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Abstract 

The recent focus on nuclear power has led to the need for more efficient and economical 

methods of operating the Spent Nuclear Fuel (SNF) cooling ponds as well as complying 

with the strict safety and environmental legislations imposed by the IAEA and the UK 

Government. Like many other industrial applications, the design and operation of the SNF 

cooling ponds have evolved from experience; trial and error. Since the stored materials 

in such ponds are radioactive, it is very difficult to perform experimental studies. As a 

result, a rigorous scientific study based on fundamental principles has to be performed. 

The present research explores analytically and numerically the main processes that take 

place across the pond installation. The body of the present study includes four main parts: 

the first part is involved in modelling the heat loss from the free water surface, mainly 

due to evaporation, using analytical and single-phase numerical approaches, which 

represents a critical factor in the modelling of the large-scale cooling ponds. The predicted 

results were in good agreement with experimental data available in open literature. 

In the second part, a thermal model using Microsoft Excel spreadsheet was developed for 

the cooling pond based on an analytical approach. The well-mixed hypothesis was 

adopted to describe the water zone as well as the humid air zone. Also, the ventilation 

system was considered within this model. The developed spreadsheet tool was validated 

against reliable data available for Maine Yankee pool as well as temperature 

measurements collected from the Sellafield site. This spreadsheet tool is able to describe 

the transient behaviour with low computational cost, allowing many "what-if" scenarios 

to be rapidly investigated.  

In the third part, Computational Fluid Dynamics (CFD) was used to model the cooling 

pond at both macro and micro levels. The macro level modelling involved in developing 

a CFD model for Sellafield’s cooling pond where the fuel regions were approximated to 

porous medium. The computational domain was produced for the water zone only, where 

the humid air zone was introduced to the model by coupling of the spreadsheet model 

with the CFD model. This model was validated and used to examine the distribution of 

water temperature to confirm the reliability of the adopted well-mixed approach in the 

analytical model. The outcomes from the CFD and spreadsheet models were used to 
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provide some boundary conditions to the micro-level model of the fuel assemblies. The 

modelling methodology of the fuel assemblies was partially validated with experimental 

data for heat transfer around vertical cylinder. The maximum temperature of the water 

within the rack arrangement was determined under various conditions and a correlation 

was proposed. 

Finally, a sensitivity study was performed using Taguchi method and the statistical 

method of ANOVA to assess the influence of the cooling systems as well as the 

environmental conditions on the thermal performance of the cooling pond. The 

spreadsheet model was implemented to carry out the calculations. The outcomes from 

this study were presented in the form of recommendations that may be able to aid the 

organisation to manage their cooling pond more efficiently and safely during the normal 

operating conditions as well as recovery from an accident scenario. 
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Nomenclature 

𝑎 thermodynamics constant    

𝐴 surface area (m2) 

𝐵 𝑆ℎ − 𝑅𝑎 power law coefficient 

𝑐 coefficient depends on wind speed 

𝐶 specific heat capacity (J/kg K) 

𝐶𝑝 specific heat capacity at constant pressure (J/kg K) 

𝑑 diameter (m) 

𝐷 mass diffusivity of water vapour in air (m2/s) 

𝐺𝑟 Grashof number, 𝐺𝑟 = 𝑔∆𝜌𝐿3/𝜌𝜈2 

𝐻 height (m) 

ℎ𝑐 convection heat transfer coefficient (W/m2 K) 

ℎ𝑐𝑜𝑛 condensation mass transfer coefficient (m/s) 

ℎ𝑒 evaporation mass transfer coefficient (m/s) 

ℎ𝑣(𝑇) enthalpy of vapour at a given temperature (kJ/kg) 

ℎ𝑓𝑔 latent heat of vaporization for water (kJ/kg) 

𝑘 thermal conductivity (W/m K) 

𝐿 characteristic length  

𝑚 mass (kg) 

𝑚̇ mass flow rate (kg/s) 

𝑚̇𝑒
"  evaporation mass flux (kg/s m2) 

𝑀 molecular weight (kg/kmol) 

𝑁 mole number (kmol) 

𝑁̇ molar flow rate (kmol/s) 

𝑁𝑢 Nusselt number, 𝑁𝑢 = ℎ𝑐𝐿/𝑘 
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𝑃 pressure (Pa) 

𝑃𝑒𝑟 perimeter (m) 

𝑃𝑟 Prandtl number, 𝑃𝑟 = 𝑣/𝛼 

𝑞 heat flux (W/m2) 

𝑄̇ heat transfer rate (W) 

𝑅𝑎 Rayleigh number, 𝑅𝑎 = 𝑔𝛽∆𝑇𝐿3/𝛼𝑣 

𝑅𝐻 relative humidity (%) 

𝑅𝑜 universal gas constant (J/K kmol) 

𝑆𝑐  Schmidt number, 𝑆𝑐  =   𝑣/𝐷  

𝑆ℎ Sherwood number, 𝑆ℎ = ℎ𝑚𝐿/𝐷𝑚 

𝑇 temperature (K) 

𝑉 Volume (m3) 

𝑊 tank width (m) 

𝑥 wall thickness (m) 

𝑦 mole fractions 

∆𝑡 time step size (s) 

𝑍 tank depth (m) 

  

Greek symbols  

𝛼 thermal diffusivity (m2/s) 

𝛽 coefficient of volumetric expansion (1/K) 

𝛿𝑇 thermal boundary layer thickness (m) 

𝜑 thermodynamics property 

𝜀 emissivity   

𝛳 rate of temperature increase (°C/day) 

𝜇 dynamic viscosity (N/m2 s) 
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𝑣 kinematics viscosity (m2/s) 

𝜌 density (kg/m3) 

𝜎 Stefan Boltzmann constant  (W/m2 K4) 

ζ cooling tower efficiency 

  

Subscripts  

𝑎 dry air 

𝑎𝑣 average value 

∞ ambient   

𝑏 bulk 

𝑐 convection  
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𝑐𝑟 critical value 
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𝐷 designed value 

𝑒 evaporation  
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𝑟 radiation  
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𝑤 water 
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Chapter 1 Introduction 

1.1 Research background 

For several decades, the conventional technology for the generation of electricity has 

mainly relied on the burning of fossil fuels [1]. However, the limited sources of fossil 

fuels and the high levels of CO2 emissions have prompted an interest in alternative ways 

of power production. Enhanced interest in recent years of utilising nuclear power for 

electricity generation has gained increased attention due to its significant advantages over 

fossil fuels. Despite this, there remains a debate over implementing this technology 

amongst engineers, scientists, decision makers and even the public, as issues surrounding 

its safety in normal operating conditions as well as accident scenarios come into scrutiny. 

This debate even increased, particularly, following the recent disaster of Fukushima 

Daiichi Nuclear Power Plant (NPP), Japan on March 11, 2011, when Fukushima city was 

hit by an earthquake about 110 miles off the coast. At this time, three reactors were in 

operation, and automatic emergency shutdown began. After several minutes, tsunamis 

started to hit the site resulting in flooding the facilities and shutting off the emergency 

power supply to units 1, 2, 3 and 4 in addition to waste fuel ponds [2, 3]. More information 

regarding this incident and the timeline of events that led to the damage of the units and 

the fuel pond can be found in this reference [4].  

A further disadvantage of using nuclear power to generate electricity is that it produces 

radioactive waste products such as Spent Nuclear Fuel (SNF), which remains radioactive 

for many years before it goes into long-term storage. The issue of long-term storage was 

not taken very seriously when initial decisions were made regarding the fuel cycle [5]. 

Traditionally, SNF received a lot less attention than the reactor itself. Recently, waste 

management has become one of the major policy issues in most of the nuclear power 

programmes around the world. This because of that the chosen options for waste 

management can have a significant effect on the political debates, propagation risks, 

environmental threats, and economic costs of the nuclear fuel cycle. 
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While the SNF is still radioactive, the fuel can be stored in either wet or dry interim 

storages before it goes to its final repository. In the current study, the effort was devoted 

to the wet storages, where the SNF is held under water in SNF cooling ponds to prevent 

the radiation emissions being released to the environment. SNF cooling ponds consist of 

a large water pool contained in heavy concrete walls, where evaporation takes place from 

the free water surface to provide some cooling to the water body. The SNF can be stored 

in fuel rods surrounded by a circular Multi-Element-Bottle (MEB) or a rectangular fuel 

container to allow heat exchange [6]. MEB's are stacked under water on racks specifically 

designed in such a way that they are always kept immersed to prevent radiation leakage. 

While the fuel assemblies are submerged under the water level, the generated heat from 

the fuel causes a density variation within the water layers resulting in initiating a natural 

convection current. This density difference along with the gravity produces buoyancy 

forces, which cause the hotter water to move upwards and the colder water to go 

downwards, inducing a buoyancy driven flow. Water pumps are used to maintain a steady 

stream of water to avoid any risk of overheating or losing of the pond water level due to 

water loss via evaporation.    

Investigations and experience suggest that some SNF cooling ponds can be a reliable 

method for storage for up to 30 years [5]. However, longer periods are required allowing 

enough time while developing more permanent solutions for waste management [7, 8].       

1.2 SNF and waste management  

In the past decades, implementation of the nuclear power for electricity generation has 

gained much attention amongst the scientific society. As a result, the nuclear reactors 

around the world are discharging a large amount of a spent nuclear fuel which is expected 

to be approximately 445,000 t HM (metric tonnes of heavy metal) by 2020 [9]. This 

includes 69,000 t in Europe and 60,000 t in North America. Despite the recent incident 

of Fukushima, Japan [10], the nuclear power generation continue to grow in developed 

countries. This can be evidenced by the recent massive investment in the nuclear power 

by the UK government by approving £18bn nuclear plant at Hinkley Point C which will 

deliver 7% of Britain’s electricity needs for the next six decades [11].  
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After the reactor is shut down for refuelling, the discharged SNF is sent to interim storage 

before it goes to its final destination. Figure 1.1 represents the main available options of 

nuclear waste management. The interim storages can be either at or away from the reactor 

site. Each option can have two configurations; wet or dry storage, where the former is the 

commonly used option. If the storage capacity at reactor site cannot keep up with the 

incoming SNF, it can be sent to centralised SNF cooling ponds or Independent Spent Fuel 

Storage Installations (ISFSI), which is dry storage. In the wet storage, water or boric acid 

is used as heat transfer medium to provide cooling to the fuel assemblies as well as 

shielding to prevent the radioactive materials of reaching the environment. In the dry 

storage, air is used as the heat transfer medium, and the cooling is achieved by 

maintaining natural or forced air circulation. There are substantial differences between 

wet and dry storage regarding design and cost. However, both can be safe methods. Wet 

storage usually requires more operational attention as it consists of a large number of 

mechanical components such as pumps, piping and other instrumentation. Besides, there 

is the risk associated with water leakage from the pond, which may be contaminated with 

radioactive materials and can affect the environment. On the other hand, the dry storage 

is much simpler in operation, as it is almost entirely passive. This offers a lot fewer 

chances for human error as well as mechanical failures. However, dry storage is not 

suitable for high-level waste, especially when it is coming out just after the reactor has 

been shut down. In some occasions, the high-level waste can be stored in dry storage after 

it has been stored in a wet storage facility for few years.  

The SNF continuously generate heat due to the decay of residual radioactive elements.  

When the SNF is just discharged from the reactor core, the decay heat can be up to around 

6.5% of the previous core power. During the first week, the decay heat drops very rapidly 

to 0.2% of the previous core power [12]. The following relationship can be used to 

estimate the decay heat, which is valid from 10 seconds up to 100 days [13]. 

 
decay power

reactor power before shutdown
= 0.066[(𝑡 − 𝑡𝑠)

−0.2 − 𝑡−0.2] (1.1) 

where 𝑡 is the time since reactor start-up and 𝑡𝑠 is the time of reactor shutdown mesured 

from the time of start-up. 
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Figure 1.1: Concept map of waste management options. 

Figure 1.2 shows how the decay heat drops over a period starting from about one week 

after the reactor shutdown up to 100 years. It can be seen that, after one year, the decay 

heat decreases by about 90% of its initial value. 
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Figure 1.2: Decay heat as a function of time for different burn-ups [14]. 

1.3 Sellafield site  

Sellafield Ltd is the company responsible for safely delivering the reprocessing and 

nuclear waste management activities, decommissioning, and clean-up of the UK's civil 

nuclear legacy. Spent Fuel Management (SFM) at Sellafield includes the reprocessing of 

spent Magnox nuclear fuel from stations across the UK and also the reprocessing of spent 

oxide fuel from other countries. Reprocessing takes used fuel which has been removed 

from a nuclear reactor for recovery of reusable materials.  After about four years in a 

reactor, the fuel becomes economically unviable. Reprocessing allows around 97% of this 

used fuel to be recycled back into new fuel. SFM also includes the storage of spent nuclear 

fuel that is going for reprocessing. Figure 1.3 shows photographs of the cooling ponds at 

the Sellafield site.   
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1.4 Research aims and objectives 

The primary goal of the proposed research is to investigate and analyse the flow and heat 

transfer in a large-scale spent nuclear fuel cooling ponds. Another goal is to develop a 

spreadsheet-based user-friendly tool to aid the organisation in the operation of their 

cooling ponds more efficiently. To achieve the above aims, the following objectives were 

set.  

i. Establish a valid methodology for estimating the heat loss from the free water 

surface. This will involve modelling the heat loss from the water surface using 

analytical and numerical approaches.    

ii. Produce an analytical model for the cooling pond taking into account the water 

body as well as the volume of humid air above the water surface. In this part, 

Excel spreadsheet tool will be used to produce the analytical model of the SNF 

cooling ponds.  

iii. Generate a valid CFD model for the water body of the cooling pond. This will 

involve creating an efficient mesh for the Sellafield cooling pond to reduce 

computing time and hence allowing several parametric studies to be 

performed more rapidly. 

iv. Conduct parametric study for different operation conditions using the CFD 

model of the SNF cooling ponds. This study will be focused on examining the 

effect of the recirculation pump on the distribution of the water temperature. 

Also, different layouts of loading the fuel inside the cooling ponds will be 

explored.    

v. Establish a numerical methodology to model the free convection heat transfer 

from vertical cylinder. This methodology will be used to produce a CFD model 

of the fuel arrangement to study the micro behaviour of the pond.  

vi. Perform a comprehensive sensitivity study using statistical methods. The 

spreadsheet model will be used to perform the calculations. This study will 

help to understand the effect of the cooling systems and the environmental 

conditions on the performance of the cooling ponds.   
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1.5 Project methodology 

The research work will consist of analytical and numerical investigations. In order to 

establish a CFD model for SNF cooling ponds, actual temperature measurements will be 

compared against the CFD results. After that, a number of parametric studies will be 

performed dealing with various operational conditions. As a result, a user-friendly 

spreadsheet will be developed to provide the organisation with an efficient tool to assist 

in the operation of the cooling ponds.  

1.5.1.1 Analytical part   

It was evidenced that the numerical model for the SNF cooling pond is computationally 

very demanding, as it requires the use of multiphase models. Therefore, the numerical 

approach alone may not be an efficient practice. One other approach to model the SNF 

cooling ponds is to analytically model the governing phenomena within the pond structure 

and generate a user-friendly Excel spreadsheet, which allows many "what-if" scenarios 

to be rapidly investigated without repetitive calculation. However, the analytical approach 

does not provide localised information for the temperature distribution within the water 

body. Also, the outcomes from the analytical model will be coupled with the numerical 

model to specify the boundary condition at the free water surface.   

1.5.1.2 Numerical part 

CFD technique will be implemented to predict flow field and heat transfer in the SNF 

cooling ponds on a macro level. This methodology is well-known and has been used in a 

wide range of applications [16]. In this study, the CFD package ANSYS Fluent software 

will be used to develop the numerical model for the cooling ponds [17]. In some cases, 

User-Defined-Function (UDF) will be introduced to the CFD solver to specify the 

material properties as well as appropriate boundary conditions for heat transfer.  

The outcomes of the macro model will be used to provide some boundary conditions to 

the micro model of the rack assemblies. Another use of the CFD approach will be in the 

modelling of the fluid flow and heat transfer around vertical cylinders to provide some 

validation for the used methodology in the fuel rack modelling. 
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1.5.1.3 Analysis of the cooling ponds behaviour 

In this part, Taguchi method and the statistical method of ANOVA will be used to assess 

the influence of the cooling systems and the environmental conditions on the thermal 

performance of the cooling pond. 

1.6 Contribution to knowledge 

Study of the existing literature shows that investigations on the SNF cooling ponds have 

been mainly focused on ponds located at the reactor site, which is relatively small in size. 

Also, the analysis of the cooling ponds is almost always restricted to accident scenarios 

and related topics. This shows the importance of modelling and analysing the behaviour 

of the large-scale ponds under accident scenarios as well as under normal operating 

conditions. The following points summarise the main contribution to original knowledge. 

 A numerical methodology for modelling heat loss from the water surface 

undergoing free evaporation using single-phase flow was established. This would 

be much less resource intensive without compromising the accuracy.  

 A spreadsheet model of the cooling pond was produced taking into account the 

water zone and volume of humid air above the water surface. This model is 

validated and used in the operation of Sellafield SNF cooling ponds.  

 A three-dimensional CFD model was developed and validated for a large-scale 

cooling pond considering the water zone. To the best of our knowledge, this is the 

first study for such large-scale pond. 

 A comparative performance of five RANS turbulence models for computation of 

heat transfer characteristics of vertical cylinder involving flow transition from 

laminar to turbulent. This will be useful to model flow in situations where a large 

number of heated cylinders are involved. 

 A comprehensive analysis of the SNF cooling pond behaviour was carried out 

using ANOVA analysis. Findings from this analysis would be useful for day-to-

day operation, strategic planning and future development to ensure safety.  
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1.8 Thesis structure 

 Chapter 1 provides an introduction to spent nuclear fuel and waste management 

strategy. Also, it highlights research aims and objectives along with research 

methodology and contributions.   

 Chapter 2 presents a comprehensive review of the studies that are relevant to the 

current research topic. The review focuses on the methods used to describe the 

thermal-hydraulic processes within the cooling ponds as well as the type of the 
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analyses that were carried out. Also, this chapter discusses the evaporation 

phenomenon from water surface and natural convection heat transfer around 

heated vertical cylinders. 

 Chapter 3 describes the main governing equations of the CFD method, which 

addresses the flow and heat transfer in the cooling pond. Additionally, the 

statistical methods of Taguchi and ANOVA are discussed, and will be used to 

perform the sensitivity study and analyse its results.   

 Chapter 4 focuses on establishing a single-phase flow numerical methodology for 

modelling heat loss from a water surface undergoing free evaporation. Also, it 

presents a comparison of results with experimental data from the literature. 

 Chapter 5 describes an analytical model of a large-scale cooling pond based on 

well-mixed hypothesis using Microsoft Excel spreadsheet. This model is validated 

against reliable data reported in the literature as well as some measurements 

collected from Sellafield site to examine its reliability under large-scale ponds.  

 Chapter 6 reports numerical modelling of Sellafield’s cooling pond coupled with 

the spreadsheet analytical model. The model is validated with data from the 

Sellafield site. This model is used to examine the validity of the well-mixed 

approach in the spreadsheet model as well as to examine the effect of the 

recirculation on the uniformity of the water temperature.   

 Chapter 7 reports CFD analysis of the fuel assemblies to study its thermal-

hydraulic characteristics. It also provides modelling methodology of natural 

convection heat transfer around vertical cylinder, which forms a validation 

exercise of the modelling methodology of the fuel assemblies.  

 Chapter 8 analyses the thermal behaviour of the pond under normal operating 

conditions as well as at accident scenario using the spreadsheet model. Also, a 

sensitivity study is conducted using Taguchi method and the statistical method of 

ANOVA to assess the effect of the operational configurations on the cooling 

performance. Some recommendations to aid the organisation to manage their 

cooling pond more efficiently are also discussed in this chapter.  

 Chapter 9 summarises the major findings, presents the main conclusion from this 

study, and proposes recommendations for future investigations. 
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Chapter 2 Literature Review  

2.1 Introduction 

This chapter presents the literature relevant to our research investigation.  As highlighted 

in the previous chapter, the work involves investigation of the heat and mass transfer in 

SNF cooling ponds with an emphasis on fundamental understanding of the thermo-fluid 

processes that determine the operation of the ponds. Due to such a broad scope and in line 

with our thesis presentation, the literature is also divided under three major sections. In 

section 2.2, the relevant studies that were focused on the overall SNF cooling ponds are 

discussed. In this category it was found two different kinds of methodology one that uses 

the CFD and another that uses so-called ‘system codes’. In section 2.3, the effort was 

devoted to the literature related to passive evaporation from water bodies – the reason 

being that this forms the most dominant mode of heat loss from the water surface and 

hence forms an important fundamental process. In section 2.4, literature on flow and heat 

transfer from vertical heated cylinders are considered. The reason is that the fuels that are 

stored under water can essentially be represented by vertical submerged cylinders. An 

understanding of such basic flow is essential in explaining the heat and fluid flow within 

the ponds. Finally, section 2.5 summarises the main findings from the literature which 

underpins the current investigation. 

2.2 SNF cooling ponds 

Following the recent incident of Fukushima Daiichi, rapid responses to the disaster are 

noted in the literature by the scientists. Some of these responses were in the form of study 

of the impact of leakage of the radioactive materials into the environment [18-21]. 

Nevertheless, other responses were focused on the analysis of accident scenario in the 

SNF cooling ponds where others have discussed mitigation measures. The interest in 

investigating and analysing the SNF cooling pond seems to be an ongoing issue as a result 

of the growth of the nuclear industry. 
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As mentioned before, the nuclear waste can be stored in either wet or dry storage. 

However, detailed and comprehensive review of this field of research is beyond the scope 

of the study, and an interesting and relevant research papers can be found in [22-34]. 

Several research investigations can be found in the open literature considered the thermal-

hydraulic behaviour of the SNF cooling ponds, which are mainly focused on accident 

scenarios and its consequences. A summary of the published work on the spent fuel 

cooling ponds is shown in Table 2.1. In these studies, typically, there are two main 

approaches were implemented in these studies to analyse such cooling ponds: CFD and 

so-called system codes. Numerical methods such as CFD, in principle, can address details 

of thermo-fluid phenomena in cooling ponds. The CFD methodology is now well 

established, but the available literature indicates that a full CFD model of the spent fuel 

cooling pond has not been reported before. This is may be due to the existence of the 

evaporation phenomenon and hence involves the multiphase flow models. However, 

some studies have reported CFD modelling of the spent fuel ponds that is taking into 

account only the water body without considering the humid air zone and the ventilation 

besides their effect on the evaporation rate. 

On the other hand, system codes such as RELAP, TRACE, ATHLET, MELCOR and 

ASTEC are based on dividing the system into a network of pipes, pumps, vessels, and 

heat exchangers. Mass, momentum and energy conservation equations are then solved in 

one-dimensional form. Many phenomena and physical behaviours such as two-phase 

flows and pressure drop due to friction rely on empirical correlations. These codes are 

suitable for systems that can be represented by one-dimensional flows. However, when 

such a system involves multi-dimensional phenomena, these codes do not provide a good 

approximation. Some attempts have been made to improve their capability to handle 

multi-dimensional flows. One of these attempts considers the system as an array of 

parallel one-dimensional pipes, where the interaction between them is allowed through 

cross-flow coupling. Although they provide improved approximations compared with 

purely one-dimensional approaches, these models do not offer appropriate descriptions 

of multi-dimensional flows. The MARS code is an example of attempts to include a multi-

dimensional analysis capability in system codes [3]. 
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A good example of typical implementations of the CFD approach is the work reported by 

Hung et al. [35] who have produced a 3-D model to predict the cooling capability of 

Kuoshen spent fuel pool. Besides, to examine the reliability of the existing configuration 

to provide an adequate cooling to maintain the maximum water temperature below 60 °C 

in order to meet the licensing regulations. A unique aspect of their work is that they have 

used the CFD in a more advanced way than most other reported studies to predict the 

local boiling within the pool water, which reflects the strength of the CFD approach. In 

their model, the fuel region was considered as a single porous medium zone, and the heat 

transfer from the free water surface was treated using the heat and mass transfer analogy. 

However, no validation was provided to confirm the reliability of such assumptions. 

