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Diffusion layer thickness in turbulent flow
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Abstract

Average thickness of diffusive layers in a turbulent flow is described using
an idea of Lagrangian meso-scale element convected by mean flow and large
scale turbulence. This idea enables a formulation of a simple model for the
diffusive layer thickness assuming that its evolution is determined by the
diffusive growth and two components, compressive normal and tangential, of
the turbulent strain rate tensor. Analysis of the possible effects of the folding
action of the turbulence leads to the conclusion that the folding becomes
significant only at the scales far superior to the considered dimensions of the
meso-scale elements, thus it may be neglected in the present formulation. The
evolution equation for the meso-scale element thickness is derived and put
to test against experiments conducted in plane and round jets. The model
proved capable of producing, using the same values of two model constants,
values of the diffusive layer thickness in good qualitative agreement with the
measurements.

While the present numerical simulations of the turbulent jets are made
using very simple, perhaps simplistic, flow and turbulence description, they
nonetheless allow a fairly accurate estimation of turbulence microscales at
different locations in a jet. It turns out that neither Kolmogorov nor Taylor
scale provides a good universal reference scale for the diffusive layer thickness
and it is local turbulence conditions and history of the meso-scale element
determining the latter.
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1. Introduction

In a turbulent flow, the molecular diffusion of mass occurs through dif-
fusive layers characterised by local concentration gradients much larger than
the average. Quantitative description of these layers is crucial for many di-
verse problems, ranging from industrial combustion to thermonuclear fusion
in stars. The diffusive layers determine the rate of the dissipation of the
scalar fluctuations, the key variable describing turbulent flows with heat and
mass exchange.

An early Direct Numerical Simulation (DNS) of evolution of a scalar field
in homogeneous turbulence with imposed uniform mean scalar gradient [1]
has demonstrated that the regions of large scalar gradients are sheet-like
while the regions of large velocity gradients are tube-like. The thickness of
the sheet-like diffusive layers in these DNS simulations was found to lie in
the range from slightly less than the Kolmogorov scale η to four-five times η
with the most probable value of approximately twice the Kolmogorov scale.
The other two dimensions of diffusive layers, along which the concentration
derivatives are much smaller than its gradient magnitude, were of the order
of 10-20η, well into the inertial interval of turbulent fluctuations scales. The
shear-driven turbulence, such as induced in jet-type flows, may exhibit a
much larger diversity of the velocity field patterns, however, the diffusive
layers remain sheet-like [2, 3] in both gaseous and liquid jets. The sheet-
like pattern of the regions occupied by the large scalar gradients has also
been found in the DNS of the isotropic turbulence and channel flows [4].
For the channel flows, there is large anisotropy of the diffusive layers in
the near-wall region, however, at sufficient separation from the wall, these
layers become anisotropic with the characteristic thickness of approximately
6η [4]. Another homogeneous and isotropic turbulence DNS study [5] aimed
at investigation of diffusive layer thickness found that their thicknesses have
a relatively narrow distribution with the most probable values of the order
of the Kolmogorov scale η.

While there is a significant amount of numerical simulations of homoge-
neous turbulence, the statistics of the scalar dissipation and characteristic
thickness of the diffusive layers in jets, shear-driven flows, was also studied
in experiments. The work [3] investigated gaseous round jets; the plane jets
were the objects of [6, 7]. The dimensions of and concentration distributions
within diffusive layers were measured using either Rayleigh scattering alone
from propane [3], or combined Planar Laser-Induced Fluorescence (PLIF)
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and Rayleigh scattering in acetone-doped propane jet [6]. These experiments
found that the average thickness of the diffusive layers may be approximated
by the following relationship:

ζ = Λ · δ ·Re
−3/4
δ

(D
ν

)1/2

(1)

where δ is the jet width and Reδ is the Reynolds number based on it, D is
the effective molecular diffusivity and ν is the kinematic viscosity of the jet
material. Different experiments in various jets yielded values of the constant
Λ varied from 8 to 14.2. The measured distribution of the thickness ζ was
derived conflating values taken from jets central and boundary positions;
it has been found narrowly bounded with minimum of approximately half
and maximum of approximately twice of what Eq. 1 predicts [6]. It is worth
mentioning that visualisation of diffusive layers in confined jets usually shows
an increase of their thickness with the downstream distance [8].

The scaling in the Eq. 1 was originally justified on the basis of dimen-
sional arguments invoking Kolmogorov theory of homogeneous and isotropic
turbulence. As a matter of fact, while Eq. 1 is nothing but an estimation
of Batchelor scale η from the “global” jet Reynolds number, large values of
the constant Λ mean that the measured layer thickness, which is Λ times
larger than η, may fall within the inertial interval of turbulent scales. The
Batchelor scale has been first introduced in [9] as the cut-off scale for scalar
spectrum leading to its wide-spread interpretation as the size of the smallest
scalar structures in a flow. The difference between liquid and gas flows is
embedded in the inverse of the Schmidt number, the ratio of the mass dif-
fusivity D to the kinematic viscosity ν; in what follows, influence of these
two molecular transport coefficients is considered separately, thus making no
special treatment for either gaseous or liquid flows. Measurements of effects
of the Schmidt number on the diffusive layer geometry may be found, e.g. in
[2].

