHz bandwidth) high-speed digitizer (Rx) for the 
acquisition of a sound signal. At the transmitter, the AWG transformed a radio frequency (RF; up to 
44 GHz) carrier with broad modulation bandwidth from the produced differential basis band in-
phase quadrature (IQ), using an E8267D PSG up converter. The down-converter M9362AD01 PXIe 
was used to convert the RF frequencies (up to 40 GHz) to the intermediate frequency, the IF signal 
was amplified by an M9352A hybrid amplifier/attenuator (500 MHz), and the IF signal was lastly 
acquired using the interlocking mode with the M9703A 12-bit 1 GHz bandwidth high-speed 
numbers. The local down converter oscillator (LO) was used with an N5173B EXG. Two rubidium 
clock devices (one for Tx and one for Rx) were used to synchronize the transmitter with the receiver, 
providing a high generation l0 MHz referring signal for all of the devices with ≤ 10−11 accuracy and ≤ 3 × 10−11 stability. The function generation system (Trigger box) was used to derive the trigger 
signals. Additional details of the measurement hardware can be found in the literature [25]. A 12-bit 
high speed digitizer M9703A was used for the sounding signal acquisition, which can provide one 
channel 1.6 G Sa/s (625 MHz bandwidth), or four channels 3.2 G Sa/s interleaving acquisition (1 GHz 
bandwidth) [26]. 
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Figure 1. Block diagram of transmitter (Tx) and receptor (Rx) components for a 5G channel sounder. 

The AWG yielded a 1-ns multipath resolution from a 1000 Mcps with sample rate of 7.2 GHz. 
We used a signal generator (up-converter) to generate the center frequencies at 19, 28, and 38 GHz 
with a transmitted power of 0 dBm. The signal was transmitted through a 11.6 dBi gain (39.9°/49.9° 
azimuth/elevation half-power beamwidth (HPBW)), a 11.6 dBi gain (39.7°/49.7° azimuth/elevation 
HPBW), and a 15.2 dBi gain (29.6°/29.7° azimuth/elevation HPBW) ETS-Lindgren horn antenna for 
the 19, 28, and 38 GHz frequencies, respectively. At the receiver, an omnidirectional antenna (3 dBi 
gain) with a relatively high gain power amplifier of 37 dB was used to collect the received signal. 

3. Testbed of Experiment 

The measurements were carried out at the Universiti Teknologi Malaysia, Kuala Lumpur (UTM-
KL) campus, in an indoor to outdoor setting at the Menara Tun Razak Building. The specific I2O 
environment consisted of corridors surrounded by open and closed offices, conference rooms, and 
meeting rooms. The floor plan and pictures of the measurement environment are shown in Figure 
2a,c. The study environment contained corridors that had two open ends (to the north and the south), 
as shown in Figure 2a. Figure 2b shows corridor A, where the the Tx antenna was placed, which was 
open from the north side, and curved to corridor B from the other side. Corridor B, where the Rx was 
placed, extended from corridor A, and was open from the south side, as shown by Figure 2c. Each of 
the corridor’s walls were made up of a multitude of materials, including concrete, colored glass, and 
wood. The floor was coated with glazed ceramic tiles, and ribbed metal was formed on the ceilings 
of the hallways. The Tx antenna (1.7 m in height) was located in corridor A beside a concrete pillar. 
The direction of the Tx horn antenna is indicated in Figure 2b (toward corridor A, in the direction of 
the stairs and concrete pillar beside it). The Rx antenna (1.5 m in height) was an omnidirectional 
antenna located in corridor B at the back of the Tx antenna, as shown in Figure 2c, which rendered 
the environment completely NLOS. The first location of the Rx antenna was 3.7 m away from the Tx 
horn antenna. The Rx was then moved by 1 m to the end of corridor B; the Tx–Rx separation distance 
was then 13.5 m. The measurement configuration is shown in Figure 2a (left side). 
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(a): Floor Plan 

  
(b): Corridor A (c): Corridor B 

Figure 2. Measurement environment. (a) floor plan, (b) Tx location in Corridor A, and (c) Rx location 
in Corridor B. 

