
Northumbria Research Link

Citation: Orozco-Fuentes, Sirio, Griffiths, G., Holmes, M.J., Ettelaie, R., Smith, J., Baggaley,
A.W. and Parker, N.G. (2019) Early warning signals in plant disease outbreaks. Ecological
Modelling, 393. pp. 12-19. ISSN 0304-3800 

Published by: Elsevier

URL:  httpS://doi.org/10.1016/j.ecolmodel.2018.11.003
<httpS://doi.org/10.1016/j.ecolmodel.2018.11.003>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/42698/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


Early warning signals in plant disease outbreaks

S. Orozco-Fuentesa, G. Griffithsa, M. J. Holmesb, R. Ettelaieb, J. Smithb, A. W. Baggaleya and N. G. Parkera

aSchool of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

bSchool of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK

Abstract

Infectious disease outbreaks in plants threaten ecosystems, agricultural crops and food trade. Currently, several
fungal diseases are affecting forests worldwide, posing a major risk to tree species, habitats and consequently ecosys-
tem decay. Prediction and control of disease spread are difficult, mainly due to the complexity of the interaction
between individual components involved. In this work, we introduce a lattice-based epidemic model coupled with a
stochastic process that mimics, in a very simplified way, the interaction between the hosts and pathogen. We studied
the disease spread by measuring the propagation velocity of the pathogen on the susceptible hosts. Our quantitative
results indicate the occurrence of a critical transition between two stable phases: local confinement and an extended
epiphytotic outbreak that depends on the density of the susceptible individuals. Quantitative predictions of epiphy-
totics are performed using the framework early-warning indicators for impending regime shifts, widely applied on
dynamical systems. These signals forecast successfully the outcome of the critical shift between the two stable phases
before the system enters the epiphytotic regime. Our study demonstrates that early-warning indicators could be useful
for the prediction of forest disease epidemics through mathematical and computational models suited to more specific
pathogen-host-environmental interactions. Our results may also be useful to identify a suitable planting density to
slow down disease spread and in the future, design highly resilient forests.
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1. Introduction

Invasive non-indigenous pathogens and vectors such as fungi, bacteria and insects pose a serious threat to trees
and forest health worldwide. The recent and well-publicised outbreak of the ash dieback fungus (Hymenoscyphus
pseudoalbidus) and emerald ash borer (Agrilus planipennis) risks the survival of the ash tree (Fraxinus excelsior) in
the UK, one of the most abundant trees in small woodlands and high forests across the country (Maskell et al., 2013;
Forest Research, 2016). At the same time, this fungus, threatens the ash tree extinction across the European continent
(Mitchell et al., 2014; Thomas, 2016; Gross et al., 2013). The larch tree disease, caused by the fungus Phytoph-
thora ramorum (P. ramorum), continues to spread through conifer forests in both Scotland and Wales, changing the
landscape and forcing the Forestry Commission to fell thousands of hectares of trees to slow down the spread of the
disease (Forestry Commission, 2018a).

Historically, these events cause catastrophic ecological, economic and social impact, and motivate a detailed
understanding of the mechanisms that underlie the epidemics, from which strategies to manage and prevent future
occurrences can be developed systematically (Harwood et al., 2010). The propagation of these infectious agents to
the susceptible trees depends on a plethora of biological, geographical, climatic and anthropological factors. In the
literature, several spatial models have been developed for forests diseases, that consider specific factors aiding the
dispersal of invasive pests, such as vectors (insects, humans) or economical activities like the international plant trade
and timber industry (Macnadbay et al., 2004; Alfinito et al., 2016; Harwood et al., 2010). However, these models,
specifically designed to account for large geographical areas of natural forests, are very complex and require a large
amount of input data to predict the disease spread.
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Figure 1: Woodland patches located in the Mabie Forest near Dumfries and Galloway, UK. (a) Monocultures of coniferous forests outlined
according to the interpreted forest type (IFT) accounted in the National Forest Inventory Scotland 2016 (white dotted lines): I, young trees; II and
V conifer trees; III and VII, felled area; IV, bare area and VI, grassland. Trees were planted at intervals of 2-3 m. (b) Coniferous forests with
patches of trees infected with P. ramorum (red outline). The IFTs showed are I, felled trees; II, conifer trees, III, young trees and IV, broadleaved
trees. Maps are showed in latitude/longitude coordinates and were obtained with QGIS 2.18 ’Las Palmas’, using c©2018 Google Satellite datasets.
To account for the interpreted forest types we used the National Forest Inventories from Scotland (2016) (Forestry Commission, 2018b). Image
analysis was done with ImageJ (Schneider et al., 2012).

