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Abstract 

The presence of amino groups and carbonyls renders fortified milk with ascorbic acid particularly 

susceptible to the reduction of available lysine and to the formation of Maillard reaction products 

(MRPs), as Nε-(carboxyethyl)-L-lysine (CEL), Nε-(carboxymethyl)-L-lysine (CML), Amadori 

products (APs) and off-flavors. A novel approach was proposed to control the Maillard reaction 

(MR) in fortified milk: ascorbic acid was encapsulated in a lipid coating and the effects were tested 

after a lab scale UHT treatment. Encapsulation promoted a delayed release of ascorbic acid and a 

reduction in the formation of MRPs. Total lysine increased up to 45% in milk with encapsulated 

ascorbic acid, while reductions in CML, CEL and furosine ranged from 10% to 53% compared with 

control samples. The effects were also investigated towards the formation of amide-AGEs 

(advanced glycation end products) by high resolution mass spectrometry (HRMS) revealing that 

several mechanisms coincide with the MR in the presence of ascorbic acid.  

Keywords: Maillard reaction, encapsulation, ascorbic acid, mass spectrometry 

Abbreviations: Advanced glycation end products (AGEs); Amadori products (APs), Nε-

(carboxyethyl)-L-lysine (CEL), Nε-(carboxymethyl)-L-lysine (CML); ascorbic acid (AA), 

dehydroascorbic acid (DHAA), Nε-(2-Furoylmethyl)-L-lysine (furosine), high resolution mass 

spectrometry (HRMS), Maillard reaction (MR), Maillard reaction end products (MRPs), tandem 

mass spectrometry (MS/MS); Ultra High Temperature (UHT). 
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Introduction 1 

The final quality of milk and infant formula is influenced by the Maillard reaction (MR). Thermal 2 

treatments including UHT are necessary to reduce the proliferation of food borne pathogens and in 3 

the presence of high concentrations of carbonyls and amino groups, thermal processes can promote 4 

some of the main concerns for dairy industries such as the loss of nutritive value, the development 5 

of off-flavors and the formation of undesired brown pigments. Heat treatments of dairy based 6 

products therefore need to be optimized to ensure the maintenance of the beneficial effects while at 7 

the same time counteracting the possible undesirable effects.1  8 

The MR supervises the dichotomy between undesired and desired molecule formation. It is 9 

characterized by a series of consecutive and parallel reactions that lead to the formation of 10 

outcomes, such as the development of aroma, flavors, texture, antioxidants, colors, and outcomes 11 

such as the loss of certain nutrients, mainly amino acids and proteins, with the consequent 12 

formation of off-flavors and potentially toxic molecules.2 Several pathways can be determined 13 

depending on the increase of the temperature. The central hub is represented by the formation of 14 

lactose-lysine or fructose-lysine, the Amadori products (APs). Once the APs are formed several 15 

reactions take place, leading to the Maillard reaction end products (MRPs) or dietary advanced 16 

glycation end products (AGEs).3, 4  17 

Beside the presence of reducing sugars and amino groups some reactants may influence the 18 

chemistry of the MR. Certain cations, lipids, polyphenols and vitamins may inadvertently act as 19 

triggering agents while on the other hand they may also act as reducing agents by limiting the 20 

formation of heat induced toxicants.5  21 

Ascorbic acid (AA) plays several roles in fortified milk and infant formula. It acts as an antioxidant 22 

in the prevention of  oxidation of polyunsaturated fatty acids (PUFA), provides the appropriate 23 

dietary reference values and promotes the uptake and bioavailability of dietary iron.6 Despite its 24 

importance, AA also acts as a precursor of several molecules, some of them involved in the 25 

pathways of nonenzymic browning both in vitro and in vivo.7-9 AA is able to produce furfural and 26 

carbon dioxide on its own in aqueous solution above 98 °C leading to browning and also in the 27 

presence of an amino group, i.e. glycine, the carbon dioxide comes mainly from AA.10 AA is one of 28 

the main precursors of furan, via 2-furaldehyde formation following two different reaction 29 

pathways: (a) electrophilic aromatic substitution with water, forming formic acid as the byproduct 30 

and (b) oxidation to 2-furoic acid followed by decarboxylation.11, 12 According to the reaction 31 

conditions (i.e. pH, pressure and temperature), the conversion of AA into dehydroascorbic acid 32 

(DHAA) and the reconversion of DHAA into AA can be efficiently described by the Weibull model 33 
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where different sensitivities of the reaction rate constant to the temperature promote sigmoidal 34 

kinetics.13 Smuda and Glomb reported around 75% of the Maillard induced decomposition of AA. 35 

