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RATIONALE: Traditional investigation of bacteriohopanepolyols (BHPs) has relied on 19 

derivatisation by acetylation prior to gas chromatography-mass spectrometry (GC/MS) or liquid 20 

chromatography-MS (LC/MS) analysis. Here, modern chromatographic techniques (ultrahigh 21 

performance liquid chromatorgraphy) and new column chemistries were tested to develop a 22 

method for BHP analysis without the need for derivatisation.  23 

METHODS: Bacterial culture and sedimentary lipid extracts were analysed using a Waters 24 

Acquity Xevo TQ-S in positive ion atmospheric pressure chemical ionisation (APCI) mode. 25 

Waters BEH C18 and ACE Excel C18 were the central columns evaluated using a binary solvent 26 

gradient with 0.1% formic acid in the polar solvent phase in order to optimise performance and 27 

selectivity.  28 

RESULTS: Non-amine BHPs and adenosylhopane showed similar performance on each C18 29 

column, however, BHPs containing terminal amines were only identified eluting from the ultra-30 

inert ACE Excel C18 column. APCI MS-MS product ion scans revealed significant differences in 31 

fragmentation pathways compared to previous methods for acetylated compounds. Fragment ions 32 

for targeted multiple reaction monitoring (MRM) are summarised. 33 

CONCLUSIONS: UPLC/MS-MS analysis using an ACE Excel C18 column produced superior 34 

separation for amine-containing BHPs and reduced run times from 60 to 9 min compared to 35 

previous methods. Unexpected variations in fragmentation pathways between structural 36 

subgroups must be taken into account when optimising MRM transitions for future quantitative 37 

studies. 38 

  39 
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Bacteriohopanepolyols (BHPs) are microbial membrane lipids occurring ubiquitously in the 40 

environment although they are estimated to be produced by less than 10% of bacteria (see Fig. 1 41 

for examples).[1,2] They can be used as biomarkers to indicate specific bacterial populations and/or 42 

processes such as aerobic methane oxidation[3-5] or the transport of soil organic matter via rivers 43 

or coastal erosion to the marine environment.[6-10] They are also the biological precursors of the 44 

geohopanoids (hopanols, hopanoic acids, hopanes) which have been described as the most 45 

abundant natural products on earth.[11] 46 

Analytical methods for identification and (semi) quantification of complex mixtures of the BHPs 47 

have typically utilised acetylation of the functional amine and hydroxyl groups, followed by either 48 

gas chromatography mass spectrometry (GC/MS) which can only detect a limited number of 49 

compounds[12] or reversed phase high performance liquid chromatography (HPLC) with ion-trap 50 

multiple stage mass spectrometry (MSn) detection.[13-18] The first HPLC method for BHP 51 

separation without prior derivatisation involved a simple normal phase HPLC system with a silica 52 

60 column and ternary solvent gradient of n-hexane, propan-2-ol and 0.04% triethylamine in 53 

water.[19] This system was able to separate 3 common BHPs: bacteriohopane-32,33,34,35-tetrol 54 

(BHT herein; Ia, Fig. 1), BHT-glucosamine (Ib) and BHT-cyclitol ether (Ic). This separation 55 

method was later adapted and, when coupled to mass spectrometer using negative ion chlorine 56 

addition under atmospheric pressure chemical ionisation (APCI) conditions, was able to identify 57 

these compounds in lake sediments.[20] However, subsequent investigation of this method revealed 58 

that it was unsuitable for other commonly occurring BHPs with a terminal amine moiety at the C-59 

35 position (such as 35-aminobacteriohopane-32,33,34-triol [aminotriol herein]; Id, Fig. 1) as 60 

they were strongly retained resulting in extended analysis times and poor peak shapes.[13] 61 

Subsequently analyses by LC/MS were undertaken on peracetlyated samples using reversed phase 62 

chromatography with either a ternary or binary solvent system changing linearly from methanol 63 

(MeOH):water (90:10) to propan-2-ol:MeOH:water (40:59:1) and with detection via positive ion 64 

APCI.[13,15,16,21,22] 65 

More recently, Malott et al.[23] reported the identification of non-derivatised BHPs using an ultra-66 

performance liquid chromatography-mass spectrometry (UPLC/MS) method based on a Waters 67 

(Inc.) application note for lipid analysis.[24] Briefly, samples were separated using a charged 68 

surface hybrid (CSH) C18 column (Waters Acquity UPLC CSH C18, 2.1 x 100 mm, 1.7 m) with 69 

a binary solvent system containing 10 mM ammonium formate and 0.1% formic acid eluted at 0.4 70 

mL/min with the column maintained at 55C. Analysis was via Waters LC-tandem MS (LC-71 
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MS/MS) system (Acquity I class UPLC with a Xevo G2-S time of flight (TOF) mass 72 

spectrometer). Column eluent was ionized by electrospray ionization in both positive and 73 

negative-ion mode. However, only BHT cyclitol ether (Ic), the dominant hopanoid from 74 

Burkholderia multivorans, was reported including the protonated (m/z 708.5451) and sodiated 75 

form (m/z 730.5225). Identification of this structure is in agreement with previous studies of 76 

Burkholderia spp..[25] However, unsaturated BHT-CE (Ic with double bond at C-6) as well as BHT 77 

(Ia) which have also been detected from this genus were not reported.[17,25] The same UPLC/MS-78 