The forests in the United Kingdom and several parts of Europe have been reshaped continually since the mid-
Holocene due to anthropogenic factors (Kaplan et al., 2009). During the last centuries, the timber industry has left a
characteristic homogeneous pattern in the woodland patches: forests managed for timber are usually planted in lines
or curved lines. These patterns allow an efficient management and an even access to sunlight and nutrients; with all
trees in the plantations being even-aged monocultures of conifer or broadleaved forests (Forestry Commission, 2017),
see figure 1(left). However, the homogeneity in the trees diminishes the resilience of the forests to several threats,
including forest diseases (Rist and Moen, 2013). Examples of this can be observed in the current outbreak of P.
ramorum spreading in the Mabie Forest in Scotland, see figure 1(right), which consists mainly of coniferous forests
with trees planted at the same time between 2-3 m of each other.

Mathematical modelling provides a powerful approach to understand, predict and counter-act disease propagation
(Bate et al., 2016; Macpherson et al., 2017) with the advantage of fine-tuning the model to take into account specific
attributes found in the forests. In this work we have developed an individual-based model in which trees are repre-
sented explicitly alongside their susceptibility to disease and infectious status, to account for disease spread in terms
of the tree density, a basic forest measurement calculated in the field. Our model is similar in nature to the forest fires
and percolation lattice models widely investigated in the literature in which transmission occurs upon direct contact
(Bak et al., 1990; Beer and Enting, 1990; Grassberger, 1993) and there is only spatial stochasticity. However, to
consider the effect of a simultaneous presence of both spatial and temporal stochasticity we introduced a probability
of transmission for the trees to catch the disease, which is not considered in the former models.

Early-warning indicators for abrupt changes in the behaviour of complex systems, group a set of statistical proper-
ties measured on parameters that change in unique ways before the occurrence of a catastrophic shift, (also known in
the literature as tipping point or critical transition), which occurs when a system switches abruptly between alternate
equilibria (Scheffer et al., 2009; Scheffer, 2009). These indicators are generic and suitable for application across many
system types, even when the underlying system dynamics are poorly understood (Carpenter and Brock; Scheffer et al.,
2009; Morales et al., 2015).

In ecosystems, early-warning methods have been used to predict the occurrence of desertification processes (Cor-
rado et al., 2014), animal extinction in deteriorating environments (Drake and Griffen, 2010), behaviour of aquatic
ecosystems (Gsell et al., 2016), and have been applied on climate models for the simulation of dieback on the Amazon
rainforest (Boulton et al., 2013). Most recently, their applicability as an effective model to monitor tree mortality has
been highlighted in (Rogers et al.) through satellite data. Therefore, their usefulness to predict changes on degra-
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dation processes for biological systems has increased in the literature during the last decade (Carpenter and Brock;
Scheffer et al., 2009; Dakos et al., 2012; Litzow and Hunsicker, 2016; Ratajczak et al.). The main purpose behind
these indicators is their effectiveness to identify properties in an ecological system that would change significantly as
it approaches a tipping point between different stable states. However, this idea has been applied only to a handful of
ecological problems due to the unavailability of data sets, (Gsell et al., 2016; Litzow and Hunsicker, 2016; Ratajczak
et al.).