4. Post Processing 

This section explains the post processing of the raw data that were collected from the ultra-
wideband channel sounder measurement. It includes the extraction of the channel impulse responses 
from the received waveforms. The data were subjected to post processing using SystemVue software 
[27] and MATLAB Toolbox. The channel impulse response (CIR) was extracted by cross correlation 
between the received waveform and the transmitted arbitrary waveform signal. the space-alternating 
generalized expectation-maximization (SAGE) algorithm [28,29] was used to extract the parameters 
of the MPCs, including the path delay and path gain. It allowed an iterative determination of the 
maximum-likelihood estimation. The SAGE algorithm resolved the MPCs by an interference-
cancellation, where the MPCs that were already estimated were subtracted from the considered 
signal. 

5. Path-Loss Models and Analysis 

We investigated different path-loss models for single and multiple frequencies. For a single 
frequency, we used the CI free space reference range model [16], as follows: 

( ) ( )0 10
0

, [ ] ( , ) 10 logCI

L L
dP f d dB P f d n Wd σ

= + + , (1) 

where ( ),LP f d  is the path loss at operating frequencies, with multiple separation ranges; n is the 

path-loss exponent (PLE); 0( , )LP f d  is the path loss in dB at a close-in (CI) range, d0, of 1 m; and Wσ  
is a zero-mean Gaussian-distributed random variable with standard deviation σ dB (shadowing 
impact). 
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The other model, with three parameters, is known as the ABG model. It includes a frequency-
dependent term, γ ; a distance-dependent term, α; and an optimization factor, β , to describe the 
path loss at various frequencies [13,21,30]. The ABG model equation is given by the following [13]: 

( )[ ] 10 10
0

, 10 log 10 logABG ABG

ref

d fPL f d dB W
d f σα β γ

  
= + + +       

 (2) 

The minimum mean square error (MMSE) is the strategy by all of the parameters for the CI and 
ABG path-loss models [16]. 

The CI and ABG path-loss models for all of the measured frequencies are shown in Figure 3a–c. 
Figure 3a shows the variation in path loss and the Tx–Rx separation distance (scatter plot and best-
fit CI model at 19 GHz in NLOS environments). The path loss varies as a function of distance, based 
on the number of multipath components (MPCs) with their gain. The constructive and destructive 
nature of MPCs induces changes in the path loss. Based on the PLEs for CI and ABG (n = 0.4 and α = 
0.2) at 19 GHz, the environment represents a waveguide in which many reflected paths are added 
constructively. Moreover, the reflected paths have a higher power because of reflections from the 
surrounding environment, which derive from the concrete stairs, walls, and ribbed metal ceiling; the 
Tx horn antenna is directed toward the stairs. Figure 3a shows that the CI and ABG models totally 
matched at 19 GHz for the last locations (above a 7 m Tx–Rx separation distance). 

 

(a): Close-in (CI) model at 19 GHz. 
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(b): CI model at 28 GHz. 

 
(c): CI model at 38 GHz. 

Figure 3. Path loss versus Tx–Rx separation distance using horn-omnidirectional antennas for the 
soft non-line-of-sight (NLOS) environment. 

The path loss variation as a function of the Tx–Rx separation distance at 28 GHz is shown in 
Figure 3b. It can be noted that the fluctuations in path loss as a function of distance are the same as 
those shown in Figure 3a for 19 GHz. However, the path-loss measurement values increase as the 
frequency increases. The value of PLEs for CI and ABG models (n = 0.8 and α = 0.2) are also low, 
which indicates that the total power of the received signal is strong and decays minimally with 
distance (waveguide effects due to the physical structure of the environment). At 28 GHz, there is 
divergence between both CI and ABG models; however, the divergence becomes low above a 7 m 
separation distance, as shown in Figure 3b. 
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Figure 3c illustrates the path loss variations as a function of the separation distance at 38 GHz. 
This figure shows that the path-loss measurement values at 38 GHz exceed those at 19 and 28 GHz, 
due to the higher frequency. The PLE for the CI model is higher compared with the PLE for the CI 
models at 19 and 28 GHz. However, it is still low compared with the theoretical free-space PLE (FSPL 
= 2), due to the constructive phenomena of MPCs and the waveguide effects induced by the concrete 
walls, stairs, ribbed metal ceiling, and iron railing of the corridor, which surround the Rx and Tx 
antennas. 

According to above test, it is shown that measured data for a 38 GHz band at an I2O environment 
are comparable to the CI and ABG models. 

Here, the ABG model has a high deviation from the CI model at all locations of measurement. 
This implies that the ABG model is not recommended for a 38 GHz band at an I2O environment. 
Hence, when we lumped different frequencies from different bands (such as from 10, 20, and 30 GHz), 
it is recommended to use a CI model as well for the multi-frequency scheme. 

