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Abstract

Open circuit voltage deficiency is the key limiting factor in Cu2ZnSnS4 (CZTS) thin-film solar 

cells, which is commonly associated with band tails and deep gap states arising from elemental 

disorder. The introduction of dopants such as Na and Sb has led to improvement in device 

performance, yet their effects on the opto-electronic properties of CZTS are yet to be fully 

elucidated.  In this letter, we unraveled the effect of Sb and Na:Sb co-doping on the surface 

energy landscape of solution processed CZTS employing energy-filtered photoelectron 

emission microscopy. In the absence of the additives, 150 nm resolution photoemission maps 

reveal oscillations in the local effective work function as well as areas of low photoemission 

energy threshold. The introduction of dopants substantially reshapes the photoemission maps, 

which we rationalize in terms of Cu:Zn and Sn disorder. Finally, we establish unprecedented 

correlations between photoemission landscape of thin films and the performance of over 200 

devices.
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Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have delivered certified power conversion 

efficiency of  = 12.7%, which is the highest in the context of Earth-abundant inorganic thin-

film solar cell technology.1 Over the last six years, breaking this record efficiency has been a 

key driver for a large community of material scientists.2–4 The structural, optoelectronic 

properties of CZTSSe are closely related to those of CuInGa(S,Se)2 (CIGSSe).5 However, 

CIGSSe has achieved record efficiency close to 23%, employing the same general device 

architecture.6 The record efficiency of the pure sulfide form (CIGS) is close to 15.5%,7 while 

Cu2ZnSnS4 (CZTS) is limited to 8.17% in the case of solution processed films2,8 and 11.01% 

recently obtained by physical vapor deposition.9 There is a clear consensus that the 

performance gap between these two sets of materials is mainly connected to the voltage 

generation. An improvement of the open-circuit voltage of CZTSSe cells by a factor of two 

will set the basis for a new and sustainable technology based on Earth-abundant elements with 

the potential of boosting the current footprint of thin-film technology in the PV market.10

Voltage losses in CZTSSe are often linked to structural disorder which manifests itself 

as band tails and deep trap states.11,12 Cu-Zn antisite is the main type of defect contributing to 

band tails, while Sn disorder generates energy levels deep in the band gap.13–15  In addition, 

secondary phases including binary (chalcogenides), ternary (Cu2SnS3) and quaternary (I-42m 

phase, i.e. stannite) compounds can also co-exist along with the main I-4 (kesterite) phase.16–

23 These defects are expected to limit device performance, although little is known about the 

extent by which they affect specific metrics such as the open circuit voltage (VOC). Two general 

strategies have been implemented to minimize structural disorder: (i) Tuning annealing 

conditions, often under SnS excess. to drive the reaction towards the quaternary phase24,25 and 

(ii) introducing dopants such as Na, Sb, Ag, Cd and Ge which can aide crystallization and 

decrease elemental disorder.26–35 The vast majority of these studies correlates the effect of 
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dopants on bulk structural properties and device performance. However, no knowledge has 

been gathered on the effect of dopants on the surface electronic properties of these materials.

In this report, the complex surface electronic landscape of CZTS films prepared by 

solution-based methods is unveiled by energy-filtered photoemission electron microscopy (EF-

PEEM), focusing on the effect of Sb and Na:Sb doping. This technique enables resolving 

photo-emission spectra with 150 nm lateral spatial resolution, generating highly detailed local 

effective work-function (LEWF) maps. This information, supported by atomic force 

microscopy, Raman microscopy and DFT calculations uncovers new correlations between 

surface electronic properties and device performance. Our studies are supported by a statistical 

analysis of Sb and Na:Sb doping on CZTS devices carried over hundreds of cells.28 We provide 

conclusive evidence that Sb decreases Sn disorder, which can be linked to device shunting 

paths. On the other hand, Na:Sb co-doping decreases Cu:Zn disorder, tuning carrier density 

and improving cell voltage.  

The performance of representative CZTS solar cells with the architecture glass/Mo (500 

nm)/CZTS (1.35 m)/ CdS (60 nm)/ i-ZnO, Al:ZnO (430 nm)/Ni:Al is ilsutrated in Figure 1. 