Ye et al. [36] have used the CFD approach to design a new passive cooling system to 

provide an adequate cooling to CAP1400 spent fuel pool in the emergency situations. 

This system is based on implementing the cooling technology of the high-efficiency heat 

pipe. In a different paper from the same authors [37], experimental investigations were 

carried out to confirm the reliability of using such heat pipe to remove the decay heat as 

well as to study its thermal performance under different conditions. In their experiment, 

the test rig was simplified to include heat pipe with only one evaporator and one 

condenser. They showed that a single set of evaporator and condenser is able to remove 

about 10.5 kW of heat.   

Yanagi et al. [38] developed a 3-dimensional numerical model of Fukushima Daiichi 

cooling pond considering the water body only to evaluate heat loss and water temperature. 

The heat loss from the free water surface was estimated based on a correlation that was 

experimentally derived in the same study. However, this correlation is valid only for air 

velocity ranging between 0.33 to 2.08 m/s. Fuel assemblies were simplified to a porous 

medium where the decay heat was assumed to be uniformly distributed. The authors noted 

that the variations between the water temperatures were small except regions near to the 

water surface. Also, it was confirmed that the heat loss from the concrete walls is small, 

about one order of magnitude smaller, compared to the heat transfer from the water 

surface. In a different paper from the same authors [39], the CFD model was further 

extended to predict the pond behaviour after the shutdown of its cooling system.  
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CFD approach can be used to study the flow and heat transfer characteristics within fuel 

assemblies, for example, the study conducted by Chen et al. [40]. They have investigated 

the flow and heat transfer within a 17 x 17 rod bundle using a three-dimensional model. 

The computational grid was generated with 16 million cells. A heat flux of about 2 kW 

was assumed uniformly distributed on the outer surface the fuel rod. This heat flux is not 

high enough to realise the turbulent flow, and hence the flow is considered laminar. They 

observed that the flow characteristics within the rod bundle are significantly affected by 

the support grids. Moreover, they have shown that the predicted Nusselt number from the 

CFD is higher than the correlation proposed by Churchill and Chu [41], which is adopted 

in RELAP5 code.  

On the other hand, most of the studies that have adapted the system codes were concerned 

with investigating the accident scenarios and analysing its consequences. The study of 

the accident scenario can be broadly split into two categories (a) loss of cooling analysis 

and (b) loss of coolant analysis.  In the first category, the typical analysis is to evaluate 

the change in the water temperature as well as the drop in the water level. Once the fuel 

assemblies start to uncover, the loss of coolant analysis is conducted to determine the 

increase in the fuel cladding temperature and the rate of hydrogen generation around the 

pond periphery.  

Ahn et al. [42] investigated severe accident scenario in OPR1000 spent fuel pond located 

in a typical Pressurized Water Reactor (PWR) using MELCOR software [43]. The 

investigations were carried out under three different conditions: loss of cooling, loss of 

coolant and complete loss of coolant. Under these circumstances, they estimated the 

timeline of three events: (a) fuel assemblies uncovering, (b) pool dry-out and (c) cladding 

oxidation. Such predictions are very useful from risk and accident management point of 

view to evaluate the time available to take appropriate actions.   

Chen et al. [44] used GOTHIC code to model the spent fuel pool Mark III, which is owned 

by Taiwan Power Company, to analyse the pool behaviour under loss of coolant 

scenarios. The response of the pool to spray mitigation was examined under loss of 

coolant situations for large and small leakages. They showed that the pool spray can 

compensate the water loss and maintains the water level above the fuel assemblies only 

for small leakages. On the other hand, high leakages can drain off the full water allowing 
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air to flow through the fuel assemblies resulting in enhancement of the cooling effect. 

The worst case was when the fuel region was partially uncovered where it cannot be 

cooled by neither water nor air. However, the peak cladding temperature was well below 

the critical level.      

Carlos et al. [45] conducted an investigation on Maine Yankee spent fuel pool to assess 

the reliability of  TRACE best estimate code to simulate the thermal-hydraulic behaviour 

of such ponds under steady and transient conditions. The steady state calculations were 

performed to simulate the pool under normal operating conditions as well as licensing 

case where the maximum possible amount of spent fuel is stored in the pond. The transient 

calculation was carried out to study the pond behaviour under loss of cooling and loss of 

coolant scenarios. No heat transfer was considered to take place from the free water 

surface except the boiling heat transfer. The water surface area is 142 m2, and the water 

level is 11.1 m. The results obtained by the TRACE code were compared with previously 

reported actual measurements and predicted data by GFLOW software for the licensing 

case [46]. From the comparison, they observed a good agreement TRACE results and 

data for Maine Yankee pool.  

Ognerubov et al. [47] investigated the loss of water scenarios in spent fuel pool in Ignalina 

NPP using various codes (RELAP5, RELAP/SCDAPSIM, ATHLETE-CD and ASTEC) 

to identify the potential unrealistic parameters and assess their impact on the results while 

performing the calculations. They proposed few recommendations to be considered while 

using the system codes. First, they suggested to start the modelling process with a 

simplified model of a single pool and then to extend the model to include more zones. 

Second, errors due to the modelling assumptions must be taken into account to ensure 

reliable results. Finally, due to the lack of the experimental data for the consequences of 

a severe accident, it is recommended to use different codes to increase the confidence of 

the results.  

Groudev et al. [48] used RELAP5/MOD3.2 code to predict the timeline of the pond dry 

out, heat up of the fuel rods and recovery actions from operators when transferring the 

fuel from Kozloduy NPP reactor vessel to the cooling pool. They observed that under 

leakage from the primary side, the pool could dry out after ten hours. Moreover, the 
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temperature of the fuel cladding exceeded 1473 K and can be prevented from reaching 

this level by maintaining the fuel assemblies covered by few centimetres of water. 

Few papers have reported an investigation of accident mitigation options using the system 

codes. For example, Wu et al. [49] analysed the behaviour of CPR1000 pool under 

accident scenario using MAAP5 code. Moreover, they assessed the effectiveness of two 

mitigation measures: recovering the cooling system and make-up water. They concluded 

that if the fuel assemblies had uncovered the fuel cladding would be oxidised and the peak 

pressure in the building could reach 0.191 MPa due to the hydrogen combustion. 

Eventually, the fuel rods would melt down, and after ten days, the concrete floor would 

experience an erosion with a depth of roughly 0.95 m. To prevent such consequences, 

they showed that the fuel rods should be kept submerged under the water and the make-

up rate should be higher than the evaporation rate.  Another analysis was conducted by 

Wang et al. [50] for CPR1000 spent fuel using RELAP5 to evaluate the increase of the 

cooling water temperature in the case of failure of the cooling system. They revealed that 

the pool would boil off in less than 10 hr since losing the cooling.        

Fu et al. [51] proposed a design of a long-term passive cooling system of the spent fuel 

pool at CAP1400 NPP. The two-phase heat pipe technology was implemented to provide 

the passive cooling. A two-phase thermosyphon loop was investigated numerically using 

RELAP5 code where the effect of the fill charge ratio was scrutinised. Ammonia is used 

as the working fluid in the heat pipe loop. They observed that the optimal ratio should fall 

within the range of 30% to 80%. After that, the thermosyphon loop was introduced into 

the fuel pool, and the cooling performance was examined using the CFD software 

ANSYS Fluent. It was evidenced that the implementation of the thermosyphon loop is 

capable of keeping the maximum water temperature below 81 oC with relatively uniform 

distribution.  

Kaliatka et al. [52]  carried out an analysis of the processes in spent fuel storage at Ignalina 

NPP during the loss of the cooling water due to leakage. Various severe accidents codes 

(ATHLET-CD, ASTEC, and RELAP/SCDAPSIM) were used to predict the potential risk 

of fuel overheating due to leakage of the cooling water and to compare between the 

capabilities of these codes. Also, the accident mitigation measure is discussed in the 

context of late injection of the make-up water. Good agreement was observed between 
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the results of the above-mentioned codes regarding the fuel temperature. However, 

disagreement was detected in the results of the hydrogen mass generation. In a previous 

study from the same authors [53], analysis of the pool performance during the loss of heat 

removal was conducted. The degradation of the of the fuel assemblies due to long term 

loss of cooling was studied using the same codes. They showed that the pool requires 

approximately 110 hr to heat up from 50 oC to 100 oC and around 600 hr to increase the 

temperature of the fuel cladding to exceed 1000 oC.  

Kuo et al. [10] performed a transient analysis under the loss of cooling conditions 

employing RELAP5 code. Systematic evaluations of the increase of the water 

temperature and drop in water level were conducted for Daya Bay pool. Also, the effect 

of integrating a passive cooling, heat exchanger loops, was examined. It was shown that 

such heat exchangers would delay the consequences of the boiling process.  

Wang et al. [54] used the CFD approach along with TRACE best estimate code to model 

the spent fuel pool of Chinshan NPP. A three-dimension CFD model was generated 

simplifying the fuel bundles to porous media. The results revealed a good agreement 

between the CFD and TRACE models. Moreover, the fuel rods start to uncover after 2.7 

days. Grgic et al. [55] investigated the impact of rearranging the fuel assemblies on the 

thermal-hydraulic performance of NPP Krško spent fuel pool. GOTHIC computer code 

was used to perform the calculations for the steady state condition as well as during the 

loss of cooling situations.  

The cited literature shows that the CFD approach is more convenient for improving the 

design of the cooling ponds, as it offers an in-depth understanding of the heat transfer and 

fluid mixing. On the other hand, the best-estimate thermal-hydraulic codes such as 

TRACE are more suitable for analysing the safety issues of such ponds. In general, most 

of the reported studies focused on investigations of the severe accident scenarios. In 

contrast, none of the studies has investigated the thermal performance of the cooling 

ponds during the normal operating conditions to understand the effect of each of the 

cooling systems. Furthermore, all of the spent fuel cooling ponds that have been 

considered have relatively small size. However, due to the continued increase in the spent 

fuel production, some countries tend to construct centralised ponds to keep up with the 

incoming spent fuel until a more permanent solution is found.  
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Table 2.1: Summary of the key literature on the spent fuel ponds.  

No. Author Code used Type of analysis 
Size (m) 

length x width x depth 
Heat load  Location 

1     Hung et al. [35], 

(2013) 

Fluent CFD [17] Evaluation of cooling 

capability and local boiling 

11 x 7.5 x 11 3000 MW At-reactor, 

Kuoshen NPP, 

Taiwan 

2     Ye et al. [36], 

(2013) 

Fluent CFD [17] Accident mitigation, new 

design was proposed using 

heat pipe 

12.7 x 6.4 x 13.08 16 MW At reactor, 

CAP1400 PWR, 

Chania 

3     Yanagi et al. [38], 

(2012) 

Fluent CFD [17] Determination of water 

temperature 

15 x 10 x 12 5 MW At reactor, 

Fukushima Daiichi 

NPP, Japan  

4     Yanagi et al. [39], 

(2012) 

Fluent CFD [17] Loss of cooling analysis 

after the shutdown 

15 x 10 x 12 5 MW At reactor, 

Fukushima Daiichi 

NPP, Japan  

5     Chen et al. [40], 

(2014) 

STAR-CCM+ [56] Study of flow characteristics 

within fuel assemblies under  

loss of cooling scenario  

0.2 x 0.2 x 8 2.06 kW/m2 At-reactor, 

Maanshan NPP, 

Taiwan 

6     Ahn et al. [42], 

(2016) 

MELCOR [43] Severe accident scenario: 

loss of cooling and coolant 

12.2 x 4.57 x 8.53 9.8 MW At reactor, 

OPR1000,  

Republic of Korea 
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No. Author Code used Type of analysis 
Size (m) 

length x width x depth 
Heat load  Location 

7     Chen et al. [44], 

(2016) 

GOTHIC [57] Loss of coolant due to 

leakage and mitigation 

measures using water spray 

10.78 x 10.2 x 12.88 0.274 MW At reactor, Mark 

III containment, 

Taiwan 

8     Carlos et al. [45], 

(2014) 

TRACE [58] Loss of cooling and coolant 

scenario and licensing case 

12.6 x 11.3 x 11.1 3.3 and 6.4 

MW 

At reactor, Maine 

Yankee NPP, USA 

9     Ognerubov et al. 

[47], (2014) 

RELAP5, 

RELAP/SCDAPSIM 

[59], ATHLET-CD [60] 

and ASTEC 

Accident scenario: loss of 

heat removal after boiling 

20 x 15 x 16.9 4.25 MW At reactor, 

Ignalina NPP, 

Lithuania 

10      Groudev et al. 

[48], (2013) 

RELAP5/MOD3.2 [61] Accident scenario: loss of 

cooling 

347 m3 2.376 MW At reactor, 

Kozloduy NPP, 

Bulgaria 

11      Wu et al. [49], 

(2014) 

MAAP5 [62] loss of cooling scenario and 

mitigation measures   

12.5 x 12.6 x 8.5 8.87 MW At reactor, 

CPR1000, Taiwan 

12      Wang et al. [50], 

(2013) 

RELAP5 [63] Accident scenario: loss of 

cooling scenario 

12.5 x 12.6 x 8.5 8.87 MW At reactor, 

CPR1000, Taiwan 

13      Fu et al. [51], 

(2015) 

RELAP5 [63]  and 

Fluent CFD [17] 

Accident mitigation using 

heat pipe technology 

14.7 x 8.4 x 13.08 16 MW At reactor, 

CAP1400 NPP, 

China 
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No. Author Code used Type of analysis 
Size (m) 

length x width x depth 
Heat load  Location 

14      Кaliatka et al. 

[52], (2013) 

ATHLET-CD [60], 

ASTEC [64] and 

RELAP/SCDAPSIM 

[59]  

Loss of coolant scenario, 

due to water leakage 

20 x 15 x 16.9 4.25 MW At reactor, 

Ignalina NPP, 

Lithuania 

15      Кaliatka et 

al.[53], (2010) 

RELAP5 [63], 

ATHLET-CD [60] and 

ASTEC [64] 

Accident scenario: loss of 

heat removal and water  

20 x 15 x 16.9 4.25 MW At reactor, 

Ignalina NPP, 

Lithuania 

16      Kuo et al. [10], 

(2011) 

RELAP5 [63] Accident scenario and 

mitigation measures using 

heat exchanger loops 

12.6 x 8 x 12.5 3.77 MW At reactor, Daya 

Bay NPP, Chania 

17      Wang et al. [54], 

(2012) 

TRACE [58] and Fluent 

CFD [17] 

Loss of cooling scenario 12.17 x 7.87 x 11.61 ___ At reactor, 

Chinshan NPP, 

Taiwan 

18      Grgic et al. [55], 

(2000) 

GOTHIC [65] Rerack the fuel assemblies 

to increase pond capacity 

16.53 x 7.92 x 11.5 6.52 MW At reactor, Krsko 

NPP, Croatia 
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2.3 Evaporation from free water surface 

Numerical modelling of evaporation from a large exposed surface has gained an increased 

interest owing to its relevance in many engineering and environmental applications. In 

the context of SNF ponds, the heat loss from the water surface is the major heat transfer 

component comparing to the other modes and hence requiring special attention for this 

research [66]. Another reason is that we have attempted to formulate a method by which 

the energy transfer component of the evaporated water based on a published literature. 

Water loss into the ambient air due to evaporation can occur without the water reaching 

its boiling point. Under atmospheric conditions, water can evaporate when its temperature 

is equal to the ambient temperature, which may be well below the boiling temperature.  

Evaporation is the net mass loss from water surface as a result of phase change from a 

liquid to a vapour. According to the kinetic theory of evaporation, water vapour is in 

constant motion, moving back and forth from the free water surface. Evaporation takes 

place when the leaving molecules exceed those entering. This process is associated with 

a significant amount of energy that is required to break the hydrogen bonds between the 

molecules of water allowing particles to escape from the water surface. There are three 

drivers for the evaporation process and are listed below [67]: 

 The supplied heat energy that increases the kinetic energy of the water molecules. 

 Diffusion of water vapour from the free water surface into the surrounding humid 

air. 

 Transport of water vapour within the layers of the atmosphere away from the 

water surface.  

Diffusion occurs when the fluid phase changes from liquid to gaseous phase, which takes 

place at a very thin boundary layer just above the free water surface [68]. This thin 

boundary layer can be considered as air fully saturated with water vapour. As a result of 

the difference between the vapour densities of the air within the boundary layer and the 

surrounding air, the moisture transports from the regions of high concentrations to the 

lower concentrations in the form of vapour [69] following Fick’s law. Figure 2.1 

represents a description of the transport process within a water tank as well as the 
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where ṁ˝ is the water evaporation rate, c is a coefficient that is dependent on wind 

velocity, barometric pressure, and other variables, es is the vapour pressures within the 

film of air just above the water surface, and e∞ is the vapour pressure in the ambient air.    

However, the equations of the form given by Eq. (2.1) do not accurately predict the 

evaporation rate when the air velocity is very low or zero. Also, the empirical equations 

that do not consider the relative humidity of the surrounding air estimate the evaporation 

rate incorrectly [66].   

Another approach which has been adopted by a relatively limited number of researchers 

is to use the Sherwood-Rayleigh power law, 𝑆ℎ~𝑅𝑎𝑛, for predicting the evaporation rate 

for purely natural convection scenario [82-89]. However, some of these studies were not 

conducted for evaporation of water and others yield to power law exponents, n, almost 

the same as the turbulence heat transfer relation for heated horizontal flat plate facing 

upward. The parameters of 𝑆ℎ − 𝑅𝑎 power law which were cited in the literature are 

summarised in Table 2.2. Two definitions of Rayleigh number were used in these studies 

as shown below: 

 𝑅𝑎 = 𝐺𝑟. 𝑃𝑟 (2.2) 

 𝑅𝑎 = 𝐺𝑟. 𝑆𝑐 (2.3) 

where 𝐺𝑟 is the Grashof number and can be defined as: 

 𝐺𝑟 =
𝑔∆𝜌𝐿3

𝜌𝑎𝑣𝑣2
 (2.4) 

here 𝑔 is the gravitational acceleration, 𝐿 is the characteristic length, 𝜈 is the kinematic 

viscosity, and: 

 ∆𝜌 = 𝜌∞− 𝜌𝑠 (2.5) 
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where  𝜌∞and  ρ
s
 are the densities of the humid air at ambient and surface temperatures, 

respectively, 𝜌𝑎𝑣 is the average density of the ambient and surface air, and 𝑃𝑟 is the 

Prandtl number and can be defined as: 

 𝑃𝑟 =
𝑣

𝛼
 (2.6) 

where 𝛼 is the thermal diffusivity, and 𝑆𝑐 is the Schmidt number which is expressed as:  

 𝑆𝑐 =
𝑣

𝐷
 (2.7) 

where D is the mass diffusivity of water vapour in the air and can be evaluated by the 

following expression:  

 𝐷 = 𝐷298 (
𝑇

298
)
1.5

 (2.8) 

The definition of 𝑅𝑎 which includes the Schmidt number is more suitable for comparing 

the evaporation of different fluids as it takes into account the diffusivity behaviour of the 

fluid under consideration. 

Jadat et al. [90] have studied the ability of similarity theory to predict the evaporation 

rate. In their study, they considered both regimes; natural and forced convection. They 

concluded that for the natural convection scenario, the similarity theory is capable of 

predicting the evaporation rate with an acceptable level of accuracy. On the other hand, 

the similarity theory underestimated the evaporation rate for the forced convection 

scenario. 

Sharpley and Boelter [85] and Boelter et al. [84] conducted experimental work on 

evaporation using the same experimental facilities to study water evaporation from a one-

foot diameter pan into the quiescent air, where the water temperature was higher than the 

air temperature. The outcome of Sharpley and Boelter [85] and Boelter et al. [84] studies 

were concluded in 𝑆ℎ − 𝑅𝑎 relationship as follows: 
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 [85]    𝑆ℎ = 0.891 𝑅𝑎0.213 (2.9) 

 [84]    𝑆ℎ = 0.054 𝑅𝑎0.241 (2.10) 

where 𝑆ℎ is defined as:  

 𝑆ℎ =
ℎ𝑒𝐿

𝐷
 (2.11) 

and ℎ𝑒 is the mass transfer coefficient. 

Sparrow et al. [83] reported an experimental study on naturally driven evaporation from 

pans having diameters ranging between 8.89 and 30.68 cm. The test facility having a 

volume of 70 m3 and was coated with cork. During the experiment, two scenarios were 

considered for the water temperature, “higher than” and “less than” the air temperature, 

which would affect the direction of the buoyancy-driven flow of air. The work of Sparrow 

et al. [83] yield to a relation as shown below:   

 𝑆ℎ = 0.645 𝑅𝑎0.205 (2.12) 

Bower et al. [82, 88, 89] conducted an experimental work on natural convection-driven 

evaporation to estimate the evaporation rate as well as the effect of various surfactant 

monolayers on the evaporation. These data were collected over a large number of runs 

using a series of water tanks having a square footprint having widths ranging from 15.2 

cm to 60.9 cm and depths ranging from 5.1 cm to 35.5 cm. A schematic of the water tank 

is shown in Figure 2.1. The water surface temperature was measured using an infrared 

camera. The mass loss due to evaporation was evaluated by connecting the tank to a small 

beaker via a flexible syphon tube. The beaker was placed on a balance. When the water 

evaporates from the tank, flow of water runs through the syphon tube from the beaker to 

the tank to compensate the water loss as a result of evaporation. For the clean surface 

condition Bower et al. [89] found:      
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 𝑆ℎ = 0.144 𝑅𝑎0.336 (2.13) 

It can be seen from the literature that most of the studies that adopted the 𝑆ℎ − 𝑅𝑎 power 

law had led to correlations with exponents and coefficients almost similar to those for 

turbulence heat transfer from heated horizontal flat plate facing upward. In the cooling 

ponds, the motion of the air above the water surface is very low, and the water temperature 

is higher than the ambient air temperature. Therefore, the 𝑆ℎ − 𝑅𝑎 relationship can be 

used in the current study to predict the evaporation rate in the cooling ponds. 
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Table 2.2: Comparison between previous studies for 𝑆ℎ − 𝑅𝑎 power law parameters. 

 𝑆ℎ = 𝐵. 𝑅𝑎𝑛 

 𝐵 𝑛 𝑆𝑐 𝑅𝑎 range 𝑅𝑎 definition Geometry Fluid 𝐿 

Bower et al. [82] 0.144 0.336 0.57 106  < 𝑅𝑎 < 6 x 108 𝐺𝑟. 𝑃𝑟 Square water in air W 

Sharpley and Boelter [85] 0.891 0.213 0.57 1 x 106  < 𝑅𝑎 < 4.5 x 107 𝐺𝑟. 𝑃𝑟 Circule water in air d 

Boelter et al. [84] 0.054 0.241 0.57 9.2 x 106  < 𝑅𝑎 < 4.6 x 108 𝐺𝑟. 𝑃𝑟 Circule water in air d 

Sparrow et al. [83] 0.645 0.205 0.57 -6 x 105  < 𝑅𝑎 < -2 x 104 𝐺𝑟. 𝑆𝑐 Circule water in air d 

Goldstein et al. [87] 0.590 0.250 2.5 2 x 102  < 𝑅𝑎 < 5 x 103 𝐺𝑟. 𝑆𝑐 Various Shapes naphthalene in air A/Per 

Lloyd and Moran [86] 0.169 0.327 2200 8 x 106  < 𝑅𝑎 < 1.6 x 109 𝐺𝑟. 𝑆𝑐 Various Shapes Cu2+ in acid A/Per 

Lloyd and Moran [86] 0.490 0.255 2200 2 x 104  < 𝑅𝑎 < 8 x 106 𝐺𝑟. 𝑆𝑐 Various Shapes Cu2+ in acid A/Per 
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2.4 Studies on natural convection flow around vertical cylinders 

In recent years, natural convection heat transfer around vertical cylinders has gained 

increased attention owing to its critical applications, especially, in the nuclear 

applications starting from the reactor core to the nuclear waste management. For the 

purpose of this research, we have focused on the waste management applications where 

the SNF needs to be submerged under water in cooling ponds for several years until they 

become less radioactive. The fuel is usually placed in a bundle of circular rods, almost 

the same as in the reactor core but the arrangements may differ. The heat released from 

the fuel assemblies is mainly transferred to the cooling water via natural convection heat 

transfer. Due to the inherent similarity, available literature on natural convection flow 

around vertical cylinders is reviewed.  