Table 2 lists the parameter values for the CI and ABG path-loss models that are used to 
investigate the multiple frequencies for the 5G channel propagation in this work. The CI path loss 
model of Equation (1) can be used for multi-frequency schemes by putting all of the measurement 
data for all of the measured frequencies as one data set to find an overall PLE based on all of the 
potential frequencies measured. The PLE for the CI model in multi-frequencies is 0.9, which is 
calculated based on the CI model in Equation (1) by using the MMSE approach under multiple 
regressions with three independent parameters—frequency, distance, and path loss. 

Table 2. Multilateral path loss models 19, 28, and 38 GHz; CI; and alpha–beta–gamma (ABG) model 
parameters. 

Model PLE σ  
CI 0.9 5.2 dB  

 α  β γ  σ  
ABG 0.2 5.8 5.4 2.5 dB 

It can be concluded that the high-frequency propagation channels in this specific I2O 
environment experience constructive interference from the ground, wall, and ceiling reflections. 
Furthermore, one should note the radical change in the path-loss values for all of the frequencies at 
the last two Rx locations, due to reflections from the iron railing of the corridor. The PLE at the 
proposed frequencies increases with frequency. The PLE at 28 GHz is double that at 19 GHz, and the 
PLE at 38 GHz is about twice that at 28 GHz. This finding indicates that the PLE is frequency-
dependent in this specific I2O environment. The standard deviations of the CI path-loss model are 
1.7, 4.2, and 3.4 dB, for 19, 28, and 38 GHz, respectively. The standard deviation of the CI model is 
low at 19 GHz, which indicates that the CI model has the best agreement with the measurement data. 
The standard deviation values at 28 and 38 GHz are more due to the rapid fluctuation of the received 
signal in some constructive measurement points. The rapid changes in the measured received signals 
are observed at 28 GHz, as shown in Figure 3b. 

Based on the path-loss models’ parameters, as listed in Figure 3 and Table 2, we can conclude 
that the wireless signal can pass through the NLOS environment with a low signal power drop, using 
the huge available bandwidth in high frequencies of 19, 28, and 38 GHz. 

6. Time Dispersion Parameters and Analysis 

We have been investigating the time characteristics of a 5G scheme by using the RMS delay 
diffusion, the mean delay (MN-EX), and the maximum delay excess (MAX-EX). The MAX-EX delay 
is the delay where the farthest MPCs can be obtained with the gain power above the threshold value 
(20 dB less than the maximum power of the MPCs). The time dispersion parameters provide delay 
information for the channel, which is very useful for designing a robust 5G system. It is possible to 
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calculate the RMS delay spread by the square root of the second moment of the power delay 
spectrum, as follows [31]: 

2 2( ) ( ( ))rms E Eτ τ τ= − , (3) 

where 

( ) ( )
( )

2

2( )
j jj

jj

p
E

p

τ τ
τ

τ

⋅
=



, (4) 

and the MN-Ex is given as follows: 

( )
( )( )
j jj

jj

p
E

p

τ τ
τ

τ

⋅
=



, (5) 

where ( )jp τ  is the power of the multipath with delay jτ . 

To investigate the temporal dispersion, the received power at all of the receiver locations is 
depicted in Figure 4a–c, with excess delay. The Rx is indexed from 1 to 11, as shown in Figure 4a–c. 
For all of the measurement points at all of the investigated frequencies, most of the received power 
arrived at an excess delay of less than 30 ns, and between 50 to 60 ns. It can be shown that the high 
received power can be collected at the large excess delay for all of the measured frequencies. As an 
example, the Rx 6–Rx 11 have a high received power at an excess delay between 55 ns and 60 ns at 19 
and 28 GHz, as shown in Figure 4a,b, and almost all of the Rx 1–Rx 11 received a high power at 38 
GHz, as shown in Figure 4c. The maximum excess delay values (the delay of the received signal with 
power more than the noise floor of −120 dBm) are less than 93, 85, and 76 ns at 19, 28, and 38 GHz, 
respectively. It is worth noting that there is no linear correlation between the Rx distance, excess 
delay, and received power. This means that the composition of the setting plays a crucial role in 5G 
wireless channel at mm-wave bands. In other words, the reflection and scattering phenomena can be 
exploited at mm-wave frequencies to get a strong power from the farthest multipath components. 