The oxidation of AA leads to the formation of DHAA and 2,3-diketogulonic acid (2,3-DKG) that 36 

can undergo α and β dicarbonyl fragmentation and oxidative cleavage. Moreover, by using 13C-37 

ascorbic acid isotopomers the formation of carbonyl compounds, carboxylic acids and amide-38 

AGEs, such as glycerinyl-lysine; oxalyl-lysine; xylonyl-lysine, threonyl-lysine and lyxonyl-lysine, 39 

was revealed, highlighting the parts of the original backbone of AA incorporated in the products.14 40 

Finally, AA is a source of molecules that act as precursors or intermediates for the formation of 41 

MRPs. Dunn and co-workers verified that CML is also formed in reactions between ascorbate via 42 

its oxidation product, dehydroascorbate, and lysine residues in model systems in vitro. In particular 43 

several intermediates can lead to the formation of CML, not only dehydroascorbate, but also L-44 

threose via direct cleavage of threulose-lysine.15 Hasenkopf and co-workers incubated proteins and 45 

poly-lysine in presence of AA, DHAA and glucose in order to evaluate the extent of glycation and 46 

ascorbylation. Results highlighted that CML, CEL and oxalic acid mono-Nε-lysinylamide could be 47 

simultaneously detected and quantified in glycated and ascorbylated proteins; while Nε-(1-carboxy-48 

3-hydroxypropyl)-L-lysine was identified as a Maillard product of proteins and under the conditions 49 

applied it was found only in ascorbylated proteins or poly-L-lysine, but not in glycated proteins.8, 16 50 

Beside the in vitro ascorbylation, the influence of the AA on the final quality of infant formula was 51 

studied by Leclère and co-workers in a lactose-whey protein model system in the presence of iron 52 

ascorbate. Results revealed that the accumulation rate of fluorescent MRPs was higher in the 53 

presence of iron and/or ascorbate and fluorescence was strongly correlated with the concentration of 54 

CML.17 55 

The control of the MR is an important factor for ensuring the final quality of foods, particularly in 56 

fortified milk and infant formula. Several strategies have been proposed including optimal control 57 

of parameters (i.e. time and temperature profile), the use of alternative technologies, the addition of 58 

polyphenols and the control of Maillard pathways by multiresponse modeling. Taking into account 59 

that the removal of precursors such as sugars and amino groups are inapplicable, recently our group 60 

focused on the encapsulation of certain reactants as a main driver for controlling the MR.5 61 

Fiore and co-workers verified the ability of three different lipidic coatings for the controlled release 62 

of sodium chloride in cookies. Sodium chloride is used for technological and sensorial purposes, 63 

but its catalytic activity promotes the pyrolysis of sugars and the consequent formation of higher 64 

concentration of HMF. It was demonstrated that the higher the melting point the greater the 65 

reduction of HMF, without altering the final taste.18 A similar approach was used in the control of 66 
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furan formation by using encapsulated AA. In particular, acacia gum and maltodextrin coatings of 67 

AA significantly decreased furan formation down to 57% at 120 °C.19 These previous findings 68 

suggest a role for encapsulation as a potential strategy for the control of MRPs and thus warrants 69 

further investigation in their effect on functionalized milk, infant formula and on the release of 70 

functional molecules upon thermal processing.20 The present study aimed to examine the effects of 71 

encapsulated AA towards the formation of MRPs. According to high potentiality of encapsulation 72 

as a strategy for the control of the MR, it was decided to test the effectiveness of AA encapsulation 73 

in the tuning of MRPs and amide-AGEs formation.  74 

Material and methods 75 

Chemical and reagents 76 

Acetonitrile, water, methanol and acetic acid for liquid chromatography tandem mass spectrometry 77 

(LC-MS/MS) and liquid chromatography high resolution mass spectrometry (LC-HRMS) analyses 78 

were obtained from Merck (Darmstadt, Germany). The ion-pairing agent perfluoropentanoic acid 79 

(NFPA), ascorbic acid (AA), dehydroascorbic acid (DHAA), ethylenediaminetetraacetic acid 80 

(EDTA) and the analytical standards [4,4,5,5-d4]-L-lysine hydrochloride (d4-Lys) and lysine were 81 

purchased from Sigma-Aldrich (Saint-Louis, MO), while hydrochloric acid (37%) was purchased 82 

from Carlo Erba (Milano, Italy). Analytical standards Nε-(2-furoylmethyl)-L-lysine (furosine), Nε-83 

(carboxymethyl)-L-lysine (CML) and its respective deuterated standard Nε-(carboxy[2H2]methyl)-84 