An attempt to explain Eq. 1 was done by Kothnur and Clemens [7], who
considered evolution of one-dimensional lamellae under combined action of
molecular diffusion and unsteady normal compressive strain rate. Two types
of the unsteady strain rate were considered in [7], one with non-zero time
averaged intensity, the action of which may be reduced to an effective steady-
state strain rate, and the other was a periodically varying strain rate with zero
time average producing oscillating thickness of the diffusive layer. However,
a direct comparison of these findings with the experiments in jet flows proved
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complicated owing to the non-uniform distribution of average and fluctuating
flow properties and their rapid evolution in the downstream direction. Fur-
ther complications come from the fact that the experiments [3, 6, 7] reported
the diffusive layer thickness values averaged over fairly large sections of the
jet, stretching in some instances from the jet centre-line to its boundary,
taken as the location of fixed small value of the axial velocity excess. While
the Eq. 1 does provide a good approximation to the values measured in jets,
it lacks any justification other than assumption of some “equilibrium” be-
tween strain and molecular transport rate and its application for flows other
than jets is problematic as it does not clarify how the local turbulence prop-
erties may affect the diffusive layers; neither it indicates how the diffusive
layer thickness may be found for flows other than jets. Existence of the equi-
librium is usually implicitly assumed, even for non-homogeneous flows with
gradients of velocity and scalar concentrations, on dubious grounds of dimen-
sional reasoning even despite the evidence of sheet-like diffusive structures
the extents of which vary greatly in different directions; this evidence was
not available at the time when Batchelor’s work [9] was published.

The purpose of this work is to address these shortcomings and establish an
equation for evolution of dimensions of a material element across which scalar
gradient acts during the turbulent mixing. In order to do so, the notion of
a meso-scale element is first introduced, then the joint action of compressive
and tangential velocity strain rates and the molecular diffusion is considered
for such elements. The evolution equation for thickness of such an element
is applied firstly to an ideal case of homogeneous and isotropic turbulence.
Finally, the model is assessed by its application to the flow fields calculated
for jet flows investigated in experiments of [3] and [6]. The information
about the dimensions of small fluid elements characterised with large scalar
gradients is relevant for analysis of small scale mixing in turbulent flows [10],
e.g. in flows with chemical reactions of phase transitions.

2. Model formulation

A diffusive layer is formed when a parcel of fluid of a certain composition
is brought by the flow into contact with surrounding with different composi-
tion. Without loss of generality, the composition may be described with one
passive scalar, the value of which in the parcel forming the diffusive layer is
taken initially as unity, and the surrounding is characterised with the zero
value of this scalar. Once a parcel is brought into a contact with surround-
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ing of different composition, its motion will continue, it will be continuously
deformed, its shape will change and its scalar value will evolve owing to the
molecular diffusion to and from the surrounding. Evolution of the compo-
sition inside such a moving parcel is left to a subsequent work; this work
considers the evolution of its shape and dimensions only.

Following widely adopted description of turbulence as a superposition
of fluctuations correlated over a wide interval of separation scales, one may
assume as an approximation that a fluid parcel is transported as a whole
by the turbulent motion the scale of which is larger than the parcel size.
The fluctuations of velocity correlated over the distances comparable with or
smaller than the parcel size will affect the parcel shape and its inner structure;
the latter will be also influenced by molecular transport. For example, if
the parcel size is about the same as or smaller than the Kolmogorov scale
the molecular transport will level any internal inhomogeneity of velocity or
composition much faster than the small-scale turbulence will induce it; for all
practical purposes such a parcel is equivalent to a Monté-Carlo point particle
devoid of any internal structure; this concept is widely used in Lagrangian
numerical models of turbulence. Here this parcel is taken as a “mesoscale”
finite mass element, the evolution of which may be traced over time period
of several integral time scales of turbulence.

The inspection of the experimental and derived from DNS images re-
viewed in the Introduction, e.g. [3, 4, 6], shows that a turbulent mixing layer
is formed by a large number of layers in which the scalar gradient has one
large and two small components. In what follows, the direction of the large
scalar gradient component will be termed as ζ direction and the extent of
the diffusive layer in this direction will be termed as thickness. The other
two directions will be referred to as ξ directions and the layer extent along
them will be referred to as length and width. From the experimental obser-
vations, the diffusive layer thickness is comparable with or greater than the
Kolmogorov scale, while its length is much larger, going up to sizes compara-
ble with the integral length scale. Thus the total volume of these layers may
be thought as l30 where lt >> l0 >> η, hence it is reasonable to assume that
l0 lies within the inertial interval of turbulence. Here, lt is the longitudinal
integral length scale of turbulent velocity field. Furthermore, the intensity
of the scalar gradient within any individual layer changes continuously and
smoothly, hence one may suppose that an individual diffusive layer is formed
from a continuous single parcel of the fluid rather than several parcels merged
together at different times. Thus comes the main idea of the current model:
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that the diffusive layer dimensions may be found by tracing evolution of a
meso-scale element (m.e.), i.e. a fluid parcel the initial size of which belongs
to the inertial interval.