Following this premise, our interest lies in analysing the dynamics of disease outbreaks under the scope of classical
early-warning techniques using the tree density as a state variable. This suggests applying the universality class and
scaling exponents—which have been widely studied in the literature (Bunde and Havlin, 1996; Stauffer and Aharony,
2003)—to the prediction and detection of the transition from the progression of the disease to an epiphytotic outbreak.

The structure of the paper is as follows. In §2, we propose a simplified model of a forest, in terms of susceptible,
infected or removed individuals (SIR model) which exhibits a phase transition above a percolation threshold (Grass-
berger, 1993; Clar et al., 1996; Bunde and Havlin, 1996). In §3, we show the results of the simulations in which, we
quantify the propagation velocity of the infection. Then, we obtain the phase diagram of the contained-to-outbreak
phases of the system and study the behaviour of relevant parameters. Finally, in §4 we discuss the meaning and
implications of our findings.

2. Materials and methods

We model a forest as a regular square lattice of dimensions L × L where L = 500, see Fig. 2(a-b). The forest
landscape is flat and there is only one type of vegetation, with the initial occupation of trees following a Bernoulli trial
according to a binomial distribution with mean ρL2, in which each trial has two possible outcomes a tree or an empty
space. Forest patches with monocultures of trees with the same age that fullfill these characteristics can be found in
several regions in Scotland, UK, see figure 2(c), in which the trees planted every 2-3 m are infected with P. ramorum.

Following this, in our model, each site can exist in one of four states: susceptible (S ), infected (I), removed
(R) and empty (∅). Susceptible individuals correspond to a single or several trees distributed randomly which can
become infected. An infected site, represents a patch of vegetation that has acquired a terminal disease, a removed
site corresponds to the space left by the infected site after the vegetation dies, and empty sites correspond to regions
in the landscape where no susceptible vegetation can grow, see figure 2(a-b). The location of the forest patches is
constant in time, such that vegetation sites (either S , I or R) are randomly distributed with a density ρ.

Once a site in the S category acquires an infection, its status is changed to I and a numerical label η is attached to
it. η increases with time at a constant pace, ranging from −T to 0. Whereupon at η = 0, the tree at the site dies and is
removed, i.e., its status is changed to R. Henceforth, T corresponds to the infectious period, that is, the time in which
an infected tree can transmit the infection.

After a tree is infected, it has a probability β of transmitting the disease to a neighbouring susceptible site during
the infectious period. In epidemiological terms, the probability β is denoted as the transmissibility of the pathogen,
and it is defined as the probability per unit time that an S site acquires the infection from a neighbouring I site.
Therefore, for a healthy tree with n infected neighbours, the probability of remaining unaffected at each time step is
given by 1 − (1 − β)n. For simplicity, the neighbourhood is defined by the first four nearest neighbours in the lattice,
i.e., a von Neumann neighbourhood.

We consider the limit in which the disease spreads in a much smaller time-scale than the growth of the susceptible
species. Moreover, after a patch of forest has died, there exists the possibility of invasion from another species of
plant, a phenomenon which has been observed in grass-woodland transitions (Abades et al.). As a consequence, it is
unlikely that the woodland site regains susceptibility, and thus, we neglect any regenerative process in the simulations.

The parameters β and T regulate the evolution of the disease and both are relevant in the model; sampling from
a suitable distribution for each parameter would allow to model levels of disease tolerance to the pathogen for each
tree, since it has been identified that some plants exhibit little damage despite a high level presence of the pathogen
(Gross et al., 2013).

For simplicity, in our simulations, we consider uniform values for β and T . This implies that we are free to set the
time-scale by fixing a value for either variable. The time evolution of the landscape is carried out in discrete unitary
time intervals. Therefore, by setting T = 10, a unitary time interval corresponds to 0.1T . This leaves the average
vegetation density, ρ, and the transmissibility of the pathogen, β, as the two free parameters.