Heat transfer by natural convection from a vertical cylinder can significantly differ from 

flat plate due to the effect of the transversal curvature in the cylinder. The effect of this 

curvature becomes more pronounced when the thickness of the thermal boundary layer 

(𝛿𝑇) is thicker than the diameter of the cylinder (𝑑). When the boundary layer thickness 

is much smaller than the cylinder diameters, the cylinder can be so-called “short” cylinder 

and the correlation for flat plate can be applied. On the other hand, when 𝛿𝑇 is thicker 

than the diameter, we have so-called “thin” or “long” cylinder. According to Cebeci [91], 

the difference between the heat transfer coefficients for a laminar flow on a thin vertical 

cylinder and a vertical flat plate can exceed 5.5%. The development of the boundary layer 

over the lateral surface of the vertical cylinder is shown in Figure 2.2. For Prandtl number 

(𝑃𝑟) larger than one, the criterion of short cylinder limit is: 

 
𝑑

𝐻
> 𝑅𝑎𝐻

−1 4⁄  (2.14) 

where 𝐻 is the cylinder height and 𝑅𝑎𝐻 is the Rayleigh number based on the cylinder 

height, 𝐻. For isothermal surface condition, the Rayleigh number is defined as: 
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or Rayleigh numbers. Also, the onset of the transition can be determined experimentally 

by capturing the hydrodynamic or thermal boundary layers using visualisation techniques 

such as optic sensor and thermoanemometry technique. At the transition onset, the 

velocity field is disturbed causing an enhancement of the convective heat transfer 

coefficient somewhere downstream and becomes more evident for fluids having 𝑃𝑟 > 1. 

However, considerable effort have been made by researchers to define the transition 

region more precisely using more sophisticated approaches and can be found in several 

references [93-97]. Using less precise but simpler similarity numbers, a critical Rayleigh 

number, 𝑅𝑎𝑐𝑟, for flat plate of 109 was recommended by many authors [98, 99].   

Experimental data for free convection heat transfer around vertical thin cylinder are 

widespread which can be due to several factors. For example, different experimental 

conditions and inaccuracy, which could be due to the location of the temperature sensors 

and heat loss via conduction to the cylinder support. 

Natural convection from vertical cylinders was studied by a considerable number of 

researchers using experimental and theoretical approaches. A summary of these studies 

is shown in Table 2.3. Fujii et al. [100] experimentally investigated natural convection 

heat transfer from vertical cylinder submerged in water and oils. The ratio of height to 

diameter of the cylinder was 𝐻/𝑑 =12.2 where isothermal and uniform heat flux surface 

conditions were used during the experiments. They observed that the onset of transition 

occurs from the location where the vortex layer and instability appears. After that, the 

transition zone develops and finally becomes fully turbulent where the convective heat 

transfer coefficient rapidly increases due to the intensive mixing at the surface. However, 

they were unable to define the location of the transition region and the results were limited 

to qualitative determination only. The same findings were confirmed later by the 

investigation conducted Buchlin and Peelman [101]  for higher ratio of  𝐻/𝑑 where 

uniform heat flux conditions was used. They also did not define the location of the 

transition onset.  

Al-Arabi and Khamis [102] published experimental data for the transition boundary layer 

on a vertical cylinder placed in air with 𝑃𝑟 =0.71. They proposed correlations to describe 

the Nusselt number in the laminar and turbulent regions. In contrast with the previous 
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work, they were able to provide a criterion for the transition onset via critical Rayleigh 

number (𝑅𝑎𝑐𝑟 =2.7×109).  

An interesting study on the heat transfer transition was conducted by Kimura et al. [103]. 

They experimentally investigated the heat transfer around a heated vertical cylinder 

submerged in a water tank. The cylinder with a height of 1.2 m was heated with uniform 

heat flux. The unique aspect of their work was that they studied the effect of the cylinder 

diameter on the heat transfer characteristics where the diameter varied from 10 to 165 

mm corresponds to 𝐻/𝑑 ranging from 7.27 to 120. Flow visualisation technique was used 

to determine the transition onset, which it was assumed to begin with flow separation. 

The study showed that reducing the diameter results in delaying the onset of transition 

and the heat transfer coefficient was considerably enhanced. Also, the critical Rayleigh 

number for 𝐻/𝑑 < 60 almost agrees with that for flat plate [104]. For 𝐻/𝑑 > 60, on the 

other hand, similar distribution was observed but the critical Rayleigh number was higher. 

Moreover, the experiment revealed that the modified critical Rayleigh number is not 

sensitive to the value of the heat flux (𝑞).   

Arshad et al. [105] reported an experimental work of high Rayleigh number natural 

convection heat transfer from a single vertical cylinder having a diameter of 12.7 mm and 

𝐻/𝑑 ≈ 48. The cylinder was submerged in a large water tank where it was heated with a 

constant heat flux. Their results agreed with the data reported by Nagendra et al. [106] 

for the laminar region. Correlations based on the modified Rayleigh number were 

developed and compared with the experimental data for Fujii et al. [100] and were found 

to be in good agreement. The results showed that the temperature distribution on the 

cylinders surfaces is gradually increased in the axial direction along the laminar boundary 

layer. When the transition section began, the temperature starts to decrease enhancing the 

convective heat transfer coefficient. These observations also agree with the finding of 

Kimura et al. [103]. Arshad et al. [105] extended their work to investigate the heat transfer 

for a 3 x 3 array of thin vertical cylinders. They proposed empirical correlations for an 

assembly of cylinders in terms of Nusselt and Rayleigh numbers. 

Kang et al. [107] experimentally investigated the curvature effect on the free convection 

from thick and thin vertical cylinder. The unique aspect of their work was that they 

studied the effect of the high Prandtl number fluids, 𝑃𝑟 ranging from 2094 to 5878, on 
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the heat transfer characteristics. They showed that, in the laminar region, heat transfer 

from vertical cylinder and flat plate exhibit almost the same nature and the Nusselt 

number is a very weak function of Prandtl number. However, when the flow became 

turbulent, the dependency of Prandtl number start to appear where the Nusselt number 

decreased with increase of the Prandtl number. Also, they proposed correlations for thick 

cylinder for both laminar and turbulent flow.  

The literature showed that the natural convection heat transfer from vertical cylinder has 

been extensively studied, experimentally and mathematically, for several decades. In the 

last few years, prediction of the transition region from laminar to turbulent on the surface 

of thin vertical cylinder has gained more attention due to its importance in nuclear 

applications. However, there seems to be limited numerical work on the turbulent free 

convection heat transfer from vertical cylinders, in particular, on the transition region and 

the effect of the curvature on the heat transfer characteristics.  
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Table 2.3: Selected literature on natural convection from vertical cylinder.  

No. Author 𝐻/𝑑 
Surface 

condition  

Fluid 

and 𝑃𝑟 
𝑅𝑎 range Correlation  Remarks 

1     Fujii et al. 

[100] 

–– 𝑞 = 𝑀𝑥𝑛 0.72 – 

100 
Laminar and 

2𝑥

𝑑
≤  0.7𝑁𝑢𝑥,𝐹𝑃   𝑁𝑢𝑥 = 𝑁𝑢𝑥,𝐹𝑃 + 0.345

2𝑥

𝑑
 Based on 

numerical 

calculations 

2     Nagendra 

et al. [106] 

95 – 3050 𝑞 = cont Water 𝑅𝑎𝑑
𝐻

𝑑
< 0.05 

0.05 < 𝑅𝑎𝑑
𝐻

𝑑
< 104 

𝑅𝑎𝑑
𝐻

𝑑
< 104 

𝑁𝑢𝑑 = 0.93 (𝑅𝑎𝑑
𝐻

𝑑
)
0.05

  

𝑁𝑢𝑑 = 1.37 (𝑅𝑎𝑑
𝐻

𝑑
)
0.16

 

𝑁𝑢𝑑 = 0.93 (𝑅𝑎𝑑
𝐻

𝑑
)
0.25

 

Agreed with 

experimental 

data reported by 

the same author 

for water [108] 

3     Al-Arabi 

and 

Khamis 

[102] 

300-2000 Isothermal Air  

𝑃𝑟 
=0.71 

Lam: 9.88 × 107 ≤ 𝑅𝑎𝐻 ≤ 2.7 ×
109 

Turb: 2.7 × 109 ≤ 𝑅𝑎𝐻 ≤ 2.95 ×
1010 

𝑁𝑢𝐻 = 2.9𝑅𝑎𝐻
0.25/𝐺𝑟𝑑

0.5 

𝑁𝑢𝐻 = 0.47𝑅𝑎𝐻
0.33/𝐺𝑟𝑑

0.5 

Based on 

experimental 

data. Maximum 

deviation ±8% 

4     Cebeci 

[91] 

–– Isothermal 𝑃𝑟 

=0.72 

𝑃𝑟 
=0.76 

Laminar:  
𝐺𝑟𝑥 < 4 × 10

9 
𝑁𝑢𝐻
𝑁𝑢𝐻,𝐹𝑃

= 1 + 0.3 [√32 𝐺𝑟𝐻
−0.25

𝐻

𝑑
]
0.909

 
Based on 

theoretical 

results 

5     Chen et al. 

[109] 

–– 𝑇𝑤 − 𝑇∞
= 𝑎𝑥𝑛 

𝑃𝑟 =0.1 

– 100 

Laminar  ln [
𝑁𝑢𝐻𝐺𝑟𝐻

4
] = 𝑓(𝐺𝑟𝐻 , 𝐻/𝑑, 𝑃𝑟, 𝑛 Based on 

boundary layer 

analysis  
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No. Author 𝐻/𝑑 
Surface 

condition  

Fluid 

and 𝑃𝑟 
𝑅𝑎 range Correlation  Remarks 

6     Kimura et 

al. [103] 

7.27 – 

120 
𝑞 = cont Water 

𝑃𝑟 =5.4 

𝐺𝑟𝑥 < 3.7 × 10
9 Agreed with the proposed correlations 

by Fujii, and Uehara [110] 
Based on 

experimental 

data 

7     Popiel et 

al. [111] 

1 – 60 Isothermal Air  

𝑃𝑟 
=0.71 

108– 1.1 × 109 𝑁𝑢𝐻 = 𝐴 𝑅𝑎𝐻
𝑛  

𝐴 = 0.519 +
0.03454𝐻

𝑑
+ 0.0008772(𝐻/

𝑑)2 + 8.855 × 10−6(𝐻/𝑑)3 

𝑛 = 0.25– 0.00253𝐻/𝑑 + 

1.152 × 10−5(𝐻/𝑑)2 

Based on 

experimental 

data 

8     Arshad et 

al. [105] 

48 𝑞 = cont Water 

𝑃𝑟 =5.5 

4.71 × 107 ≤ 𝑅𝑎𝑥
∗ ≤ 1.91 × 1013 

3.4 × 1012 ≤ 𝑅̅𝑎𝐻
∗ ≤ 2.41 × 1013 

𝑁𝑢𝑥 = 0.682 𝑅𝑎𝑥
∗0.19 

𝑁𝑢𝐻 = 0.893 𝑅̅𝑎𝐻
∗0.19 

Based on 

experimental 

data. Agreed 

with Fujii et al. 

[100] 

9     Kang et al. 

[107] 

10 – 140 –– 𝑃𝑟 
=2094 – 

5878 

1.4 × 109 ≤ 𝑅𝑎𝐻 ≤ 3.2 × 10
13 𝑃𝑟 = 2094,   𝑁𝑢𝐻 = 0.26 𝑅𝑎𝐻

0.28𝑃𝑟0.0091 

𝑃𝑟 = 2183,   𝑁𝑢𝐻 = 0.26 𝑅𝑎𝐻
0.28𝑃𝑟0.0090 

𝑃𝑟 = 2497,   𝑁𝑢𝐻 = 0.25 𝑅𝑎𝐻
0.28𝑃𝑟0.0084 

𝑃𝑟 = 3058,   𝑁𝑢𝐻 = 0.23 𝑅𝑎𝐻
0.28𝑃𝑟0.0076 

𝑃𝑟 = 4173,   𝑁𝑢𝐻 = 0.21 𝑅𝑎𝐻
0.28𝑃𝑟0.0063 

𝑃𝑟 = 5878,   𝑁𝑢𝐻 = 0.20 𝑅𝑎𝐻
0.28𝑃𝑟0.0055 

Experiment 

conducted using 

limiting current 

technique. Only 

valid for 

turbulent flow 

on thick 

cylinder 
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2.5 Concluding remarks 

The cited literature shows that the CFD approach is convenient for improving the design 

of the cooling ponds, as it offers an in-depth understanding of the heat transfer and fluid 

mixing. On the other hand, the best-estimate thermal-hydraulic codes such as TRACE are 

more suitable for analysing the safety issues of such ponds.  

In general, most studies focused on the investigations of severe accident scenarios and 

the analysis of the consequences. However, relatively few studies have reported 

improving the pond design as well as accident mitigation options. On the other hand, none 

of the studies has investigated the thermal performance of the spent fuel cooling pond 

during its normal operating conditions to understand the effect of each of the cooling 

systems, which can be the first line of defence in accident prevention.  

It is worth noting that most of the spent fuel cooling ponds that have been reported in the 

cited studies are relatively small in sizes. However, due to the continued increase in the 

spent fuel production, some countries have constructed centralised ponds to keep up with 

the incoming spent fuel until a more permanent solution is found [112, 113]. To the best 

of the author knowledge, centralised, large-scale ponds have not been reported before in 

the open literature. This may be attributable to challenges encountered during modelling 

and analysis of such systems or due to the commercial sensitive nature of the work as 

well as security reasons. 

This raises the significance of investigating such large-scale ponds and analysing their 

behaviour to provide more understanding of thier thermal performance. This will allow 

for better operation and offers mitigation options in accident scenarios. In order to achieve 

that, two fundamental phenomena related to the modelling of the pond were discussed in 

the literature.  

First is the evaporation from the free water surface. The literature showed that most of 

the studies that adopted the 𝑆ℎ − 𝑅𝑎 power law, had led to correlations with exponents 

close to 1/3 which is similar to the natural convection heat transfer from horizontal flat 

plate. For the purpose of the current study, we are interested in the situations where the 

surrounding air is quiescent, and the water temperature is higher than the ambient air 
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temperature. Therefore, the 𝑆ℎ − 𝑅𝑎 relationship can be used in the current study to 

predict the evaporation rate in the cooling ponds. 

The second phenomenon is the natural convection heat transfer around vertical cylinder. 

The literature showed that such a phenomenon has been extensively studied, 

experimentally and mathematically, for several decades. In the last few years, prediction 

of the transition region from laminar to turbulent on the surface of thin vertical cylinder 

has gained more attention due to its importance in nuclear applications. However, there 

seems to be limited numerical work on the turbulent free convection heat transfer from 

vertical cylinders, in particular, on the transition region and the effect of the curvature on 

the heat transfer characteristics.  
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Chapter 3 Methodology of CFD Modelling and 

Data Analysis  

3.1 Introduction  

In this chapter, the main governing equations of the CFD approach are presented. The 

statistical methods of Taguchi and ANOVA, which are used to perform the sensitivity 

study are also discussed. 

3.2 CFD methodology 

CFD is the field that uses computers to simulate flow related problems involving many 

physical situations such as fluid flow, heat transfer, chemical reactions combustion etc. 

This field has been developing for more than 30 years and is now well-established. The 

general methodology can be found in most of the fluid dynamics textbooks [16, 114-117]. 

During the last decade, user-friendly commercial software packages have been developed 

thanks to the availability of more powerful computers. As a result, CFD is widely used in 

many industrial applications of aerodynamics, combustion, nuclear industry, and 

turbomachinery etc. There are several available commercial and open-source codes that 

adopt the CFD approach, for instance, ANSYS Fluent, STAR-CCM+, COMSOL, and 

OpenFOAM. 

In ANSYS Fluent CFD, the finite volume approach is used to formulate the governing 

differential equations. The governing equations of the fluid flow represent three 

conservation laws of physics as follow: 

 Mass conservation  

 Momentum conservation 

 Energy conservation 
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In addition to documenting fundamental equations, we have elaborated on certain topics 

such as eddy viscosity models, implementation of natural convection and porous medium 

approach in the context of ANSYS Fluent because of their relevance to the present 

investigation. 

3.2.1 Continuity equation  

The continuity equation is derived from applying the mass conservation principle on a 

control volume and can be expressed as [17]: 

 
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑣 ⃗⃗⃗  ) = 𝑆𝑚 (3.1) 

where 𝜌 is the fluid density, 𝑣 ⃗⃗⃗  is the velocity and 𝑆𝑚 is the mass source term. Equation 

(3.1) is valid for compressible as well as incompressible flows. For incompressible flow, 

the first term becomes zero, 
𝜕𝜌

𝜕𝑡
= 0. 

3.2.2 Momentum conservation equation 

The momentum equation is obtained from applying Newton’s second law on an 

infinitesimal control volume and can be described by [17]: 

 
𝜕

𝜕𝑡
(𝜌𝑣 ⃗⃗⃗   ) + ∇. (𝜌𝑣 ⃗⃗⃗   𝑣 ⃗⃗⃗   ) = −∇𝑝 + ∇. (𝜏̿) + 𝜌𝑔 ⃗⃗  ⃗ + 𝐹 ⃗⃗  ⃗ (3.2) 

where 𝑝 is the static pressure, 𝜌𝑔 ⃗⃗  ⃗ and  𝐹 ⃗⃗  ⃗ are the gravitational body force and external 

body force respectively. 𝐹 ⃗⃗  ⃗ also includes other model-dependent source terms such as 

user-defined and porous media sources. 𝜏̿ is the stress tensor and is expressed as: 

 𝜏̿ = 𝜇 [(∇𝑣 ⃗⃗⃗  + ∇𝑣 ⃗⃗⃗  𝑇) −
2

3
∇. 𝑣 ⃗⃗⃗   𝐼] (3.3) 
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where 𝜇 is the molecular viscosity, 𝐼 is the unit tensor, and the second term on the right 

hand side is the effect of volume dilation. 

3.2.3 Turbulence modelling   

The unsteady random motion in three-dimensional is called turbulence and observed at 

moderate to high Reynold number. One characteristic of the turbulent flow is velocity 

fluctuations, which have a blend of transport quantities of momentum, energy and species 

concentration creating fluctuations in the transport equations. These fluctuations are 

characterised by high frequencies and a wide range of length and time scale. In principle, 

turbulence is described via the Navier-Stokes equations. There are various types of 

turbulence modelling such as Eddy Viscosity Models (EVM), Large Eddy Simulation 

(LES) and Direct Numerical Simulation (DNS) [16]. The most economical approach for 

turbulence calculations in complex industrial flows is the EVM. On the other hand, DNS 

is the most accurate approach but it is the most expensive.  

For the purpose of this study, the choices were limited to specific models of the widely 

used EVMs since these models have less computational demands than the other two 

approaches, DNS and LES [118]. One shortcoming of the EVMs is that these models are 

insensitive to streamline curvature and system rotation, which play an important role in 

several turbulent flows of practical interest. ANSYS Fluent has the capability to model 

the turbulence behaviour of the flow using various turbulent and some of them will be 

discussed later.  

3.2.3.1 k-ε Model 

This model is generally applicable for many applications but in several situations, it 

provides low accuracy. Despite this disadvantage, the k-ε model still used by wide range 

of industries and researchers due to the low computational time, robustness, and 

reasonable accuracy. In the k-ε model, the turbulent length and time scale is determined 

by solving two separate transport equations, kinetic energy (k) and dissipation rate (ε). 

The transport equation for kinetic energy is computed from the exact equation (k) whereas 

the transport equation for its dissipation rate is attained by using physical reasoning [17]. 

The transport equations for the standard k-ε model can be written as: 
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𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
{(𝜇 +

𝜇𝑡
𝜎𝑘
)
𝜕𝑘

𝜕𝑥𝑗
} + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘 (3.4) 

and 

 
𝜕

𝜕𝑡
(𝜌𝜀) +

𝜕

𝜕𝑥𝑖
(𝜌𝜀𝑢𝑖) =

𝜕

𝜕𝑥𝑗
{(𝜇 +

𝜇𝑡
𝜎𝜀
)
𝜕𝜀

𝜕𝑥𝑗
} + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝐶2𝜀𝜌

𝜀2

𝑘
+ 𝑆𝜀 (3.5) 

where 𝐺𝑘 is the generation of turbulent kinetic energy due to the mean velocity gradients,  

𝐺𝑏 is the kinetic energy generation due to buoyancy, 𝑌𝑀 is the contribution of the 

fluctuating dilatation in compressible turbulence to the overall dissipation rate; 𝐶1𝜀, 𝐶2𝜀, 

and 𝐶3𝜀 are constants;  and   are the turbulent Prandtl numbers for 𝑘 and 𝜀 respectively; 

𝑆𝑘 and 𝑆𝜀 are user-defined source terms. 

3.2.3.2 Standard and SST k-ω models 

In ANSYS Fluent, the standard k-ω is based on the k-ω model for Wilcox [119] that 

which integrates modifications for compressibility, low-Reynolds number effects, and 

shear flow spreading. One of the weak points of the Wilcox model is the sensitivity of the 

solutions to values for kinetic energy (k) and specific dissipation rate (ω) outside the shear 

layer. This model is an empirical model based on model transport equations for the 

turbulence k and ω. The transport equations for the standard k-ω model are expressed as: 

 
𝜕

𝜕𝑡
(𝜌𝑘) +

𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
{𝛤𝑘

𝜕𝑘

𝜕𝑥𝑗
} + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 (3.6) 

and 

 
𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑖
(𝜌𝜔𝑢𝑖) =

𝜕

𝜕𝑥𝑗
{𝛤𝜔

𝜕𝜔

𝜕𝑥𝑗
} + 𝐺𝜔 − 𝑌𝜔 + 𝑆𝜔 (3.7) 

Menter [120] developed the Sear-Stress Transport (SST) k-ω model by successfully 

combining the accurate and robust formulation of the k-ω model in the near-wall regions 

with the freestream independence of the k-ε model in the regions far from the wall. 
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3.2.3.3 Low-Reynolds-number k-ε models 

The flow near the boundary in natural convection heat transfer plays a vital role in 

establishing the temperature field in the computational domain [121]. Sufficient number 

of cells near to the heat transfer surface is required to resolve the boundary layer, except 

when the wall function is used. When the surface is approached, viscous effects become 

more significant where for y+ < 5 the viscous diffusion is greatly higher than the turbulent 

diffusion. In this case, the high Reynolds number (Re) k-ε turbulence model can deliver 

low accuracy. On the other hand, the low-Re k-ε models, which are variations of high-Re 

k-ε, can be used as it integrates the transport equations all the way down the wall. 

3.2.3.4 Transition-SST model 

In the transition SST model, the transport equations of the intermittency and the transition 

onset criteria in terms of momentum-thickness Reynolds number are coupled with SST 

k-ω transport equations. This model has the capability to capture the transition onset 

locations. The mesh requirement of the transition model is related to the dimensionless 

wall normal distance y+ value as the accuracy of this turbulence model to predict the 

transition onset is highly sensitive to y+ value. A test case was conducted on flat plate 

illustrated in Figure 3.1. It shows that by increasing y+ above 8, the location of transition 

onset starts to shift to upstream. When the value increases to 25, the majority of the 

boundary layer is turbulent. In contrast, when y+ has values below 0.001 the location of 

transition seems to move downstream [17].  