Let us consider the evolution of a meso-scale element the constant mass of
which is M0 = Cmρ0λ

3 where λ = lt ·Re
−1/2
t is the Taylor scale of turbulence

and Cm is a size-determining constant. Let ζ(t) be the thickness of this
m.e., i.e. the extent in the direction of the largest scalar gradient and ξ(t)
is its length or width, i.e. the extent in either of other two dimensions.
Ret = u′lt/ν is the turbulent Reynolds number based on the integral length
scale, u′ is the root-mean-square (rms) velocity. Effectively, the meso-scale
element may be viewed as a bent and twisted square patch the side of which
is ξ and the thickness is ζ ≤ ξ. Obviously, for any moment of time t:

ξ(t) =

(
M0

ρ(t) ζ(t)

)1/2

(2)

regardless of the shape of m.e. Turbulent mixing increases the average sep-
aration between any two material points, however, this separation remains
finite over a finite period of time and in most circumstances the residence
time of fluid does not exceed a few integral time scales. As shown by estima-
tions of [11], in jets, wakes and mixing layers the residence, or the so-called
flow development, time is between 2 and 5 integral time scales and over this
time the separation of two points may remain within the inertial interval if
it was sufficiently small initially.

It is worth emphasising that in a locally isotropic turbulence evolution
of a quantity depending on a separation between two points, such as the
thickness of a layer, may depend differently on the processes in the direction
of the separation and a direction orthogonal to the separation line but all
orthogonal directions should be treated as one because isotropy implies the
axial symmetry with respect to the separation line. Therefore, only two
parameters are sufficient to describe a shape of a three-dimensional element in
locally isotropic turbulence. Here, these two parameters are ζ and ξ and the
simplest shape of a meso-scale element is chosen as a square patch orthogonal
to the local instantaneous scalar gradient; the latter is aligned with the ζ(t)
direction. The idea is based on the observation that the local scalar gradient
in the convected m.e. will remain aligned with ζ(t) if the m.e. size is small
enough.

There are four processes influencing m.e. thickness ζ(t): growth caused
by molecular diffusion, decrease from compressive strain, decrease caused by
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the tangential stretch, i.e. decrease of ζ caused by increase of ξ and folding
bringing the m.e. parts together thus accelerating the rate of molecular
diffusion. The convection by the average velocity field and the turbulent
velocity fluctuations at the scales larger than ξ will displace the m.e. as a
whole without affecting its dimensions. Thus the sought equation for m.e.
thickness may be tentatively written as:

dζ(t)

dt
= udiff + ustrain + ufold (3)

where the rates u from the individual processes affecting m.e. dimensions
are considered below.

2.1. Widening by molecular diffusion

Acting on its own, in absence of turbulence, molecular diffusion increases
the thickness of the diffusive layer arising when two unequal concentrations
are brought into contact by the large-scale motion. The speed of thickness
increase may be found considering the diffusive layer structure in the direction
orthogonal to the initial separation surface as follows.

On the boundary of the contact between layers of different concentration
denoted as Y the molecular diffusion will induce the concentration profile
given by:

Y (z) =
1

(2πDt)1/2

∫
Y0(z

′) exp

(
− (z − z′)2

4D t

)
dz′ (4)

where z is the normal distance to the surface z⋆(x, y) of the separation of the
two components, i.e. distance along the ζ direction, and t is the time elapsed
since m.e. had formed. The initial profile Y0 may be simply taken as the
Heaviside step function Y0 = H(z⋆) and, without loss of generality, z∗ will
be assumed a constant, i.e. the initial separation surface is assumed plane.
In that case, Eq. 4 leads to

Y (z) =
1

2

(
1− erf

(
(z − z⋆)2

(2πDt)1/2

))
(5)

Inversion of this expression, Eq. 5, allows one to express the position z(Y )
at which lies a given scalar value Y as:

z(Y ) = z⋆ + (2πDt)1/2 erf−1 (1− 2Y ) (6)
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The thickness of the diffusive layer may be defined as the distance between
two arbitrary Y values at the leading Y → 0 and trailing, Y → 1, edge of the
layer: z(Y → 1)−z(Y → 0); clearly the numerical value of the thickness will
depend on the particular choice of these constants, nonetheless, the temporal
evolution of the thickness will not depend on that choice. Therefore, to the
constant factor Ad of the order of unity, the rate of thickness growth caused by
molecular diffusion may therefore be found differentiating Eq. 6 at constant
Y value as:

udiff = Ad

(D
t

)1/2

(7)

The time here has the meaning of the mesoscale element “age” counted from
its inception: for a jet the m.e. is formed at the issue from the nozzle. As
pointed out by one of the reviewers, the above derivation may seem super-
fluous as the Eq. 7 may be obtained from simple analysis of dimensions.
However, in the present formulation, the diffusive layer has two dimensions,
ξ(t) and zeta(t) connected through Eq. 2, thus the dimensional analysis does
not allow to discern between Eq. 7 and the alternative expression

udiff = A′
d

D
ζ

The latter expression was tried in simulations and it yields the m.e. thickness
close to the one predicted with Eq. 7 for plane jet but for the round jet it
results in nonphysically small values.

