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ARTICLE

A flexible topo-optical sensing technology with
ultra-high contrast
Cong Wang 1, Ding Wang1, Valery Kozhevnikov2, Xingyi Dai3, Graeme Turnbull 2, Xue Chen1, Jie Kong3✉,

Ben Zhong Tang 4✉, Yifan Li 1✉ & Ben Bin Xu 1✉

Elastic folding, a phenomenon widely existing in nature, has attracted great interests to

understand the math and physical science behind the topological transition on surface, thus

can be used to create frontier engineering solutions. Here, we propose a topo-optical sensing

strategy with ultra-high contrast by programming surface folds on targeted area with a thin

optical indicator layer. A robust and precise signal generation can be achieved under

mechanical compressive strains (>0.4). This approach bridges the gap in current mechano-

responsive luminescence mechanism, by utilizing the unwanted oxygen quenching effect of

Iridium-III (Ir-III) fluorophores to enable an ultra-high contrast signal. Moreover, this tech-

nology hosts a rich set of attractive features such as high strain sensing, encoded logic

function, direct visualisation and good adaptivity to the local curvature, from which we hope it

will enable new opportunities for designing next generation flexible/wearable devices.
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One of the latest trends in next generation micro-electronics
technology is to develop flexible optical sensors and
actuators, which holds promises in strain/pressure sen-

sing1–4, wearable devices5–7, electronic skin8–10, camouflaging11,
etc. By utilizing soft materials, recent efforts have explored the
flexible optical technology with extra controllability and on-
demand color changing such as triboelectric–photonic12,13, piezo-
electroluminescent14, piezo-photonics15–17, mechano-responsive
luminescence (MRL) and mechanochromism18. Among those
approaches, MRL, a tunable and switchable luminescence (or
chromism) in response to mechanical stimulus19,20, have attracted
considerable interests for their potentials in sensing/micro-devi-
ces21, data storage22,23, flexible display24,25, security pattern/
inks26, etc. However, the optical performance has been discounted
by aggregation-caused quenching (ACQ)27,28, thus limit the fur-
ther applications for MRL materials. Whereas the current
advances in Aggregation-induced emission (AIE) have achieved
emergence characteristics at molecular level to overcome the
drawbacks of ACQ29–31, novel optical sensing mechanisms remain
yet to be exploited to enable wider scale-up perspectives.

Inspired by epidermal color changing scheme from nature,
researchers have been able to amplify signal by generating
luminescent molecular dominos19 thus realize multi-state optical
switching by engineering micro/nano-structures on surface18.
By far, all practiced strategies will easily result into a noisy
and low-resolution signal, which poses challenges in triggering
controllable signals for scalable applications. Subject to the
mechanical stimuli, elastomeric materials can undergo surface
morphological change (e.g. wrinkles and cracks) which has been
used to create switchable optical features25,32, and structural
colour with dynamic luminescent patterns33. Zeng et al reported
an interesting mechanochromic device by using cracks and
folds34 to trigger optical signals within a moderate stretching
strain of 0.2. While the understandings on controllably generating
elastic instability morphologies have been extended35–38, even to
form 3D structures39–41, surface topology enabled optical sensing
in response to large compressive strain (more than 0.4) has not
been reported elsewhere.

In this work, we propose a topo-optical sensing strategy with
ultra-high contrast by constructing a patterned elastic multilayer
coated with a nanometer thin optical indicator layer. The keys to
achieve such high contrast topo-sensing strategy include the
targeted folding on elastic surface guided by the pre-defined lat-
tice pattern and the autonomous optimization of contrast by
selectively oxygen quenching of the coated Iridium-III complexes
(Ir-III) fluorophore layer. The unique self-contact geometry of
folding area preserves intensity by mechanically creating a
hypoxia zone, whereas the intensity reduces significantly for the
rest of surface due to the oxygen-quenching at the open air.
Moreover, we successfully demonstrate several conceptual designs
based on this topo-sensing approach such as an in-plane strain
sensor, a 2D spy barcode, an adaptive topo-optical grid with
potential for bio-applications and a flexible bending sensor, to
shed the lights on the future applications in micro-devices and
flexible/wearable electronics.