L-lysine (d2-CML) and ε-N-(2-furoyl)-methyl-L-[4,4,5,5-²H₄]Lysine HCl salt (d4-furosine) were 85 

obtained from Polypeptide laboratories (Strasbourg, France), Nε-(carboxyethyl)-L-lysine and its 86 

internal standard Nε-(carboxy[2H4]ethyl)-L-lysine (d4-CEL) were purchased from TRC-Chemicals 87 

(North York, Canada). The calibration solution (see “AA and DHAA quantitation” section) was 88 

obtained from Thermo Fisher Scientific (Bremen, Germany). Encapsulated AA (50% in palmitic 89 

acid blend) was obtained from TasteTech (Bristol, UK). 90 

Milk model systems preparation 91 

Milk model systems were prepared by first dissolving water soluble ingredients: 1.2% (w/w) 92 

skimmed milk powder, 2.5% (w/w) whey protein (Prolacta, Lactalis, France) and 5% (w/w) lactose 93 

monohydrate in 87.9% (w/w) water along with the micronutrients listed in Table 1. The lipid 94 

mixture was prepared separately by melting 3.3% (w/w) of a mixture of lipids (palm oil, tripalmitin, 95 

triolein 1:1:1) and 0.1% (w/w) of sucrose esters (HLB 16, Sisterna, Roosendaal, the Netherlands) at 96 

45 °C for 20 min. The lipid mixture was added to the water soluble mixture and continuously stirred 97 

at 45 °C. This mixture was primarily homogenized 3 times, 30 s, by using a digital Ultraturrax T25 98 
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(IKA, Stockholm, Sweden) working at 22000 rpm. The coarse milk was homogenized under 99 

pressure (160 bar, 3 passes) in a bench-top homogenizer (GEA-Niro Soavi, Parma, Italy). The four 100 

model systems were prepared prior the homogenization procedure by adding the quantities of Free 101 

AA (FAA), encapsulated AA (EAA) and coating only (COA) reported in Table 1. The three 102 

samples along with control milk (CTL milk) were aliquoted in headspace vials (10 mL) with a 103 

crimp seal with PTFE/silicone septa (Phenomenex, Torrance, CA) and processed for 2, 4, 6 and 8 104 

min, while control sample was aliquoted prior the thermal treatment. The four milk samples were 105 

thermally treated at 140 °C by using the same procedure, system and thermal profile previously 106 

described.21    107 

AA and DHAA quantitation 108 

The extraction of AA and DHAA from milk model systems was performed according to Fenoll and 109 

coworkers with slight modifications.17 Briefly, 100 µL of milk were diluted 50 times in 0.05% (w/v) 110 

EDTA in a volumetric flask, and centrifuged at 4000 rpm for 15 min at 4 °C. The supernatants were 111 

collected and 1000 µL was filtered through a 0.45 µm nylon filter (Phenomenex, Torrance, CA). 112 

Finally, 10 µL was injected into the LC-HRMS system. AA and DHAA separation was performed 113 

on a U-HPLC Accela system 1250 (Thermo Fisher Scientific, Bremen, Germany) consisting of a 114 

degasser, a quaternary pump, a thermostated autosampler (5 °C) and a column oven set at 30 °C. 115 

Mobile phase A was 0.1% formic acid, and mobile phase B was 0.1% formic acid in methanol and 116 

separation was achieved by using a Synergi-Hydro column (150 x 2.0 mm, 4.0 µm; Phenomenex, 117 

Torrance, CA) and the following gradient of solvent B (min/%B): (0/2), (4/2), (9/70), (12/70) was 118 

used at a flow rate of 200 µL/min. The autosampler needle was rinsed with 800 µL of methanol 119 

before each injection. To set up the optimal condition, an aqueous solution of AA and DHAA (10 120 

µg/mL) was infused directly into the Exactive Orbitrap HRMS system (Thermo Fisher Scientific, 121 

Bremen, Germany) equipped with a heated electrospray interface operating in the positive and 122 

negative mode and scanning the ions in the m/z range of 50−550. The resolving power was set to 123 

75000 full width at half-maximum (FWHM, m/z 200), resulting in a scan time of 1 s. The automatic 124 

gain control was used to fill the C-trap and the maximum injection time was 50 ms. The interface 125 

parameters were as follows: spray voltage, 3.0 kV (-3.0 kV for negative ion mode); capillary 126 

temperature 320 °C and heather temperature at 250 °C, capillary voltage, 48.5 V (-48.5 V, for 127 

negative ion) ; skimmer voltage, 14 V (-12 V for negative ion) ; sheath gas flow, 30 (arbitrary 128 

units); and auxiliary gas flow, 6 (arbitrary units). Before the AA and DHAA determination, the 129 

instrument was externally calibrated by infusion with a positive ions solution that consisted of 130 

caffeine, Met-Arg-Phe-Ala (MRFA), Ultramark 1621, and acetic acid in a mixture of 131 

acetonitrile/methanol/water (2:1:1, v/v/v), then with a negative ions solutions that consisted of 132 
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sodium dodecyl sulfate, sodium taurocholate, Ultramark 1621, and acetic acid in a mixture 133 

methanol/water (1:1, v/v). Reference mass (lock mass) of diisooctyl phthalate ([M + H]+, exact 134 

mass = 391.28429) was used as recalibrating agent for positive ion detection. To optimize the 135 