  

Figure 3.1. Effect of y+ value on transition onset [17]. 
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3.2.4 Energy conservation equation 

The first law of thermodynamics can be applied on a control volume to derive the energy 

equation. In Fluent, the energy conservation equation is expressed as [17]: 

 
𝜕

𝜕𝑡
(𝜌𝐸) + ∇. (𝑢⃗ (𝜌𝐸 + 𝑝)) = −∇. [𝑘𝑒𝑓𝑓∇ 𝑇 −∑ℎ𝑗𝐽 𝑗

𝑗

+ (𝜏𝑒̿𝑓𝑓 . 𝑢⃗ )] + 𝑆ℎ (3.8) 

where 𝑘𝑒𝑓𝑓 is the effective thermal conductivity that contains turbulent thermal 

conductivity defined by the selected turbulence model, 𝐽 𝑗 is the species 𝑗 diffusion flux 

and 𝑆ℎ includes the heat of chemical reaction, and any other user-defined volumetric heat 

sources. In Eq. (3.8), 𝐸 is defined as: 

 𝐸 = ℎ −
𝑝

𝜌
−
𝑢2

2
 (3.9) 

where sensible enthalpy is defined for ideal gases as:  

 ℎ =∑𝑌𝑗ℎ𝑗
𝑗

 (3.10) 

and for incompressible flow as:  

 ℎ𝑗 = ∫ 𝐶𝑝,𝑗𝑑𝑇

𝑇

𝑇𝑟𝑒𝑓

 (3.11) 

where 𝑇𝑟𝑒𝑓 is reference temperature and is equal to 298.15 K in the pressure-based solver.  
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3.2.5 Natural convection 

In ANSYS Fluent, there are two methods to model natural convection. The first approach 

is the precise model where the fluid density is defined as a function of temperature. The 

second approach is the use of Boussinesq model where density is treated as a constant 

value in all of the equations, except for the buoyancy term in the momentum equation 

[17]: 

 (𝜌 − 𝜌𝑜)𝑔 ≈ −𝜌𝑜𝛽(𝑇 − 𝑇𝑜)𝑔 (3.12) 

where  𝜌𝑜 is the flow density which is constant, 𝛽 is the thermal expansion coefficient 

and 𝑇𝑜 is the operating temperature. Boussinesq approximation (𝜌 = 𝜌𝑜(1 − 𝛽𝑇𝑜)) is 

used to eliminate 𝜌 from the buoyancy term. The Boussinesq approximation is only valid 

for small temperature and density variations.  

3.2.6 Modelling porous media 

The porous media is included in the standard momentum equation through additional 

source term that appears in the 𝐹 ⃗⃗  ⃗ term. This source term consists of two quantities. The 

first quantity is the viscous loss term, Darcy, which is represented in Eq. (3.13) by the 

first term on the right-hand side. The second quantity is the inertia loss term that is 

described in Eq.(3.13) by the second term on the right-hand side:  

 𝑆𝑖 = −[∑𝒟𝑖𝑗𝜇𝑣𝑖

3

𝑗=1

+∑𝒞𝑖𝑗
1

2
𝜌|𝑣|𝑣𝑖

3

𝑗=1

] (3.13) 

where 𝑆𝑖 is the porous media source term that appears in the 𝐹 ⃗⃗  ⃗ term in the momentum 

equation, 𝑣𝑖 is the velocity in the ith directions (x, y or z), |𝑣| is the velocity magnitude, 

and 𝒟 and 𝒞 are prescribed matrices. In the porous zone, the momentum sink contributes 

to the pressure gradient resulting in pressure drop that is proportional to the fluid velocity. 

However, for homogeneous media the source term can be written as:  
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 𝑆𝑖 = −( 
𝜇

𝛺
𝑣𝑖 + 𝐶2

1

2
𝜌|𝑣|𝑣𝑖) (3.14) 

where 𝛺 is the permeability and 𝐶2 is the inertial resistance factor. 

When the flow regime through the porous media is laminar, the constant 𝐶2 can be 

assumed to be zero. The pressure drop is calculated in each of the direction coordinates 

as follows:  

 ∆𝑝𝑥 =∑
𝜇

𝛺𝑥𝑗
𝑣𝑖∆𝑛𝑥

3

𝑗=1

 (3.15) 

 

 ∆𝑝𝑦 =∑
𝜇

𝛺𝑦𝑗
𝑣𝑖∆𝑛𝑦

3

𝑗=1

 (3.16) 

 

 ∆𝑝𝑧 =∑
𝜇

𝛺𝑧𝑗
𝑣𝑖∆𝑛𝑧

3

𝑗=1

 (3.17) 

where∆𝑛𝑥, ∆𝑛𝑦, and ∆𝑛𝑧 are the thicknesses of the porous medium in the 𝑥, 𝑦, and 𝑧 

directions respectively.  

In terms of heat transfer through the porous media, the standard energy equation is 

rearranged in the porous media zone to modify the conduction flux and transient terms 

only.  

 

𝜕

𝜕𝑡
(𝛾𝜌𝑓𝐸𝑓 + (1 − 𝜉)𝜌𝑠𝐸𝑠) + ∇. (𝑉(𝜌𝑓𝐸𝑓 + 𝑝))

= ∇. [𝑘𝑒𝑓𝑓∇𝑇 − (∑ℎ𝑖𝑗𝑖
𝑖

) + (𝜏̿𝑉⃗  )] + 𝑆𝑓
ℎ 

(3.18) 

where 𝐸𝑓 is the fluid total energy; 𝐸𝑠is the solid region total energy, 𝜉 is the medium 

porosity, and 𝑆𝑓
ℎ is the enthalpy source term of the fluid.  
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In ANSYS Fluent, The effective thermal conductivity, 𝑘𝑒𝑓𝑓, of the porous medium is 

calculated based on the volume average of the fluid and the solid conductivities: 

 𝑘𝑒𝑓𝑓 = 𝜉𝑘𝑓 + (1 − 𝜉)𝑘𝑠 (3.19) 

where 𝑘𝑓 is the thermal conductivity of the fluid, which includes the turbulent 

contribution 𝑘𝑡,and 𝑘𝑠 is the thermal conductivity of the solid medium.  

3.3 Data analysis  

In this research, Taguchi design approach will be used to perform a sensitivity study. The 

results of this study will be further analysed using analysis of variance method (ANOVA) 

to examine the influence of the input parameter of the analytical model on the overall 

performance of the cooling pond. The Taguchi and ANOVA methods are being adopted 

in a wide range of engineering applications such as in manufacturing engineering and 

heat transfer problems. Examples for the use of Taguchi and ANOVA methods in the 

manufacturing engineering studies are given in the following references [122, 123], while 

examples in the heat transfer field can be found in the following references [124, 125].   

3.3.1 Taguchi method 

The full factorial design of experiment would include all the possible combinations for a 

given group of parameters. This results in a large number of experiments to be performed, 

especially, in industrial applications where a significant number of factors are involved. 

In order to reduce the experimental run to an affordable level, a small number of the 

possible configurations are chosen which is known as a partial fraction experiment. 

However, there are no general rules for its application. Taguchi created a distinct set of 

general design guidelines for fractional factorial experiments that applicable for many 

applications [126]. Taguchi used a set of arrays called orthogonal arrays (OA) to ease the 

process of experimental design to study a large number of variables with the minimum 

number of experiments. The general steps for Taguchi method are shown in Figure 3.2. 

Taguchi method offers more efficient design of experiment than many other statistical 
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approaches. The degree of freedom approach is used in Taguchi method to determine the 

minimum experimental runs that are required to be conducted and can be calculated from:    

 𝑁𝑇𝑎𝑔𝑢𝑐ℎ𝑖 = 1 +∑(𝐿𝑖 − 1)

𝑁𝑉

𝑖=1

 (3.20) 

here 𝑁𝑉 is the number of independent variables and 𝐿𝑖 is the number of levels of each of 

the independent variables. 

 

Figure 3.2: Steps for Taguchi method. 

3.3.2 Analysis of variance (ANOVA) 

Each of the experimental runs represents a combination of different levels of the 

independent variables. For this reason, it is necessary to separate the individual effect of 

these variables, which can be achieved by the widely used statistical method ANOVA. 

The ANOVA is a hypothesis test to compare the means of more than two populations. 

The null hypothesis, Ho, is assumed which means that the difference between specified 

populations is insignificant and any observed difference is due to an experimental or 

Selecting the independent 

factors

Determining levels for each 

independent factor

Selecting an orthogonal array 

(OA)

Assigning the independent 

factors to each column

Conducting the experiments

Analysing the data
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sampling error. F-tests are used to inspect a pre-specified set of standard effects such as 

main effects and interactions [127]. In another word, the statistical significance in the 

ANOVA is tested by comparing the F-values, which is defined as: 

 F-value = 
variance between groups 

variance within groups 
 (3.21) 

The F-value can be further used to calculate the probability value, P-value, which 

confirms or rejects the null hypothesis. For 95% confidence region, if the P-value is lower 

than 5%, the null hypothesis and the results said to be statistical significance. 

3.3.3 Minitab software  

Minitab is a complete statistical software package that was developed by researchers at 

the Pennsylvania State University in 1972. In this research, the Minitab software [128] 

will be used to perform the sensitivity study using Taguchi method as well as to analyse 

the obtained data by the ANOVA approach.      



Chapter 4   Heat Loss from Water Surface Undergoing Free Evaporation 

Page 49 

Chapter 4 Heat Loss from Water Surface 

Undergoing Free Evaporation  

4.1 Introduction 

This chapter focuses on establishing a numerical methodology for modelling heat loss 

from a water surface undergoing free evaporation using single-phase flow. From a 

computational point of view, modelling of heat loss and evaporation from a large water 

body such as spent fuel cooling ponds requires a computational model involving liquid 

water and moist air. This can be computationally demanding and not always necessary 

when only the heat transfer is the main quantity.  

This chapter presents an alternative to using a multiphase approach by exploring the 

suitability of applying an overall heat transfer coefficient on the top surface based on 

evaporation data and theoretical solution. In this study, the total heat flux from the free 

water surface was analytically evaluated considering three heat transfer mechanisms: 

evaporation, convection, and radiation. From the total heat flux, an expression for the 

overall heat transfer coefficient as a function of the water surface temperature was 

extracted. This expression was introduced to the CFD software via a UDF and then 

implemented to simulate cooling process for a water tank. The obtained results from this 

simulation were validated against experimental data available in literature. 

4.2 Analytical modelling of heat and mass transfer from water surface 

The total heat flux (𝑞𝑡) from the water surface to the ambient air is made up of three 

components, namely the evaporative heat flux (𝑞𝑒), the convective heat flux (𝑞𝑐), and 

the radiative heat flux (𝑞𝑟) as shown below:   

 𝑞𝑡 = 𝑞𝑒 + 𝑞𝑐 + 𝑞𝑟 (4.1) 
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Each of these components can be analytically modelled in a separate manner and then the 

total heat flux can be evaluated. After that, an expression for the overall heat transfer 

coefficient at the top surface can be obtained.      

4.2.1 Evaporation heat loss 

To model the evaporation heat loss from the top surface, the dimensionless 

relationship 𝑆ℎ − 𝑅𝑎 is adapted. From the definition of Rayleigh number, the 

characteristic length is raised to the power of 3, therefore, by employing the exponent 

𝑛 = 1/3 in the power law relation the effect of the characteristic length will diminish 

generating an expression that is independent of the geometry of the surface area. Hence, 

this will facilitate the use of the expression during the numerical modelling process. The 

power law relation 𝑆ℎ − 𝑅𝑎 can be written as: 

 𝑆ℎ = 0.15 𝑅𝑎1/3 (4.2) 

and the mass transfer coefficient can be calculated from the following equation:  

 ℎ𝑒 = 0.15 (
𝑔∆𝜌𝐿 3

𝜌𝑎𝑣 𝛼 𝑣
)

1/3

(
𝐷

𝐿
) (4.3) 

The evaporation mass flux from the free water surface (𝑚̇˝) is obtained from the following 

equation:  

 𝑚̇˝ = ℎ𝑒 (𝜌𝑣,𝑠 − 𝜌𝑣,∞) (4.4) 

here,  𝜌𝑣,𝑠  is the vapour density at the surface which is at saturation conditions, and 

 𝜌𝑣,∞ is the ambient vapour density. Finally, the heat flux due to evaporation can be 

calculated as follows: 

 𝑞𝑒 = 𝑚̇
"ℎ𝑓𝑔 (4.5) 
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where ℎ𝑓𝑔 is the latent heat of vaporisation and can be evaluated from: 

 ℎ𝑓𝑔 = 2501 − 2.361(𝑇 − 273) (4.6) 

The evaporation rate was computed at several surface temperatures and the results are 

compared against the experimental data for Bower et al. [89] as shown in Figure 4.1. The 

comparison was based on a tank having a square footprint of side length of 15.2 cm and 

depth of 5.1 cm where the ambient air was at 𝑇∞ = 25 °C and 57% relative humidity. The 

deviation between the values of the calculated and experimental data is within ± 30 

mg/m2s.  

 

Figure 4.1: Comparison of calculated evaporation rate and experimental data for Bower 

et al. [82]. 

The evaporation rate exhibits a nonlinear behaviour with water temperature, however, 

over a small range of temperature the evaporation rate can be considered as a linear 

function of the surface temperature. When the exponent of the power law 𝑛 is equal to 

1/3, the relation for ℎ𝑒 in Eq. (4.3) can be reduced to:     

 ℎ𝑒 ≈ (
∆𝜌

𝜌𝑎𝑣
)
1/3

 (4.7) 
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The quantities ∆𝜌/𝜌𝑎𝑣  in Eq. (4.7) and ∆𝜌𝑣 in Eq. (4.4) are plotted against the 

evaporation rate,𝑚̇˝, as shown in Figure 4.2. It can be seen from this figure that 𝑚̇˝ 

increases almost linearly with ∆𝜌𝑣 and the nonlinearity seen in 𝑚̇˝ in Figure 4.2 is mostly 

due to the contribution of the term ∆𝜌/𝜌𝑎𝑣.  

 

Figure 4.2: Plot of 𝑚̇˝ versus ∆𝜌𝑣 and ∆𝜌/𝜌𝑎𝑣 over range of surface temperature.  

The errors seen in the prediction of evaporation rate, 𝑚̇˝, are due to the combination of 

the errors associated with measurements uncertainty and the contribution of the 

assumption of that the ambient air temperature and 𝑅𝐻 are remain constant throughout 

the calculations. The evaporation rate is a sensitive function of the surface temperature 

and the relative humidity as shown in Figure 4.3. Small errors in 𝑇𝑠 readings can cause a 

measurable error in 𝑚̇˝ calculations. Also, the experimental uncertainty in measuring the 

ṁ˝ is almost ± 10%. Regarding the assumptions, the transport of water vapour to the air 

due to evaporation can affect the humidity level in the ambient air and as mentioned 

before 𝑅𝐻 can considerably affect the 𝑚̇˝ calculations.  
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Figure 4.3: Effect of relative humidity and water surface temperature on the evaporation 

rate. 

4.2.2 Convection and radiation heat loss 

The heat loss from the water top surface by means of natural convection and radiation 

may be less significant than that by evaporation. However, it cannot be ignored as the 

water bulk and surface temperatures are very sensitive to the boundary condition at the 

top surface. The heat loss by convection from the free water surface to the atmosphere 

can be treated as a heated horizontal plate facing upward and the correlation in Eq. (4.8) 

can be used to evaluate the convective heat transfer as follow: 

 𝑁𝑢 = 0.15 𝑅𝑎1/3 (4.8) 

where 𝑁𝑢 is the Nusselt number, defined as: 

 𝑁𝑢 =
ℎ𝑐𝐿

𝑘
 (4.9) 

where  ℎ𝑐 is the convective heat transfer coefficient. The convective heat flux can be 

calculated from the following equation: 
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ṁ
˝ (

m
g
/m

2
s)

Ts (°C)

RH = 100%

RH = 50%

RH = 0%



Chapter 4   Heat Loss from Water Surface Undergoing Free Evaporation 

Page 54 

 𝑞𝑐 = ℎ𝑐(𝑇𝑠 − 𝑇∞) (4.10) 

The radiation heat flux can be found from: 

 𝑞𝑟 = 𝜀 𝜎 (𝑇𝑠
 4 − 𝑇∞

 4) (4.11) 

here 𝜀 is the emissivity and 𝜎 is the Stefan Boltzmann constant. 

4.2.3 Top surface heat transfer coefficient 

After evaluating the total heat loss from the water surface 𝑞𝑡 as defined in Eq. (4.1), the 

overall heat transfer coefficient (ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙) can be evaluated from the following: 

 ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =
𝑞𝑡

(𝑇𝑠 − 𝑇∞)
 (4.12) 

The overall heat transfer coefficient was calculated at several water surface temperatures 

and a relation between the overall heat transfer coefficient and the surface temperature is 

plotted as shown in Figure 4.4. 

From the relation shown in Figure 4.4, the equation of the best-fit curve can be obtained 

expressing the overall heat transfer coefficient as a function of the surface temperature. 

For this purpose, nonlinear regression method was used to generate a relationship for 

expressing ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 as a function of water surface temperature. Gaussian function is 

implemented to describe the curve of ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 as shown in Eq. (4.13), where 𝑇𝑠 in Kelvin. 

To evaluate the discrepancy between the analytical values for ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 and the values 

obtained from Eq. (4.13) the maximum and minimum errors were computed, which were 

found to be 0.0001 and 0.09 W/m2K respectively. Also, root-mean-square error (rmse) 

was found to be 0.0146 W/m2 K. Hence, the new expression (Eq. (4.13)) describes well 

the curve for ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 as shown in Figure 4.4.  
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Figure 4.4: Overall heat transfer coefficient at a range of water surface temperature and 

its curve-fit from Eq. (4.13). 

ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 100.54 𝑒𝑥𝑝 (−(
𝑇𝑠 − 350

27.81
)
2

)

+ 30.16 𝑒𝑥𝑝 (− (
𝑇𝑠 − 308.21

24.94
)
2

) + 405

× 1012 𝑒𝑥𝑝 (−(
𝑇𝑠 − 196.775

18.4779
)
2

)

+ 11.19 𝑒𝑥𝑝 (− (
𝑇𝑠 − 295.67

9.27
)
2

) 

(4.13) 

Generally, the overall heat transfer coefficient, ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙, increases as the surface 

temperature increase, except in the regions where the surface temperature is close to the 

ambient air temperature, it exhibits inverse behaviour. This is due to the behaviour of the 

flow regime; at lower temperature difference the heat and mass are being transported via 

laminar flow regime resulting in reducing ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , as the temperature difference increases 

ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 declines. On the other side, while the surface temperature increases the 𝑅𝑎 

number increases, for heat and mass transfer, until it reaches a critical value where the 

flow starts to change to turbulent. Consequently, the overall heat transfer coefficient 
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The experiment performed by Bower et al. [82] is selected for the validation purpose. 

This experiment involves a cooling process of a water tank having a square footprint of 

the width of 15.2 cm and depth of 5.1 cm as shown in Figure 4.5. The tank contains a 

warm water having a bulk temperature of 32°C which is allowed to cool down in ambient 

air over a period of 60 minutes. The ambient air is at a temperature of 24°C and 51.5 % 

relative humidity. The commercial CFD package of ANSYS Fluent 16.0 was used to 

perform the transient calculations. Only one-quarter of the tank was considered as the 

computational domain through applying symmetry boundary conditions to reduce the 

computational expenses. k-ε turbulence model was used to add the turbulence effect. All 

the side and bottom walls of the tank were considered to be adiabatic as the tank was 

insulated. No-slip boundary condition was implemented at the walls of the tank except 

the water top surface which was characterised with zero shear stress. A convective 

boundary condition was applied at the top surface with heat transfer coefficient specified 

by the developed expression for ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 Eq. (4.13). This expression is introduced to the 

software through a UDF. All water thermodynamic properties were considered to be 

temperature dependent and can be described in a polynomial form as: 

 𝜑 =  𝑎0 + 𝑎1𝑇 + 𝑎2𝑇
2+𝑎3𝑇

3 (4.14) 

where 𝜑 represents all of the physical properties of water (𝜌, 𝐶𝑝, 𝑘, 𝜇), and a1, a2, a3 and 

a4 are thermodynamics constant and their values are summarised in Table 4.1.  

Table 4.1: Thermodynamic constants for physical properties of water [105]. 

Property 
Thermodynamics constant 

 𝑎0 𝑎1 𝑎2 𝑎3 

Density (𝜌) 223.127 6.7678 -1.8538 x 10-2 1.522 x 10-5 

Specific heat (𝐶𝑝) -5.084 x 10-1 6 x 10-3 -7.565 x 10-6 - 

Thermal 

conductivity (𝑘) 
-5.084 x 10-1 6 x 10-3 -7.565 x 10-6 - 

Dynamic viscosity 
(𝜇) 

6.3225 x 10-2 -5.1485 x 10-4 1.415 x 10-6 -1.306 x 10-9 
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The simulation results were validated against the experimental data reported by Bower et 

al. [82] in terms of the decline of water surface and bulk temperatures (𝑇𝑠 and 𝑇𝑏 

respectively)  over a 60 minutes period during the cooling process as shown in Figure 4.6. 

Since the variation in the water temperature is very small as evidenced by Figure 4.7, less 

than 0.4°C for bulk and surface temperatures, the results of the water surface temperature 

and bulk temperature were collected as area average and volume average temperatures 

respectively.   

Excellent agreement is seen for the water bulk temperature and slight over-prediction was 

observed for the surface temperature. This discrepancy can be due to the computational 

uncertainty in addition to, as discussed before, the errors associated with the experimental 

measurements and the assumptions were made during the analytical modelling of 𝑚̇˝. 

However, we are more interested in predicting the bulk temperature for applications such 

as cooling ponds.     

 

Figure 4.6: Numerical results and experimental data reported by Bower et al. [82] 

during the cooling process of the water tank. 
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Figure 4.7: Temperature distribution and streamlines are shown on mid-section plane 

(t=600 sec). 

Figure 4.7 shows the temperature profiles as well as flow streamlines on the mid-section 

plane shown in Figure 4.5. The temperature contours display plumes of temperature 

gradients within the water layers.  Since the top surface is directly exposed to the ambient 

temperature, the water surface cools down and become less than the bulk temperature. 

This temperature difference causes unstable temperature gradient within the water layers 

resulting in initiating the natural convection current.  

As the temperature difference between the surface and the ambient increases, the intensity 

of the convection force increases transporting the warmer water to the top surface acting 

as an energy supplier to the surface layer, which is required to break the hydrogen bonds 

between the molecules of water allowing for evaporation to take place. This energy is 

dissipated through the water surface via the three heat transfer components as described 

in Eq. (4.1). 

The distribution of the heat flux from the top water surface is presented in Figure 4.8. As 

expected, the free water surface is characterised by non-uniform distribution of heat flux 

as well as surface temperature. Despite the small variation in the surface temperature, 

which is about 0.4 °C, a measurable variation in the heat flux distribution along the top 

surface was observed. The highest values of the heat loss were noted at the centre. This 

is due to the buoyancy driven flow is more active at the core of the tank than the sides, 

which supplies the centre region of the surface with a constant flow of warm water.  
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Figure 4.8: Distribution of localised heat loss from the free water surface (t=600 sec). 

Figure 4.9 shows a quantitative comparison between heat transfer components over a 

range of surface temperature. It is clear that the major heat loss is due to the evaporative 

component, particularly at lower surface temperatures. The proportion of radiation and 

convection heat fluxes is relatively small compared to the total heat flux. It is also obvious 

from Figure 4.9 that the total heat flux is directly proportional to the temperature 

difference, provided that the ambient temperature remains constant. The reason for this 

is that the convective and radiative heat fluxes are an explicit function of temperature 

difference as expressed in Eq. (4.10) and Eq. (4.11) respectively. Also, the evaporative 

heat flux is a function of the air and vapour densities at the interface and the ambient air 

as described in Eq. (4.3) and Eq. (4.4). Since the air density is temperature dependent, the 

evaporation heat flux is also a function of the temperature difference.   
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In order to confirm the applicability of using Stefan’s law as a substitute of concentration 

difference definition, Eq. (4.15) is used to model heat loss due to evaporation from a 

large-size cooling pond. The pond is having a total volume of 21905 m3 and the exposed 

surface area to the ambient air is 3615 m2. A constant heat load of 300 MW is supplied 

to the water, which is enough to bring the water to boiling from 20 °C. The mass transfer 

coefficient, ℎ𝑒, is calculated in the same manner as described in Eq. (4.3). The ambient 

air is considered to be dry and held at constant temperature of 20 °C and atmospheric 

pressure. The expected evaporation rate at the boiling due to supplied heat of 300 MW is 

132.4 kg/s which was calculated directly from:    

 𝑚𝑒̇ =
𝑄̇

ℎ𝑓𝑔
 (4.16) 

where 𝑄̇ is the supplied heat to the water. 