Results
Configuration of targeted folding on elastic multilayer. The
multilayer system consists of a soft polydimethylsiloxane film
(PDMS, shear modulus Gsub ≈ 0.15 MPa, thickness of 125 µm) on
a vinylpolysiloxane mounting substrate (VPS, shear modulus ≈
0.35MPa, thickness of 1.5 mm). Oxygen plasma was applied to
create a hard skin layer (shear modulus Gf ≈ 1.8 MPa, thickness of
100 nm) on the top of PDMS film. By applying a uniaxial com-
pression (Fig. 1a), εcomp ¼ L0

L � 1, an elastic morphological

development is shown on the surface. A similar setting has been
previously used to configure wrinkle pattern by pre-placing
Bravais lattice holes on the surface at low compression42, where
an unexpected formation of wrinkle-to-crease/folding transition
was discovered occasionally under a higher compression (ε > 0.4)
but have not been studied further. The key in this work is to
investigate the controllable formation of targeted crease/fold at
higher compression and translate this topographical transition
into a dedicated sensing signal in responding to a compressive
strain.

We first compare the development of elastic morphologies with
reflective optical microscopy between a plain (Fig. 1b) and a
patterned surface with a single-line array of micro-holes as shown
in Fig. 1c (diameter= 60 μm, distance D= 120 μm, hole depth h
= 12 μm, Supplementary Movie 1). Wrinkle patterns are devel-
oped globally for both plain and centre lattice hole patterned
surfaces at low compressive strains and evolved into visible
textures when strain increases to ε= 0.27. A strain energy
localization guided by the pre-placed pattern can be clearly
identified along the micro-holes array. The surface presents a
post-wrinkling development with mixed morphologies at middle
compressive strains (i.e. ε= 0.38). According to Kim and co-
workers, surface wrinkles will first undergo period doubling,
followed by the formation of creases under a modulus ratio
(Gf/Gsub) between 5.86 and 13.8943,44. A threshold strain (εth) is
the compressive strain when the first fold occurs on surface,
which is variable against the setting factors for multilayer. Here, a
compressive strain of ε= 0.52, which is slightly higher than εth, is
chosen to compare folding conditions at the same energy level.
We find that a few random folds (pointed by red arrows in
Fig. 1b) appear on the plain surface, while a single big fold locates
at the area that is defined by the pre-placed holes on surface
(dotted line in Fig. 1c). Single-line array with varied pattern
shapes (circles, diamonds, squares, triangles and hexagons,
Supplementary Fig. 1) and different D/Φ (Supplementary Fig. 2)
are also attempted, where a range of εth from 0.42 to 0.58 can be
achieved by designing the shape and D/Φ. However, the εth shows
less sensitivity on the depth of lattice pattern (Supplementary
Fig. 3), which agrees with the reported results on configuring the
wrinkle patterns with Bravais lattice45.

Realization of topo-optical sensing. The concept of translating
surface topology into optical signal (Topo-optical sensing) is
initially facilitated (Fig. 1a) through casting and drying a drop of
solution containing 1.3 mM fluorescein o-acrylate (FoA) on the
elastic surface, to fulfil the photo-luminescence function. When
the fold occurs, the in-plane length (L) locally develops into a self-
contact depth (Hc, Fig. 1a), lead to an optical signal from the top
view because of the volumetric accumulation of intensity. By
assessing the optical properties for the morphologies at (ε= 0.52)
for both plain and micropatterned surfaces under laser scanning
confocal microscopy (LSCM, Fig. 1d, e), a single-line optical
signal is clearly shown on the location defined by the micro-
pattern with an enhanced intensity (side view). We define a
signal-to-noise ratio (SNR) as, SNR ¼ peak intensity

noise , to quantitatively
analyse the optical signal, where the peak intensity is collected
from the signal of folded line and the noise represent the average
luminescence signals originated from the background surface
(excluding the folding line). In Fig. 1f, a higher SNR value is
obtained for the patterned surface than that of plain surface. With
a hole array, surface energy can be guided to form a single fold
with a deeper self-contact (Fig. 1e), rather than a distractive
energy localization with multiple folds/creases on the plain sur-
face. From the LSCM 3D reconstruction image (green opened
book, Fig. 1g) for the FoA patterned surface, we note that the
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signal noise on background remains considerably high, due to the
discontinuous fluorescein aggregation caused by small creases/
folds45.