HRMS conditions and the mass accuracy, the instrument was calibrated each day both in positive 136 

and negative mode. A stock solution of AA and DHAA was prepared by dissolving 10 mg of 137 

standard in 1 mL of mass spectrometry grade water. This solution was diluted and stored at −20 °C 138 

until use. The range of the calibration curve was between 10−1000 ng/mL according to the limit of 139 

detection (LOD) and the limit of quantitation (LOQ). Three replicates of 1 ng/mL solutions were 140 

injected into the U-HPLC-HRMS system to verify the lowest concentration for which the signal-to-141 

noise ratio was >3. Concentrations of 1 ng/mL resulted in no signal. The LOQ was 10 ng/mL for 142 

the standard solution, and the r2 value was >0.99 in the above-mentioned range. Reproducibility of 143 

the method was evaluated through the intraday and interday assay. The slope among the three 144 

subsequent calibration curves showed a % RSD of < 10%.  CTL milk samples were spiked with 145 

three different concentrations of AA and DHAA (50 ng/mL, 1000 ng/mL and 5000 ng/mL) and the 146 

recovery was calculated according to the following formula:   147 

(1) � = ������ × 100 148 

Where R is the recovery; �
 is the concentration of the spiked analytes in the samples, �� is the 149 

concentration of the standard in water. Analytical performances are summarized in Table 2. The 150 

analytical setup for the detection of AA and DHAA was also used for the identification of amide-151 

AGEs derivatives in aqueous model systems and in milk. 152 

Formation of amide-AGEs 153 

In order to investigate the presence of amide-AGEs, an aqueous model system was prepared. 154 

Briefly, equal amounts of AA and lysine (200 µg/mL) were mixed and sealed in a screw capped 155 

flask saturated with nitrogen. The mixtures were incubated at 140 °C for 2, 4, 6 and 8 min, 156 

following the same thermal treatment profile used for the milk samples. After each step of the 157 

thermal treatment, samples were diluted 20 times in water and injected into LC-HRMS system by 158 

following the procedures described for AA and DHAA. Precursors, reaction intermediates and end 159 

products such as carboxylic acids amides and amide-AGEs were investigated by using an in-house 160 

database developed according to the degradation pathways reported in Figure 1. Specific molecular 161 

formulas and their respective m/z ratios were included in Exact Finder (Thermo Fisher Scientific, 162 

Bremen, Germany) and the following parameters were selected: isotopic pattern and retention time 163 

for the identification, signal to noise ratio higher than 5. The procedure used for the lysine/ascorbic 164 

acid model system was also applied for milk samples.   165 

Page 7 of 25 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
7 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i N

ap
ol

i F
ed

er
ic

o 
II

 o
n 

17
/0

5/
20

16
 1

4:
10

:3
4.

 

View Article Online
DOI: 10.1039/C6FO00151C

http://dx.doi.org/10.1039/C6FO00151C


Maillard reaction end products (MRPs) quantification 166 

Typical markers of the MR, CML, CEL and furosine, as well as total lysine in milk were monitored 167 

according to Troise et al.22 Briefly, 100 µL of milk was mixed along with 4 mL of HCl 6 M. The 168 

mixture was saturated by nitrogen and hydrolyzed in an air forced circulating oven (Memmert, 169 

Schwabach, Germany) for 20 h at 110 °C. The mixture was filtrated by polyvinylidene fluoride 170 

filters (PVDF, 0.22 Millipore, Billerica, MA) and 200 µL was dried under nitrogen flow in order to 171 

prevent the oxidation of the constituents. The samples were reconstituted in 190 µL of water and 10 172 