The evaporation rate from the pond water is being calculated by using concentration 

difference and Stefan’s law definitions as shown in Figure 4.10. Both definitions predict 

almost the same value of evaporation rate for water temperature ranges from 20 °C up to 

approximately 74 °C. However, from this point up to the saturation temperature, which 

is 100 °C, a huge deviation is observed between both definitions. At saturation, the 

concentration difference definition is largely under-predicted the evaporation rate by 

almost 74 % from the expected value of 132.4 kg/s. On the other hand, Stefan’s law 

provides a good estimation of the evaporation rate as shown in Figure 4.10. It can be seen 

that the water temperature is very close to saturation with a value of 99.6 °C. This implies 

that Stefan’s law is more applicable when the problem involves a temperature approaches 

the saturation.   
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Figure 4.10: Comparison of evaporation rates predicted using Stefan’s law and 

concentration difference definitions. 

4.5 Summary  

Treatment of the boundary conditions at the free water surface was achieved by 

analytically modelling the heat transfer components and developing an expression for the 

overall heat transfer coefficient, ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙, as a function of the surface temperature. The 

evaporative component was estimated via 𝑆ℎ − 𝑅𝑎 power law considering the exponent 

𝑛 = 1/3 to diminish the dependence on characteristic length. The developed expression 

of ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 was used to model the cooling processes of a warm water tank numerically 

where ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 was applied at the free water surface to take into account the heat loss at 

the surface. The results of this simulation were in agreement with the experimental data. 

In addition, it was found from the analytical solution that the heat loss due to the 

evaporation component represents the major portion of the total heat loss over the given 

range of temperature, this portion is ranging between 78% - 84%. 

The advantage of the proposed modelling methodology is that it allows simulation of the 

heat loss from water surface due to evaporation without the need to use the multiphase 

models with reasonable accuracy.   
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In this chapter, the ambient conditions, 𝑅𝐻 and 𝑇∞, were assumed constant which were 

almost true as the quantity of the evaporated water was relatively small to change these 

conditions. This is not true for the situations in the SNF cooling ponds where the 

evaporation can significantly affect the relative humidity and the ambient temperature. 

However, improvement can be achieved by taking into account the variation in 𝑅𝐻 and 

𝑇∞ due to the transport of water vapour from the water body to the ambient air that will 

be discussed in the next chapter. In addition, water temperature in the cooling ponds can 

reach the saturation temperature and hence the evaporation rate is more appropriate to be 

expressed via the definition of Stefan’s law where advection is considered.   
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Chapter 5 Analytical Modelling of SNF 

Cooling Pond 

5.1 Introduction  

In this chapter, the suitability of using well-mixed approach for developing an analytical 

model for a large-scale SNF cooling pond is explored. The well-mixed approach is widely 

used in ventilation applications to predict the concentration of a specific gas or vapour in 

the room [2]. This model treats the room as a large box, which is perfectly mixed so that 

the concentration of the gas or vapour is uniform.  

An analytical model based on well-mixed hypothesis was developed for the cooling pond 

at the Sellafield site using Microsoft Excel spreadsheet. This model was validated against 

reliable data reported in the literature for the Maine Yankee spent fuel cooling pond [45]. 

In addition, the reliability of the spreadsheet model predictions was examined for a large-

scale spent fuel cooling pond by comparing its outcomes with collected data from the 

actual cooling pond at the Sellafield site. 

 

Figure 5.1: Schematic diagram of Sellafield SNF cooling ponds. 
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5.2 Sellafield spent fuel cooling ponds 

Figure 5.1 shows a schematic diagram of Sellafield cooling ponds in a three-dimensional 

view. The ponds are characterised by large dimensions of 160m x 25m x 8m and the water 

surface area is about 3615 m2. The whole installation consists of three different ponds.  

Pond A and Pond B store the spent fuel while the inlet pond supplies make-up. Decay 

heat removal takes place via three mechanisms: ventilation, make-up water and water 

recirculation as illustrated in Figure 5.2. When the decay heat is released from the fuel 

rods, the water temperature starts to increase as does the heat transfer from the water 

surface to the ambient air. The heat transfer from the water surface takes place via three 

heat transfer modes: evaporation, convection, and radiation. The ventilation system is 

used to replace the warm air within the building with relatively cooler air. The major heat 

loss from the water surface is due to the evaporative component; however, this is 

associated with the loss of pond water, which may lead to a significant drop in the water 

level in the long term. For this reason, make-up water can be supplied to the pond to 

prevent the potential risk of uncovering the fuel assemblies. Furthermore, make-up water 

can be used for purging the pond water as it has been demineralised before reaching the 

pond. The temperature of the make-up water is largely determined by the outside 

temperature, as it is supplied via external pipework from a water treatment plant some 

distance away from the site.        

Recirculation can be used on occasions when cooling by ventilation and make-up water 

is not sufficient to control the pond temperature. Cooling via recirculation is achieved by 

feeding some of the pond water through a cooling tower which then re-enters the pond a 

few degrees cooler.  
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Energy and mass transfer with the environment, the third zone, is also integral part of the 

model  

5.3.1 Modelling assumptions 

The well-mixed approach is adopted in both zones. Since the fuel assemblies are located 

at the bottom of the pond, the water temperature for the bulk of the pond can be assumed 

to be uniformly distributed due to buoyancy-induced convection. In a similar manner, the 

temperature of the humid air zone can be treated a single value due to the large volume 

and the flow process of evaporation. Experimental data from the site also support the 

above assumption. However, the validity of this assumption will be scrutinised in Chapter 

6 by performing CFD simulation on the water body. 

5.3.2 Modelling methodology  

The proposed spreadsheet model is based on solving conservation of mass and energy 

equations for the water body and humid air zone above the water surface. The model 

treats each zone as a single control volume and takes into account heat and mass transfer 

as well as interaction at the air-water interface. The environment provides boundary 

conditions such as outside temperature and relative humidity in order to solve the ODEs 

involved water and humid air zones.  The forward time marching approach is adopted to 

solve a system of differential equations of mass and energy using Euler's forward method 

as a discretization scheme [131]. This is an explicit method where the solution of the 

current time step depends on information from the previous step. The general form of 

Euler's method is shown in Eq. (5.1). The advantage of this method is that it does not 

require significant computing time or power and allows the calculations to be performed 

using Microsoft Excel spreadsheet [132]. In addition, the model is developed also using 

Matlab software [133]. 

 𝑦𝑛+1 = 𝑦𝑛 + 𝑓(𝑡𝑛, 𝑦𝑛)∆𝑡 (5.1) 
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A diagrammatic representation of the spreadsheet model is illustrated in Figure 5.4. At 

the beginning, initial values are given to start the solution. The physical properties of air 

and water are evaluated at each time step. After that, the mass fluxes across the pond 

structure, evaporation and condensation rates, are estimated along with the ventilation 

discharge rate. At this point, two mass balance equations are solved in order to calculate 

the amounts of air and water, which are needed to solve the energy equation in each zone. 

Finally, air and water temperatures are obtained for this time step. The new temperature 

will be used to recalculate the physical properties of air and water for the next time step. 

This is an iterative process that will continue until the steady state is reached.         

5.3.3 Mass balance of water zone 

The water in the pond is evaluated at each time step, considering any change due to the 

supply of make-up water (𝑚̇𝑚) and loss of water due to evaporation (𝑚̇𝑒), leakage (𝑚̇𝑙), 

and water outflow (𝑚̇𝑜𝑢𝑡). Therefore, the mass balance equation for pond water can be 

written as following: 

 𝑚𝑝
𝑛+1 = 𝑚𝑝

𝑛 + (𝑚̇𝑚 − 𝑚̇𝑜𝑢𝑡 − 𝑚̇𝑒 − 𝑚̇𝑙)
𝑛 ∆𝑡 (5.2) 

where 𝑚𝑝 is the total mass of water within the pond, ∆𝑡 is the time step and 𝑛 is the 

number of iteration. 

The following equation describes how the water outflow from the pond is controlled. 

When the water loss due to evaporation and leakage is greater than the supplied make-up 

water, no water outflow will be permitted. Similarly, in situations when the water level 

(𝐻𝑝) is lower than its designed value (𝐻𝐷), no water outflow is allowed until the water 

level reaches this value. The following relationship explains how the outflow of water 

can be mathematically expressed: 
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𝑚̇𝑜𝑢𝑡 =

{
 
 

 
 

 

0                                                                              𝑖𝑓     (𝑚̇𝑒 + 𝑚̇𝑙) ≥ 𝑚̇𝑚

𝑚̇𝑚 − 𝑚̇𝑒 − 𝑚̇𝑙                                                    𝑖𝑓     (𝑚̇𝑒 + 𝑚̇𝑙) < 𝑚̇𝑚

0                                                                              𝑖𝑓     𝐻𝑝 ≤ 𝐻𝐷                          

[
𝜌𝑤 𝐴𝑝(𝐻𝑝 − 𝐻𝐷)

∆𝑡
] + (𝑚̇𝑚 − 𝑚̇𝑒 − 𝑚̇𝑙)          𝑖𝑓      𝐻𝑝 > 𝐻𝐷                          

 (5.3) 

where 𝜌𝑤 is the water density and 𝐴𝑝 is the water surface area of the pond. The evaporation 

rate before the pond water starts to boil can be estimated using Stefan’s law [129]. The 

following equations show how the evaporation rate can be estimated before and during 

boiling.    

 𝑚̇𝑒𝑣 = {
  ℎ𝑒𝑣 𝑙𝑜𝑔 (

 𝑃𝑡 − 𝑃𝑣,𝑠
 𝑃𝑡 − 𝑃𝑣,∞

)𝐴𝑝                     𝑖𝑓  𝑇𝑝 < 𝑇𝑠𝑎𝑡
 

  𝑄̇𝑑 ℎ𝑓𝑔⁄                                                   𝑖𝑓  𝑇𝑝 ≥ 𝑇𝑠𝑎𝑡

 (5.4) 

where, 𝑃𝑣,𝑠 is the saturated vapour pressure at surface temperature, and 𝑃𝑣,∞ is the vapour 

pressure at the hall temperature, 𝑃𝑡 is the total pressure of humid air inside the hall, ℎ𝑓𝑔 

is the latent heat of vaporization for water, 𝑄̇𝑑 is the released decay heat from the fuel 

assemblies, 𝑇𝑝 is the pond water temperature, 𝑇𝑠𝑎𝑡 is water saturation temperature and ℎ𝑒𝑣 

is the evaporative mass transfer coefficient which can be calculated using the analogy 

between heat and mass transfer using Sherwood–Rayleigh power law, Sh – Ra, as shown 

below [129]: 

 𝑆ℎ = {
 0.54 𝑅𝑎1/4                     𝑖𝑓  104 ≤  𝑅𝑎 ≤ 107 

 
   0.15 𝑅𝑎1/3                     𝑖𝑓  107 ≤  𝑅𝑎 ≤ 1011 

 (5.5) 

5.3.4 Pond water elevation 

The pond water level is calculated by knowing the water volume and the surface area of 

the pond water. When the water level drops to a value less than the rack height (𝐻𝑅) 

shown in Figure 5.2, the surface area of the water will be limited to the surface area of 



Chapter 5   Analytical Modelling of SNF Cooling Pond 

Page 72 

water between the rack assemblies (𝐴𝑅). The water level at every time step is updated 

according to the mass of water available in the pond, as shown in the following equation:  

  𝐻𝑝 =

{
  
 

  
 

          

   [(
𝑚𝑝

𝜌
𝑤

− 𝐴𝑟𝐻𝑟) 𝐴𝑝⁄ ]+𝐻𝑟                     𝑖𝑓    𝐻𝑝 ≥ 𝐻𝑟
 
 

    (
𝑚𝑝

𝜌
𝑤

) /𝐴𝑟                                                 𝑖𝑓    𝐻𝑝 < 𝐻𝑟 

 (5.6) 

5.3.5 Mass balance of humid air zone 

Humid air is considered as a mixture of dry air and water vapour. Both dry air and water 

vapour at low partial pressure can be treated as a perfect gas. When dealing with humid 

air, it is more convenient that the mass of the humid air to be expressed in mole basis for 

the dry air and vapour separately.    

In order to evaluate the amount of dry air (𝑁𝑎) and vapour (𝑁𝑣) inside the pond hall, the 

mass balance equation across the hall is applied as shown in Equations (5.7) and (5.8). 

This mass balance takes into account the ventilation inlet (𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛) and discharge 

(𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡) flow rates as well as evaporation and condensation (𝑚̇𝑐𝑜𝑛) rates. 

 𝑁𝑎
𝑛+1 = 𝑁𝑎

𝑛 + (𝑦𝑣𝑒𝑛𝑡,𝑖𝑛
𝑎  𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛 − 𝑦ℎ

𝑎 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡)
𝑛
∆𝑡 (5.7) 

 

 𝑁𝑣
𝑛+1 = 𝑁𝑣

𝑛 + (𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛 − 𝑦ℎ
𝑣 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡 −

𝑚̇𝑒

𝑀𝑣
+
𝑚̇𝑐𝑜𝑛

𝑀𝑣
)
𝑛

∆𝑡 (5.8) 

where 𝑦ℎ
𝑎 and 𝑦ℎ

𝑣 are the molar fraction of dry air and water vapour, respectively, which 

can be found from:  

 𝑦ℎ
𝑎 =

𝑁𝑎
𝑁ℎ

 (5.9) 
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 𝑦ℎ
𝑣 =

𝑁𝑣
𝑁ℎ

 (5.10) 

 

 𝑁ℎ = 𝑁𝑎 + 𝑁𝑣 (5.11) 

Here 𝑁ℎ is the total molar mass of the humid air inside the pond hall. The flow rate of the 

ventilation inlet is an initial input condition where the differential pressures drive the 

ventilation discharge and can be computed from: 

 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡 = 𝜌∞ 𝑀𝑣𝐴𝑑𝑢𝑐𝑡√
2(𝑃𝑡 − 𝑃𝑎𝑡𝑚)

𝜌∞
 (5.12) 

where 𝜌∞ is the density of the humid air inside the pond hall, 𝑀𝑣 is the molecular weight 

of water vapour, 𝐴𝑑𝑢𝑐𝑡 is the cross-sectional area of the ventilation discharge duct, 𝑃𝑎𝑡𝑚 

is the outside atmospheric pressure 𝑃𝑡 is the total pressure of humid air inside the pond 

hall and can be evaluated as follow: 

 𝑃𝑡 = (
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ (5.13) 

The estimation of the condensation rate is similar to the calculation of the evaporation 

rate:   

 𝑚̇𝑐𝑜𝑛 = ℎ𝑐𝑜𝑛(𝜌𝑣,∞ − 𝜌𝑣,𝑤𝑎𝑙𝑙) 𝐴ℎ (5.14) 

where,  𝜌𝑣,𝑤𝑎𝑙𝑙 is the saturated vapour density at wall temperature,  𝐴ℎ is surface area of 

the inner walls of the pond hall and  ℎ𝑐𝑜𝑛 is the condensation mass transfer coefficient 

which can be calculated from: 

 𝑆ℎ = 0.10 𝑅𝑎1/3 (5.15) 
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5.3.6 Energy balance of water zone 

The energy contained in the water body is integrated over time taking into account the 

heat released from the fuel, the heat flux from the water surface and the energy associated 

with the water inlets and outlets: 

𝑇𝑝
𝑛+1 = 𝑇𝑝

𝑛 + (𝑄̇𝑑 + 𝑚̇𝑚𝐶𝑤𝑇𝑚 − 𝑚̇𝑜𝑢𝑡𝐶𝑤𝑇𝑝 − 𝑚̇𝑒𝐶𝑤𝑇𝑝 − 𝑚̇𝑟𝑒𝑐𝐶𝑤∆𝑇𝑟𝑒𝑐

− 𝑄̇𝑠)
𝑛
 
∆𝑡

𝑚𝑝𝐶𝑤
 

(5.16) 

where 𝐶𝑤 is the specific heat of water, 𝑇𝑚 is the temperature of the make-up water, 𝑚̇𝑟𝑒𝑐 

is the recirculation flow rate, ∆𝑇𝑟𝑒𝑐 is the temperature drop in the cooling tower which is 

controlled by the wet bulb temperature of the outdoor air (𝑇𝑤𝑏) and the cooling tower 

efficiency. The efficiency of the cooling tower is a measure of how much is the ideal 

cooling is actually achieved in the cooling tower, which can be expressed as [134]: 

 ζ =
∆𝑇𝑟𝑒𝑐

𝑇𝑝 − 𝑇𝑤𝑏
 (5.17) 

and 𝑄̇𝑠 is the total heat transfer at the air-water interface which can be estimated as shown 

below:  

 𝑄̇𝑠 = 𝑄̇𝑒 + 𝑄̇𝑟 + 𝑄̇𝑐 (5.18) 

where 𝑄̇𝑒 is the evaporative heat transfer, 𝑄̇𝑟 is the radiative heat transfer, and 𝑄̇𝑐 is the 

convective heat transfer. These three heat transfer modes can be evaluated from the 

following expressions: 

 𝑄̇𝑒 = 𝑚̇𝑒ℎ𝑓𝑔 (5.19) 

 

 𝑄̇𝑟 = 𝐴𝑝𝜀 𝜎(𝑇𝑝
4 − 𝑇ℎ

4) (5.20) 

 



Chapter 5   Analytical Modelling of SNF Cooling Pond 

Page 75 

 𝑄̇𝑐 = 𝐴𝑝ℎ𝑐(𝑇𝑝 − 𝑇ℎ) (5.21) 

Here 𝜀 is emissivity, 𝜎 is the Stefan Boltzmann constant, 𝑇𝑤𝑎𝑙𝑙 is the wall inner surface 

temperature of the hall, ℎ𝑐 is the convection heat transfer coefficient at the water surface 

which may be evaluated by using the Nusselt– Rayleigh power law, 𝑁𝑢 − 𝑅𝑎 , as shown 

below: 

 𝑁𝑢 = {
 0.54 𝑅𝑎1/4                     𝑖𝑓  104 ≤  𝑅𝑎 ≤ 107 

 
   0.15 𝑅𝑎1/3                     𝑖𝑓  107 ≤  𝑅𝑎 ≤ 1011 

 (5.22) 

5.3.7 Energy balance of humid air zone 

The heat loss from the water surface is gained by the ventilated air, which results in an 

increase in air temperature. In order to calculate the air temperature inside the pond hall, 

the energy balance is performed across the hall as shown below:  

𝑇ℎ
𝑛+1 = 𝑇ℎ

𝑛 + [𝑚̇𝑒ℎ 𝑣(𝑇𝑝) + 𝑄̇𝑐 − 𝑄̇𝑤𝑎𝑙𝑙 − 𝑚̇𝑐𝑜𝑛ℎ𝑓𝑔 + 𝑄̇𝑣𝑒𝑛𝑡,𝑖𝑛

− 𝑄̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡]
𝑛 ∆𝑡

[𝑁𝑎𝑀𝑎𝐶𝑝,𝑎 + 𝑁𝑣𝑀𝑣𝐶𝑝,𝑣]
 

(5.23) 

where ℎ𝑣(𝑇) is the specific enthalpy of water vapour at a given temperature and can be 

calculated using the shown below [135]. However, this relationship is valid only for low 

values of pressure.  

 ℎ𝑣(𝑇) = 2500 + 1.82 (𝑇 − 273) (5.24) 

In order to obtain the heat energy associated with the incoming ventilated humid air 

(𝑄̇𝑣𝑒𝑛𝑡,𝑖𝑛) and the discharged humid air by ventilation (𝑄̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡), the following 

relationships are used: 
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 𝑄̇𝑣𝑒𝑛𝑡,𝑖𝑛 = 𝑦𝑣𝑒𝑛𝑡,𝑖𝑛
𝑎  𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛𝐶𝑝,𝑎𝑇𝑣𝑒𝑛𝑡,𝑖𝑛 + 𝑦𝑣𝑒𝑛𝑡,𝑖𝑛

𝑣 𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛ℎ 𝑣(𝑇𝑣𝑒𝑛𝑡,𝑖𝑛) (5.25) 

 

 𝑄̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡 = 𝑦ℎ
𝑎 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡𝐶𝑝,𝑎𝑇ℎ + 𝑦ℎ

𝑣 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡ℎ 𝑣(𝑇ℎ) (5.26) 

Here, 𝑦𝑣𝑒𝑛𝑡,𝑖𝑛
𝑎  and 𝑦𝑣𝑒𝑛𝑡,𝑖𝑛

𝑣  are the molar fractions of the ventilation inlet dry air and 

vapour respectively, 𝐶𝑝,𝑎 is the specific heat of the dry air, and 𝑇𝑣𝑒𝑛𝑡,𝑖𝑛 is the ventilation 

inlet temperature which is assumed to be the same as the outside temperature. The heat 

transfer through the walls of the pond hall (𝑄̇𝑤𝑎𝑙𝑙) is computed according to: 

In order to determine 𝑇𝑤𝑎𝑙𝑙, an energy balance is performed across the walls of the pond 

hall where the wall thickness (𝑥) is divided to uniform increments of 𝑑𝑥. The energy 

equations for the interior and surface layers can be written as follow: 

 𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 +
𝑘

𝑑𝑥 𝐶𝑤𝑎𝑙𝑙𝜌𝑤𝑎𝑙𝑙
(
𝑇𝑖−1 − 𝑇𝑖
𝑑𝑥

−
𝑇𝑖 − 𝑇𝑖+1
𝑑𝑥

)
𝑛

∆𝑡 (5.27) 

 

 𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 +
𝑘

𝑑𝑥 𝐶𝑤𝑎𝑙𝑙𝜌𝑤𝑎𝑙𝑙
(
𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑖
𝑑𝑥/2

−
𝑇𝑖 − 𝑇𝑖+1
𝑑𝑥

)
𝑛

∆𝑡 (5.28) 

where 𝑖 is the index of the wall layers, 𝐶𝑤𝑎𝑙𝑙 is the specific heat of the walls material, 

𝜌𝑤𝑎𝑙𝑙 is the density of the walls material, and 𝑘 is the thermal conductivity of the walls 

material. The inner surface temperature can be calculated considering the heat balance 

across this surface as shown below:    

 𝑄̇𝑟 + (𝑇ℎ − 𝑇𝑤𝑎𝑙𝑙)𝐴ℎℎ𝑖𝑛 =
𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑖
𝑑𝑥/2

𝐴ℎ𝑘 (5.29) 

where ℎ𝑖𝑛 is the convective heat transfer coefficient for the inner surface of the pond hall.  

Finally, the solution is considered to be at steady state when the relative difference 

between the current iteration and the previous iteration is less than 0.01%. The steady-

state criterion is expressed as shown below: 
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 Steady-state criterion =
|𝑇𝑝
𝑛+1 − 𝑇𝑝

𝑛|

𝑇𝑝
𝑛 × 100 (5.30) 

However, in some cases the criterion for the steady-state condition cannot be achieved; 

for instance, when the pond is suffering from loss of cooling. In this case, the temperature 

of the pond water will continue to increase until the saturation is reached. During this 

time, the water level may drop until the pond dries out unless sufficient make-up water is 

provided to compensate for the evaporated water.    

The heat loss from the pond water to the concrete wall is not considered in this study as 

it makes only a very small contribution to the total heat loss from the pond's structure. 

This is because the ponds are surrounded at the sides and floor by a very thick layer of 

concrete. 

As mentioned before, the calculations were performed using the explicit Euler’s method, 

which is known to be conditionally stable, therefore, a stability analysis is required [136]. 

Investigation of the numerical behaviour of the model shows that the stability of is more 

dominated by the stability of the differential equations rather than the used method. The 

highest instability was observed in the mass balance equation for the airside. This is due 

to the pressure fluctuation, which is mostly controlled by the ventilation discharge. 

Therefore, a stability analysis is conducted on the mass balance equation for the humid 

air zone and is given in Appendix A. However, from the analysis, the stable time step can 

be expressed as:  

 ∆𝑡 ≤
2

∅
 (5.31) 

where 𝜃 is equivalent to: 

 ∅ =
𝐴𝑑𝑢𝑐𝑡𝑅𝑜𝑇ℎ

2𝑉ℎ √
2𝜌∞

(
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ
𝑛 − 𝑃𝑎𝑡𝑚

   (5.32) 
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Note that ∅ changes as 𝑁ℎ
𝑛 changes. Thus, the stable step size changes as the solution 

advances. However, keeping the time step within the criterion shown in Eq. (5.31) not 

only ensures stability, but it also ensures that the results are not very sensitive to the time 

step. According to this criterion, the used time step in all the cases presented in this study 

is 5 sec.  