CZTS films were prepared by thermolysis of molecular precursors deposited by spin-coating 

following previously reported procedures, with Na and Sb are added to the precursor solution.28 

Further details on the preparation and characterization of CdS thin-film and devices are 

provided in the supplementary information (S1). Characteristic J-V curves in Figure 1a show 

that the VOC and fill factor (FF) improves upon doping, while the short circuit current (JSC) 

remains effectively constant around 15 mA.cm-2. The somewhat attenuated JSC value is 

connected to reflections losses and the rather thick CdS layer employed in our studies. These 

effects are evident in the external quantum efficiency (EQE) spectra in Figure 1b, showing a 

maximum value close to 70% and strong attenuation at wavelengths below 550 nm.  In our 

previous study involving over 216 cells, we concluded that the mean  values of non-doped 
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CZTS increase from 3.2 to 4.7 and 5.05 % upon doping with Sb and Na:Sb, respectively, with 

the champion cell performance of 5.72%.28 
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Figure 1: CZTS solar cells performance: (a) Current-Voltage characteristics under 
simulated AM 1.5G illumination, (b) external quantum efficiency (EQE) spectra, 
(c) estimation of Urbach tail energy from sub-bandgap EQE and (d) temperature 
dependence of open-circuit voltage (VOC). The low-temperature intercept in (c) is 
used for establishing the activation energy (EA,Voc) of the predominant 
recombination pathway.   

Further information on loss mechanisms can be obtained by estimating Urbach tail 

energies (EU) from the EQE onset wavelength, as well as the temperature dependence of VOC 

(Figures 1c and 1d, respectively). Following the formalism introduced by Troviano and Taretto 

(see also section S1),36  a systematic decrease of EU values from 56 ± 2.2 to 42 ± 1.2 meV is 

observed upon doping. This trend is consistent with decreasing elemental disorder and the 

overall improvement of device performance. The EU values are within the range of those 
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reported for record efficiency CZTS cells.4,12,27 The activation barrier (EA,Voc) of the 

predominant recombination mechanism is calculated from extrapolating the temperature 

dependence of VOC (see section S1), resulting in values smaller than the band gap (Eg = 1.4 eV) 

in doped and undoped samples. These trends point towards interfacial recombination as key in 

device performance. Key device metrics as well as EU and EA,Voc as a function doping are 

summarised in the supporting information Table S1.

Photoemission analysis of CZTS was performed on films etched in KCN just before 

being introduced into the UHV chamber. Details of the experimental procedure and 

instrumentation are provided in the supplementary information (S2). Carbon and oxygen 

impurities were minimized by exposing the film to low doses of Ar plasma. Figures S1 to S3 

display survey XPS data of non-doped and doped samples, highlighting the suppression of the 

C 1s and O 1s signals after the Ar pre-treatment. Judicious adjustment of the Ar pre-treatment 

ensured that the surface metal ratio remains largely unaffected as shown in Table S2. All the 

three films have similar Zn-rich and Cu-poor stoichiometry which has been identified as 

optimal for high-performance CZTS solar cells.37  The surface [Zn]/[Sn] ratio (around 1.3) is 

similar to the bulk ratio (~ 1.4) estimated from EDX, while the [Cu]/([Zn]+[Sn]) ratio at surface 

(0.50 to 0.57) is significantly lower than in the bulk (~ 0.78) as a result of the KCN etching. 

No clear Sb 3d signal is detected in any of the doped samples, suggesting that the surface 

concentration of the dopant is below the detection limit. It should be mentioned that the 

detection of Sb 3d is complicated by the overlap with O 1s. Interestingly, secondary ion mass 

spectrometry (SIMS) depth profile shows the preferential segregation of Sb at the Mo/CZTS 

boundary as shown in Figure S4. Similar elemental profile has been reported in Sb doped 

CIGS films.38 Wavelength dispersive X-ray spectrometry (WDS) analysis of the rear-side of 

the CZTS films exposed by peeling the films off the substrate with adhesive epoxy show Sb 

content below 0.07 wt% (Table S1).
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Figure 2: CZTS photoemission spectra under 21.2 eV He(I) illumination: (a) 
photoemission spectra of non-doped and doped CZTS films featuring the primary 
(high energy) and secondary (low energy) photo-electron emission thresholds; (b) 
valence band spectrum of Na:Sb-doped CZTS films plotted with binding energy 
scale and after applying a Tougaard background subtraction; (c) valence band 
density of states (DOS) calculated for Cu2ZnSnS4 using HSE06 functional. A 
Gaussian smearing of 0.4 eV is employed to match the broadening in the 
experimental measurements.