 

(a): Received power at 19 GHz. 
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(b): Received power at 28 GHz 

 
(c): Received power at 38 GHz. 

Figure 4. Received power level versus excess delay at all of the receiver sites. 

From the received power, excess delay, and using Equations (3) and (4), the temporal dispersion 
can be investigated based on the RMS delay spread. Figure 5 shows the RMS delay spread variation 
as a function of the Tx–Rx separation distance at 19, 28, and 38 GHz. Figure 5a–c shows that the RMS 
delay spread variation with a Tx–Rx separation distance is not linear. Moreover, the correlation 
between these parameters is weak, if it exists at all. The RMS delay spread at the farthest location 
(Tx–Rx separation distance = 13.5 m) has the lowest value at all of the frequencies (Figure 5a–c). This 
result implies that the farthest MPCs have less power than the threshold value (20 dB less than the 
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maximum power of the MPCs). Table 3 lists the values of the maximum excess delay, the mean values 
of RMS delay spread and mean excess delay, and the MN-EX/RMS delay spread for all of the 
frequencies. The MAX-EX delay varies between 64 and 90 ns; the lowest value is associated with the 
highest frequency. This finding indicates that, at high frequencies within the same threshold, the 
paths after the MAX-EX delay are ignored, because the power of these components is less than or 
identical to that of the noise floor. The RMS delay spread values for all of the frequencies vary 
between 9.2 and 29.2 ns, with mean values of 19.2, 19.3, and 20.3 ns at 19, 28, and 38 GHz, respectively. 
The MN-EX/RMS delay spread in this environment was more than 1, and all of the frequencies have 
the same value of 1.3. Based on these findings and the results in Figure 4a–c, it can be concluded that 
many of the strong paths arrived after the midpoint of the power delay profile and the early excess 
at less than 30 ns. 

 
(a): Root mean square DS (RMSDS) at 19 GHz 

 
(b): RMSDS at 28 GHz 
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(c): RMSDS at 38 GHz 

Figure 5. RMS delay spread (RMSDS) in the NLOS environment as a function of Tx–Rx separation. 

Table 3. Maximum excess delay; mean, minimum (min), and maximum (max) RMS delay spread; 
MN-EX delay; and mean/delay spread (MN/RMS) for the measured frequencies. 

Frequency 
[GHz] MAX-EX [ns] Mean of MN-EX [ns] 

(min, max) 
Mean of RMS Delay Spread 

[ns] (min, max) MNEX/RMS 

19 90 26.1 (8.1, 42.7) 19.2 (13.0, 23.3) 1.3 
28 83 25.8 (4.2, 57.0) 19.3 (9.2, 29.2) 1.3 
38 64 27.4(3.7, 27.4) 20.3 (8.2, 23.4) 1.3 

For the RMS delay spread results and spreading factor, it can be concluded that the time 
dispersion parameters are more symmetrical in the earliest MPCS compared with the latest MPCs. 

Figure 6a–c illustrates the effect of path loss on the RMS delay spread at 19, 28, and 38 GHz. 
From these figures, it can be observed that the linear relationship between the RMS delay spread and 
path loss is very low. Figure 6a shows that at 19 GHz, the highest path loss is 65.2 dB at an RMS delay 
spread of 23.2 ns. The lowest RMS delay spread is 12.9 ns at a path loss of 61.2 ns. The lower path loss 
is 58.7 dB at an RMS delay spread of 14.4 ns. Figure 6b shows that at 28 GHz, the lowest RMS delay 
spread is 9.2 ns at a path loss of 65.5 dB. The heighest path loss is 74.5 dB at an RMS delay spread of 
22.4 ns. The maximum RMS delay spread is 29.2 ns at a path loss of 71.2 dB. Figure 6c shows that the 
maximum RMS delay spread is 24 ns at a path loss of 75.8 ns. The maximum path loss is 80.5 dB at 
an RMS delay spread of 17.9 ns. The minimum RMS delay spread is 8.2 ns at a path loss of 74.4 dB. It 
is worth noting that in some locations, more power is acquired with a low RMS delay spread, which 
is very useful for 5G communication systems regarding the high information rate, to avoid 
intersymbol interference (ISI). 
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(a): RMSD variation with path loss at 19 GHz. 

 
(b): RMSDS variation with path loss at 28 GHz. 

 
(c): RMSDS variation with path loss at 38 GHz. 