MS method was also employed by Wu et al.[26] to identify BHT and 2Me-BHT (IIa). These 79 

authors also reported significantly reduced ionisation efficiencies for non-acetylated compounds 80 

relative to the equivalent mass of the acetylated structures. This was proposed as potentially 81 

resulting from the low solubility of these compounds in the solvent used for LC/MS (dilution via 82 

sonication in propan-2-ol:acetonitrile:water; 2:1:1). 83 

Further development of an UPLC/MS method for the identification and ultimately the 84 

quantification of a much wider range of BHP compounds will therefore be beneficial to 85 

significantly reduce the use of solvents and chemicals such as acetic anhydride and pyridine, 86 

which are currently widely employed for derivatisation, whilst increasing separation potential 87 

and/or sensitivity and sample throughput by reducing analysis time (currently 60 min per sample, 88 

HPLC method using reversed phase C18 HPLC separation.[17,18] Here, we report on the first stage 89 

of development of a new UPLC/MS-MS method considering a range of columns (including 90 

different manufacturers and different phases for enhanced selectivity) and also assess 91 

fragmentation patterns to establish optimal precursor-product ion transitions, often with 92 

unexpected difference to previously reported hopanoid mass spectra. 93 

 94 

EXPERIMENTAL 95 

Materials 96 

Bacterial cultures of Methylosinus trichosporium OB3b and Methylococcus capsulatus Bath as 97 

well as River Tyne (UK) estuary surface sediment were available in house.[27, 28] All samples were 98 

freeze dried, ground to a fine powder then extracted (~20 mg for cell mass and ~1 g for sediment) 99 

as described previously using a modified Bligh and Dyer method to produce a total lipid extract 100 

(TLE; for full details see[29,30]).  101 
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Solid phase extraction 102 

Further clean-up of the TLE is required prior to UPLC/MS-MS analysis therefore aliquots of TLE 103 

were pre-treated with aminopropyl solid phase extraction (SPE) to produce a concentrated polar-104 

fraction containing all BHPs. The SPE method used was adapted from a method commonly 105 

applied in other studies of complex polar lipids from environmental samples which produces a 106 

neutral (chloroform:propan-2-ol; 2:1), acid (2% acetic acid in diethylether) and polar (MeOH) 107 

fraction.[31] However, preliminary analysis revealed that although the majority of the BHPs were 108 

eluted as expected in the polar fraction, some BHPs such as adenosylhopane (Ie) and related 109 

compounds (IIe, If, IIf, If’, IIf’) were at least partially recovered in the neutral fraction. Therefore, 110 

the method was further adapted as follows. Isolute (Biotage, Uppsala, Sweden) NH2 1 g/6 mL 111 

SPE columns were preconditioned with 2 x 3 mL hexane. Sample TLE was reconstituted in 112 

chloroform (200 L) and loaded onto the column. Fraction 1 (non-polar+acids) was eluted with 113 

acetic acid/diethylether (2:98 v/v, 6 mL). Fraction 2 (Polar fraction) was eluted with MeOH (10 114 

mL). All fractions were blown down to dryness under N2. Fraction 1 (non-polar+acids) was not 115 

investigated further as it does not contain BHPs. It was also noted that the 5α-pregnane-3β,20β-116 

diol standard which is typically added to the TLE prior to further treatment or analysis (e.g.[32]) 117 

elutes in the non-polar fraction if added to the TLE prior to SPE.  118 

Derivatisation and filtering 119 

For comparison of derivatised and non-derivatised polar fractions, aliquots of the polar fractions 120 

were evaporated to dryness under N2 and acetylated by adding acetic anhydride and pyridine (0.25 121 

mL each), heated at 50°C for 1 h then left at room temperature overnight to yield acetylated BHPs. 122 

The acetic anhydride and pyridine was removed under a stream of N2 and the resulting acetylated 123 

sample was dissolved in 1 mL MeOH/propan-2-ol (3:2, v/v). All fractions, derivatised and non-124 

derivatised, were filtered through 0.22 m PTFE filters (VWR International Ltd., Lutterworth, 125 

Leicestershire, UK) prior to analysis by UPLC/MS-MS. 126 

UPLC/MS-MS analysis of non-derivatised BHPs 127 

Separation of the polar fraction BHPs was performed on a Waters (Elstree, UK) Acquity UPLC 128 

system fitted with either a Waters Acquity UPLC BEH C18 column (1.7 m, 2.1 mm x 100 mm; 129 

PN: 186002352) and an Acquity BEH C18 VanGuard pre-column (all supplied by Waters, UK) .  130 

or an ACE Excel UHPLC C18 column (2 m, 2.1 mm x 100 mm; PN: EXL-101-1002U) fitted 131 

with an ACE Excel UHPLC Pre-column filter (PN: EXL-PCF10; all ACE columns supplied by 132 



UPLC/MS-MS of non-derivatised bacteriohopanepolyols 

6 

 

Hichrom Ltd., Reading, UK). Additional ACE excel phases (AR, Amide, PFP and Super C18) 133 

were tested for alternative selectivity using  identical column dimensions and particle size to the 134 

C18 column. All showed reduced chromatographic performance relative to the C18 for non-135 

derivatised BHPs although the AR column did show slightly improved separation of methylated 136 

compounds related to adenosylhopane. The solvent gradient was based on that used previously 137 

for derivatised BHPs under HPLC conditions which comprises 90% MeOH, 10% Water at Time 138 