2.2. Thinning by turbulent hydrodynamic strain

Two components of the hydrodynamic strain field affect the shape of
meso-scale element and need consideration: compressive strain rate acting
along the ζ direction and normal to it tangential strain rate acting along
either of the two ξ directions. The two component of the strain rate are not
independent because of the mass conservation:

1

ζ
· dζ
dt

+
2

ξ
· dξ
dt

+
1

ρ
· dρ
dt

= 0 (8)

and from this:

ustrain = −ζ

(
2

ξ
· dξ
dt

+
1

ρ
· dρ
dt

)
(9)

In homogeneous and isotropic turbulence the scalar gradient tends to align
with compressive rather than extensive strain, e.g. see [4] and the discussion
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Figure 1: Temporal evolution of the meso-scale element (diffusive layer) thickness for the
different m.e. initial dimensions, shown in the legend. The thickness is normalised by the
Kolmogorov scale η, the time is normalised by the integral time scale τt. The molecular
diffusivity D = 0.2cm2/sec; u′ = 100cm/sec, lt = 1cm; η = 94.6µm.
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Figure 2: Temporal evolution of the meso-scale element (diffusive layer) thickness for the
different turbulence characteristics, shown in the legend. The thickness is normalised by
the Kolmogorov scale η, the time is normalised by the integral time scale τt. The molecular
diffusivity D = 0.2cm2/sec is kept constant; the m.e. initial size constant is cm = 1.0 so
ζ(t = 0) = λ.
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and references therein, thus it is sufficient to consider extensive normal strain
along ξ direction.

An m.e. shape along a ξ direction may be be curved, warped and twisted,
however, the relative rate of m.e. elongation along an arbitrary ξ is only
determined by the velocity difference at the opposing end points along that
line. Indeed, if one splits this line into a number of small segments by a set
of points ξk, k = 0 . . . N , ξ(0) = 0, ξN = ξ(t), so that each of the segments
may be considered as a straight line, the total rate of elongation of this line
is

dξ

dt
=

N∑
k=1

(
dξk
dt

− dξk−1

dt

)
=

dξN
dt

− dξ0
dt

(10)

and it is therefore determined by ∆u (ξ): the average difference of velocities
at the separation ξ, or the square root of the velocity structure function of
the second order [12]. Because the m.e. dimensions correspond to the inertial
range of turbulence scales, the Kolmogorov self-similarity hypothesis applies:

∆u (ξ) = (εξ)1/3 · f̃
(
ξ

lt

)
= u′ ·

(
ξ

lt

)1/3

f̃

(
ξ

lt

)
(11)

where ε ∼ u′3/lt is the turbulent kinetic energy dissipation, and f̃(z) is
a non-dimensional function universal for all locally isotropic, homogeneous
turbulent flows where Ret >> 1; this function is related to the longitudi-
nal velocity correlation function f(z). In the theory of homogeneous and
isotropic turbulence developed for the infinitely large turbulence Reynolds
number Ret, the Kolmogorov self-similarity hypothesis means that the evo-
lution of ∆u (ξ) may only depend on ξ and the dissipation ε thus f̃(z) = 1.
Infinitely large Ret and finite values of viscosity and dissipation imply that
both the rms velocity and integral length scale tend to infinity, the inertial
interval is infinite and the velocity field is delta-correlated in both space and
time. In fact, in Kolmogorov’s theory there is no external length scale while
in any instance of a flow there is at least one characteristic flow dimension.
Thus in applying this theory to a jet flow it seems natural to bring into the
consideration a characteristic dimension of jet, the integral length scale by
its proxy. Hence, the non-unity function f̃(z) is introduced here to adopt the
developments to flows with finite Ret and correlation span.

While little information is available for f̃(z), the relationship between the
velocity field correlation function f(x) and f̃(z) may be found considering
two extreme separations: x/lt = z → 0 and x/lt = z → 1. In the former
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case f → 1, while f̃ → 0 as the velocity difference should vanish at zero
separation. In the latter case, f → 0 while the average velocity difference
should tend to u′, hence f̃ → 1. f(x) is the ratio of second moments of
velocity, while ∆u is the first order moment, thus one should expect that
f̃ ∼ f 1/2 The simplest possible relationship satisfying these constraints would
be f̃(z) =

(
1− f 1/2(z · lt)

)
.