Selectively oxygen-quenching induced ultra-high contrast. The
Iridium-III (Ir-III) complex is an oxygen-quenching phos-
phorescent material which usually emits orange-red coloured
light (λemission= 580 nm, Fig. 2a) in hypoxia condition after
being excited45. Our aim is to utilize the topological hypoxia
zone, created by targeted folding, to preserve the optical signal
on the self-contact region for the Ir-III coating layer (Fig. 2b).
Exposed to the oxygen in open air, Ir-III complex luminescence
outside of the folding area is mostly eliminated by the oxygen
quenching effect, leading to a topo-optical signal with ultra-
high contrast (see “blade” pattern in Fig. 2c and intensity
analysis in Fig. 2d). A nominal line contrast (NLC) is defined as
NLC ¼ peak intensity

mean average of the line intensity, to describe the optical signal
distribution for the selected area. After analysing the NLC data
(Fig. 2e) for the selected lines in Figs. 2b, 1e, an NLC value of 10
is achieved for the Ir-III coated surface, which is 5 folds of the
NLC (~2) for FoA coated surface.

We next scale this topo-optical relationship (SNR versus Hc,
Fig. 2f) to understand the geometrical influence on the quality of
signal. Small SNRs of 0.47 ± 0.04 are captured when the fold first
occurs at εth with an onsite Hc ≈ 1.1 μm, for both Ir-III and FoA
coated surfaces. When Hc grows higher than 1.6 μm, a stable SNR
plateau (SNR ≥ 2) is emerging for FoA coated surface which

indicate that the physical accumulation along the folding depth
reaches a threshold of intensity to enable a quality optical
feedback. This development of self-contact depth, around 500 nm
in distance, is very rapid within a strain window of ~0.037 ±
0.017. Given by a nominal strain speed of 0.02 s−1, the sensing
signal can be instantly captured in microscope within 1 s. In
contrast, an increasing trend is obtained for Ir-III coated surface
at the same threshold when Hc increases, due to the oxygen
quenching effect at the open air. When the Hc reaches 13.8 μm,
the SNR on Ir-III coated surface increases significantly to 12.5
which is 6 folds of that from FoA coated surface. By preserving
the peak intensity at self-contact area, the Ir-III coated surface
achieve higher SNRs when Hc is larger than 1.6 μm.

The time-dependent degradation of photoluminescent signal is
assessed by tracking the peak and background signals at εcomp=
0.55 (Hc ~ 13.8 μm) for up to 200 h. The results for FoA coated
surface (Fig. 2g) show a retainment of intensity after 200 h with
less than 8% decay for both peak and background signals. For Ir-
III coated surface, a rapid decrease of around 92% intensity is
discovered in first 6 h for the background signal, whilst the peak
signal remains stable for the first 70 h, then starts to fade and
reaches a decrease of 54% in 200 h. The quenching kinetics is
analysed for the Ir-III films on PDMS surfaces with varied
thicknesses (Supplementary Fig. 4) in the open air, where the
optical signals are quenched for about 5 h in all layers without
compression. Under compression, the topology enabled hysteresis
results (Fig. 2g) into a high optical contrast for about 65 h, then
the peak intensity eventually reduces due to the diffusion of
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oxygen into the elastic solids. The kinetics of diffusing oxygen
into the self-contact region of PDMS surface is complicated as it
corresponds to the factors such as temperature, local oxygen
concentration, humidity, surface porosity, chemical composition,
etc, we thus defer this understanding into future study.

Numerical analysis of self-contact depth guided by surface
pattern. We next perform numerical analysis with a commercial
finite element simulation software to understand the mechanism
of generating targeted folding. The single array of holes with
varied geometrical inputs are considered to simulate the in-plane
(Supplementary Movie 2) and out of plane (cross-section, Sup-
plementary Movie 3) strain energy localization. By comparing the
results for D/Φ= 1 (Fig. 3a) and D/Φ= 5 (Fig. 3b), we find that
the in-plane strain concentration for D/Φ= 1 is stronger than
that for D/Φ= 5. The out-of-plane (cross-section) simulation
results suggest a progressing deformation with the closure of hole
(initiation of Hc), development of Hc as a folded contact with
non-contact at the bottom (see Fig. 3b), then finally reaching a
fully self-contact stage (creasing type, Fig. 3a).

As described above, the development of self-contact is rapid
from an onsite Hc at εth, to the Hc that can provide enough
contrast. We next numerically analysis the εth as a function of
D/Φ (Φ= 40 μm) to study the threshold of generating optical
signal guided by hole pattern. After comparing with the
experimental results (Fig. 3c), the experimental results seem
larger than the simulation results for Φ= 40 μm, but good
agreements on the overall trend are obtained for the surface, even
for those surfaces patterned with different D/Φ. It should be
noted that we slightly over-compressed the surface to determine
the closure stage for each hole under reflective optical micro-
scope, due to the visco-elastic nature of materials. Thus, the

experimental εth in this paper are a little larger than the simulated
ones. The simulation for surface patterned with sharp corners
(diamonds, squares, triangles and hexagons) are less successful at
the moment as the current simulation programme does not allow
the mesh process to progress over the sharp corner, we then
separate the investigation in future work.