0 followed by a liner gradient to 59% propan-2-ol, 40% MeOH, 1 % water in 25 min.[17,18] For 139 

UPLC of non-derivatised compounds the more polar solvent phase was modified with 0.1% 140 

formic acid (99% ULC/MS grade; Biosolve [Dieuze, France], supplied by Greyhound 141 

Chromatography and Allied Chemicals, Birkenhead, UK). The following profile, adapted from 142 

that used for HPLC-MS analysis, was found to provide the best compromise between separation 143 

of compounds, peak shape and run time: 100% A (Time 0) to 100% B (at 3.5 min), isocratic for 2 144 

min then returning to the starting conditions in 0.5 min and stabilising for 3 min before the next 145 

injection (solvent mix A = MeOH:water:formic acid [90:10:0.1 v/v/v] and B = propan-2-146 

ol:MeOH:water [59:40:1 v/v/v]. All solvents were Biosolve ULC/MS grade (supplied by 147 

Greyhound Chromatography and Allied Chemicals). The flow rate for all runs was 0.6 mL/min 148 

and the column was heated to 40°C. Samples (i.e. one half of the SPE polar fractions) were 149 

dissolved in MeOH:propan-2-ol (3:2 v/v) and injected via an Acquity Sample Manager fitted with 150 

a 30 L all PEEK sample needle (Waters Ltd., Elstree, UK; PN: 700002644). Use of the PEEK 151 

needle was required to eliminate contamination of samples, as initial tests showed pronounced 152 

carryover for the non-derivatised primary amines, particularly 35-aminobacteriohopane-32,33,34-153 

triol (Id), when using the standard (stainless steel) needle.  154 

Detection was carried out with a Waters Xevo TQ-S (triple quadrupole with StepWave - a unique, 155 

patented off-axis ion transfer device which maximises sensitivity by actively removing neutrals 156 

to reduce contamination), operated in positive ion mode fitted with a combined atmospheric 157 

pressure (chemical) ionisation and atmospheric pressure photoionisation (API-APPI) source, but 158 

operated in API only mode. Tuning and optimisation of parameters was achieved using a standard 159 

solution of 5-pregnane-3β,20β-diol. Conditions were as follows: corona discharge 0.3 A, cone 160 

voltage 30 V, source offset 50 V, gas flow rates (N2): Desolvation 250 L h-1, Cone 150 L h-1. The 161 

nebuliser pressure was set to 4 Bar.  162 

Preliminary determination of parent-product ion transitions for BHT (Ia; parent ion m/z 529 = 163 

[M+H-H2O]+) and aminotriol (Id; parent ion m/z 546 = [M+H]+) was achieved via off-column 164 
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loop-injections of aliquots of TLE of M. trichosporium.[33] Product ion spectra were obtained at a 165 

range of collision energies from 20 to 35 eV. Product ion spectra of other compounds were 166 

obtained on-line during chromatographic runs of River Tyne sediment SPE polar fraction. 167 

Subsequently, typical values used for multiple reaction monitoring (MRM) transitions were cone 168 

voltage 30 eV and collision energy 30 eV unless otherwise stated below. 169 

To assess if observed difference in BHP spectra were due to acetylation (or absence of acetylation) 170 

or were due to the differences in instrumentation (ion-trap vs. quadrupole MS-MS) we also 171 

obtained comparable product ion scans of acetylated BHPs using the UPLC/MS-MS. The system 172 

was set up as described above except without the formic acid solvent modifier in solvent A. The 173 

analytical conditions used for analysis of derivatised BHPs by HPLC-ion-trap-MSn on a Thermo 174 

Finnigan Surveyor-LCQ system have been described in detail elsewhere.[17,18,29,32] 175 

 176 

RESULTS AND DISCUSSION 177 

Bacteriohopane-32,33,34,35-tetrol (BHT) 178 

Bacteriohopanetetrol (BHT; Ia) is the most commonly occurring of all known BHP structures and 179 

has been reported widely in bacterial cultures and modern, recent and ancient samples up to 56 180 

Ma.[3,34-36] The acetylated BHT protonated molecule ([M+H]+ = m/z 715) is unstable under APCI 181 

conditions, resulting in rapid loss of one functional group and a base peak ion of m/z 655 ([M+H-182 

CH3COOH]+). This loss of one functional group to form the base peak ion is seen for all acetylated 183 

BHPs that do not contain N unless they contain a heterocyclic O atom resulting in a base peak ion 184 

of [M+H]+.[37] The ion-trap MS2 spectrum of BHT (from parent ion m/z 655; Fig. 2a), which has 185 

been described in detail elsewhere,[15,16] contains ions indicating loss of the functional groups (as 186 

CH3COOH, -60 Da) and ions indicating loss of the A+B ring fragment including an ion of m/z 187 

191 (Fig. 2a). Under electron impact ionisation the m/z 191 ion is the major ion fragment observed 188 

indicating ring system cleavage of the C8 –C14 bond and the C-9 to C-11 bond.[38] This ion or the 189 

equivalent m/z 205 ion in hopanoids methylated on the A-ring (e.g. IIa, IIIa) are used as 190 

characteristic ions during selected ion monitoring of hopanoids during GC/MS analysis.[12] After 191 

confirming the presence of BHT in the SPE polar fraction of River Tyne estuary sediment extract 192 

via acetylation of a portion of the SPE polar fraction and analysis via the standard HPLC-MSn 193 

method, [15-18] product ion scans were also obtained for the acetylated compound under UPLC/MS-194 