3



Figure 2: Typical final configurations of disease spread obtained for a system with L = 500, β = 0.5 and tree densities ρ = 0.60 (a) and 0.62 (b).
Near the critical transition, slight changes in tree densities result in different spatial patterns of disease spread. Inset: Detail of the sites statuses
with trees represented following the colour bar showed on the right: empty (∅), susceptible (S), removed (R) and infected (I). The simulations were
stopped after the disease dies out (a) or when it reached the edge of the system (b). (c) Patterns of disease spread (P. ramorum) on coniferous trees
in the Mabie Forest near Dumfries, Scotland, UK. The total forest patch area is ∼ 250 ha and the infected region ∼ 2.5 ha. c©2018 Google Satellite
datasets. Image analysis was done with ImageJ (Schneider et al., 2012).

3. Results

At the beginning of the simulation, the disease is introduced as a clump of infected trees at the centre of the domain
of size 5 × 5 grid cells, with all trees infected inside this small area. This was found to be sufficient in order to avoid
extinction of the disease at initial stages. Under these conditions the transient time, i.e., the time lapse that contains
remnants of the initial conditions, was found to be ∼ 200 time steps. Since we are interested in the steady regime,
we discarded this transient from our final calculations. The simulations run until the infected sites disappear or, in
order to avoid boundary effects, when infected sites reach any of the four sides. We carried out simulations over 104

ensemble realisations, i.e. repetitions with different initial conditions with the same tree density ρ.
As a first step, we quantify the effect of ρ and β in the simulations. At low ρ, the infection quickly dies out, since

the distribution of hosts is sparse. On the other side, for higher densities, the epidemic spreads out, infecting most of
the trees. Nonetheless, for certain densities, the system shows a critical transition between a self-limited outbreak and
a large-scale epiphytotic outbreak.

In Fig. 2(a-b), we show the final configuration (t ∼ 600 time-steps) of the landscape for densities below and above
the critical transition. Near the critical transition, the pathogen spreads through the domain generating branching
structures, and patches of surviving trees may remain unaffected. To highlight this result, the Fig. 3 shows the spatio-
temporal behaviour of the total number of infected hosts, at every time step, found along the direction N(Ly) as
a function of their position along the Lx direction, following the same parameters as in Fig. 2. For the first case,
ρ = 0.58 the disease dies out after approximately 600 time steps, but the fractal-like behaviour of disease spread can
be observed as ramifications of infected trees even at a density ρ = 0.6. For higher densities ρ = 0.8, this filamentary-
like behaviour is lost and we observe a filled pattern of infected trees. We find that a transition in the severity of the
disease occurs in the density interval [0.56, 0.64].

Near the critical transition, see figures 2(b) and 3(a-b), the disease does not annihilate all the trees, but rather
spreads through the lattice as active clusters of diseased trees, interspersed with healthy individuals.

3.1. The phase diagram

The spreading of the disease has the effect of separating two domains, healthy susceptible trees, S , and dead trees,
R by a transient interface of infected individuals, I. In this model, the number of affected sites is on average, propor-
tional to the landscape area where the infection has been present. By construction, this constant of proportionality is
1/ρ, and thus, the proportion of affected woodland is

A =
N
ρ
, (1)

where N is the sum of the I and R sites.
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Figure 3: Spatio-temporal behaviour of the number of infected trees N(Ly) along the height of the channel as a function of their location along the
width of the domain for the following tree densities ρ: (a) 0.58, (b) 0.60 and (c) 0.80. The colour bar shows the number of infected trees per line
along Ly. The first two cases (a-b) correspond to values in the critical region ρ ≈ ρc and although the disease is spreading through the domain is
not annihilating all susceptible hosts, since there are green sites interspersed with diseased trees. For ρ = 0.8 the number of infected individuals
increases.

To quantify the observed dynamics in this system we calculated the spread dynamics of the disease through the
lattice via the effective1 velocity v of the pathogen. On this basis of Eq. 1, a characteristic length-scale, R = N1/2,
measures of the radial extent of the disease. Thus, the rate of propagation of the disease in the domain is measured
through the velocity v, defined as the change in R, i.e.,

v(t) = N1/2(t) − N1/2(t − 1). (2)

Therefore, Eq. 2 measures the spreading velocity in terms of the area of infected trees in the domain. The time series
of v is shown in Fig. 4(a-c); we will show that the stochasticity observed in these time series gives valuable information
about the underlying dynamics when analysed in the framework of early warning indicators for critical transitions.