5.4 Spreadsheet model validation 

The spreadsheet thermal model of the cooling pond is validated against available data for 

two different cooling ponds as shown below: 

1. Maine Yankee spent fuel pool, Wiscasset, USA [45]   

2. Sellafield cooling pond, UK  

5.4.1 Validation with Maine Yankee pool data  

The Maine Yankee spent fuel pool is a relatively small cooling pond located at the reactor 

site, with dimensions of 12.6 m long, 11.3 m wide and 11.1 m deep. Carlos et al. [45] 

used TRACE best estimate code to analyse the response of the cooling pond in different 

scenarios. During their calculations, no heat loss was considered at the free water surface 

except when the water has reached its saturation temperature (100 oC) with the initiation 

of boiling. However, this assumption does not have a significant effect on the results, as 

the proportion of heat loss from the water surface before boiling is not significant 

compared to the heat loss to the supplied water. This is owing to the small surface area at 

the air-water interface.  

The spreadsheet model is used to perform calculations on the Maine Yankee spent fuel 

pool, Wiscasset, USA [45] and the results obtained are compared against the published 

data for this pool. These calculations are developed for three cases: (a) steady-state, (b) 

licensing, and (c) accident scenarios.  

In the paper reported by Carlos et al. [45], the temperature data were available for the 

steady-state case in the form of actual temperature measurements collected from the 

Maine Yankee spent fuel pool. For the licensing case, the temperature data were 
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calculated by GFLOW software [57], while the TRACE best estimate code was used for 

the pool temperature under the accident scenarios.  

5.4.1.1 Steady-state and licensing cases  

The input parameters used in the calculations of the steady-state and licensing cases are 

summarised in Table 5.1. In the same table, the outcomes from the validation exercise 

using the present spreadsheet model are presented. The heat load in the licensing case 

corresponds to the maximum expected heat generation from the fuel elements.   

The results predicted by the spreadsheet model are in good agreement with the available 

data for the Maine Yankee spent fuel pool as can be seen in Table 5.1. However, the 

spreadsheet model underestimates the pond water temperature by 3 % and 2.6 % for 

steady-state and licensing cases respectively. When all of the heat transfer modes from 

the water surface are deactivated in the spreadsheet calculations, except for boiling, the 

underestimation errors of the water temperature decreased to 1.9 % and 0.9 % for the 

steady-state and licensing cases respectively. This implies that the heat loss from the 

water surface before boiling is relatively less significant, as mentioned before.        

Table 5.1. Input data and comparison between values predicted by the spreadsheet 

model and data for the Maine Yankee pool [45]. 

Parameters / Case 
Steady State 

Case 

Licensing 

Case 

Heat load (MW) 3.3 6.4 

Make-up water flow rate (kg/s) 98 97.6 

Make-up water temperature (oC) 26.1 51.7 

Water bulk 

temperature (oC) 

Maine Yankee pool  36.7 (measured) 68 (GFLOW) 

Present spreadsheet model 35.6 66.2 

errors  - 3 % - 2.6 % 

    

5.4.1.2 Accident case  

The outcomes from the licensing case were used as the input data for the accident scenario 

except for the initial water level which is considered to have a value of 4.56 m as measured 

from the bottom of the pond. In the TRACE simulation for the accident case, it was 
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assumed that the pumps which supply the pond with the cooling and make-up water, have 

stopped functioning and the only heat loss mechanism available is the heat loss to the 

surroundings by means of boiling. Therefore, in the spreadsheet calculations, the heat 

transfer modes from the water surface were deactivated and the only heat transfer 

permitted is due to boiling.  

Figures 5.5 and 5.6 show comparisons between the results predicted by the spreadsheet 

model and the TRACE data for the accident scenario in terms of water temperature and 

drop of pond water level respectively. In Figure 5.5, for up to one hour the same linear 

trend is observed but a clear shift of 1.8 oC is recorded, the reason for which is not obvious 

from the original paper [45].   

 

Figure 5.5. Water temperatures that obtained by the spreadsheet model and Maine 

Yankee pool [45] under the accident case. 

Figure 5.6 shows a sudden drop in water level over a very short time (something similar 

to purging) but the reason for such behaviour was also not explained. These behaviours 

may be due to assumptions made which are unknown to us. In general, good agreement 

can be observed between the spreadsheet model and the TRACE best estimate code.  
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Figure 5.6. Water level that obtained by the spreadsheet model and Maine Yankee pool 

[45] under the accident case. 

5.4.2 Validation with Sellafield cooling pond data  

The validation exercise is further extended to consider a large-scale cooling pond to 

examine the effect of pond size on the spreadsheet model’s prediction. The cooling ponds 

at the Sellafield site have 727 fuel assemblies, whereas only 120 of the fuel assemblies 

are active and generate heat. The fuel assemblies are arranged within the cooling ponds 

in three groups depending on the age of the spent fuel, where the total heat released is 340 

kW as shown in Table 5.2.  

Table 5.2. Breakdown of the heat generated from the fuel assemblies. 

Group 1 2 3 Total 

Number of fuel assemblies 50 25 45 120 

Heat load (kW) 0.9 1.9 5.5 340 

     

The validation is performed for three different operational configurations and the input 

parameters used during these calculations are summarised in Table 5.3. Comparisons 

between the measured data and the results predicted by the spreadsheet model are 
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presented in tabular form as shown in Table 5.4. It can be seen from the comparisons that 

the spreadsheet model has predicted the water temperature as well as the hall air 

temperature within a good level of accuracy. However, the spreadsheet model has slightly 

overestimated the water temperature. The maximum observed error in the predictions of 

water temperature is 3.56 %, where the maximum recorded error in the hall air 

temperature is - 4.55 %.        

Table 5.3. Input parameters used in validation with the Sellafield spent fuel cooling 

ponds data. 

Parameters  Case 1 Case 2 Case 3 

Heat load (kW) 340 340 340 

Outside environment temperature (oC) 11 14 19 

Recirculation flow rate (kg/s) 105.5 47.5 4.05 

Temperature drop in cooling tower  (oC) 0 0 1 

Make-up rate (kg/s) 3.47 3.62 3.84 

Make-up temperature (oC) 11 14 19 

Ventilation inlet rate (m3/s) 12 12 12 

    

The percentage contribution of each heat removal mode to the total heat loss is shown in 

Figure 5.7 for the three validation cases. These contributions are evaluated when the 

steady state is reached. From the results shown in this figure, it is very clear that the heat 

loss from the water surface is significant as it represents about 50% of the total heat loss 

from the ponds. However, under different configurations, these ratios can vary 

significantly. For an instant, when the make-up water or recirculation flow rates are high, 

this will lead to much higher contributions of these heat removal modes over the surface 

heat loss.  
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duration. The graphical results, on the other hand, are displayed in form of plot for the 

computed output parameters over the specified period.  

Moreover, the GUI allows the user to control some of the heat transfer models by enable 

or disable them. These models are mainly at the water surface and walls of the pond hall. 

The models available at the water surface are evaporation, convection, and radiation. The 

heat transfer models available for walls of the pond halls are condensation on the walls, 

conduction and convection. 

The reported output parameters are as follows:  

 Temperature of the pond water (numerically and graphically) 

 Pond water level (numerically and graphically) 

 Temperature of the indoor air (numerically and graphically) 

 Relative humidity of the indoor air (numerically)  

 Evaporation rate at the steady-state (numerically) 

 Flow rate of the water leaving the pond (numerically) 

 If the cooling tower efficiency is used, the temperature drop in the cooling tower 

will be reported (graphically)  

 If the steady-state creation is met it will be reported numerically 

One of the advantages of using Microsoft Excel is that it allows reversed calculations to 

be conducted in order to predict some parameters according to a given limitations. For 

example, the value of heat load can be estimated according to the desired value of final 

water temperature. This can be achieved via the Goal Seek function which is available in 

Microsoft Excel. Moreover, the spreadsheet model is replicated with several Excel files 

and are connected together in series, which means that the outcomes from the first 

spreadsheet file will be the initial values for the next file and so on. The example shown 

in Figure 5.8 represents a loss of cooling case where the pond water starts to boil and its 

level is falling down. In order to examine the pond behaviour after recovering the cooling 

systems, another spreadsheet file is employed taking its initial values from the previous 

file as shown in Figure 5.9.   
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5.6 Summary  

In this chapter, a spreadsheet model of the cooling pond was developed based on the well-

mixed hypothesis. This model takes into account majority of the heat transfer processes 

within the pond installation. The ventilation system was also included in this model. The 

reliability of the proposed model was validated against data reported in the literature for 

the Maine Yankee cooling pond as well as some measurements collected for the Sellafield 

site. It was confirmed from the validation exercises that the spreadsheet thermal model is able 

to predict the thermal behaviour of the cooling ponds within an acceptable level of accuracy 

under different operational scenarios and with various pond sizes. Also, the proportions of 

the heat removal components were quantified under three operating conditions for the 

Sellafield cooling pond.  

The developed model is able to provide quick answers for “what-if” scenarios, which is 

required at the decision-making stage to aid the organisation in the operation of their 

cooling ponds more efficiently. In addition, the spreadsheet model will be used, in 

Chapter 8, to analyse the thermal performance of the spent fuel cooling ponds under 

normal operating conditions as well as accident scenarios using an appropriate statistical 

method. 
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Chapter 6 Numerical Modelling of Sellafield 

SNF Cooling Pond 

6.1 Introduction  

As shown in the previous chapter that the analytical model is very a useful tool to provide 

an approximation of the main processes taking place within the pond structure. However, 

the analytical model was based on the well-mixed hypothesis, which assumes that the 

energies within pond installation have a homogenous distribution and hence cannot 

provide localised information about temperature and flow within the pond. For these 

reasons, a CFD model is required in order to get useful insights into the flow field and the 

fluid mixing within the SNF cooling pond. In addition, CFD can help to examine the 

validity of the well-mixed approach which is used in the present application. However, 

generation of a CFD model for the whole pond can be computationally demanding. This 

is due to the large size which is further complicated by physical phenomena such as 

evaporation and localised areas of turbulent motion.  

In this chapter, a CFD model for the water body of the cooling pond was developed, 

where the analytical model was used to define the boundary condition at the free water 

surface. This model was validated against temperature data that were collected from the 

actual pond. This model was used to establish the temperature distribution across the 

water as well as to examine the effect of the fuel location and recirculation flow rate on 

the temperature distribution.  

6.2 Modelling methodology  

The modelling procedure can be split into three main steps: creating the geometry of the 

pond, generating an efficient mesh for the computational domain, and choosing the 

appropriate physical models and boundary conditions to mimic the existing physics. Each 

of the mentioned steps is described below. 
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 Small curves are approximated to sharp edges to reduce the number of cells 

while generating the computational grid. 

 Only two recirculation inlets are considered in the computational domain.  
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Figure 6.2: Cooling pond geometry and overall dimensions. 
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6.2.2 Generation of the computational grid  

The number of cells within the computational grid is a very crucial factor that directly 

affects the calculation time. Great care was taken while generating the mesh to reduce the 

computational expenses without compromising the solution accuracy. However, the 

actual pond involved large dimensions and a large number of small gaps between the fuel 

assemblies rendering the meshing to be even more difficult. The computational domain 

was discretized by non-uniform structured hexahedral cells. The mesh is refined in places 

near to the walls, the inlets and around the fuel zones to capture the sharp gradients in 

these regions. An expansion ratio of 1.5 was used in the entire domain while a ratio of 1.2 

was used at the fuel assemblies.  

In order to examine the sensitivity of the mesh density, three different computational grids 

were generated with a different number of cells (1, 2.1 and 5 million). The computational 

grid with 2.1 million elements was found sufficient to capture the main flow gradient and 

a close-up view is shown in Figure 6.3.  



Chapter 6   Numerical Modelling of Sellafield SNF Cooling Pond 

Page 93 

 

Figure 6.3: A close-up view of the mesh structure for the actual cooling pond. 

6.2.3 Numerical model and boundary conditions  

 The make-up water inlet is specified as a mass flow inlet boundary condition, 

which is supplied at a temperature similar to the outside environment.  

 Outflow boundary condition was set at the outlet. 

 A recirculation boundary condition with temperature drop is used to define the 

recirculation inlets and outlets.  

 An adiabatic condition with no-slip wall was used on the pond floor and 

sidewalls.  

 The water surface can be assumed as wall boundary condition with zero shear 

stress. This assumption neglects the wavy motion of the water surface; 

however, it is still a good approximation. 
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The heat loss from the free water surface is modelled in the same manner as described in 

Chapter 4. However, the effect of the ventilation system and the evaporated water on the 

volume of the humid air above the water surface were not considered. This issue was 

treated analytically in Chapter 5 by including the ventilation system. In the current 

chapter, the spreadsheet model is coupled with the CFD model. This coupling can be 

achieved by introducing the solution for the humid air zone from the spreadsheet model 

to the CFD model via a correlation for the overall heat transfer coefficient, ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙 , that 

can be applied at the water surface as shown in Figure 6.4. The used UDF is given in 

Appendix C.      

 

Figure 6.4: Overall heat transfer coefficient of the water surface as a function of the 

surface temperature.   

The fuel assemblies are approximated to be porous medium zones where the decay heat 

is introduced as a volumetric energy source term. A source term as shown in Eq. (6.1) is 

added to the momentum equation Eq. (3.2) that included in the 𝐹 ⃗⃗  ⃗ term in order to include 

the porosity. 
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where 𝑆𝑖 is the porous media source term, 𝑣𝑖 is the velocity in the ith directions (x, y or 

z), |𝑣| is the velocity magnitude, 𝛺 is the permeability of the rack assembly and 𝐶2 is the 

inertial resistance factor of the rack assembly and can be calculated from:  

 𝛺 =
𝐴𝑎𝑐𝑡
𝐴𝑅

(
𝑑ℎ
2

32
) (6.2) 

where 𝐴𝑎𝑐𝑡 is the actual flow area, 𝐴𝑅 the rack cross sectional area and 𝑑ℎ is the hydraulic 

diameter of the rack assembly and calculated as:  

 𝑑ℎ =
4𝐴𝑎𝑐𝑡

wetted perimeter of the cross section 
 (6.3) 

The inertia resistance factor can be expressed as: 

 𝐶2 =
∑𝐾𝑙

flow length
 (6.4) 

where 𝐾𝑙 is the contraction and expansion loss coefficient which has a value of 1.  

Buoyancy forces were also considered in the calculation by including the gravity force in 

the momentum equation as well as selecting the appropriate water properties as described 

before in Table 4.1. 

The flow regime within the cooling pond is more likely to be laminar. However, in some 

regions near to the fuel assemblies, the Rayleigh number could be high enough (~1015) to 

produce turbulent flow. In addition, the regions near to the make-up water supply and the 

recirculation inlets could also experience a turbulent generation especially when the 

maximum recirculation flow rate is used. In order to include the turbulent effects, the k-ε 

turbulence model was incorporated.  

Pressure-velocity coupling is achieved using PRESTO algorithm with second-order 

upwind spatial discretization. The solution is considered numerically converged when the 

residuals are typically three orders of magnitude compared to the values at the start. 
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Several time step sizes were used to examine its effect on the water temperature. The 

temperature at the outlet was selected as the monitoring parameter as shown in Table 6.1. 

It was found that using time step lower than 3 sec has led to satisfactory results.      

Table 6.1: Comparison between different time step sizes. 

Time step 

(sec)  

Outlet 

temperature (°C) 

0.5 72.92 

1.5 72.98 

3 73.01 

5 74.32 

10 78.29 

  

Series of transient CFD simulations were conducted for different operational 

configurations using the commercial CFD package of ANSYS Fluent 16.0. All of the 

simulations were conducted on i7- 3770 CPU with 3.40 GHz 8 cores machine and the 

typical run time for different grid sizes is illustrated in Table 6.2. In the following 

sections, the operational configurations used in the simulations might vary. For this 

reason, the configuration of each simulation will be given subsequently in each section.  

Table 6.2: comparison between different mesh sizes.  

Mesh density 

(cell) 

Computational 

time (day) 

Number of 

iterations 

Outlet 

temperature (°C) 

1 M 3 80,000 75 

2.1 M  5.5 105,000 73 

5 M 8 147,000 72.9 

    

6.3 Model validation and verification 

In order to examine the reliability of the used modelling methodology, a validation 

exercise was conducted. The validation procedure involved two stages: the first stage is 

to compare the water temperature obtained from the CFD model with the measured 
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temperature. The cases used to validate the spreadsheet model in Chapter 5 are also used 

to verify the CFD model of the cooling pond. This would validate the numerical model at 

the steady state conditions. In the second stage of the validation exercise, however, the 

transient behaviour of the numerical model is scrutinised by comparing the rate of change 

in the temperature with the spreadsheet model over a period of time. The configurations 

used in this calculations are listed in Table 6.3. 

Table 6.3: Parameters used in the transient calculations of the validation exercise.  

Parameter  Value  

Heat load (MW) 10 

Outside environment temperature (oC) 15 

Recirculation flow rate (kg/s) 57.9 

Temperature drop in cooling tower  (oC) 10 

Make-up rate (kg/s) 13.9 

Make-up temperature (oC) 15 

Ventilation inlet rate (m3/s) 12 

  

Figure 6.5 shows the comparisons between the measured water temperature and the CFD 

results. It can be clearly seen from the figure that the CFD results agreed well with the 

measurements. In addition, the temperature predicted by the CFD is always larger than 

the spreadsheet and measured temperatures, except in case 1. This could be due to the 

high recirculation flow rate, which increases the motion of the bulk flow and in turn 

enhances the heat transfer at the water surface. 

A comparison of water temperature evolution between CFD and spreadsheet predictions 

is shown in Figure 6.6. Up to day 8, an excellent agreement can be observed between both 

approaches. After that, the results start to deviate by a maximum of 0.5 °C higher for the 

CFD predictions. The reason is that in the CFD model the buoyancy effect causes 

stratification of the water temperature resulting in a relatively lower temperature at the 

surface than the bulk fluid. In the spreadsheet model, on the other hand, the buoyancy 

force is not included and the water temperature is assumed uniform across the pond 

structure. However, the results are still within a good level of accuracy. This also confirms 

the validity of the well-mixed approach that was used in producing the spreadsheet model. 
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Figure 6.5: Volume average pond water temperature at steady state.  

 

Figure 6.6: Increase of average pond water temperature.  

6.4 CFD results and discussion  

In this section, the input parameters used in the simulations are the same as in those used 

in the validation section. The outcomes of these simulations are presented in terms of 

flow field and temperature profiles. Also, the results are displayed on selected planes at 

different locations and directions as shown in Figure 6.7. 
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Figure 6.8: Streamlines coloured by velocity magnitudes. 

Figures 6.9 and 6.10 show the velocity magnitudes and vector fields on various chosen 

planes. It might be useful to note that the vectors shown in the velocity results are just 

indicative of the flow direction only and they are highly exaggerated in size for better 

visualisation. Figure 6.9 indicates that the flow is more active in the regions near to the 

water surface and in the channels surrounding each group of the fuel assemblies. 

Furthermore, relatively high velocities can be seen in the channel section between Pond 

A and Pond B and the regions in proximity to walls surrounding the cooling pond. On the 

other hand, the flow in the zones between the fuel assemblies is very weak and in some 

locations is almost stagnant. Between the fuel assemblies, vertical motion due to the 

buoyancy force can be observed as shown in Figure 6.10. 
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Figure 6.9: Velocity contours on chosen planes (a) at the water top surface, (b) on Y-1 

plane and (c) on Y-2 plane. 

(a) 

(b) 

(c) 
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 Figure 6.10: Velocity contours on X-2 plane at the inlet pond.  

6.4.2 Temperature profiles  

Detailed temperature profiles were obtained on several planes and are presented in 

Figures 6.11 to 6.13. The temperature distribution in the horizontal direction is almost 

uniform across the cooling pond with less than 0.3 oC variation, except in some locations 

near to the make-up water inlet and recirculation inlet due to the effect of proximity to 

these locations. In the vertical direction, temperature stratification is not significant as 

evidenced in Figure 6.12. The average temperature of the pond water is approximately 

20.5 oC whereas and the water temperature at the free surface is slightly lower than the 

bulk, about 20.23 oC. This observation is in line with other work on evaporation such as 

Bower et al. [82]. This is due to the direct contact with the ambient air. A careful look at 

Figure 6.13 shows low temperature in the inlet pond. It is also visible that there is a very 

small vertical temperature gradient between the fuel rods.  
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Figure 6.11: Temperature profiles on chosen planes (a) at the water top surface, (b) on 

Y-1 plane and (c) on Y-2 plane. 

 

Figure 6.12: Temperature profiles on Z-2 plane.  

(a) 

(b) 

(c) 
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Figure 6.13: Temperature profiles on X-2 plane at the inlet pond.  

Figure 6.14 shows the distribution of the heat loss from the free water surface. It is clear 

that the heat loss is not equal across the water surface. Above the fuel assemblies, the heat 

loss is higher than any other location within Ponds A and B. This is corresponding to the 

non-uniform distribution of the water surface temperature as a result of the concentration 

of the heat load in these regions.  

 

Figure 6.14: Heat loss from the water top surface. 
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6.5 Effect of recirculation and heat load distribution 

 

 

 

   

In the previous sections, the heat load was assumed uniformly distributed over the 

available fuel assemblies across the entire cooling pond. However, concentrating of the 

heat load in one pond can have an impact on the distribution of water temperature. In 

addition, recirculation may also have an effect on the uniformity of the water temperature.  

When the pond was loaded with low heat load, the temperature variation was insignificant 

as shown in Figure 6.11, except regions near to the inlet pond. However, large 

temperature variations are most likely to occur when the pond is loaded with the 

maximum heat load. In addition, if the make-up water is supplied at a high rate, this would 

lead to higher variation.  

In order to assess the influence of the above mentioned factors on the uniformity of the 

water temperature, series of simulations are conducted under different configurations. 

The test cases are highlighted in Table 6.4. With the purpose to achieve measurable 

temperature variation, the pond is loaded with a heat load of 10 MW to provide a high 

intensity of temperature localisation. Also, the make-up water used in this analysis is 

supplied at rates of 57.5 and 115 kg/sec with no temperature drop, which are much higher 

than the maximum allowable rate in the actual pond. Moreover, three different layouts of 

heat load distribution are considered during this analysis. The first layout is when the heat 

load is uniformly distributed over all the available fuel assemblies in Pond A and B. The 

second and third layout is when the heat load is concentrated in Pond A and Pond B 

respectively. During the simulations, no temperature drop in the cooling tower was 

considered. 
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Table 6.4: Parameters used in the study of the effect of recirculation and heat load 

distribution on the uniformity of water temperature for a heat load of 10 MW. 

Run 
Make-up 

rate (kg/s) 
Pond  

Recirculation 

(kg/sec) 

1 57.5 Both Off 

2 57.5 Both 115 

3 57.5 Both 230 

4 57.5 A Off 

5 57.5 A 115 

6 57.5 A 230 

7 57.5 B Off 

8 57.5 B 115 

9 57.5 B 230 

10 115 Both Off 

11 115 Both 115 

12 115 Both 230 

13 115 A Off 

14 115 A 115 

15 115 A 230 

16 115 B Off 

17 115 B 115 

18 115 B 230 

    

A total of 18 simulations were conducted for the test cases as shown in Table 6.4. The 

cooling pond was divided into 11 section as shown in Figure 6.15. The results of these 

simulations are obtained in terms of volume average temperature in each section. Each 

section contains a group of fuel assemblies, which can be seen in Figure 6.2.  
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Figure 6.15: Breakdown of pond sections. 

Distribution of water temperature for the test cases with make-up water rate of 57.5 kg/s 

is shown in Figure 6.16 while the cases with make-up water of 115 kg/sec are shown 

Figure 6.17. However, the results in these figures represent only the volume average 

temperature and not the localised values. In addition, these results are only limited to the 

11 sections shown in Figure 6.15 and do not include the inlet pond region.  

It can be seen in both figures that that maximum uniformity of water temperature is 

achieved when the heat load is uniformly distributed over the fuel assemblies in both 

ponds as illustrated in Figures 6.16 (a) and 6.17 (a). In this layout, however, the average 

temperature of Pond B is slightly higher than Pond A where the maximum recorded 

variation is less than 0.5 oC. When the fuel is located in Pond A only as shown in Figures 

6.16 (b) and 6.17 (b), higher average temperatures are observed in Pond A with same 

maximum variations as in the previous layout. In both layouts, the channel connecting 

both ponds (section 6) always has an average temperature lower than both ponds because 

there is no fuel stored in this region.  