Using Eqs. 2, 8, one may obtain, to within a factor A2 of order of unity:

ustrain = −A2ζ

[
2u′

l
1/3
t ξ2/3

·
(
1− f 1/2(ξ)

)
+

1

ρ
· dρ
dt

]
(12)

This equation should be supplemented with an expression for the longitudi-
nal velocity correlation function f(x); owing to lack of commonly accepted
expression suitable for various types of turbulent flows, the following approx-
imation of the measurements of [13] is adopted here:

f(x) = J0

(
x

blt

)
· exp

(
− x

alt

)
(13)

where J0 is the Bessel function of zeroth order. For any value of constant
a,
∫∞
0 f(x)dx = lt if b = a · (a2 − 1)−1/2. With the value a = 2, hence

b = 2/
√
3, retained in what follows, Eq. 13 gives a very good approximation

for separations λ ∼ z ≤ lt, e.g. as measured in [13] but it is not accurate for
z ≈ 0 that is for separations comparable with or smaller than η as it requires
a ≈ 1. In the atmospheric turbulence research an alternative expression for
the correlation function f(x) due to Frenkiel [14] f(x) = eax cos bx is used
widely, however, Eq. 13 gives significantly more accurate approximation of
the measured f(x). It should be finally mentioned that neither Frenkiel
expression nor Eq. 13 are accurate at very small separations where the cor-
relation function may be approximated as f(x) = 1 − (x/λ)2; however, this
approximation, while accurate at x ≈ 0, is of a very poor accuracy at the
scales x ∼ λ or larger which are of interest here. At the present there does
not seem to exist an expression for f(x) providing a uniform accuracy over
the entire range of turbulence scales.

2.3. Folding by turbulent motion

When folding brings neighbouring parts of an m.e. in contact it effectively
doubles m.e. thickness; it accelerates molecular diffusion when an m.e. is only
slightly folded. Strained m.e. is folded by turbulent fluctuations orthogonal
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to ξ direction when velocity fluctuations at the edges are of the same sign
while fluctuation somewhere in the midst of the m.e. is of the opposite sign.
In the average, this scenario arises at the scales when the transverse velocity
correlation function g(x) becomes negative. It seems natural to suggest that
the folding effect is strongest at the scale xm corresponding to the minimum
of g(x). Formation of a fold at this scale means that the growth of the
diffusive layer thickness is no longer determined by the molecular diffusion
but by the much larger transverse velocity difference at this scale.

However, measurements of the correlation function shape, [12, 13] show
that g(x) becomes negative at the scales of approximately twice the trans-
verse integral length scale l⊥, it reaches minimum at approximately 2.4 ÷
2.5l⊥. This means that the folding events occur at scales much larger than
m.e. dimensions considered in the present model. For this reason, ufold is
taken as zero here.

Finally, the model equation for a diffusive layer thickness may be written
as:

dζ

dt
= A1

(D
t

)1/2

− A2ζ

[
2u′

l
1/3
t ξ2/3

·
(
1− f 1/2(ξ)

)
+

1

ρ
· dρ
dt

]
(14)

where A1 and A2 are model constants and f is expressed from Eq. 13. Owing
to the explicit dependency of one of the terms on time, Eq. 14, is not invariant
with respect to the shift of time counted here from the moment when a
scalar inhomogeneity first appears, for example, for a jet this is the moment
when a parcel of fluid leaves the nozzle. This is entirely physical as the
formation and evolution of diffusive layers is, firstly, an irreversible process,
and, secondly, even for a steady-state flow, each fluid element does have
an intrinsic age counted from the moment of entering the flow domain. In
a flow with constant turbulence properties evolution of dimensions of all
diffusive layers would be the same and it would be then possible to exploit
this fact to reformulate the first term in terms of instantaneous value ζ(t)
rather than time, however, this is not undertaken here as the emphasis is put
on inhomogeneous flows where different parcels of fluid experience different
history of strain during their evolution.

3. Model predictions for homogeneous constant turbulence

The model equation, Eq. 14, has been applied to calculation of the evolu-
tion of the diffusive layer thickness in homogeneous turbulence with constant
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root-mean-square velocity u′ and integral length scale lt. A simple second-
order Runge-Kutta scheme has been used to integrate Eq. 14 in time. The
first set of simulations has been done to determine the model sensitivity to
the choice of initial size M0 of the meso-element; the results of the simu-
lations are presented in Fig. 1 for the case where the integral time scale τt
is 10 msec and Ret = 500. In these simulations were used the same values
of the constants in Eq 14 A1 = 0.4 and A2 = 1.4 as adopted later for the
jet flows. Thickness of initially larger element decrease rapidly while the
molecular diffusion nearly balances the strain action for smaller m.e. so that
their thickness changes slowly. Only after several integral time scales the
effects of the initial size of the diffusive layer disappear. Figure 1 show the
results calculated for a 16-fold variation of ζ(t = 0), yet, after the transient
period of approximately 3τt, the difference in calculated ζ(t) does not exceed
approximately 20% and slowly decreases afterwards to approximately twice
the Kolmogorov scale η. While Eq. 14 does not admit time-independent
solution, the slow rate of variation of ζ(t) might be possibly, and mistak-
enly, interpreted as equilibrium between molecular diffusion and strain by
turbulence.