MS (examples shown at 30 eV collision energy; Fig. 2b). Although ions indicative of the full (-195 
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60 Da) or partial loss of the acetylated functional groups (as CH2CO, 42 Da) were common to 196 

both ion-trap and triple quadrupole spectra of the acetylated parent ion (m/z 655; Fig. 2a and b, 197 

respectively), the lower mass range of the quadrupole spectrum was different to that expected via 198 

comparison of the EI –MS spectrum of BHT.[38]. Ions of m/z 369 (indicating charge retention on 199 

the ring system after loss of the side chain) and m/z 191 (A+B rings) were present but relatively 200 

minor compare to lower mass ions (Fig. 2b). 201 

To obtain product ion scans from the parent ion m/z 529 (= [M+H-H2O]+)of non-acetylated BHT 202 

(Ia) (Table 1), loop injection of TLE from the methanotrophic bacterium Methylosinus 203 

trichosporium OB3b, which is known to contain BHT,[33] were performed with product ion scans 204 

recorded at a range of collision energies (CE). At 20 eV CE fragmentation was limited and the 205 

base peak ion was still m/z 529 (Fig. 2c). Other ions included m/z 511 (loss on one additional OH 206 

group as H2O), m/z 369 and m/z 191. However, the major fragment in the lower mass range was 207 

m/z 163 (Fig. 2c); also present and more intense than m/z 191 in the spectrum of the acetylated 208 

compound under identical conditions (Fig. 2b). The exact structure of this ion is unknown, 209 

however an ion of the same m/z value has been observed previously in the APCI-MS2 spectrum 210 

of acetylated BHT and other related compounds.[15] and was more intense than the m/z 191 ion at 211 

all collision energies (e.g. Fig. 2c,d). With increasing collision energy (30 eV, Fig. 2d), the ions 212 

m/z 511, 369 and 191 were still present but at even lower relative intensity and low m/z value 213 

fragment ions assumed to derive from the ring system dominate the spectrum. At 30 eV the base 214 

peak ion in the product ion scan is m/z 95 with m/z 163 approximately 80% of the intensity of the 215 

base peak (Fig. 2d). Given the low intensity of the m/z 191 ion which would be the expected choice 216 

for an MRM ion transition (m/z 529 to m/z 191) by comparison with EI spectra, we instead suggest 217 

that the ion transition m/z 529 to m/z 163 could provide a more intense signal for detection and 218 

quantification. Proposed target ion transitions for other common BHPs containing no N atoms are 219 

indicated in Table 1 (IIa, Ig, Ih). 220 

35-Aminobacteriohopane-32,33,34-triol (aminotriol) 221 

The tetrafunctionalised 35-amino-bacteriohopane-32,33,34-triol (Id) is the second most 222 

commonly reported BHP, found in a wide range of cultured organisms and environments.[3,30,39] 223 

When acetylated, the parent ion is m/z 714 [M+H]+ and when not acetylated, m/z 546 (Table 1). 224 

We have previously proposed that the stability of the protonated acetylated amine limits 225 

fragmentation under APCI MSn analysis to simple side chain fragmentation i.e. loss of acetylated 226 

hydroxyls (Fig. 3a). The APCI-MS-MS product ion spectrum of the acetylated compound (from 227 
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parent ion m/z 714) at 30 eV CE (Fig. 3b) is also dominated by fragments from the side chain but 228 

does contain minor ions at m/z 191 and 163, though much less intense than those seen in the 229 

equivalent spectrum of BHT (Figs. 2b and 3b). As for BHT, loop injections of TLE from M. 230 

trichosporium were performed to obtain product ion spectra of the non-acetylated aminotriol 231 

(from parent ion m/z 546; Id). At 20 eV collision energy only limited fragmentation is observed 232 

with one minor ion of m/z 528 (loss of OH as H2O; Fig. 3c). However, at 35 eV CE, (Fig. 3d) 233 

more significant fragmentation is observed with a base peak of m/z 95 (as seen for BHT at 30 eV 234 

CE (Fig. 2d). The next most intense ion is m/z 528 which is accompanied by ions m/z 510 and 492 235 

indicating loss of a second and third OH, respectively. Loss of the amine is not observed, similar 236 

to the ion-trap MS2 spectrum (Fig. 3a). Again m/z 163 is observed and is more abundant than m/z 237 

191 with both of these ions less than 50% intensity of the m/z 528 ion. We therefore propose that 238 

the MRM transition from the parent ion m/z 546 to m/z 528 is the best target for aminotriol. 239 

However, as loss of water is not highly specific, additional target ions of either m/z 191 or m/z 163 240 