µL of internal standard mix was added in order to obtain a final concentration of 200 ng/mg of 173 

samples for each standard (d4-Lysine, d2-CML and d4-CEL and d4-furosine). Samples were loaded 174 

onto equilibrated Oasis HLB 30 mg cartridges (Waters, Wexford, Ireland) and eluted according to 175 

the method previously described; then 5 µL was injected onto the LC-MS/MS system. Separation of 176 

furosine, CML, CEL, lysine and their respective internal standards was achieved on a reversed-177 

phase core shell column Kinetex C18 2.6 µm, 2.1 mm x 100 mm (Phenomenex, Torrance, CA) 178 

using the following mobile phases: A, 5 mM perfluoropentanoic acid and B, acetonitrile 5 mM 179 

perfluoropentanoic acid. The compounds were eluted at 200 µL/min through the following gradient 180 

of solvent B (t in [min]/[%B]): (0/10), (2/10), (5/70), (7/70), (9/90), (10/90). Positive electrospray 181 

ionization was used for detection and the source parameters were selected as follows: spray voltage 182 

5.0 kV; capillary temperature 350 °C, dwell time 100 ms, cad gas and curtain gas were set to 45 and 183 

5 (arbitrary units). The chromatographic profile was recorded in MRM mode and the characteristic 184 

transitions were monitored by using an API 3000 triple quadrupole (ABSciex, Carlsbad, CA). The 185 

mass spectrometry parameters were optimized according to Troise et al.22 186 

Statistical analysis 187 

Each sample was analyzed in duplicate from two independent thermal treatment sets and injected 188 

twice. The results were reported as g/100 g of protein for lysine, mg/100 g of protein for furosine, 189 

CEL and CML, while AA and DHAA were reported as mg/L of milk. Amide-AGEs including 190 

glycerinyl-lysine; oxalyl-lysine; xylonyl-lysine, threonyl-lysine e lyxonyl-lysine were compared 191 

using the area counts. Evolution of the markers was recorded by using Prism (GraphPad Software, 192 

La Jolla, CA), while the Tukey test (α = 0.05) for bound MRPs and for the AA and DHAA were 193 

performed by using XLStat 4.6 (Addinsoft, New York, NY). In particular, for bound MRPs the test 194 

was independently performed for each marker and different letters correspond to significative 195 

differences within each group. 196 

Results and discussion 197 
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AA is widely used in food and pharmaceutical industries as an additive; in particular its protective 198 

and functional effects are required in infant formula preparations. Despite its antioxidant properties, 199 

AA is highly unstable and during thermal treatments or storage it can be degraded, leading to the 200 

loss of nutritive values, loss of color or color formation via nonenzymic browning and volatile 201 

formation.8 As a consequence, the effects of AA on the formation of MRPs were investigated in a 202 

milk model system and the encapsulation of AA was evaluated as a potential control strategy for the 203 

formation of undesired compounds that contribute to the loss of available lysine, such as lysine 204 

Amadori product, CML and CEL, as well as amide-AGEs.  205 

Model systems were prepared according to Table 1 and the concentration of AA and DHAA, the 206 

formation of amide-AGEs were monitored in the two of four recipes of the model system: milk with 207 

free AA (FAA), milk with encapsulated AA (EAA), control without AA and with lipidic coating 208 

(COA) and a control without AA and lipidic coating (CTL) were only subjected to the analysis of 209 

MRPs and total lysine.  210 

The first step was characterized by the set-up of a valid LC-HRMS procedure able to quantify AA 211 

and DHAA in milk samples. Moreover, it was possible to develop a robust method to 212 

simultaneously quantify AA and DHAA in milk samples without any derivatization procedure. The 213 

use of the exact mass up to the fifth decimal digit along with a mass tolerance up to 3 ppm limited 214 

the matrix effects and controlled the interference due to the first eluting impurities. The analytical 215 

performances are summarized in Table 2 and they are of the same order of magnitude towards other 216 

MS procedures reported previously, in particular the recovery was higher than 91% for DHAA and 217 

AA.17, 23  218 

In Figure 2 A and B the concentration of AA and DHAA in milk samples FAA and EAA were 219 

reported. According to the thermal loading, the concentration of AA slightly decreased up to 6 min, 220 

and then rapidly reached its lowest value at the end of the thermal treatment: 299.5 ± 1.5 mg/L. As 221 

expected the concentration of AA in EAA milk was 27% lower than FAA milk and the initial 222 

concentration was 270 ± 6.9 mg/L. Interestingly, the concentration of AA rapidly increased after 2 223 

min, reaching its maximum after 4 min: 313.3 ± 1.5 mg/L, then it decreased down to 267.5 ± 0.5 224 

mg/L after 8 min. In EAA milk, the initial concentration of DHAA was 12.3 ± 0.4 mg/L and 225 

differed from FAA milk. The concentration decreased up to 2 min, then it rapidly increased 226 

reaching its maximum at the end of thermal treatment 12.4 ± 0.5 mg/L. The evolution of AA and 227 

DHAA during the thermal treatment was not surprising. Firstly, it should be considered that around 228 