Following to the onsite of folding, further transient develop-
ment of Hc is critical in determining the intensity of optical signal.
We plot nominal self-contact depths (Hc/h) for different D/Φ
(Φ= 40 μm) as a function of compressive strain (Fig. 3d) to
understand this geometrical development. Excellent alignments
are found between the numerical outcomes and experimental
results for D/Φ= 1 and D/Φ= 5, meanwhile a slight mismatch is
presented for D/Φ= 2. A region (grey zone) with Hc/h values
between 0.15 and 1.2 located on a strain range of 0.39–0.59 is
outlined by analysing the experimental results where we can
expect the ideal optical signals. The results from cyclic testing
(Fig. 3e) indicate a good resilience on generating target folding
with a desired self-contact Hc (Hc of 10 μm for Φ= 40 μm and a
Hc of 18 μm for Φ= 80 μm, D/Φ= 2), to create enough intensity
of optical signal, after a short saturation period of 1–2 cycles. The
marathon cyclic assessment reveals a reliable reproducibility of Hc

even after 100 cycles (Supplementary Fig. 5), due to the elastic
nature of multilayer. Further study on the relaxation of folding
was performed by tracing Hc over a longer time duration, to
compare with the simulation results (Supplementary Fig. 6a) at a
nominal compressive strain (εcomp) of 0.5. The result indicates a
limited relaxation in Hc, which is in the same trend with the
theoretical approximation. Low hysteresis is observed during the
compression/recovery cycle (Supplementary Fig. 6b). The reason
could be the elastic nature of multilayer system and low
surface tension45,46 after being coated by Ir-III compound. We
then extend the surface design to the square lattice patterns
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(Supplementary Movie 4), where W is defined as the distance
between neighbouring lines (Supplementary Fig. 7). The results
suggest that varied εth at high strain can be achieved by designing
D/Φ, W/D of the lattice pattern, together with more capabilities
on 2D designs.

Demonstration of potential applications. To demonstrate the
potential of developing this topo-optical sensing mechanism into
device applications, an in-plane topo-optical sensor (Fig. 4a) is
presented to detect large surface strains, by simply configuring the
pattern parameters (shape, D/Φ, etc) for the pre-placed lattice
(Supplementary Movie 5). A programmable stepwise switching
mechanism is encoded in this design, where a reversible line
pattern could be logically switched between ‘0,0,0’ at ε= 0, ‘1,0,1’
at ε= 0.44 and ‘1,1,1’ at ε= 0.52, with corresponding optical
signals can be visualized by reflective optical microscopy and
fluorescence microscopy at the same time. This concept can be
further developed into dynamic 2D spy barcode products with
hidden information only appearing under a dedicated stain
(Fig. 4b) and an adaptive topo-optical luminescence grid (Fig. 4c),
which contains a tuneable feature on the size of grid under equi-
biaxial compression to track the cell behaviour.

Based on this topo-optical sensing strategy, a flexible bending
sensor can be developed by combining the in-plane pre-compres-
sion (εpre-c, Fig. 4d) to detect out-of-the-plane bending degree. After
releasing pre-stretching strain of substrate (stage I), we deploy the
device on the area to detect the bending level. By observing under
microscopy, the device first experiences a selective fold on the lattice
patterned surface at low degree bending (stage II), then all lattice
patterns are folded at high degree bending (stage III). A brief phase
diagram is created to distinguish the two-stage bending sensing for
the patterned surface (Φ= 80 μm, h= 12 μm, D/Φ= 1 (black line)
and 5 (red line), W/Φ= 5), where a clear map is obtained to
determine localized curvature with the provided εpre-c when the
optical signal occurs.

Discussion
We have described a topo-optical sensing strategy by targeted
generating folds on a micropatterned surface, with a coated
optical indicator layer. The elastic multilayer shows a robust and
precise optical signal by activating folds at the pre-patterned area
under certain strain values. The formation of folding patterns has
been studied with various geometrical inputs of the lattice pat-
terns and the results are in a good agreement with the predictions
from numerical analysis. An inherited automatic optimization on
optical contrast is also introduced by oxygen quenching the Ir-III
based optical indicator layer, which lead to an ultra-high contrast
by significantly reducing the background noise. We anticipate this
high-contrast topo-optical sensing strategy with the demonstrated
conceptual devices will open new windows for future applications
such as flexible/wearable electronics and bio-devices.