The last layout considered in this analysis is when all of the fuel assemblies are located 

in Pond B only as presented in Figures 6.16 (c) and 6.17 (c). In this layout, the highest 

temperature variations were recorded, amongst all the layouts, with a maximum variation 

of just less than 0.9 oC. Usually, in three layouts, section 1 has the lowest average 

temperature in Pond A while in Pond B section 11 is always the lowest. This is attributable 

to the less number of fuel assemblies located in these sections and the proximity of section 

1 to the inlet pond where the make-up water is supplied.  
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Figure 6.16: CFD temperature distribution for make-up flow rate of 57.5 kg/s under 

different recirculation and fuel locations: (a) both ponds, (b) Pond A, and (c) Pond B. 
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The effect of the recirculation can be also seen in Figures 6.16 and 6.17. Turning on the 

recirculation without temperature drop in the cooling tower can reduce the average 

temperature in the considered layout. However, this reduction is relatively small which is 

around 0.5 oC. This is because of the enhanced flow activity at the water surface due to 

the recirculation. In terms of water temperature uniformity, the introduction of 

recirculation does not seem to enhance the temperature uniformity except in the last 

layout where the heat load is concentrated in Pond B.   

Generally, from the results shown in Figures 6.16 and 6.17, it can be concluded that the 

variation between the average temperatures in the presented sections is not very 

significant but this may be limited to the considered configurations. Furthermore, the 

recirculation without temperature drop in the cooling tower does not have a significant 

impact on the water average temperature. Also, the same figures reveal that the 

predictions of the spreadsheet model represent a good approximation of the water average 

temperature and confirm the validity of using the well-mixed approach. 
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Figure 6.17: CFD temperature distribution for make-up flow rate of 115 kg/s under 

different recirculation and fuel locations: (a) both ponds, (b) Pond A, and (c) Pond B. 
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The maximum localised temperature within Ponds A and B are obtained and summarised 

in Tables 6.5 and 6.6 for the 18 test cases. In the same tables, the volume average 

temperatures for the cooling pond including the inlet pond are shown. In the first two 

layouts, for all recirculation conditions, the peak temperature is found in Pond A, where 

the difference between peak and average values is around 3 oC. When the heat load is 

concentrated in Pond B, the peak temperature is recorded in the same pond where the 

difference between peak and average values is slightly higher than the other layouts. 

The global value of the minimum temperature, for the test cases with make-up flow rate 

of 57.5 kg/s, is about 27.6 °C. While in the cases with make-up flow rate of 115 kg/s the 

value of the minimum temperature is about 41.8 °C. However, these values do not vary 

much between the considered test cases. In addition, these values were mostly found in 

section 2 due to the proximity from the inlet pond.   

Table 6.5: Summary of water temperature for test cases with a make-up flow rate of 

57.5 kg/s. 

Location of 

heat load 

Recirculation 

(kg/sec) 

Maximum temperature (°C) Average 

temperature (°C) Pond A Pond B 

Both 

Off 52.8 52.3 50.2 

115 53.0 52.4 50.1 

230 53.1 52.2 49.9 

     

Pond A 

Off 53.7 51.6 50.2 

115 53.8 51.5 50.1 

230 53.4 51.5 50.0 

     

Pond B 

Off 52.0 53.2 50.3 

115 51.9 53.7 50.2 

230 51.8 53.7 50.0 
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Table 6.6: Summary of water temperature for test cases with a make-up flow rate of 115 

kg/s. 

Location of 

heat load 

Recirculation 

(kg/sec) 

Maximum temperature (°C) Average 

temperature (°C) Pond A Pond B 

Both 

Off 36.8 36.3 34.5 

115 37.2 36.7 34.3 

230 37.0 36.5 34.1 

     

Pond A 

Off 37.7 35.5 34.4 

115 37.5 35.3 34.1 

230 37.4 35.3 34.1 

     

Pond B 

Off 35.8 36.9 34.5 

115 36.0 37.8 34.6 

230 35.6 37.9 34.1 

     

6.6 Summary  

A CFD model was developed for Sellafield’s cooling pond considering the water zone 

only. The effect of the humid air zone and the ventilation system were introduced to the 

model in terms of heat transfer coefficient at the water surface which was obtained from 

the spreadsheet model. The fuel assemblies were approximated to porous medium with a 

volumetric heat source. The CFD model was validated against temperature measurements 

that were collected from the site. Moreover, the transient predictions of the numerical 

model were verified by comparing the rate of temperature increase with its counterpart 

from the spreadsheet model. From the validation exercises, good agreements were 

observed. Furthermore, the validity of well-mixed hypothesis to be adopted in such 

application was confirmed.  

The CFD results revealed that the velocity magnitudes within the water body are very 

small except the regions near to the inlet pond and the recirculation inlet. In a similar 

manner, the temperature distribution shows small variations. To examine the effect of the 
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recirculation and the heat load distribution, a parametric study was conducted. This study 

showed that the temperature uniformity is not very sensitive to the recirculation where a 

relatively higher sensitivity to the heat load distribution was observed. The maximum 

recorded temperature difference between the average and peak values was about 3.8 °C, 

only under the presented conditions. The minimum localised temperature was always 

found in pond section 2 due to its proximity to the make-up supply.   
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Chapter 7 Micro-Level Numerical Analysis of 

the Cooling Pond 

7.1 Introduction  

The fuel rack arrangement can be described as a cluster of vertical cylinders containing 

the spent fuel. Generally, there are several types of the fuel assemblies that been designed 

for specific purposes. However, due to safety regulation issues, Sellafield Ltd. proposed 

a new rack design where each of the fuel rods is contained by a square cross section rack 

fabrication as shown in Figure 7.1. A grid spacer is allocated between the racks to support 

the racks and maintain the distance between them. A rectangular lid with two holes is 

placed on top of the racks.  

This chapter discusses the micro-level analysis of the cooling pond that is represented by 

detailed modelling of the fuel assemblies, which was approximated to porous medium in 

the previous macro model of the pond. In order to achieve that, establishing a 

methodology for modelling submerged vertical cylinders will allow a clearer 

understanding of the flow behaviour in such situations. In addition, it will partially 

validate the modelling methodology of the rack arrangement. The experiment conducted 

by Kimura et al. [103] was selected for the purpose of validation. This experiment was 

selected for few reasons as listed below.  

 Water is the heat transfer medium. 

 The vertical position and shape of the cylinder. 

 The cylinder is heated with a uniform heat flux, which is similar to the condition 

in the rack arrangement.   

 Involves flow transition from laminar to turbulent. 

 Allows examining the curvature effect on the heat transfer characteristics 

numerically. 
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Figure 7.3: Grid distribution of the computational domain. 

7.2.2 Performance of turbulence models 

Reliable prediction of the flow field and heat transfer characteristics depends on suitable 

turbulence models. This section presents a comparative assessment of five RANS 

turbulence models for computation of heat transfer characteristics of a vertical cylinder. 

The RANS models used in the present study are namely k-ε, low-Re k-ε, k-ω STT (2-

equations), Transitional k-kl-ω (3-equations) and Transition SST (4-equations) [137]. 

The performance of each turbulence model is assessed with respect to the predicted local 

heat transfer coefficient (hx) distribution as illustrated in Figure 7.4. The local heat 

transfer coefficient is calculated from: 

 ℎ𝑥  =  
 𝑞  

(𝑇𝑤𝑎𝑙𝑙 − 𝑇∞)
 (7.1) 

where  q  is the supplied heat flux at the cylinder surface,  Twall is the wall temperature, 

and T∞ is the water ambient temperature.  
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change its regime. At the same time, the thermal conductivity decreases due to the high 

temperature offering greater resistance to the heat transfer. After the flow is fully 

turbulent, the turbulence activities lead to reducing the temperature in the top region of 

the cylinder. Accordingly, the thermal conductivity increases offering less resistance to 

heat transfer. In general, the heat transfer coefficient is enhanced more for smaller 

cylinder diameters.  

 

Figure 7.7: Water dynamic viscosity and thermal conductivity distributions along the 

cylinder surface for 𝑑 = 10 mm. 

7.2.3 Heat transfer characteristics  

The plots of the nondimensional local Nusselt number, 𝑁𝑢𝑥 , against the local modified 

Rayleigh number, 𝑅𝑎𝑥
∗ , are shown in Figure 7.8. For the largest diameter, 165 mm, the 

predicted data agreed well with the correlation values for Fujii et al. [138] for vertical flat 

plate in the laminar regime shown in Figure 7.8 (c). Also, these data match with those 

obtained by Kimura et al. [103] over the laminar region as well as the turbulent region. 

Figures 7.8 a-b show a comparison for the smaller diameters, 10 mm and 26 mm 

respectively. Overall, the current data are in good agreement with those reported by 

Kimura et al. [103], however, there is a deviation from the flat plate data reported by Fujii 

et al. [138] and this increases for the smallest diameter, 10 mm. The reason for this 

discrepancy is probably due to the high curvature effect of the cylinder, which is a general 

shortcoming of linear eddy viscosity models [16]. 
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Figure 7.8: Comparisons of a local Nusselt number for different diameters (a) 𝑑 =10 

mm, (b) 𝑑 =26 mm, and (c) 𝑑 =165 mm. 
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7.2.4 Visualisation of surface temperature  

Figure 7.9 shows the temperature distributions along the surface of the cylinder for three 

different diameters.  The colours shown in this visualisation are indicating as follows, 

black (low temperature), light grey (moderate temperature), and dark grey (high 

temperature). It can be seen from the temperature distributions shown in Figure 7.9 that 

the numerical approach is able to provide good predictions. The lowest temperatures were 

recorded in the bottom section of the cylinder, and then the temperature starts to increase 

in the vertically upward direction up to the separation point where the transition from 

laminar to turbulent occurs. After that, the temperature starts to decline where the 

turbulent flow is observed. The observed temperature gradient in the bottom part of the 

cylinder is due to the effect of the buoyancy-driven flow within the boundary layer. This 

flow behaviour should be more pronounced with increasing the axial distance. According 

to the visualisation photographs in Figure 7.9 the location of the onset of transition 

changes in the vertically upward direction as the cylinder diameter decreases, which is 

probably due to the curvature effect. When the boundary layer becomes turbulent, the 

temperature starts to decrease gradually in the vertically upward direction.  

 

Figure 7.9: Numerical and experimental [103] temperature distribution along the 

cylinder surface (a) 𝑑 = 10 mm, (b) 𝑑 = 26 mm, and (c) 𝑑 = 165 mm. 
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7.3 Modelling of the fuel rack assembly 

In this section, the computational analysis of fuel rack is presented, which essentially 

comprises a number of vertical cylinders that releases heat at a constant rate. The 

geometry of the rack arrangement is shown in Figure 7.1. Due to the symmetry of the 

computational domain, only half of the geometry is considered.  

 

 The mesh was generated with around 8 million cells where refinement 

was used in the regions between the racks and the fuel cans surfaces to ensure the y+ value 

is always less than one. The uniform heat flux boundary condition was used at the fuel 

cans surface, which is 550 W/m2. During the simulations, the pond water temperature 

represents the inlet flow temperature. At the inlet side, as shown in Figure 7.1, velocity 

inlet boundary condition is implemented in X-direction with the magnitude of 0.001 m/s, 

which is the typical velocity in the cooling pond, and temperature of 20 °C. Sensitivity 

tests were carried out for velocities of 0.0005 m/s and 0.002 m/s which showed very 

insignificant effect on velocity and temperature within the rack which is the zone of 

interest for this study. At the outlet side, outflow condition was used.  

The problem involved flow transition from laminar to turbulent along the surface of the 

fuel rods as the maximum modified Rayleigh number reached a magnitude of the order 

of 1015. Due to the superior performance for this kind of flow as evidenced by section 

7.2.2, the Transition SST turbulence model is used to take into consideration the turbulent 

effects. The top water surface was treated in the similar manner as described in Chapter 

4. Various time steps were carefully examined to obtain the convergence. The transient 

calculation was conducted using a time step of 0.1 sec until the solution reached the steady 

state. 
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Table 7.1: Pond temperature and heat flux used in the parametric study. 

Pond  

temperature (°C) 

Heat flux 

(W/m2) 

20 20 

30 75 

40 150 

50 350 

60 550 

  

As mentioned before, the peak value of water temperature within the assembly was 

always found in the regions enclosed by the fuel cans and the rack fabrications, more 

specifically near to the surfaces of the cans. The simulation results were obtained in terms 

of maximum temperature difference (∆𝑇𝑚𝑎𝑥) between the peak and pond values as shown 

below:   

 ∆𝑇𝑚𝑎𝑥 = 𝑇𝑝𝑒𝑎𝑘 − 𝑇𝑝 (7.2) 

The obtained ∆𝑇𝑚𝑎𝑥 from all of the simulations were plotted with regard to the pond 

temperature and the heat flux illustrated in Figure 7.16. It can be clearly seen that the 

value of ∆𝑇𝑚𝑎𝑥 increases as the heat flux increases. On the other hand, ∆𝑇𝑚𝑎𝑥 decreases 

as the pond temperature increase, especially for high heat flux values, the decrease is 

more obvious. Also, it seems that at the lowest pond temperature the maximum values of 

∆𝑇𝑚𝑎𝑥 are achieved. 

The data shown in Figure 7.16 were used to obtain a correlation of ∆𝑇𝑚𝑎𝑥 as a function 

of the heat flux as well as the pond temperature, which is expressed as: 

 ∆𝑇𝑚𝑎𝑥 = 0.1492 (𝑞)0.7786 (𝑇𝑝)
−0.55

 (7.3) 

here the value of 𝑇𝑝 is in Celsius and 𝑞 is the heat flux in W/m2.  
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The empirical coefficients of Eq. (7.3) were obtained after several trials such that one 

single expression could describe ∆𝑇𝑚𝑎𝑥. The developed correlation is way is always over 

predicts ∆𝑇𝑚𝑎𝑥 and the maximum recorded difference between the correlation and the 

simulation values was about + 9.9% for 𝑞=20 W/m2 and 𝑇𝑝=50 °C. However, the 

developed correlation is only valid for the range of heat fluxes and pond temperatures as 

given in Table 7.1. This correlation can be introduced to the spreadsheet model (Chapter 

5) to evaluate the maximum localised temperature in the pond water, which is critical 

safety issue for pond operation.  

 

Figure 7.16: Maximum Temperature difference as a function of the heat flux and pond 

temperature.  

7.4 Summary   

The modelling methodology of a heated vertical cylinder submerged in a water tank was 

successfully established. Numerical simulation was conducted and the results were 

validated against the experimental data reported by Kimura et al. [103]. The CFD model 

was able to predict the temperature distribution along the heated surface of the cylinder 

and locating the flow separation point with good accuracy. The predicted results showed 

sensitivity to various eddy viscosity models where Transition SST model was the only 

model, amongst the selected models able to capture the transition region with good 
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accuracy. It is believed that the results obtained from this study will be useful for 

modelling flow in situations where a large number of heated cylinders are involved. 

A CFD model of the fuel assemblies was developed where the knowledge gained from 

the modelling of the vertical cylinder was implemented. The fluid flow and heat transfer 

characteristics were established. The results showed that the water contained in the 

regions between the racks and the fuel cans is almost stagnant and the highest 

temperatures were recorded in the same regions irrespective of the pond temperature and 

heat flux and are largely determined by the geometry.  

A parametric study was conducted by varying the pond temperature and the heat flux to 

determine the maximum temperature within the rack. As a result, a correlation for the 

temperature difference, between the maximum and pond, was proposed as a function of 

the heat flux. This correlation can be adapted to the spreadsheet model developed in the 

previous chapter. 
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Chapter 8 Study of Thermal Performance of 

the SNF Ponds Using Spreadsheet 

Model 

8.1 Introduction  

After confirming its reliability, the spreadsheet model was used to study the thermal 

behaviour of the Sellafield cooling pond to assess the appropriateness of using particular 

assumptions in the analysis of loss of cooling scenario. From the point of view of safety 

and economics, it is essential to analyse the performance of the pond under accident 

scenarios as well as under normal operating conditions. As shown from the literature, 

Chapter 2, that the analysis of the SNF cooling ponds performance under normal 

operating conditions was less discussed in the literature, in particular for large-scale 

cooling ponds.  

This study splits into two main parts; the first part is the analysis of the pond behaviour 

under different conditions, when include maximum heat load and loss of cooling scenario. 

In the same part, the rate of temperature increase as well as the impact of the weather 

conditions are evaluated. In the second part, a sensitivity study is conducted using 

Taguchi method and the statistical method of ANOVA to assess the effect of the 

operational configurations on the cooling performance. 

8.2 Analysis of the pond thermal behaviour  

8.2.1 Maximum heat load 

The calculations in this section are performed considering that the pond is loaded with 

the maximum possible heat load and all of the cooling systems are in place and under 

control. The maximum heat load is 10 MW, which corresponds to the maximum expected 

amount of spent fuel to be stored and is assumed to be uniformly distributed throughout 
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the pond. In order to obtain conservative results, the considered heat load in the 

calculation is greater than the maximum value by 10%. The input parameters used in this 

calculation are listed in Table 8.1.    

Table 8.1: Configurations used in the case of normal operating conditions. 

Parameter Value  

Heat load (MW) 11 

Outside environment temperature (oC) 14 

Recirculation flow rate (kg/s) 115.74 

Cooling tower efficiency (%) 60 

Make-up rate (kg/s) 13.9 

Make-up temperature (oC) 14 

Ventilation inlet rate (m3/s) 12 

  

The results for the maximum heat load case are presented in Figure 8.1 in terms of bulk 

water and hall temperatures. As shown in this figure, at the beginning of the calculations 

the water and air temperatures have the same value of 14 oC. As time progresses, both 

water and air temperatures increase until the steady state is reached at values of 41.5 oC 

for the water and about 31.3 oC for the indoor air.  

 

Figure 8.1.  Water and air temperatures of the cooling pond under the maximum heat 

load. 
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The decay heat is removed via different modes as shown in Figure 8.2. Furthermore, this 

figure illustrates the contribution of each of the heat removal modes to the total heat 

removed from the water body. The decay heat removed by the recirculation dominants 

the cooling processes with a percentage of 77 % of the total heat loss. It appears that the 

heat loss from the water surface represents a relatively small proportion (8%) of the total 

heat loss, but it cannot be ignored. however, the scenario can be different for lower heat 

loads as in the cases presented in the validation section for the Sellafield cooling pond as 

shown in Figure 5.7.  

 

Figure 8.2.  Contribution of different heat removal modes under the maximum heat 

load. 

8.2.2 Loss of cooling scenario  

 

 The calculations are conducted for 

the cooling pond taking the outcomes from the previous case of normal operating 

conditions as initial values. Moreover, the calculations are performed for two different 

conditions at the water surface. The first condition ignores the heat loss from the water 

surface except for the boiling heat transfer, which is represented in the graphs (Figures 

8.3 and 8.4) by “Heat off”. The second condition takes into account all the heat transfer 

modes at the water surface, which is represented in the graphs by “Heat on”.       
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For the “Heat on” condition, the estimation of the time required for the fuel assembly to 

start to be uncovered is the same as in the “Heat on” case. On the other hand, water reaches 

its saturation temperature 2 days earlier than the predicted time in the “Heat on” case. 

However, these differences, in the presented case, are still within a good level and provide 

a conservative treatment for the accident scenario. For different conditions, the 

assumption that the heat loss from the water surface can be neglected may not be 

appropriate. For example, Figure 8.5 shows the effect of heat load on the validity of this 

assumption for different heat loads.  
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8.2.3 Rate of temperature increase  

Loss of an adequate cooling capability of the spent fuel cooling ponds, due to station 

blackout or any other causes, can lead to a rapid increase in pond temperature. The pond 

temperature may continue to increase until it reaches its boiling temperature resulting in 

loss of pond water at a high rate. This is can be enough to dry out the pond in very few 

days depending on the amount of fuel stored and its radioactivity level. 

In order to estimate the rate of temperature increase per day (𝛳) under different heat load 

conditions, an analysis using the spreadsheet thermal model was conducted. In this 

analysis, it was assumed that none of the cooling systems is functioning. This analysis is 

conducted for “Heat on” and “Heat off” conditions, same as described in the previous 

section. For the “Heat on” condition the increase of pond temperature is not linear, and 

hence, the rate of temperature increase per day is taken as an average value and is defined 

as shown below: 
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 Rate of temperature increase per day  (𝛳) = (
𝑇𝑠 − 𝑇𝑜
𝑡𝑠

) (8.1) 

where 𝑇𝑜 and 𝑇𝑠 are the initial and steady state water temperatures respectively, and  𝑡𝑠 is 

the time required to reach steady state temperature.  

Figure 8.6 shows the rate of temperature increase per day for “Heat on” and “Heat off” 

conditions. It can be seen that the value of 𝛳 increases almost linearly as the heat load 

increases for both conditions while using the “Heat off” condition leads to higher values 

of 𝛳 and is more evident for higher values of heat load. It can be clearly seen that the 

value of  𝛳 increases by just under 1 °C/day for the “Heat off” condition and about 0.85 

°C/day  for the other condition.  

 

Figure 8.6:  Rate of temperature increase per day for different heat load values. 

Figure 8.7 represents the time required to reach the steady state temperature for different 
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  Figure 8.7: Time to reach steady state for different heat load values. 

8.2.4 Impact of weather conditions  

The outside weather conditions are represented in the spreadsheet model in terms of 

outside air temperature and relative humidity. Changes in these conditions may have an 

effect on the cooling performance of the spent pond. To examine the potential effects, a 

sensitivity study was conducted by varying the outside air temperature and relative 

humidity. As can be seen in Figure 8.8, the outside air temperature has a significant effect 

on the water temperature. Increasing the outside air temperature by about 10 °C results in 

an increase in the water temperature by approximately 9 °C. This is because of the make-

up water and ventilation air temperatures are mostly determined by the outside 

temperature. In addition, the temperature drop in the cooling tower, as shown in Figure 

5.2, is affected by the conditions outside.   

On the other hand, the relative humidity of the outside air does not have a considerable 

effect, as shown in Figure 8.9. This may be because of the air change per hour (ACH) for 

the pond hall is very low for this type of applications, at about 0.333 per hr. Meanwhile, 

the amount of water vapour emerging from the water surface due to evaporation is high 

enough to rapidly increase the relative humidity of the moist air within the pond hall. 

0

20

40

60

80

100

120

0 3 6 9 12 15 18 21 24 27 30

S
te

ad
y
-S

ta
te

 T
im

e 
(d

ay
)

Heat Load (MW)

Heat off

Heat on



Chapter 8   Study of Thermal Performance of the SNF Ponds Using Spreadsheet Model 

Page 140 

 

Figure 8.8. Effect of outside ambient air temperature on water temperature assuming 0% 

relative humidity. 

 

Figure 8.9. Effect of outside relative humidity on water temperature assuming an air 

temperature of 25 °C. 
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performance of the pond could be more sensitive to some operational conditions than 

others. However, the sensitivity of the performance to the operational conditions can vary 

depending on the chosen configurations. In the previous section, for example, the outside 

air temperature was found to have a significant effect on the pond performance while the 

outside air relative humidity has a negligible effect. In order to scrutinise the effect of 

each of these operational conditions under various configurations, a sensitivity analysis 

was conducted using the statistical method of ANOVA. Conducting such an analysis can 

be useful for various reasons as mentioned below: 

 Examine the robustness of the spreadsheet model to perform under different 

input parameter.  

 Searching for errors in the model by encountering unexpected relationships 

between inputs and outputs. 

 Offers more understanding of the relationships among input and output 

parameters, which is the cooling performance in the current study. This would 

be beneficial to make more reliable recommendations when decisions being 

made during accident scenario as well as normal operating conditions.  

 Identifying the inputs that lead to significant impact on the output parameters. 

This can lead to simplification of the analytical model by fixing inputs that 

have no or insignificant impact on the outputs.  

 Providing more understanding of the interaction between the input variable 

and its effect on the outputs. 