20% of AA was not inside the capsules, but linked to the external part of the lipidic wall; secondly 229 

the homogenization procedure (160 bar 3 passes) promoted the desegregation of around 50% of 230 
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capsules and made AA available and free to react in the first stages of the incubation (data not 231 

shown). In this respect, the use of lipidic coating guaranteed a slower release ratio than other 232 

hydrophilic coatings.20, 24 In FAA and EAA milk the kinetic profiles of AA and DHAA were 233 

consistent with the reaction mechanism: in the first stages the concentration of DHAA rapidly 234 

increased following a first order kinetic, then at the end of the thermal process it rapidly decreased 235 

turning the chemical pathways to the formation of 2,3-diketogulonic acid and other degradation 236 

products according to the β-dicarbonyl fragmentation and the oxidative α-dicarbonyl cleavage 237 

route.14, 25 The evolution of DHAA in EAA milk demonstrated the effectiveness of the capsules in 238 

sequestrating the AA: the slight increase after 2 min was in line with the increase of AA during the 239 

first stages of the thermal treatment in FAA milk, while the reduction during the first two minutes is 240 

a direct consequence of the initial concentration of AA released from the capsules.26   241 

The impact of free and encapsulated AA on furosine, CML, CEL and total lysine was evaluated 242 

with different ingredient composition of the four recipes  over 8 min in a lab scale UHT system and 243 

the results were reported in Figure 3 and table 3 (Tukey test, α= 0.05). The concentration of 244 

furosine in CTL milk ranged from 227.5 ± 11.3 to 465 ± 22.0 mg/100 g of protein after 6 min when 245 

the compound reached its maximum concentration. The same trend was obtained for the other milk 246 

systems: after 6 min the concentration of furosine was 446 ± 10.0, 520 ± 5.0 and 429.7 ± 10.0 247 

mg/100 g of protein for FAA, COA and EAA milk, respectively. During the last stage the 248 

concentration of furosine decreased in all the samples: 386.7 ± 14.9, 380.6 ± 8.14, 388.9 ± 5.3, 249 

450.5 ± 11.6 mg/100 g of protein for EAA, CTL, FAA and COA, respectively. As expected, CML 250 

increased over the storage in the three samples: in the presence of AA (free and encapsulated) and 251 

in control samples the values linearly increased. The highest values were obtained after 8 min: 12.3 252 

± 0.5, 19.1 ± 0.7 and 19.4 ± 1.0 mg/100 g of protein for EAA milk, CTL milk and FAA milk. In 253 

milk lipidic coating (COA), CML reached its maximum after 4 min then it slowly decreased down 254 

to 15.195 ± 0.6 mg/100 g of protein. The concentration of CML in EAA milk was always lower 255 

than other recipes, in particular the highest reduction was toward COA milk after 4 min (55%). 256 

Specifically, the reduction of CML in EAA milk ranged from 10 to 41% towards FAA milk. In a 257 

closed system, as the lab scale UHT milk here proposed, the behavior of CEL was very close to the 258 

one reported for CML. Specifically, only COA milk exhibited a slight decrease at the end of the 259 

thermal treatment 5.58 ± 0.44 and 5.64 ± 0.51 after 8 and 6 min respectively. The concentration in 260 

other samples increased throughout the thermal treatment, the highest values were obtained after 8 261 

min: 5.96 ± 0.40, 7.58 ± 0.15 and 4.17 ± 0.37 mg/100 g of protein for CTL, FAA and EAA milk, 262 

respectively. A significant reduction of CEL was observed in EAA milk: specifically in relation to 263 

FAA milk they were 53%, 33%, 51% and 45%, after 2, 4, 6 and 8 min, respectively. The 264 
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concentration of total lysine decreased in line with the thermal loading in all the samples. The 265 

values ranged from 8.66 ± 0.36 g/100 g of protein before the thermal treatment to 4.19 ± 0.11 g/100 266 

g of protein in FAA milk.   267 

The effectiveness of encapsulation as a tool for the control of a chemical reaction has been 268 

extensively studied by our group.27 Troise and Fogliano introduced the possibility to encapsulate 269 

AA not only for nutritional purposes, but also to prevent to the formation of MRPs in infant formula 270 

and fortified milk in presence of AA.5 The relationship between volatiles, AA and encapsulation 271 

was investigated also by Ödzemir and Gökmen: acacia gum and maltodextrin coatings of AA 272 

significantly reduced furan formation up to 57% at 120 °C in model systems.19 Beside the formation 273 

of volatiles, off-flavor, amide-AGEs and reactive dicarbonyls, AA plays an active role in the 274 

formation of other markers of the MR in milk, such as furosine, CML and CEL.9, 14 As highlighted 275 

in Figure 3, the concentration of lysine significantly decreased at the end of the thermal treatment 276 

as a consequence of the attack of the ε-amino moiety of lysine that favored an amine-induced β-277 

cleavage, α-fragmentation or decarboxylation with the final formation of MRPs (Tukey test, α= 278 