(Fig. 3d) should also be employed to support the assignment. More generally for any C-35 amine-241 

containing BHP that the generic transition [M+H]+ to [M+H-H2O]+ together with a more 242 

diagnostic ring-system ion (m/z 191 or 163 – or equivalent for methylated compounds) should be 243 

the target MRMs for these important compounds. The relevant ions for targeted MRM scans for 244 

the most commonly occurring structures of this group, including C-3 methylated compounds, are 245 

indicated in Table 1 (Id, IId, IIId, Ii, IIIi, Ij, IIIj).  246 

Bacteriohopanetetrol cyclitol ether (BHT-CE) 247 

Bacteriohopanetetrol cyclitol ether (BHT-CE; Ic) is the most commonly occurring of a group of 248 

compounds termed “composite BHPs” i.e. BHPs with a regular, linear side chain (as in BHT or 249 

aminotriol, above) but with a more complex functional group such as an amino sugar attached via 250 

an ether bond at the C-35 position. When acetylated, the major protonated molecule [M+H]+ is an 251 

ion of m/z 1002 (heptaacetate form),[15] with a subordinate contribution from the octaactetate 252 

([M+H]+ = m/z 1044).[16] The ion-trap MS2 spectra and MS-MS product ion scans of the 253 

heptaacetate are similar (Fig. 4a and b, respectively), with major fragments arising from loss of 254 

one or more acetylated hydroxyls (m/z 942, 882, 822) or loss of the entire terminal group m/z 655 255 

(and m/z 595, 535 and 475) after loss of the functional groups at C-32, 33 and 34. Finally, both 256 

spectra contain minor ions indicating the terminal moiety of m/z 330 and 348 (Fig. 4a,b). 257 

When not acetylated, the protonated molecule [M+H]+ is m/z 708 (Table 1). At 20 eV collision 258 

energy, the product ion scan only contains one significant fragment ion at m/z 162 (Fig. 4c). This 259 
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ion fragment is the terminal group (corresponding to m/z 330 in the heptaacetate; Fig. 4a,b). At 260 

higher collision energy the relative intensity of the m/z 162 ion increased and an ion of m/z 180 261 

was also observed (Fig. 4d), corresponding to the ion m/z 348 in the heptaacetate (Fig. 4a,b). The 262 

structure of the ion m/z 222 is unknown (Fig. 4d). As the ions m/z 162 and 180 will be present in 263 

the spectra of all compounds of this type (from parent ion [M+H]+), either with methylation in the 264 

ring system or with additional hydroxyls at C-31 (e.g. Ik) or C30 and C31 (Im), these ions are 265 

good targets for MRM transitions as indicated in Table 1.  266 

 267 

30-(5’-Adenosyl)hopane (adenosylhopane) 268 

Adenosylhopane (Ie) is an important BHP as it is a biosynthetic intermediate in the addition of 269 

the side chain to the precursor C30 hopanoid diploptene.[40] Unlike the structures described above, 270 

the side chain in adenosylhopane is cyclised containing a heterocyclic oxygen atom. When 271 

acetylated this structure has been found to produce both di, tri and even tetra acetate (adduct) 272 

forms,[29] with protonated molecules of m/z 746, 788 and 830, respectively (Table 1). Examples of 273 

the mass spectra of the triacetylated form (from parent ion m/z 788) from ion-trap (see also[17,29]) 274 

and quadrupole MS-MS product ion scan are shown (Fig. 5a,b). In both cases the fragment ion 275 

m/z 611 [M+H-adenine]+ dominates the spectrum followed by m/z 178 which represents the 276 

acetylated adenine moiety.  277 

The non-acetylated protonated molecule [M+H]+ is m/z 662 (Table 1). Only one peak was detected 278 

in the m/z 662 mass chromatogram of the Tyne sediment SPE polar fraction. APCI product ion 279 

scans of ion m/z 662 at 20 eV was surprisingly simple with the only ions observed being m/z 662 280 

and 136 (Fig. 5c; similar to that of BHT-CE at 20 eV collision energy; Fig. 4c). The ion m/z 136 281 

is consistent with the protonated adenine moiety after cleavage between of the C-35 to N bond. 282 

Increasing the collision energy to 35 eV only increased the intensity of the m/z 136 ion and reduced 283 

the m/z 662 ion; (Fig. 5d) no other fragments were observed even at 40 eV. This observation was 284 

unexpected given the more complex spectra of the acetylated compounds from either instrument 285 

(Fig. 5a,b).[17] and may be due to stability of the protonated aromatic adenine moiety upon 286 

cleavage of the C-N bond. The dominance of a single fragment ion in the product ion spectrum of 287 

adenosylhopane (Fig. 5c,d) will produce a strong response during MRM analysis, potentially 288 

much higher than for other BHPs which produce multiple ion fragments. 289 
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A methylated homologue of adenosylhopane is known (IIe,[17] with [M+H]+ 14 Da higher at m/z 290 

676 but with the same terminal group (adenine; Table 1). Two other related pairs of methylated 291 

and non-methylated homologues are known with each pair comprising a different terminal group 292 

(TG; f and f’) at the C-35 position.[29,41] APCI/MSn analysis has indicated that the equivalent TG 293 

ion to m/z 136 in diacetyl-adenosylhopane or m/z 178 in triacetyl-adenosylhopane (Fig. 4a,b) for 294 

these compounds are m/z 151 (from parent ion m/z 761, terminal group not acetylated) and m/z 295 

192 (from parent ion m/z 802, terminal group with 1 acetylated functionality), respectively. The 296 

exact TG structure of these compounds is currently unknown meaning that they are known simply 297 

as “Adenosylhopane Type-2” (If, IIf) and “Adenosylhopane Type-3” (If’, IIf’), respectively.[6,7] 298 