The films were transferred from the XPS to the EF-PEEM chamber (Focus Gmbh 

NanoESCA II) under UHV, with characteristic photoemission spectra of the non-doped and 

doped CZTS films illustrated in Figure 2a. The features associated with the valence band 

spectrum can be observed towards the primary energy threshold.39,40 Figure 2b shows the 

valence band spectrum of the Na:Sb-doped sample after subtracting the photoemission 

background using a Tougaard function. The features can be rationalized by examining the 
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density of states of CZTS calculated by DFT HSE06 functional shown in Figure 2c. The 

computational approach is described in the supplementary information (S3). The calculations 

reproduce key features associated with valence Cu 3d, Sn 5s + 4p, Zn 3d and S 2p bands. The 

contributions from the various orbitals to the valence band DOS along with further details of 

the DFT calculations are found in the supplementary information (Figure S5). A shift in the 

Zn 3d emission line can be observed between the experimental and computed DOS, along with 

slight differences in the line shape of the Cu 3p band. These differences can be linked to the 

off-stoichiometric composition of the films compared to the supercell used in the calculations. 

In any case, we can conclude that the valence band spectra of the films are essentially 

dominated by the main CZTS phase.

Figure 3a-c show the distribution of the secondary energy threshold of electron 

photoemission obtained from fitting an error function to local spectra recorded at 150 nm 

spatial resolution. The low energy photoemission threshold in smooth single crystal facets can 

be defined as the work function. In our discussions, we adopt the term local effective work 

function (LEWF) in view of the polycrystalline nature of CZTS thin-films as well as potential 

contributions from local topography and surface inhomogeneities. The maps unraveled a 

complex energy landscape characterized by fluctuations in LEWF values around a mean value. 

The effect of dopants on the LEWF can be visualized by the histogram shown in Figure 3d-f. 

The maximum in the distribution is located between 4.8 eV (Sb-doped) and 5.2 eV (Na:Sb-

doped). These values are within the range reported in two recent studies based on Kelvin probe 

force microscopy and UPS.41,42

A closer examination of the photoemission maps shows that the non-doped samples 

exhibit a broader LEWF distribution centered at 5.1 eV, as well as photoemission hot-spots 

with values as low as 4.6 eV (Figure 3a and 3d). Discrete photoemission hot-spots are likely 

to be associated with to Sn2+ sites,43,44 which can be responsible for shunting paths in devices. 
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In our recent study of localized valence band spectral features of CZTSSe films, supported by 

DFT calculations, concluded that surface confined Sn2+ states are responsible for areas of low 

LEWF.45 Furthermore, conducting AFM images (Figure S6) reveal local points of high current 

at the non-doped samples, while significantly less contrast is observed in the doped samples. 

Photoemission hot-spots are substantially attenuated upon Sb doping (Figure 3b and 3e), 

leading to a narrower distribution of LEWF. Sb+3 is expected to occupy Sn sites in CZTS given 

the similar ionic radius to Sn+4. Our previous structural analysis has shown that this level of Sb 

doping decreases the isotropic temperature factors associated with Sn (2b) sites.28 

Sb doping also generates a substantial decrease in the overall work function with respect 

to non-doped films, which can be rationalized by the promotion of donor states. A similar effect 

has also been observed in Sb-doped CIGS thin-films.46 Duan et al. proposed that low doping 

levels of Sb generate deep states which could be detrimental to the device performance,26 

however this effect appears to be counter-balanced by a decrease in Sn disorder which improve 

VOC and fill factor. Upon Na:Sb co-doping (Figures 3c and 3f) the mean LEWF is increased to 

5.2 eV while keeping the same narrow distribution observed in the case of only Sb doping.  

The introduction of Na+ leads to isoelectronic doping of Cu sites,29 while increasing majority 

carrier concentration and thus the overall work function.33,47
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Figure 3: Photoemission and topographic landscape of CZTS films generated by 
150 nm resolution EF-PEEM maps: (a-c) Local effective work function (LEWF) 
maps estimated from the secondary photoemission threshold of non-doped, Sb and 
Na:Sb co-doped samples; (d-f) corresponding cumulative LEWF histograms 
displayed in semi-logarithmic scale; (g-i) corresponding atomic force micrographs 
of non-doped and doped CZTS films. 