From the time series for the velocity, we obtain the time average of the velocity v. Figure 4(d) shows several
probability distribution functions, F(v), obtained from all realisations, for densities ρ = 0.58 (1), 0.59 (2), 0.595 (3),
0.6 (4) and 0.62 (5). For ρ < ρc, the distribution shows a maximum for v ∼ 0.01, see curve for ρ = 0.58. As the tree
density increases, and approaches the critical value, ρ = 0.595 and ρ = 0.6, F(v) shows clearly that the system can
be found in either two states, one for v ≈ 0, which corresponds to local disease confinement and another for v , 0,
or epiphytotic outbreak. Figure 4(e) shows a zoom-in around the local maxima for ρ = 0.595 and 0.6. As the density
increases, e.g., ρ = 0.62, the probability distribution function shows a single maximum for v ≈ 0.23.

After taking the ensemble averages we obtain the mean propagation velocity 〈v〉 as a function of the tree density
ρ and various values of the transmission probability β. We identify from these results a critical density that separates
the non-spreading to spreading phase of the disease. The existence of a critical density at ρc implies the existence
of a spatially connected or spanning cluster of trees for disease spread. From these results, we conclude that this
critical density ρc, is similar in nature to the critical percolation threshold observed in percolation theory (Stauffer and

1We use the term “effective” to emphasize that strictly the velocity cannot be defined in this way close to the critical density since the spanning
cluster of diseased trees becomes fractal. It can be rigorously shown that the velocity with which the disease front propagates is given in 2D as
v ∼ ξ1−d f /d` ∼ (p − pc)0.16, with ξ denoting the correlation length, d f and d` the fractal and graph dimensions respectively, (Bunde and Havlin,
1996). However, Eq. 2 provides a convenient measure of the rate of spread of the infection, through the epidemic extent or area, which is usually
monitored through observational data, (Cowger et al., 2005; Mundt et al., 2013).
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Aharony, 2003; Gandolfi, 2013; Saberi, 2015), since our computational model only involves a slight modification of
the former.

In Fig. 5, we observe that the sole effect of the transmission probability β = [0.1, 1] is a displacement of the
critical point towards lower values of ρ. For low disease transmissibility, the density of trees has to be high to have a
spanning cluster through the domain. As β increases, there is a chance of infecting more trees per infectious period
(T) and consequently this cluster occurs at lower densities. Therefore, T, acting conjointly with β define the limiting
value ρc. As β is increased, the critical transition should tend to the percolation threshold reported in the literature,
ρc → 0.592746 (Stauffer and Aharony, 2003). However, since we are working on a finite-size domain, we expect that
the critical transition is broadened relative to the result above for infinite-sized domains; in Fig. 5(a) we highlight this
as a shaded region that divides density values according to a region where the critical shift occurs in our simulations
(the black dotted line highlights the result for β = 0.5).

3.2. Catastrophic shifts in forest disease
A fundamental emergent property observed in systems near criticality is their capacity to extend over scales

comparable to the size of the whole system at long times. Near the critical threshold, short-range interactions lead to
the emergence of long-range correlations and the behaviour of the system changes abruptly between two alternative
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regimes are shown, with the shaded area corresponding to ρ ≈ ρc.

stable states, in this case, local containment and epiphytotics. The occurrence of this shift depends only on the
local structure, in our case the density of susceptible hosts. Near the critical transition this system exhibits scale
invariance, self-similarity and fractal properties. From the non-stationarity of the time series showed in Fig. 4(a-c) we
can analyse the underlying dynamics through metric-based indicators proposed in the literature for the identification
of early-warning signals: variance, skewness, kurtosis and autocorrelation function at lag 1 (Carpenter and Brock;
Dakos et al., 2012; Morales et al., 2015).

Our goal is to predict the occurrence of a transition between disease containment and epiphytotics using the theory
of catastrophic shifts, which in principle could be useful for the prediction of densities at which disease will spread in
forests.