Another set of simulations was undertaken to investigate the model re-
sponse to variations of two main characteristics of turbulence, u′ and lt; the
results are shown in Fig. 2. Variation of u′ does not seem to vary the trends in
ζ evolution, however, variation of the integral scale does change significantly
the rate of change of ζ; thinning out of m.e. is much faster in large-scale
turbulence. It should be borne in mind that for most turbulent flows the
average lifetime of a fluid parcel is typically only several integral scales τt, so
arguably the greater interest for applications lies in the initial period during
which ζ evolves rapidly and neither Taylor nor Kolmogorov scale provide a
reliable estimation for it. Nonetheless, while the model prediction that ζ
asymptotically tends to a Kolmogorov scale, this fact alone does not justify
the assumptions behind the model and a comparison with experiments is
desirable for the model assessment. For such a comparison two independent
sets of measurements of the diffusive layers in jets were selected.

4. Model implementation for jet flows

The model equation, Eq. 14 has been applied to calculate the width of
the diffusing layers in the jet flows used in experiments of [3, 6, 7]. A jet
flow has large-scale turbulence properties varying from one point to another
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and the application of the classical turbulence theory may only be made
assuming that the turbulence is locally homogeneous and isotropic and the
local turbulent Reynolds number Ret is sufficiently large for existence of
inertial interval and universality of the correlation functions. Under this
assumption, application of Eq. 14 requires knowledge of the r.m.s. velocity
u′ and the integral length scale lt as functions of the position within a jet
and even a very simple numerical calculation of the average jet flow field
is therefore necessary and it will be a far better alternative to the use of
“global” flow properties, e.g. on which Eq 1 is based.

The flow field was modelled using Favre-averaged Navier-Stokes equa-
tions in the parabolic flow approximation; eddy diffusivity concept and the
standard k−ε model [15] were used to express the turbulent diffusion terms.
The experiments chosen here were propane jets issuing in air, thus use of
Favre averaging was necessary to account for variable density effects. Local
values of u′ and lt were derived from values of k and ε. The integral length
scale was defined as lt = CDk̃

3/2/ε̃, the constant CD = 0.164 [15]; the results
sensitivity to the integral length scale is illustrated in Fig. 2. No attempt
has been made to modify the turbulence model of its coefficients in order to
improve predictions for the round jet. While a large amount of far more supe-
rior turbulence models exist, the simple standard k−ε model [15] accurately
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resolves plane jet structure and provides adequate qualitative description of
round gaseous jet too. Use of k − ε model is compatible with assumption of
fully developed turbulence on which the present derivations are based.

The equations describing the flow field were solved using a marching
scheme along the downstream coordinate x [16]. The inlet jet velocity profile
in both cases was determined from simulation of a corresponding pipe or
duct flow.

In order to determine the time t of the development of the diffusive layer,
it was assumed that the meso-scale elements are issued at the flow inlet and
they move along the average flow streamlines, then:

t(y⋆) =
∫ x

0

dx

ũ (x, y⋆(x))
(15)

where y⋆(x) is the radial, or transverse, position corresponding to a fixed
constant fraction of the total mass flow. The transverse motion of m.e. which
may be induced by turbulent diffusion is thus neglected but the dependency
caused by entrainment of lighter ambient air into propane jet is taken into
account through changes in y⋆(x). Thus, at the same downstream position,
an m.e. travelling at the jet axis or symmetry plane will have smaller time
of development than an m.e. travelling at a jet periphery.

5. Results and discussion

For both plane and round jets, the initial dimensions of meso-scale ele-
ments was varied from 0.25 to 4 times the Taylor scale at the jet inlet; it
was found that the evolution of the diffusive layer thickness was insensitive
to the initial size, this sensitivity was much weaker than for the constant tur-
bulence shown in Fig. 1. The explanation to this lies in the relatively larger
magnitude of the first term in Eq. 14 resulting in the very fast growth of ζ(t)
in the initial period. For the results shown below, ζ(t = 0) = ξ(t = 0) = 1λ0.

5.1. Plane jet

In a jet flow both average longitudinal velocity u and the longitudinal
root-mean-square velocity u′, calculated here as u′ = k̃1/2 decrease with the
downstream distance, see Fig. 3. The coordinate normal to the jet direction
is denoted as y; y = 0 corresponds to the central symmetry plane and the
jet boundary is taken as the location where the dimensionless velocity ex-
cess U(y)−U∞

U(y=0)−U∞
falls to 0.01. The jet of propane has slightly higher density
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Figure 4: Profiles of the average and rms longitudinal velocity across a plane jet. The
values of the the exit jet velocity and the downstream distance are: solid line - 5.6 m/sec
and 127 mm, dashed line - 5.6 m/sec and 64 mm, dash-dotted line - 10.9 m/sec and 127
mm, dash-double dot line - 10.9 m/sec and 64 mm, respectively. U∞ = 0.3m/sec, the jet
exit slot width is h = 1mm

than its air co-flow, the calculations yield the jet width δ nearly linearly pro-
portional to the downstream distance x with the proportionality coefficient,
i.e. the spread rate, ranging from 0.2 for the jet exit centre-line velocity
U0 = 5.6m/sec to 0.27 for U0 = 10.9m/sec. These values of the jet exit
velocity are the smallest and largest value used in the experiments [6]; it is
worth noticing that the calculated jet width is significantly smaller than the
value of 0.39x used for estimations in [6]. Larger exit velocity leads to a
stronger turbulence generation at the jet boundary therefore increasing the
rate of entrainment and the spread rate.