In this section, the spreadsheet model is used to perform several simulations for different 

configurations of the operational conditions. After that, all of the results are collected and 

analysed using ANOVA analysis.    

8.3.1 Screening process  

In the case of dealing with a large number of parameters, a primary sensitivity test can 

ease the study by focusing on the more sensitive parameters. Not knowing the sensitivity 

of parameters used in the model can result in time being inefficiently spent on non-

sensitive ones. The objective of the screening process is to weed out uninfluential input 
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parameters by identifying input parameters that have a significant effect on the model 

outputs. After that, the most important factors can be further analysed via higher-

resolution design.  

The model input parameters can be split into uncontrolled and controlled parameters. The 

uncontrolled parameters are: 

 Heat load  

 Outside air temperature 

 Outside air relative humidity  

While the controlled parameters are: 

 Ventilation inlet flow rate  

 Make-up water flow rate  

 Recirculation flow rate  

 Cooling tower efficiency i.e. recirculation temperature drop 

It can be noticed that the controlled parameters represent the main cooling mechanisms 

exist in the cooling ponds installation.     

In this part, Taguchi method is used to design the configurations of the experiment. This 

analysis involved 7 input parameters at 2 different levels. A full factorial experiment 

would require 128 runs while Taguchi method with a L32 (2
7) orthogonal array (32 runs, 

7 variables, 2 levels) would only require 32 runs.  

All of the simulations conducted in this study are initialized with initial values assuming 

that the cooling ponds are suffering from loss of cooling i.e. water and air temperatures 

having a value of 100 °C. This allows studying the influence of the input parameters on 

the pond performance at the steady-state conditions as well as during the recovery from 

a loss of the cooling event. In addition, the ventilation and make-up water temperatures 

are assumed to have the same temperature as the outside environmental temperature.    

However, the levels for each of the input parameters must be selected very carefully to 

minimise the interaction between their effects. In order to achieve that, the following 
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considerations should be taken into account while choosing the levels of each input 

parameter in the ANOVA analysis:  

 Neither recirculation flow rate nor cooling tower efficiency to be set to zero. 

Since the recirculation cooling is the product of the flow rate and the 

temperature drop, setting any of them to zero means that the effect of the other 

would not be measured.   

 The levels for each input parameter should provide bounding values of these 

parameters. This will allow examining the effect of each of the input 

parameters on the water temperature based on its extreme values.  

 The combination of the input parameters must provide some cooling to the 

pond water. Otherwise, the pond temperature will remain at its initial value 

(100 °C) and the effect of the input parameters cannot be investigated. For 

example, if the heat load is chosen to have a very high value, the minimum 

values for the other input parameters should be sufficient to overcome the 

generated heat and drop the water temperature down.   

The input parameters and levels used in the screening process are carefully selected 

according to the above mentioned considerations and shown in Table 8.2. The analysis 

involved 32 runs using an orthogonal array of L32 (2
7) as shown in Table 8.3.  

Table 8.2: Input parameters and levels used in the screening process. 

Input parameters 
Levels 

I II 

A, Outside air temperature (°C) 2 30 

B, Cooling tower efficiency (%) 10 60 

C, Ventilation inlet flow rate (m3/day) 0 12 

D, Make-up water flow rate (m3/day) 0 1,200 

E, Recirculation flow rate (m3/s) 2,500 10,000 

F, Heat load (MW) 1 10 

G, Outside air relative humidity (%) 40 100 
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After conducting the calculations using the spreadsheet model, the ANOVA analysis is 

carried out to assess the influence of each input parameter on the steady state temperature 

of the pond water. The statistical analysis is performed using Minitab software [128]. In 

the ANOVA analysis, the effects of the input parameters on the pond water temperature 

are measured by the Percentage Contribution Ratio (PCR) to the total mean effect and 

can be expressed as:  

 PCR = 
Sum of squares of input parameter 

Total Sum of squares 
×100 (8.2) 
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Table 8.3: Experimental design of L32 (2
7) Taguchi orthogonal array. 

Run order A B C D E F G 

1 2 10 0 0 2500 1 40 

2 2 10 0 0 10000 1 100 

3 2 10 0 1200 2500 10 40 

4 2 10 0 1200 10000 10 100 

5 2 10 12 0 2500 10 100 

6 2 10 12 0 10000 10 40 

7 2 10 12 1200 2500 1 100 

8 2 10 12 1200 10000 1 40 

9 2 60 0 0 2500 10 100 

10 2 60 0 0 10000 10 40 

11 2 60 0 1200 2500 1 100 

12 2 60 0 1200 10000 1 40 

13 2 60 12 0 2500 1 40 

14 2 60 12 0 10000 1 100 

15 2 60 12 1200 2500 10 40 

16 2 60 12 1200 10000 10 100 

17 30 10 0 0 2500 10 100 

18 30 10 0 0 10000 10 40 

19 30 10 0 1200 2500 1 100 

20 30 10 0 1200 10000 1 40 

21 30 10 12 0 2500 1 40 

22 30 10 12 0 10000 1 100 

23 30 10 12 1200 2500 10 40 

24 30 10 12 1200 10000 10 100 

25 30 60 0 0 2500 1 40 

26 30 60 0 0 10000 1 100 

27 30 60 0 1200 2500 10 40 

28 30 60 0 1200 10000 10 100 

29 30 60 12 0 2500 10 100 

30 30 60 12 0 10000 10 40 

31 30 60 12 1200 2500 1 100 

32 30 60 12 1200 10000 1 40 
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Table 8.4 shows ANOVA results for pond water temperature during the screening 

process. All the P-values are less than 0.05 except for the outside air relative humidity, 

G, the P- value is 0.578. This indicating that the outside air relative humidity has an 

insignificant effect on the pond water temperature. Meanwhile, all the other input 

parameters expected to affect the pond water temperature and found statistically 

significant at 95% level of confidence.     

Table 8.4: Summary of ANOVA for the screening process using Taguchi method.  

Source DF SS MS F-value P-value PCR 

A 1 2369.7 2369.7 15.93 0.001 7.5% 

B 1 2444.1 2444.1 16.43 0 7.8% 

C 1 708.1 708.1 4.76 0.039 2.3% 

D 1 428.3 428.3 2.88 0.03 1.4% 

E 1 1979.5 1979.5 13.3 0.001 6.3% 

F 1 19455.9 19455.9 130.76 0 61.9% 

G 1 47.2 47.2 0.32 0.578 0.2% 

Error 24 3248.5 135.4   10.3% 

Total 31 31415.6    100% 

DF = Degree of freedom  * Significant at the 5% level  

and confidence level of 95% SS = Sum of squares    

F =F-test value   P-value = Probability value 

    

Reducing the number of runs by using Taguchi method may lead to less accurate 

outcomes of the ANOVA analysis. For this reason, the same test is conducted using a full 

factorial design in order to examine the accuracy of Taguchi method under the presented 

case. The outcomes from ANOVA obtained by using Taguchi method and full factorial 

design are compared as shown in Figure 8.10 in term of PCR for each of the input 

parameters. The comparison confirms the reliability of using Taguchi method to design 

the experiment and can be used in further analysis.       
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Table 8.5: Input parameters and levels used in the ANOVA analysis with 5 input 

parameters.  

Input parameters 
Levels  

I II III 

A, Outside air temperature (°C) 2 10 30 

B, Cooling tower efficiency (%) 5 30 60 

C, Ventilation inlet flow rate (m3/day) 0 6 12 

D, Make-up water flow rate (m3/day) 0 600 1,200 

E, Recirculation flow rate (m3/s) 2,500 5,000 10,000 

    

In the ANOVA analysis, the effects of the input parameters on the pond water temperature 

are measured by the PCR to the total mean effect at various time periods. The results from 

the ANOVA analysis are presented via bar charts under different heat load values as 

shown in Figures 8.11 to 8.14. It can be clearly seen that the effect of each input parameter 

on the water temperature varies with the time. Since water temperature is initiated from 

the boiling point, the progression of time represents a drop in water temperature. 

Therefore, the PCR of each input parameter also varies according to the water 

temperature. 

In general, the effect of the recirculation cooling mechanism is the highest amongst all of 

the others mechanisms. This is evidenced by the large PCR for the recirculation flow rate 

and the cooling tower efficiency, as combined, throughout all of the periods considered 

up to the steady-state. However, the most influential parameter is the cooling tower 

efficiency with PCR, which varies from 27% to 45%, depending on the value of the heat 

load. On the other hand, the influence of the outside air temperature is the lowest, except 

in few occasions, which will be discussed later.   

At day 2, it was found that the influence of the ventilation system is higher than any other 

period with PCR ranging from 28% to 47% while the outside air temperature and make-

up water have the lowest effect on the water temperature with PCR ranging from 4% to 

20%. As the time progresses, the effect of the ventilation system continues to decline until 

it reaches its minimum value at the steady-state conditions. In contrast to the ventilation, 
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During the first 12 days after the recovery of cooling, the effect of the outside air 

temperature is not sensitive to low values of the heat load as shown in Figure 8.15. For 

high heat load, however, the effect is more pronounced but not significant as the PCR 

varies 3% to a maximum of 7% during this period. The same behaviour is observed for 

the period starting from almost day 12 up to the steady-state but only under high values 

of heat load. The effect of the outside air temperature increases very rapidly for low values 

of heat load. This indicates that the outside air temperature is only significant at low heat 

load and low water temperature in the same time.     

Figure 8.16 shows the effect of the heat load on the PCR of the cooling tower efficiency. 

It can be seen that the PCR of the cooling tower efficiency, up to day12, decreases as the 

heat load increases by almost 7%. After day 12, the effect of the cooling tower efficiency 

sharply declines for low heat loads while under high heat loads the PCR follows the 

previous behaviour. This is implying that the effect of the cooling tower efficiency is 

dominated by water temperatures up to day 12 and after that is more dominated by the 

outside air temperature as evidenced by Figure 8.15.  

The effect of the heat load on the performance of the ventilation system is shown in Figure 

8.17. In general, the PCR of the ventilation inlet flow rate increases as the heat load 

increases, however, this increase is more noticeable at the low heat load values.  

Figure 8.18 shows the effect of the heat load on the PCR of the make-up water flow rate. 

The same effect, as in the cooling tower efficiency plot, can be observed on PCR of the 

make-up water flow rate. The effect of the make-up water flow rate decreases as the heat 

load increases up to 12 days and then shows a sudden drop only for the low heat load 

values. It can be clearly seen that the sudden increase in the PCR of the outside air 

temperature is followed by a sudden decrease in the PCRs of the cooling tower efficiency 

and the make-up water flow rate. This reveals that there is an interaction between the PCR 

of the outside air temperature and the PCRs of cooling tower efficiency and make-up 

water flow rate.  

Finally, the effect of the heat load on the contribution of the recirculation flow rate is 

shown in Figure 8.19. It can be noticed that the PCR of the recirculation flow rate 

generally increases as the heat load increases and becomes more obvious as the water 

temperature goes toward the steady-state conditions.    
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Figure 8.15: Effect of heat load on the PCR of the outside air temperature.  

 

Figure 8.16: Effect of heat load on the PCR of the cooling tower efficiency.  
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Figure 8.17: Effect of heat load on the PCR of the ventilation inlet flow rate.  

 

Figure 8.18: Effect of heat load on the PCR of the make-up water flow rate.  
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Figure 8.19: Effect of heat load on the PCR of the recirculation flow rate.  

8.3.3 Recommendations based on ANOVA results 

The outcomes from ANOVA can be concluded in term of recommendations that may be 

able to aid the organisation to manage their cooling pond more efficiently. These 

recommendations may be only valid for the range of the configurations considered in this 

study. A description of the loss of cooling scenario and its consequences are shown in 

Figure 8.20. Additionally, some recommendations during the recovery from an accident 

scenario are also given in Figure 8.20.  

Generally, the difference between the contributions of the ventilation system and make-
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recovery process. During the very first few days, the cooling by means of ventilation is 

more effective choice compared to the make-up water. However, as the time advances, 

ventilation and make-up water start to swap positions but this only for low and 

intermediate heat load values. For high heat load values, the cooling provided by 

ventilation is more effective than the cooling by make-up water.   

From the point of view thermal performance, when recovering from a loss of cooling 

scenario, it is recommended that the first cooling mechanism to be recovered is the 

recirculation cooling, for all of the reported values of heat load.  
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8.4 Summary  

A number of studies were performed to analyse the performance of the SNF cooling pond 

at the Sellafield site using the spreadsheet model. These studies are: analysis of the pond 

thermal behaviour of the pond and a sensitivity study.   

In the analysis of the thermal behaviour, the first analysis concerned the performance of 

the pond under normal operating conditions where the pond water and air temperatures 

are evaluated considering that the pond is loaded with the maximum possible heat load. 

In the same study, the proportions of heat removal components were quantified. In 

addition, a loss of cooling analysis was conducted under two water surface conditions; 

one when the surface heat transfer is disabled, and another when it is taken into 

consideration. It was found that the assumption leading to ignoring the heat loss from the 

water surface is not always a good choice.    

Further analysis was conducted in order to estimate the rate of temperature increase per 

day. It was found that the rate of temperature increase per day increases with the heat load 

and addition of every 1 MW causes an increase by less than 1 °C/day. The last study was 

performed to examine the sensitivity of the pond water temperature to variation in outside 

weather conditions. The outcomes reveal that water temperature is rather insensitive to 

the outside relative humidity. On the other hand, relatively high sensitivity was observed 

to variations in outside temperature.  

In the sensitivity study, the Taguchi method and the statistical method of ANOVA were 

used to assess the influence of the input parameters on the spreadsheet model’s 

predictions, and hence, the cooling performance of the cooling pond. The AVONA results 

reveal that the efficiency of the cooling tower is the most influential parameter on the 

cooling performance of the SNF cooling pond within the considered values of heat load. 

It was also confirmed that the effect of the outside air relative humidity is not significant. 

However, the indoor relative humidity still plays a big role on the evaporation rate as well 

as the overall performance of the pond.      
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Chapter 9 Conclusion and Recommendations 

for Future Work 

9.1 Conclusion 

The literature review showed the relevance of developing accurate and feasible models 

for investigating thermal-hydraulic behaviours of SNF cooling ponds during normal 

operating conditions as well as the loss of cooling scenarios. Most of the reported studies 

focused on investigations of the severe accident scenarios. On the other hand, none of the 

studies has investigated the thermal performance of the spent fuel cooling pond during 

the normal operating conditions to understand the effect of each of the cooling systems. 

Furthermore, all of the spent fuel cooling ponds that have been considered are of a 

relatively small size. However, due to the continued increase in spent fuel production, 

some countries have constructed centralised ponds to keep up with the incoming spent 

fuel until a more permanent solution is found. To the best of our knowledge, through 

investigation of centralised large-scale ponds have not reported before, which may be 

partially due to security concerns and the commercially sensitive nature of the work. 

Treatment of the boundary conditions at the free water surface was achieved by 

analytically modelling of the heat transfer component and developing an expression for 

the overall heat transfer coefficient, ℎ𝑜𝑣𝑒𝑟𝑎𝑙𝑙, as a function of the surface temperature. The 

evaporation rate was expressed via the definition of Stefan’s law to take into account the 

advection. The modelling methodology was numerically validated against experimental 

data of the cooling process of water which was reported by Bower et al. [82]. The 

advantage of the proposed modelling methodology is that it allows simulating the heat 

loss from water surface due to evaporation without the need to use the multiphase models 

with reasonable accuracy.   

A spreadsheet model of the cooling pond is proposed based on the well-mixed 

assumption. The main modes of heat transfer processes within the pond installation were 

considered in this model where the ventilation system is also incorporated. The proposed 
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model was validated against reliable data reported in the literature for the Maine Yankee 

cooling pond as well as some measurements from the Sellafield site. This allowed testing 

the performance of the spreadsheet under various operational scenarios and different pond 

sizes. During the validation, unlike the typical ponds considered in the literature, the heat 

loss from the water surface in Sellafield’s pond was dominant. The advantage of the 

spreadsheet model is that it is able to provide very quick answers for “what-if” scenarios, 

which is required at the decision-making stage to aid the organisation in the operation of 

their cooling ponds more efficiently.  

A CFD model was developed for Sellafield’s cooling pond considering the water zone 

only. This model was coupled with the spreadsheet model to introduce the humid air zone 

and the ventilation system to the CFD model in terms of heat transfer coefficient at the 

water surface. The fuel assemblies were approximated to porous medium with a 

volumetric heat source. The CFD model was validated against temperature measurements 

that were collected from the site. Besides, the transient results of the numerical model 

were verified by comparing the rate of temperature increase with its counterpart from the 

spreadsheet model. After that, a parametric study was conducted by varying the heat load 

distribution and the flow rates of the make-up water and recirculation. It was found that 

the distribution of the water temperature is not very sensitive to the recirculation flow rate 

while a relatively higher sensitivity was observed to the location of the fuel. Generally, 

the temperature variation within water was relatively small as the maximum difference 

between the average and peak values was about 3.8 °C, except in some locations near to 

the inlet pond where larger variations were observed. This confirms the reliability of the 

well-mixed hypothesis that was adopted in the spreadsheet model.  

A numerical simulation was conducted for heated vertical cylinder submerged in a water 

tank and the obtained data were validated against the experimental data reported by 

Kimura et al. [103]. The CFD model was able to predict the temperature distribution along 

the heated surface of the cylinder and locating the flow separation point with good 

accuracy. The predicted results showed sensitivity to various eddy viscosity models 

where Transition SST model was the only model, amongst the selected models able to 

capture the transition region with good accuracy.  
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A CFD model of the fuel assemblies was developed where the knowledge gained from 

the modelling of the vertical cylinder was partially implemented. The fluid flow and heat 

transfer characteristics were established. The results showed that the water contained in 

the regions between the racks and the fuel cans is almost stagnant and the highest 

temperatures were recorded in the same regions. A parametric study was conducted by 

varying the pond temperature and the heat flux to determine the maximum temperature 

within the rack. As a result, a correlation for the temperature difference, between the 

maximum and pond, was proposed as a function of the heat flux.    

The proposed spreadsheet model was used to perform a range of studies on the pond 

performance. The first study evaluated the pond thermal behaviour when the pond is 

loaded with the maximum possible heat load. Another study has concerned the loss of 

cooling scenario and the effect of the assumption of neglecting the heat loss from the 

water surface. It was found that such an assumption was not applicable for low values of 

heat load. It was also found that the pond would take about one week to reach the boiling 

point and further one month for the fuel assembly to uncover. The last study was 

conducted using Taguchi and ANOVA statistical methods to assess the influence of the 

input parameters on the pond cooling performance. The AVONA results reveal that the 

efficiency of the cooling tower is the most influential parameter on the cooling 

performance under the considered values of heat load. It was also confirmed that the effect 

of the outside air relative humidity is not very significant. However, the indoor relative 

humidity still plays a big role in establishing the evaporation rate from the water surface, 

and hence the cooling performance. 

9.2 Future work 

 An analytical model for the fuel cladding would be useful to evaluate the 

maximum cladding temperature and can be also introduced to the spreadsheet 

model. 

  
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.  

 In order to enhance the reliability of the spreadsheet model, a full model for 

the cooling tower need to be incorporated as the ANOVA results revealed that 

the pond performance is greatly affected by the cooling tower. This model 

would take into account the design parameters of the tower as well as the 

fluctuation in the weather conditions such as day and night and can use the 

climate forecast information directly for the MET office data.  

 In such application, Sodium Hydroxide solution is injected to assist with the 

removal of colour and turbidity present in the cooling water as well as to 

protect the fuel cladding from corrosion [139].  

 

. A detailed modelling of the dispersion of the caustic dosing 

can be achieved using the DPM considering two-way coupling between the 

dispersed and continues phase. 

 The developed spreadsheet model has the potential to be applied to various 

industrial and environmental applications such as condenser water cooling at 

thermal power plant and to estimate chemical exposure in industrial 

installations and, therefore, can assess industrial hygiene. 
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Appendix A Stability Analysis 

In order to estimate the maximum time step that can be used that maintains stable 

calculations, stability analysis for the presented system of differential equations has to be 

performed. However, such analysis can be performed for linear equations where the 

nonlinear equations have to be linearized before initiating such analysis. 

The typical stability analysis can be accomplished as follows: 

 Construct the FDE (finite difference equation) for the model ODE, 𝑦́ + Φ𝑦 = 0 

 Determine the amplification factor, G, of the FDE. 

 Determine the conditions to ensure that |G| < 1. 

The change of the amount of the pond hall humid air can be expressed as: 

 𝑁ℎ́ = 𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛 + 𝑁̇𝑒𝑣 − 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢 (A-1) 

where 𝑁ℎ́  is the rate of change of the amount of humid air inside the hall and 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡 is 

the ventilation outlet flow molar rate and can be calculated from: 

 𝑁̇𝑣𝑒𝑛𝑡,𝑜𝑢𝑡 = 𝐴𝑑𝑢𝑐𝑡√2𝜌∞ [(
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ − 𝑃𝑎𝑡𝑚] (A-2) 

Therefore Eq. (A-1) can be rewritten as: 

 𝑁ℎ́ = 𝑁̇𝑣𝑒𝑛𝑡,𝑖𝑛 + 𝑁̇𝑒𝑣 − 𝐴𝑑𝑢𝑐𝑡√2𝜌∞ [(
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ − 𝑃𝑎𝑡𝑚] (A-3) 

Then, 𝑁ℎ́  can be expressed in a Taylor series taking 𝑡0 as a base point.  
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 𝑁ℎ́ ≈ 𝑓0 + 𝑓𝑡|0(𝑡 − 𝑡0) + 𝑓𝑛ℎ|0(𝑁ℎ − 𝑁ℎ0) + ⋯⋯ (A-4) 

here 𝑁ℎ0 is the initial amount of humid air inside the pond hall and: 

 𝑓0 =
𝑃𝑡𝑉ℎ
𝑇ℎ𝑅𝑜

 (A-5) 

 

 𝑓𝑛ℎ|0 = −
𝐴𝑑𝑢𝑐𝑡𝑅𝑜𝑇ℎ

2𝑉ℎ √
2𝜌∞

(
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ0 − 𝑃𝑎𝑡𝑚

 
(A-6) 

Eq. (A-4) can be rewritten as: 

 𝑁ℎ́ ≈ 𝑓0 −
𝐴𝑑𝑢𝑐𝑡𝑅𝑜𝑇ℎ

2𝑉ℎ √
2𝜌∞

(
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ0 − 𝑃𝑎𝑡𝑚

  (𝑁ℎ − 𝑁ℎ0) 
(A-7) 

Let: 

 ∅ =
𝐴𝑑𝑢𝑐𝑡𝑅𝑜𝑇ℎ

2𝑉ℎ √
2𝜌∞

(
𝑇ℎ𝑅𝑜
𝑉ℎ

)𝑁ℎ0 − 𝑃𝑎𝑡𝑚

   
(A-8) 

 Hence, Eq. (A-7) can be written as: 

 𝑁ℎ́ + ∅𝑁ℎ ≈ (𝑓0 + ∅𝑁ℎ0) (A-9) 

Comparing this ODE with the model linear ODE (𝑦́ + Φ𝑦 = 0) and ignoring the non-

homogenous term (𝑓0 + ∅𝑁ℎ0) we can find that Φ = ∅. 

Hence, the amplification factors can be written as:  
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 𝐺 =  (1 − ∅∆𝑡) (A-10) 

For stability, the condition of |𝐺| ≤ 1 must be satisfied, therefore:  

 ∆𝑡 ≤
2

∅
 (A-11) 

Note that ∅ changes as 𝑁ℎ0changes. Thus, the stable step size changes as the solution 

advances. Also, time step may vary depending on the configuration of heat and mass flow 

rate.  
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Appendix C UDF for the Overall Heat 

Transfer Coefficient 

/********************************************************************** 

UDF Overall Heat Transfer Coefficient at water surface  

Ahmed Ramadan 

*********************************************************************/ 

#include "udf.h" 

DEFINE_PROFILE(htc, thread, position) 

#include "udf.h" 

DEFINE_PROFILE(htc, thread, position) 

{ 

face_t f; 

real y = F_T(f,thread);                                         /* surface temperature */ 

begin_f_loop(f, thread) 

{ 

F_PROFILE(f, thread, position) = 0.008*y*y-4.9612*y+776.14; 

end_f_loop(f, thread) 

} 

 