We quantify the stochastic variability of v(t) from time series obtained for an ensemble of systems evolving for
fixed β = 0.5 on a domain of size L = 500. Our interest was to study the variability in the spreading velocity as
the density of trees crosses the critical region. From the probability distribution functions for 〈v〉, we obtained the
ensemble behaviour of the following statistical measures: variance (a), kurtosis (b), skewness (c) and autocorrelation
function at lag 1 (d), see Fig. 6.

The variance, in Fig. 6(a), shows a rise around the critical point, the increase of this quantity is maximal, and its
behaviour is different before the transition occurs, for ρ < ρc and after it has happened, ρ > ρc. The square-root of the
variance, the standard deviation, is maximal at the critical transition, which for this finite-size system is ρmax = 0.61.
Therefore, this quantity is useful as an indicator for the prediction of a shift between the disease confinement and
epidemics.

The skewness, defined as the third moment of the distribution, quantifies the asymmetry of fluctuations in the time
series. It is a useful measure for the prediction of the catastrophic shift since its value changes before and after the
transition, depending on whether the system settles down to an alternative state in which the disease propagation is
larger or smaller than in the current state, (Guttal and Jayaprakash; Dakos et al., 2012; Kéfi et al., 2014). Our results
clearly show both an increase and further decrease in the skewness, see Fig. 6(b). For ρ < ρc the skewness is positive
and rises up as we approach the critical region. For ρ ∼ ρc, it decreases abruptly and changes sign, becoming negative,
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i. e., the probability distribution is left-skewed. For higher density of trees, we drive the system away from the critical
region, the skewness changes again, and becomes less negative until it settles near zero (≈ −0.5). Notably, the rise
in skewness observed at ρ ∼ 0.57, associated with an increase in the nonlinearities of the time series, predicts the
outcome of the tipping point. Moreover, this parameter identifies the tree densities for which the system is found in
either disease confinement (Skewness ≈ 1) and epiphytotics (Skewness ∼ 0).

Strong perturbations can drive the state of a system to reach extreme values close to a transition. Therefore, the
probability distribution function of the propagation velocity may show a rise in the kurtosis before the transition is
reached. Figure 6(c) shows the plot of this quantity obtained in our simulations. The distribution shows two peaks: a
local maximum that corresponds to kurtosis values of 7.4 for ρ ≈ 0.57, and a global maximum with kurtosis of 18.3
for ρ ≈ 0.64. This indicates that, as the system approaches and exits the critical region, the distribution becomes more
strongly peaked, than the reference normal distribution, which has a kurtosis of 3 (blue continuous line), and thus, is
leptokurtic. This is consistent with an increased presence of rare values in the propagation velocity. Interestingly, for
values closer to the critical point, i. e., ρ = 0.59, the kurtosis is 2.4, which is equivalent to a flattened or platykurtic
distribution. We conclude that the kurtosis is a good indicator to detect the outcome of the transition.

The temporal autocorrelation function (ACF) measures the spectral properties and changes in the correlation
structure, “memory”, of the time series (Dakos et al., 2012). In a general way, the τth order ACF is defined accordingly
as,

ACF(τ) =

∑n
t=τ+1(vt − v)(vt−τ − v)∑n

t=1(vt − v)2 . (3)

Following equation 3, we measured the temporal autocorrelation function at lag 1 (τ = 1) in our simulations. Several
dynamical systems have shown a slow recovery from small perturbations as they approach the critical transition,
phenomenon termed in the literature as “critical slowing down”. These systems show an increase in the short-term
memory of time series which can be detected through an increase of the autocorrelation function at lag 1.

Figure 6(d) show the values for the temporal autocorrelation function at lag 1 measured for the time series of the
velocity as a function of the tree density ρ. For ρ < ρc, this quantity increases linearly as we increase the tree density
and reaches a maximum threshold inside the critical region for ρ ≥ 0.6. This is an indication that the system has
become increasingly similar between consecutive observations. Since, for ρ < ρc there is a fast increase on the ACF,
this is useful for the prediction of the outcome of the critical shift in the system.