The equivalent [M+H]+ ions for the non-acetylated structures as well as the proposed terminal 299 

group ions (by analogy with adenosylhopane; Fig. 4c,d) to be targeted in MRM are indicated in 300 

Table 1. 301 

 302 

Optimisation of chromatography for non-acetylated BHPs 303 

Having identified suitable target ions for MRM transitions for non-acetylated BHPs (Table 1), a 304 

comparison of 2 commonly used UPLC C18 columns was undertaken. The columns chosen were 305 

the Waters BEH C18 (1.7 m particle size, 2.1 x 100 mm) and the ACE Excel C18 (2.0 m particle 306 

size, 2.1 x 100 mm). The latter was chosen as this column is highly base deactivated to facilitate 307 

analysis of compounds containing primary amines (e.g. aminotriol, Id). Conversion of the 308 

standard 60 min gradient used for HPLC analysis of acetylated BHPs on the Phenomenex Gemini 309 

C18 (5, 3 x 150 mm; 0.5 mL/min)[17,18] to the UPLC columns suggests a linear gradient of 100% 310 

solvent mix A (see Methods) to 100% solvent mix B in 3.47 min which we adjusted to 3.5 min. 311 

A subsequent isocratic period at 100% B of 2 min duration proved sufficient to allow elution of 312 

all commonly occurring BHPs discussed above. The ACE Excel column showed good separation 313 

of all major BHPs discussed above in the SPE polar fraction of Tyne River sediment including 314 

major (IIa) and minor (IIIa) methylated isomers of BHT (from parent ion m/z 529 and 543; Fig. 315 

6a). However, we have yet to investigate samples containing other minor isomers or unsaturated 316 

structures.[18] Using the same sample, and running under identical chromatographic conditions and 317 

detection parameters, but with the Waters BEH C18 column (Fig. 6b) it was possible to detect 318 

BHT, both methylated homologues, a related composite BHP similar to BHT-CE but without any 319 

N atoms in the structure (BHT-pseudopentose; parent ion m/z 691, In) and adenosylhopane (parent 320 

ion m/z 662, Ie) with near identical chromatographic separation to the ACE column (except for 321 
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partial co-elution of the C-2 and C-3 methylated isomers of BHT; Fig. 6a,b). However, we were 322 

unable to detect either the C-35 amines (aminotriol [Id], aminopentol [Ij]; parent ions m/z 546 323 

and 578 respectively; Fig. 6b) or the amine-containing composite structure BHT-CE (Ic; parent 324 

ion m/z 708) via the Waters BEH C18 column (Fig. 6b), attesting to the excellent base-deactivated 325 

properties of the ACE column.  326 

Previously, the full suite of adenosylhopane and related compounds have been observed in River 327 

Tyne SPE polar fractions,[27] including adenosylhopane (Ie), Type -2 (If) and Type-3 (If’) and 328 

their C-2 methylated homologues (IIe, IIf, IIf’), although the adenosylhopane Type-3 compounds 329 

were present only at very low levels (If’, IIf’; Fig. 7a). Here, using UPLC/MS-MS and selecting 330 

MRMs based on the product ion scan of adenosylhopane at 30 V collision energy (Fig. 5d), we 331 

were able to also detect the adenosylhopane Type-2 and Type-3 compounds as one strong peak in 332 

each MRM trace (m/z 677 to m/z 151 and m/z 676 to m/z 150 respectively; Fig. 7b). However, the 333 

MRMs for the methylated structures (m/z 676 to m/z 136, m/z 691 to 151 and m/z 690 to 150, 334 

respectively; Fig. 7b), each showed a cluster of closely eluting peaks. In all cases the major peak 335 

(indicated as the II homologue in Fig. 7b) co-eluted with the non-methylated compound. The 336 

assignment of this peak as the C-2 methylated isomer is based on comparison of the relative 337 

position of BHT (Ia) and the major methylated homologue (IIa) in the River Tyne sediment (Fig. 338 

6a) together with prior knowledge that the C-2 isomer is significantly more abundant in this setting 339 

than the C-3 isomer based on multiple analyses of samples taken from the same location using the 340 

HPLC-MSn method for acetylated BHPs.[27] A number of possibilities are considered for the 341 

identities of the other peaks. This could include C-3 methylated structures which elute later then 342 

the C-2 compounds under these conditions, confirmed via analysis of the SPE polar fraction of a 343 

sample of Methylococcus capsulatus Bath which is known to biosynthesise C-3 homologues of 344 

the primary amines compounds (Fig. 8).[42] Another possibility is a structure related to the novel 345 

side-chain methylated compounds recently identified in extracts from the Eocene Cobham 346 

Lignite.[36] Although the exact position of the side chain methylation could not be determined in 347 

that study, it was proposed that it is most likely to be located at C-31 by comparison with other 348 

studies.[43,44] The observation of so many peaks in the putative methylated-adenosylhopanes 349 

chromatograms is, however, unexpected as this had not been identifiable in previous analyses via 350 

HPLC/MSn.[29,41]  351 

 352 

 353 
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Towards quantitative analysis 354 