Figure 6. The spread of RMS delay as a function of path loss. 
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7. Comparison with Some Studies 

In this section, the path loss model extracted parameters and RMS delay spread are compared 
with some previous studies of 5G propagation channel models for different environments and 
scenarios. Because of the inherent differences in the modeling methodology—for example, the 
threshold employed in the algorithms of post processing and the measurements range—these 
parameters may not be directly comparable. However, the effect of the environments on the channel 
characteristics can be observed from the similarities and contrasts in different propagation models. 
The path loss exponent, standard deviation, RMS delay spread, and some auxiliary parameters in 
this work are compared with some literature in Table 4. In Table 4, the values of the propagation 
parameters are reported within range (lower–upper), implying that the propagation studies of the 
listed works provide different LOS and NLOS scenarios (single frequency, multi-frequencies, vertical 
and horizontal and combined antenna polarizations, environment partitioning, and directional and 
omnidirectional model). The lower range of PLEs (n) is identical for all of the studies. In this study, 
the lower range of PLE is 0.4 in the outdoor environment (LOS scenario) at a 19 GHz frequency, 
indicating that the MPCs added up constructively from both side walls along the outdoor office (a 
waveguiding effect), and the antenna has a wide-beam at this frequency, which can collect more 
paths. The upper range of the PLE is 1.5 at 38 GHz for the NLOS scenario in the outdoor environment. 
In the literature [32], the largest upper PLE (n = 4.6) is reported at 38 GHz for an NLOS outdoor 
environment. In the literature [27], the PLE (n = 1.89) is reported at 28 GHz for a LOS outdoor 
environment. In the literature [15], the largest upper PLE (n = 4) is reported at 73 GHz for vertical-
horizontal polarization in an open plan (large hall) indoor environment. However, in this work, the 
upper PLE (n = 1.5) is investigated at 38 GHz for an I2O environment. This value indicates that the 
PLEs for all of the frequencies are lower than the FSPL exponent of 2, because of constructive 
interference and the wave guiding effects of the radio wave propagation along the studied 
environment. Note that the reported values of the ABG model parameter results are in consonance 
with the reported values in the literature [15]. Similarly, the RMS delay spread values are also in 
consonance with the mean values of the RMS reported results in the literature [33]. 

Table 4. Comparison of propagation studies for path loss models and RMS delay spread for 5G 
channels at mmWave bands. 

Source 
Frequency 

Range 
(GHz) 

Distance 
(m) PLE (n) α Β ϒ σCI, σABG 

(dB) τ rms (ns) 

Deng et al. 
[33] 

28, 73 
4.1 

21.3 
1.1–3.5 – – – 1.7–9 4.1–21.2 

MacCartny 
et al. [15] 

28, 73 
4.1 

21.3 
1.1–3.5 

0.9 
1.1 

17.7–47.1 2.5–3.5 
1.8–8.6, 
1.8–14.2 

0.5–143.8 

Rappaport et 
al. [32] 

38, 60 19–265 1.9–4.6 – – – – <122 

Rajagopal et 
al. [27]  

28, 40 ≤100 1.89 – – – –  

Ours 19, 28, 38 <15 0.4–1.5 0.2 5.8 5.4 1.7–4.1, 2.5 8.2−29.2 

8. Conclusions 

We have described the large-scale path loss in a 5G network for a wideband channel, in a specific 
indoor to outdoor environment measurement campaign conducted at the UTM-KL campus. We 
investigated path loss based on the CI and ABG path-loss models for single and multiple frequencies. 
For all of the measured frequencies, we provided an RMS delay spread, mean excess delay, and 
maximum excess delay. We recovered a good value for the PLE for all of the frequencies, using the 
CI path-loss model. The smaller value of the distance-dependent factor indicates that the drop in the 
received power is low for the measured distance in this particular NLOS-I2O environment. The PLE 
values are 0.4, 0.8, and 1.5 at measurement frequencies of 19, 28, and 38 GHz, respectively. The 
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average RMS delay spread values are 19.2, 19.3, and 20.3 ns at 19, 28, and 38 GHz, respectively. The 
presented results showed that the path loss and RMS delay spread are not linearly dependent. The 
strong received signal can be detected at a low delay spread. Finally, our results from this study, 
together with other propagation studies in the literature, contributes to the development of a more 
precise and unified channel model framework for the studied mmWave bands of 19, 28, and 38 GHz. 
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