4. Discussion

The most important question during risk assessment for a forest disease is how pathogens will spread on the
landscape, both to predict the occurrence of an epiphytotic outbreak and to assist in designing interventions to counter
the onset and progression of the disease. In a real-life scenario, the dispersal of these diseases is complex, mainly due
to the multiple geographical and environmental factors affecting the disease spread.

Lattice-based epidemic models have been used previously in the literature to study temporal and spatial fluctua-
tions on the prevalence of epidemic diseases in terms of the minimum tree density for an epidemic to occur (Rhodes
and Anderson, 1996, 1997). The sessility of trees makes lattice modelling of plant diseases more attainable through
computational simulations. Works on disease propagation using this framework coupled with historical, geographical
and weather information have been used to predict the spread of pathogens through forests on a large scale (Xu et al.;
Meentemeyer et al., 2010; Potter et al., 2011; Cobb et al., 2012). These models certainly capture some of the fea-
tures of previous epiphytotics, and coupling them to the framework of early-warning indicators for detecting critical
transitions could be useful for designing strategies against disease spread.

The following characteristics need to be fulfilled for an epidemic to occur: (i) a critical number of susceptible
hosts, (ii) an aggressive phenotype of the pathogen with a high transmissibility rate and (iii) suitable environmental
conditions for the pathogen survival. In this paper, we chose to study the effect of the two first factors using a
generic stochastic model of epidemic spread on a lattice with a von Neumann neighbourhood. Our model does not
incorporate a sophisticated computational description of the system; however it is useful, as a first approximation,
for the application of the framework of early warning signals, used widely on complex systems, to reach a new
understanding in plant disease epidemics. This could aid in the identification of an optimal planting tree density for
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the future design of forests, for example, the re-design of the coniferous forests in Scotland, to diminish the impact of
disease spread.

Simulations for different tree densities and pathogen transmission indicate a system that shows two stable states:
disease confinement and an extended epiphytotic outbreak. We chose to focus our investigations on densities that may
result in the system be found in either state. All the indicators measured forecast the occurrence of the critical transi-
tion. We observe a rise in the variance, skewness and the autocorrelation function at lag 1 as the system approaches
ρ ∼ ρc. The skewness also shows a steep change from a positive to a negative value in this region, consistent with the
system traversing the critical region and reaching a new stable state. Similarly, the kurtosis, changes from leptokurtic
to platykurtic and leptokurtic again in the critical region and immediately afterwards. Consequently, we conclude that
all these measures are applicable to predict a transition to epiphytotics.

Although our current scenario of applicability is a regular domain, far away from the heterogeneous and complex
landscapes found in the forests, we hypothesize that their applicability to plant diseases could be fruitful in predicting
the outcome of major disease outbreaks (Liang et al., 2017). In real datasets, one of the first challenges would be to
define a set of parameters and coarse-grain the system description to an appropriate scale (spatial resolution of the
ecological data) to apply these indicators to predict a range of future states of disease propagation.

Currently, remote sensing technologies, such as satellites and aerial photography are used widely to obtain forest
measurements on changes of vegetation index, droughts, fire damage and extent of disease propagation. This infor-
mation is periodically updated, which implies the availability of spatial datasets taken at time intervals which could
be useful to detect the approach to a tipping point before it is crossed.

In a recent publication (Rogers et al.), several indicators such as the variance, standard deviation, kurtosis and
skewness were measured on vegetation indexes (NDVI) time series to detect threshold changes in which the loss of
resilience led to state shifts. Their results suggest that that early warning signals of tree mortality are evident up to 24
years and therefore provide a foundation for their potential application on long-term remote sensing data to effectively
monitor vegetation patterns and forecast changes in environmental conditions. Moreover, a study on the quantification
of forest fragmentation through aerial images and numerical simulations using a lattice model have suggested that the
present state of the tropical forests is close to a critical point of percolation (Taubert et al., 2018). Taken together these
two studies indicate that the application of the early warning indicators through a lattice model could serve to model
and quantify the fragmentation of forests.