The measurements of [6] were taken at two downstream positions, x1 =
64mm and x2 = 127mm for varied jet exit velocity and the results were
compared with dependencies similar to Eq. 1 only applicable to the positions
downstream where the jet achieves self-similarity. For both downstream po-
sitions and jet exit velocity this is indeed the case as may be seen from Fig. 4.

Figure 5 shows the downstream evolution of the turbulence scales charac-
teristic of different parts of the inertial interval of the turbulence spectrum:
Taylor scale defined here as λ = lt · Re

−1/2
t where the turbulence Reynolds

number is Ret = u′lt/ν; Kolmogorov scale defined here as η = lt · Re
−3/4
t .

For the jet boundary, for very small downstream distances there is a very
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Figure 5: Downstream evolution of the turbulence length scales and the diffusive layer
thickness on a symmetry plane of a plane jet. The exit jet velocity is U0 = 10.9m/sec, the
co-flow velocity is U∞ = 0.3m/sec, the jet exit width is h = 1mm

steep increase in the integral length scale from fraction of a millimetre to
several mm, this is caused by transition of the near-wall flow to the free
boundary condition. However, further downstream the calculated lt values
increase much slower than the jet width δ so that the ratio lt/δ decreases
quickly to below 10% and attains value of 0.05 in a fairly good agreement
with measurements of [17].

In addition to the turbulence scales, Fig. 5 also shows the values of the
diffusive layer thickness calculated with Eq. 14 with the values of constants
A1 = 0.4 and A2 = 1.4 in comparison with estimations based on Eq. 1. These
constants values were found so as to give a good agreement with measured
diffusive layer thickness at one particular jet velocity at one downstream sec-
tion; they were kept unchanged for all subsequent simulations. Measurements
of [6] provide a distribution of measured diffusive layers thickness, see Fig. 10
therein, derived from the entire range of jet velocities at two downstream lo-
cations; the measured most probable value is approximately 0.6mm. With
the values of the constants quoted above the proposed model yield the m.e.
thickness values on the jet symmetry plane for x1 = 64mm: ζ1 = 0.49mm,
x2 = 127mm: ζ2 = 0.77mm. These values are in excellent agreement with
the measurements albeit slightly higher than the values derived from Eq. 1
where the calculated values of the centre-line velocity and jet width were
used. It may also be seen from Fig. 5 that at the jet centre the m.e. thick-
ness remain between the Taylor and Kolmogorov scales and there may be no
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Figure 6: Downstream evolution of the turbulence length scales and the diffusive layer
thickness on a boundary of a plane jet. The exit jet velocity is U0 = 10.9m/sec, the
co-flow velocity is U∞ = 0.3m/sec, the jet width is h = 1mm

steady-state thickness as the diffusive growth in Eq. 14 explicitly depends
on time, or, as is the case here, downstream distance for the steady-state jet
flow.

Turbulence in jets is non-homogeneous and, as seen from Fig. 4, there is
a large variation between the centre and periphery affecting the m.e. thick-
ness. Figure 6 shows the same information as the Fig. 5 but for the jet
boundary. The m.e. thickness calculated for the two measurement positions
x1 = 64mm: ζ1 = 0.47mm, x2 = 127mm: ζ2 = 0.81mm while Eq. 1 gives
0.41mm and 0.61mm, respectively. The predicted m.e. thickness remains
between the Taylor and Kolmogorov scales and close to the estimation from
Eq. 1 even though the difference progressively increases.

The simulations were repeated for the same flow for the lowest values of
the exit jet velocity used in experiments [6], the results are shown in Figs. 7,
8. The same values of the constants A1 and A2 were used. Similarly to the
case of the faster jet, the Eq. 14 predicts the m.e. thickness well between the
Taylor and Kolmogorov scales, but twice lower than the measurements. At
the two measurement positions x1 = 64mm and x2 = 127mm the simulations
with Eq. 14 yield :: ζ1 = 0.2mm and ζ2 = 0.3mm at the centre and ζ1 =
0.2mm and ζ2 = 0.4mm at the jet boundary; all these values are above twice
lower than spread 0.56-0.72mm reported in [6], but slightly higher than what
Eq. 1 predicts. This shows the crucial role played by the local turbulence
conditions and indicates that neither Taylor nor Kolmogorov scale nor a scale
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Figure 7: Downstream evolution of the turbulence length scales and the diffusive layer
thickness on a symmetry plane of a plane jet. The exit jet velocity is U0 = 5.6m/sec, the
co-flow velocity is U∞ = 0.3m/sec, the jet exit width is h = 1mm

derived from those, e.g. Batchelor scale, could provide a universal estimation
for characteristic thickness of a diffusive layer in a plane jet.