This work has shown that different BHP structures demonstrate very different fragmentation 355 

behaviour when acetylated versus not acetylated. This was particularly evident for non-acetylated 356 

adenosylhopane which produce only one fragment ion in the MS-MS product ion scan (Fig. 5c,d) 357 

promising superior sensitivity to other BHPs which produce multiple fragments under identical 358 

conditions and collision energies (Figs. 2, 3, 4). Until such time as authentic standards are 359 

available for a wide range of non-acetylated BHP structures, it will not be possible to fully test 360 

the sensitivity of the system for quantitative analysis, although we believe this configuration has 361 

some advantages over the Malott et al.[23] method. For example, the use of APCI avoids production 362 

of sodium adducts and clearly the choice of column is also very important when dealing with 363 

compounds containing amines. Other authors reported problems with the dissolution of BHPs in 364 

the injection solvent used in their studies. Here, we found that this problem was most significant 365 

for the C-35 amine-containing BHPs which also caused problems by contaminating the injection 366 

system leading to carry over from one run to the next; however, use of the all PEEK injection 367 

needle appears to have resolved this issue. The recently published method for large scale 368 

biosynthesis and purification of BHT (Ia) and 2-methyl-BHT (IIa)[26] is an excellent step towards 369 

full quantification, although representative standards of non-derivatised compounds from a range 370 

of structural subgroups are still lacking at this time. 371 

 372 

CONCLUSIONS 373 

In this study, we have developed a new reversed phase UPLC/MS-MS based method using an 374 

ultra inert, base deactivated ACE Excel UHPLC column for the identification of BHPs in lipid 375 

extract from an estuary sediment and bacterial cultures, but which can also be applied to lipid 376 

extracts from other matrices. MS-MS product ion spectra of non-derivatised BHPs are 377 

significantly different to ion trap MS2 spectra of the equivalent peracetates. Optimising transitions 378 

for MRM detection for maximum selectivity shows that sensitivity for adenosylhopane (and 379 

related compounds) is significantly enhanced relative to other BHPs and relative to previous 380 

methods due to the dominance of a single fragment ion in the APCI spectrum. Separation of some 381 

methylated homologues can be enhanced using ACE Excel AR column, although, it has a 382 

deleterious effect on the peak shape of other compounds. Authentic non-derivatised pure standards 383 

are now required to optimise sensitivity and for quantitative analysis. 384 
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Figure Legends 520 

Figure 1. Ring system and side chains of BHPs discussed in the text and listed in Table 1. 521 

Figure 2. (a) Ion-trap APCI MS2 spectrum of peractylated BHT (see also [14,15]); (b) UPLC/MS-522 

MS APCI product ion scan of peracetylated BHT; (c and d) UPLC/MS-MS APCI product scans 523 

of non-derivatised BHT at 20 eV and 30 eV collision energy (CE) respectively. Major 524 

fragmentation pathways are indicated on structures. 525 

Figure 3. (a) Ion-trap APCI MS2 spectrum of peractylated aminotriol (see also [15]); (b) 526 

UPLC/MS-MS APCI product scan of peracetylated aminotriol; (c and d) UPLC/MS-MS APCI 527 

product scans of non-derivatised aminotriol at 20 eV and 35 eV collision energy (CE) 528 

respectively. Major fragmentation pathways are indicated on structures. 529 

Figure 4. (a) Ion-trap APCI MS2 spectrum of BHT cyclitol ether (CE) heptaacetate (see also 530 

[14,15]); (b) UPLC/MS-MS APCI product scan of peracetylated BHT-CE; (c and d) UPLC/MS-531 

MS APCI product scans of non-derivatised BHT-CE at 20 eV and 30 eV collision energy (CE) 532 

respectively. Major fragmentation pathways are indicated on structures. 533 

Figure 5. (a) Ion-trap APCI MS2 spectrum of triacetylated adenosylhopane (see also [17,29]); (b) 534 

UPLC/MS-MS APCI product scans of triacetylated adenosylhopane; (c and d) UPLC/MS-MS 535 

APCI product scans of non-derivatised adenosylhopane at 20 eV and 30 eV collision energy 536 

(CE) respectively. Major fragmentation pathways are indicated on structures. 537 

Figure 6. Selected UPLC APCI MS-MS MRM chromatograms of non-derivatised BHPs on (a) 538 

ACE Excel C18 column and (b) Water BEH C18. MRMs: BHT (Ia; m/z 529 to m/z 191), 539 

methylated BHT (IIa and IIa; m/z 543 to m/z 205), BHT pseudopentose (In; m/z 691to m/z163), 540 

adenosylhopane (Ie; m/z 662 to m/z 136), aminotriol (Id; m/z 546 to m/z 528), aminopentol (Ij; 541 

m/z 578 to m/z 560) and BHT-CE (Ic; m/z 708 to m/z 162).  542 

Figure 7. (a) HPLC APCI-MSn mass chromatograms of adenosylhopane (combined di, tri- and 543 

tetraacetates) (m/z 746+788+830), methylated adenosylhopane (combined di, tri- and 544 

tetraacetates) (m/z 760+802+844), adenosylhopane Type-2 diacetate (m/z 761), methylated 545 

adenosylhopane Type-2 diacetate (m/z 775), adenosylhopane Type-3 triacetate (m/z 802) and 546 

methylated adenosylhopane Type-3 triacetate (m/z 816). For explanation of identification of 547 

the different, but as yet unknown, terminal groups (g and g’) (see [29,41]) (b) UPLC APCI MS-548 