0.05, table 3).8, 14, 28 The presence of encapsulated AA showed a protective effect on the lysine 279 

amino group, thus leading to a significant increase over the UHT treatment (α < 0.05), up to 24 and 280 

29% higher than FAA milk after 2 and 4 min, respectively, while after 6 and 8 min, upon the release 281 

of AA from capsules the differences were not significant.  282 

Furosine is formed from the Amadori compounds, fructose-lysine and lactose-lysine, it is the most 283 

studied marker of the MR in milk products.29 In our milk model systems, the presence of 284 

encapsulated AA promoted a significant reduction of furosine after 2 and 4 min of heat treatment. 285 

At this stage no conclusion can be drawn about the relationship between AA and formation of 286 

fructose-lysine. It was hypothesized that the alteration of the equilibrium in AA/DHAA in FAA 287 

milk and in the late stage of the thermal treatment in EAA milk may promote oxidizing conditions 288 

that could lead to an increase of the glycation of amino acids, resulting in a reduction of furosine 289 

concentration.8 At the end of the thermal treatment the differences among furosine concentrations in 290 

the four formulations were not significant.  291 

CML and CEL followed a similar pattern during the UHT process with exception to CML in COA 292 

milk. In the presence of lipidic coating, CML reached its maximum after 4 min then it rapidly 293 

decreased revealing a similar trend to the one reported by Nguyen and coworkers. In certain 294 

conditions, CML is not a thermally stable compound 30 and the most important source of CML 295 

formation is the oxidative cleavage of the Amadori compounds with the consequent C-2 and C-4 296 

fragmentation (Hodge pathway), the cleavage of the Schiff base (Namiki pathway), the oxidative 297 
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glycosylation (Wolff pathway).2 Moreover, we have demonstrated that the ascorbylation of the ε-298 

amino group of lysine occupied a central role in the milk model system, as reported previously.28, 31 299 

In this respect, the formation of L-threose from AA and DHAA promoted the formation of the 300 

corresponding Schiff base upon the reaction with lysine residues or free lysine. The Schiff base 301 

underwent both the Amadori rearrangement leading to the formation of L-tetrulose-lysine then 302 

CML. Alternatively, after an oxidation step, CML can be formed from 303 

glycoaldehyde/alkylimine/glyoxal pathway,15 even if the contribution of glyoxal was estimated as 304 

negligible via multiresponse reaction network in sodium caseinate/lactose model system.30    305 

The protective effect of lipidic capsules on CML formation was significative throughout the thermal 306 

treatment with the only one exception represented by the first step (α < 0.05). By sequestrating the 307 

AA inside the lipidic coating the reaction mechanisms leading to the formation of CML were 308 

delayed or completely blocked with a reduction ranging from 10% to 51%. It is worthy to highlight 309 

that the reduction here obtained were of the same order of magnitude towards previous work by our 310 

group for sodium chloride in lipidic coating and HMF in biscuits and for furan and AA in 311 

maltodextrin and acacia gum.18, 19  312 

The reduction of CEL was particularly influenced by the presence of encapsulated AA, as revealed 313 

in Figure 3. It was hypothesized that the formation of methylglyoxal (MGO) was increased in the 314 

presence of AA and the α-dicarbonyl was particularly relevant for the formation of CEL.14 CEL is 315 

mainly formed via the MR with MGO formation alongside the release of lysine, deriving from the 316 

degradation of APs.30 Other pathways can be included: the Cannizzaro rearrangement and 317 

sequential hydration and dehydration reactions (formation of CEL from MGO); decomposition of 318 

the sugar to form MGO, which then reacts with protein to form CEL (formation of CEL via retro-319 

aldol fragmentation of 1-deoxyglucosone and 3-deoxyglucosone); direct reaction of amino groups 320 

with the triose phosphate, followed by elimination of the phosphate group, or spontaneous or 321 

amine-catalyzed decomposition of triose phosphates to MGO (formation of CEL from triose 322 

phosphates).32 In presence of AA, MGO is one of the products of the degradation of 3,5-323 

diketogulonic acid (issued from the isomerization of 2,3-diketogulonic acid), tartronic acid and 324 

glyceric aldehyde.14 In particular, as demonstrated by Larisch and co-workers and by Schultz and 325 

co-workers two pathways may occur. Under anaerobic conditions, decarboxylation of AA led to 3-326 