5.2. Round jet.

The present model has also been applied to the round, diameter 7.7mm,
propane jet investigated experimentally in the pioneering work of Buch and
Dahm [3]. No details were reported about the exit velocity profile, and owing
to this a fully developed turbulent flow was calculated and imposed as the
inlet condition; matching the momentum flux reported in [3] leads to the jet
velocity of U0 = 22.4m/sec. A strong co-flow, U∞ = 15.0m/sec, was used
in experiments, and it is possible that a recirculation flow arises straight at
the jet origin, a flow feature impossible to simulate within a parabolic flow
approximation used here. The two downstream stations, x1 = 0.3m and
x2 = 0.5m used for measurements in [3] should correspond to an already
developed self-similar flow. The simulations confirm that a self-similarity is
achieved for both stations, see Fig. 9. No attempt has been made to modify
the turbulence model in order to improve the agreement of the spread rate
for the round jet as e.g. recommended in Rodi and Spalding [18].

Evolution of the turbulence scales with the downstream distance calcu-
lated for the alternative representation of the jet is shown in Fig. 10. The
diffusive layer thickness ζ was calculated with Eq. 14 and the same values of
the constants as for the plane jet.
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Figure 8: Downstream evolution of the turbulence length scales and the diffusive layer
thickness on a boundary of a plane jet. The exit jet velocity is U0 = 5.6m/sec, the co-flow
velocity is U∞ = 0.3m/sec, the jet width is h = 1mm

There is a qualitative and quantitative difference in the values of ζ pre-
dicted at the jet axis and boundary, see Fig. 10. On the axis, the calculated
values of ζ vary very slowly and are well in excess of the Taylor scale; they are
fairly close to average diffusive layer thickness measured in [3] as 0.455 mm
and 0.505 mm for the downstream distances of x1 = 0.3m and x2 = 0.5m,
respectively. On the jet boundary, however, Eq. 14 predicts ζ values decreas-
ing very rapidly to approximately the Kolmogorov scale with the subsequent
downstream evolution of m.e. thickness following very closely the latter. At
x1 = 0.3m there is approximately ten-fold difference between the m.e. thick-
ness across the jet in a stark contrast with a plane jet; this emphasises the
lack of universal scaling and importance of local turbulence properties.

6. Conclusions

The diffusive layer is described using an extension to an idea of a La-
grangian particle, that is a meso-scale element convected by mean flow and
large scale turbulence. Using this idea, it proves possible to formulate a
simple model for the diffusive layer thickness assuming that its evolution is
determined by the diffusive growth and the turbulent strain rate. The anal-
ysis of the possible effects of the folding action of the turbulence leads to a
conclusion that the folding becomes significant only at the scales far larger
than the considered dimensions of the meso-scale elements, thus it may be
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Figure 9: Radial profiles of the normalised 1 - average, 2 - rms velocities and 3 - integral
length scale across a round jet for two distances downstream corresponding to the mea-
surement locations of experiments [3]. The curves show the cases of the exit jet velocity
of U0 = 22.4m/sec with the co-flow velocity of U∞ = 15.0m/sec. The jet diameter is
d = 7.7mm

neglected for the present formulation. The evolution equation for the m.e.
thickness, Eq. 14, thus obtained, has been assessed published measurements
in plane and round jets and it produced, using the same values of two model
constants, values of the thickness in good quantitative agreement with the
measurements over a wide range of conditions.

While the present numerical simulations of the turbulent jets are made
using very simple, perhaps simplistic, flow and turbulence description, they
nonetheless allow a fairly accurate estimation of turbulence microscales at
different locations in a jet. It turns out that neither Kolmogorov nor Taylor
scale provides a good universal reference scale for the diffusive layer thickness
and it is local turbulence conditions determining this thickness. It is also
interesting to notice that, even though the formulated model, Eq. 14, does
not have a stationary solution, i.e. there is no possible equilibrium between
the widening caused by molecular diffusion and thinning caused by turbulent
strain, its application to jet flow with turbulence first generated and then
decaying may, at some locations, produce m.e. thickness which changes very
little either in the radial or downstream direction.
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Figure 10: Evolution of the diffusive layer thickness and turbulence length scales with the
downstream distance for a round jet. The numbers by the m.e. thickness curves denote:
1 - jet axis; 2 - jet periphery. The exit jet velocity is U0 = 22.4m/sec, with the co-flow
velocity of U∞ = 15.0m/sec. The jet diameter is d = 7.7mm
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7. Nomenclature

a acceleration

D molecular diffusivity

f(z) longitudinal velocity correlation function

g(z) transverse velocity correlation function

k kinetic energy of velocity fluctuations

qt integral transverse length scale of velocity field

lt integral longitudinal length scale of velocity field

M mass of a meso-scale element

Ret Ret =
u′ lt
ν

turbulent Reynolds number

u′ root-mean-square velocity

δ jet width

ε rate of dissipation of velocity fluctuations kinetic energy

ζ meso-scale, or diffusive layer, thickness

η Kolmogorov scale of turbulence

λ Taylor scale of turbulence

ν kinematic viscosity

ξ meso-scale, or diffusive layer, length or width

ρ density

t based on turbulent rather than mean quantities

0 initial value
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