Fluctuations in the LEWF can be attributed to factors such as compositional disorder, 

secondary phases, and topographic fluctuations. Fitting Gaussian functions to the distribution 

of LEWF in Figures 3d-f yielded variance values (LEWF) of 59, 48 meV and 42 meV for the 

non-doped, Sb-doped and Na:Sb co-doped CZTS films, respectively. Figures 3g-i show 

characteristic 5 x 5 m2 AFM images of the doped and non-doped CZTS films, in which the 

RMS roughness only differs by 6 nm. Raman spectra, as well as Raman mapping with a 532 

nm excitation source (Figure S7), do not provide evidence of secondary phases such as 

Cu2SnS3. Indeed, a variation of the A mode (334-338 cm-1) across areas as large as 5 x 5 m2 

is within the instrument detection limit.16–18,21,23 These evidences further support the notion that 
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LEWF fluctuations are related to a microscopic compositional disorder such as Cu-Zn antisite 

domains, as well as Sn disorder in the case of the non-doped films. 
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Figure 4: Correlation between CZTS photoemission maps and device performance: 
(a) LEWF distribution variance (LEWF) vs. Urbach energy (Eu) estimated from 
device EQE spectra; (b) LEWF distribution of non-doped and doped CZTS films 
vs the effective CdS work function estimated from electrochemical impedance 
spectroscopy (Figure S8), defining the effective barrier height (WFCZTS/CdS); (c) 
WFCZTS/CdS vs the activation energy EA,Voc estimated from the temperature 
dependence of VOC. 

The surface electronic landscape of CZTS films uncovered by EF-PEEM exhibits 

remarkable correlations with device properties as illustrated in Figure 4. For instance, the 

variance of the LEWF modulation closely correlates to the depth of the Urbach band tails as 

estimated from the EQE spectra (Figure 4a). This observation is highly significant, connecting 

spatial fluctuation of LEWF, Cu:Zn compositional disorder and device performance. While the 

interpretation of the activation energy EA,Voc for heterojunctions with dominant interface 

recombination is not trivial,48 a second correlation can be established experimentally through 

the effective barrier height (WFCZTS/CdS) defined as the difference between the effective WF 

of CZTS and CdS. Figure 4b illustrates how the WFCZTS/CdS is affected by the dopant, while 

Figure 4c shows the close match the relation between WFCZTS/CdS and EA,Voc. This correlation, 

built from three independent experimental measurements, corroborates that mean LEWF of 

CZTS films provides a strong indication of the maximum device cell voltage. It is important to 
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consider that the formation of the CZTS and CdS junction leads to elemental substitutions,49–

51 which can affect the surface energy landscape. However, the correlations highlighted in 

Figure 4 provide a clear link between the surface electronic properties of the absorber and the 

whole device performance. 

Sub-micron resolution EF-PEEM unravels the subtle role of Sb and Na:Sb doping on 

the surface energy landscape CZTS film. Non-doped films feature a broad distribution of 

LEWF around 5.1 eV, along with photoemission hot-spots as low as 4.6 eV which are most 

probably linked to Sn2+. Sb doping attenuates the low LEWF zones, leading to a narrower 

distribution of values at around 4.9 eV. Sb interact with Sn sites, decreasing the population of 

detrimental Sn defects while generating donor states which decreases the overall work function. 

On the other hand, Na:Sb co-doping promotes not only a narrowing of LEWF distribution 

(lattice disorder), but also an increase in the overall work-function due to the isoelectronic 

substitution of Cu+ by Na+. We establish unprecedented correlations between the distribution 

of LEWF and depth of Urbach tails estimated from EQE spectra of devices, as well as between 

the mean LEWF and the low-temperature limit of the open-circuit potential. These observations 

suggest that further increasing the effective barrier height WFCZTS/CdS may lead to 

improvement in device voltage. However, these should be accomplished by minimizing Sn 

disorder which is linked to shunting paths across the CZTS/CdS boundary.
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Supplementary information

The Supporting Information is available free of charge on the ACS Publications 

website at DOI:. S1 CZTS thin film preparation, device fabrication and 

characterization; S2 X-ray Photoelectron Spectroscopy (XPS) and Energy-Filtered 

Photoemission of Electrons Microscopy (EF-PEEM); Computational procedure; Table 

S1 Effect of doping on CZTS photoemission properties and device performance; Fig. 

S1-S3 XPS spectra of non-doped, Sb-doped and Na:Sb-doped CZTS films.; Table S2 

Metal ratios determined for non-doped and doped CZTS films from XPS before and 

after Ar plasma treatment; Figure S4 SIMS depth profile of Sb in Sb-doped CZTS film; 

Figure S5 Calculated partial density of states for Cu2ZnSnS4; Figure S6 Conductance 

maps for non-doped and doped CZTS films; Figure S7 Raman spectra and maps (A-

mode) non-doped and doped CZTS films; Figure S8 Mott-Schottky plot for CdS films 

for determination of flat band potential.
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