Methods
Fabrication of patterned multilayer elastomeric substrate. The lattice patterns
were prepared through SU-8 pillar array templates photo-lithographically pat-
terned on silicon wafer (Supplementary Fig. 8) and followed by a stamp transfer
(Supplementary Fig. 9). Single-line and square (multi-line) lattice arrays of SU-8
pillars were lithographically patterned on silicon substrates to create the stamp
template. Firstly, 1, 1, 1, 3, 3, 3-hexamethylsilazane (ACROS ORGANICS) was
spin-coated (30 s, 1000 rpm) onto the silicon wafer to promote adhesion. A thin
layer of SU-8 (2025, Micro Chem) was then spin-coated, followed by soft baking at
95 °C for 5 min, before being exposed to UV light under a mask aligner (EVG 620).
Post-exposure-bake was then performed (65 °C for 1 min, then ramped to 95 °C for
5 min). After being developed in an EC (ethylene lactate based) solution for 5 min,
the patterned SU-8 templates were cleaned by isopropyl alcohol and DI (de-
ionized) water. It was baked for another 15 min at 200 °C before stamp transfer.

The mounting substrates were made from vinylpolysiloxane elastomer (VPS,
Elite Double 22, Zhermack) and cut into rectangular strip (9 mm wide, 30 mm long
and 1.5 mm thick). The VPS strips were then mounted on mechanical vices
(Supplementary Fig. 9), before being pre-stretched uniaxially to 600% strain. A thin
layer (~125 µm) of polydimethylsiloxane (PDMS, Sylgard 184, base-to-crosslinker
weight ratio= 30:1) was spin-coated on the fabricated SU-8 pillars, followed by
60 min soft bake at 70 °C. An adhesion PDMS layer was then spin-coated (30:1)
onto the soft-baked PDMS to bond it to the mounting VPS layer. The multilayer
structures were cured at 70 °C for 8 h. An air plasma treatment (100 w, Henniker
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HPT-100) of 10 s was applied to create a thin hard skin layer on the lattice
patterned PDMS surface.

Solution casting of optical indicator layer. After the air plasma treatment, optical
indicator solutions (1.5 mM) were prepared by dissolving the dye into the absolute
ethanol and chloroform. A droplet of solution containing either fluorescein O-
acrylate (Sigma-Aldrich) or Iridium-III complex (synthesized in house following
the published route47) was then casted on the surface of multilayer. The solution
droplet then spread and dried at room temperature to form an optical indicator
layer with a measured thickness of ~600 nm.

Characterizations. Upon releasing the pre-stretched VPS mounting substrates, the
PDMS thin layer experienced uniaxial compression. Incremental deformation in a
unit nominal strain of ≈0.004 was applied to the sample during the compression
(progressing) or tension (withdrawing/recovery) by a fixed amount at regular
intervals in room temperature. A reflective optical microscope (Nikon LV-100) was
used for observation under white light. 3D and 2D fluorescence imaging was
performed using Nikon A1R LSCM system (LSCM). For all observations/tests,
multiple measurements were performed on 7–15 selected samples (areas) to
minimize the system error. For the fluorescein O-acrylate images, the scanner
selection was set to be Galvano, with laser excitation wavelength of 488 nm and
emission wavelength of 540 nm. For the Iridium-III images, the scanner selection
was set to be Galvano, with laser excitation wavelength of 406.6 nm and emission
wavelength of 595 nm. The captured fluorophore images were subsequently ana-
lysed by the MATLAB to get its light intensity data and image (surf, shading
interp). Standard deviations (error bars in the figures) were calculated based on the
mean averaging of a group of data from 7 to 9 independent measurements on
different samples.

Numerical simulation. We used the commercial simulation package—ABAQUS,
to simulate surface folding on the multilayer under uniaxial compression. The
incompressible neo-Hookean material model was used for all elastic materials in
this analysis. Structural symmetry was assumed when the fold is simulated. The
pseudo-dynamic method incorporated in ABAQUS was adopted. The geometrical
inputs have been magnified by 1000 times due to the limitation of mesh size in
ABAQUS. An element type CAX8H was used for mesh.

Data availability
The data that support the findings of this study are available via Northumbria Research
Data Management scheme and per request from the corresponding author (B.X.).

Code availability
The numerical code developed in this work is available upon request from Dr. Xue Chen
(sherry.chen@northumbria.ac.uk).
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