Particularly, the UK has an advantageous position on GIS forest datasets such as the National Forestry Inventory
(NFI) (Forest Research, 2016), Light Detection And Ranging (LiDAR) (Forest Research, 2004) and the National Tree
Map R© (NTM)(Bluesky International Ltd, 2017), which give accurate information about the woodland patches, 3D
forest structure and location and canopy extent of individual trees over 3 m in height, respectively. Moreover, the
currently running SAPPHIRE project (Forest Research, 2018), a collaboration between Forest Research and Rezatec
will provide precision maps of tree species and pinpoint trees that exhibit features of stress and disease. Combining
all these together, the applicability of early-warning indicators on a complex adaptive system, such as forests, could
prove fruitful for devising their stability and resilience to external conditions (such as disease propagation) before a
regime shift occurs.
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Taubert, F., Fischer, R., Groeneveld, J., Lehmann, S., Müller, M.S., Rödig, E., Wiegand, T., Huth, A., 2018. Global patterns of tropical forest

fragmentation. Nature , 519–522URL: https://www.nature.com/articles/nature25508.
Thomas, P.A., 2016. Biological flora of the British Isles: Fraxinus excelsior. Journal of Ecology 104, 1158–1209.
Xu, X., Harwood, T.D., Pautasso, M., Jeger, M.J., . Spatio-temporal analysis of an invasive plant pathogen

(phytophthora ramorum) in england and wales. Ecography 32, 504–516. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1111/j.1600-0587.2008.05597.x, doi:10.1111/j.1600-0587.2008.05597.x,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0587.2008.05597.x.

11

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092097
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092097
http://dx.doi.org/10.1371/journal.pone.0092097
http://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2017.03.007
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecs2.1614
http://dx.doi.org/10.1002/ecs2.1614
http://www.sciencedirect.com/science/article/pii/S0378437104005059
http://www.sciencedirect.com/science/article/pii/S0378437104005059
http://dx.doi.org/https://doi.org/10.1016/j.physa.2004.04.085
http://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2017.02.003
www.countrysidesurvey.org.uk
http://www.sciencedirect.com/science/article/pii/S0006320714001700
http://dx.doi.org/https://doi.org/10.1016/j.biocon.2014.04.019
http://dx.doi.org/https://doi.org/10.1016/j.biocon.2014.04.019
https://doi.org/10.1371/journal.pone.0130751
http://dx.doi.org/10.1371/journal.pone.0130751
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.12696
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2745.12696
http://dx.doi.org/10.1111/1365-2745.12696
http://arxiv.org/abs/https://besjournals.onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2745.12696
http://www.sciencedirect.com/science/article/pii/S0375960196800077
http://www.sciencedirect.com/science/article/pii/S0375960196800077
http://dx.doi.org/https://doi.org/10.1016/S0375-9601(96)80007-7
http://www.sciencedirect.com/science/article/pii/S004058099791323X
http://dx.doi.org/https://doi.org/10.1006/tpbi.1997.1323
http://dx.doi.org/https://doi.org/10.1006/tpbi.1997.1323
http://dx.doi.org/http://dx.doi.org/10.1038/ncomms2632
https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14107
http://dx.doi.org/10.1111/gcb.14107
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.14107
http://www.sciencedirect.com/science/article/pii/S0370157315002008
http://www.sciencedirect.com/science/article/pii/S0370157315002008
http://dx.doi.org/https://doi.org/10.1016/j.physrep.2015.03.003
https://www.nature.com/articles/nmeth.2089
https://www.nature.com/articles/nmeth.2089
https://www.nature.com/articles/nature25508
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0587.2008.05597.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1600-0587.2008.05597.x
http://dx.doi.org/10.1111/j.1600-0587.2008.05597.x
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1600-0587.2008.05597.x

	Introduction
	Materials and methods
	Results
	The phase diagram
	Catastrophic shifts in forest disease

	Discussion