MS MRM chromatograms of adenosylhopane (Ie; m/z 662 to 136), methylated adenosylhopane 549 
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(IIe; m/z 676 to m/z 136), adenosylhopane “Type 2” (If; m/z 677 to m/z 151), methylated 550 

adenosylhopane “Type 2” (IIf; m/z 691 to m/z 151), adenosylhopane “Type 3” (If’; m/z 718 to 551 

m/z 150) and methylated adenosylhopane “Type 3” (IIf’; m/z 732 to m/z 150).  552 

Figure 8. (a) UPLC APCI MS-MS MRM chromatograms from TLE of Methylococcus capsulatus 553 

Bath showing of aminotetrol (Ii; m/z 562 to m/z 544), 3-methylaminotetrol (IIIi; m/z 576 to 554 

m/z 558, aminopentol (Ij; m/z 578 to m/z 560) and 3-methylaminopentol (IIIj; m/z 592 to m/z 555 

574). 556 
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Table 1. Commonly occurring BHPs and methylated homologues showing observed and predicted product ions for MRM detection. Base peak ion 557 

observed for peracetylated structures are indicated to aid comparison with previous studies.  558 

Name Structure na [M+H]+ 

 

 

m/z 

[M+H-

H2O]+ 

 

m/z 

[M+H-

2(H2O)]+ 

 

m/z 

[M+H-

n(H2O)]+ 

 

m/z 

[M+H-

n(H2O)-

NH3]+ 

m/z 

A+B 

rings 

 

m/z 

Other 

ions 

 

m/z 

TGOH2
+ 

b 

 

m/z 

TG+ 

 

 

m/z 

Base peak 

when 

acetylated 

m/z 

BHT Ia 4 547 529c 511 475  191d 163d   655 

Methyl-BHT IIa, IIIa 4 561 543 525 489  205 177   669 

Pentol  Ig 5 563 545 527 473  191 163   713 

Hexol Ih 5 579 561 543 471  191 163   771 

Aminotriol Id 3 546c 528d 510 492 475 191 163   714 

Methyl-Aminotriol IId, IIId 3 560 542 524 506 489 205 177   728 

Aminotetrol Ii 4 562 544 526 490 473 191 163   772 

Methyl-Aminotetrol IIIi 4 576 558 540 504 487 205 177   786 

Aminopentol Ij 5 578 560 542 488 471 191 163   830 

Methyl-Aminopentol IIIj 5 592 574 556 502 485 205 177   844 

BHT Glucosamine Ib 3 708 690 672 636  191  180 162d 1002 

BHT-Cyclitol ether Ic 3 708 690 672 636  191 222 180 162 1002 

Methyl-BHT Cyclitol ether IIc, IIIc 3 722 704 686 650  205  180 162 1016 

Bhpentol Cyclitol ether Ik 4 724 706 688 652  191  180 162 1060 

Methyl-Bhpentol cyclitol ether IIk, IIIk 4 738 720 702 666  205  180 162 1074 

Bhhexol-cyclitol ether Im 5 740 722 704 668  191  180 162 1118 

Methyl-Bhhexol cylcitol ether IIm, IIIm 5 752 734 716 680  205  180 162 1132 

BHT pseudopentose In 3 709 691 673 637  191 163 181 163 943 

Methyl-BHT pseudopentose IIn 3 723 705 687 651  205 177 181 163 957 

Adenosylhopane Ie 2 662        136d 746/788/830e 

Methyl-Adenosylhopane IIe 2 676        136 760/802/844e 

Adenosylhopane Type 2 If 2 677        151 761f 

Methyl-adenosylhopane Type 2 IIf 2 691        151 775f 

Adenosylhopane Type 3 If' 2 676        150 802g 
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Methyl-adenosylhopane Type 3 IIf' 2 690        150 816g 

 559 

a N indicates number of OH groups in intact structure 560 

b TG = Terminal Group (at C-35 position; Fig. 1) 561 

c ions indicated in bold font are base peak ions under positive ion APCI and should be used as parent ions for MRMs 562 

d ions with single underline are potential product ion targets for MRM transitions 563 

e di-, tri- and tetraacetate forms are known for these structures[29] 564 

f-diacetate only 565 

g triacetate only 566 

  567 
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35
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Ia IIa 

 

IIIa 

   

Ib R1 = R2 = H: Ic 

R1 = CH3, R2 = H: IIc 

R1 = H, R2 = CH3: IIIc 

 

R1 = R2 = H: Id 

R1 = CH3, R2 = H: IId 

R1 = H, R2 = CH3: IIId 

 

 
 

R = H: Ie 

R = CH3: IIe 

R = H: If and If’ (R = unknown)  

R = CH3: If and If’ (R = unknown) 

 

Ig 
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Ih R = H: Ii 

R = CH3: IIIi 

 

R = H: Ij 

R = CH3: IIIj 

   
R1 = R2 = H: Ik 

R1 = CH3, R2 = H:IIk 

R1 = H, R2 = CH3: IIIk 

R1 = R2 = H: Im 

R1 = CH3, R2 = H: IIm 

R1 = H, R2 = CH3: IIIm 

 

R = H: In 

R = CH3: IIn 

 568 

Figure 1. Ring system and side chains of BHPs discussed in the text and listed in Table 1. 569 
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