desoxy-L-xylosone which gave after retro-aldol-cleavage MGO. In the presence of oxygen 327 

dehydroascorbic acid is formed as primary degradation product. After hydrolysis of the lactone and 328 

decarboxylation xylosone underwent retro-aldol-cleavage to give glyceraldehyde which eliminated 329 

water and formed MGO.33, 34 Also in this case, the capsules exerted a protective effect with 330 
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significative reductions during the thermal treatment. The formation of CEL from AA should be 331 

further investigated since up to now only the mechanism via MGO has been shown.32 Specifically, 332 

several α-dicarbonyl structures arising from the degradation of AA can modify lysine side chains, 333 

thus leading to the formation of CEL and other MRPs.28, 35  334 

In order to confirm the results on bound MRPs, the formation of free amide-AGEs was investigated 335 

upon the reaction between AA and lysine along with protein bound CML, CEL and furosine, an 336 

aqueous model system, consisting of lysine and AA. AA and lysine were incubated at 140° C for 2, 337 

4, 6 and 8 min in order to simulate the same thermal loading used for milk and verify the formation 338 

of derived amide-AGEs via HRMS targeted screening of the chemical structures reported in Figure 339 

1 by using a database developed in Exact Finder environment. The extracted ion chromatograms 340 

shown in Figure 4 and the trends shown in Figure 5 reveled that five amide-AGEs can be formed 341 

in the presence of free lysine and AA: glycerinyl-lysine; oxalyl-lysine; xylonyl-lysine, threonyl-342 

lysine e lyxonyl-lysine. Once these compounds were detected in aqueous solution, they were 343 

investigated also in EAA milk and FAA milk by using the database previously developed.  344 

The area counts of oxalyl-lysine was higher in FAA milk than EAA milk; reaching a maximum at 6 345 

min of UHT treatment and then rapidly decreased. In EAA milk, there was a slight increase in 346 

oxalyl-lysine after 2 min of treatment then it remained constant until 8 min. Interestingly, there 347 

were similar values for glycerinyl-lysine in FAA milk and EAA milk at time 0. The signals of 348 

glycerinyl-lysine increased in FAA at 4 min of UHT treatment and subsequently decreased rapidly 349 

thereafter, indeed at the end of the thermal treatment the signal for glycerinyl-lysine was higher in 350 

FAA milk than EAA milk. Threonyl-lysine in FAA milk and EAA milk until 6 min for both 351 

samples. This continued to increase only in FAA milk at 8 min of UHT treatment while levels 352 

decreased in EAA milk, possibly suggesting degradation in the presence of lipid capsules. The two 353 

isomers xylonyl-lysine and lyxonyl-lysine were separated by the chromatographic method. 354 

Xylonyl-lysine was the only amide-AGE found to be higher in EAA milk than FAA milk at time 0; 355 

in both model systems and the signal slightly decreased around 4 and 6 min then it increased over 356 

the thermal treatment in particular in FAA milk. Lyxonyl-lysine showed the lowest signal and 357 

exhibited a similar profile in EAA and FAA. The presence of this amide-AGE was negligible prior 358 

to thermal treatment and increased in both EAA and in FAA milk. 359 

Several routes may lead to the reduction of available lysine in the presence of AA in the milk model 360 

system. On one hand, the mechanisms described previously suggest that AA and its degradation 361 

products may react with the ε-amino group of lysine leading to the formation of CML and CEL and 362 

may promote the formation of Amadori compounds. On the other hand, even if free amino acids 363 
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and free lysine are present at lower concentration than total lysine or proteins, it is possible to 364 

hypothesize a reaction network between AA and lysine leading to the formation of a plethora of 365 

products, such as amide-AGEs, carbonyl compounds, α-dicarbonyls, carboxylic acids and volatiles. 366 

Smuda and Glomb suggested the formation of the hydrate form of 2,3-diketogulonic acid as the 367 

central hub for the formation of amide-AGEs. The first steps include the nucleophilic attack of a 368 

hydroxyl anion followed by a decarboxylation. A second nucleophilic attack by the ε-amino group 369 

of lysine promotes the formation of hemiaminal whose decarboxylation lead to xylonyl-lysine and 370 

lyxonyl-lysine formation. Conversely, the amine induced α cleavage favors the formation of 371 

threonyl-lysine from 2,3-diketogulonic acid, while glyceryl-amide and oxalyl-amide can be formed 372 

from 2,3-xylodiulose and 2,4-diketogulonic acid/2,3-diketogulonic acid, respectively.14 For the first 373 

time, amide-AGEs were tentatively identified in milk and also the formation of carboxylic amides, 374 

such as formyl-lysine, lactoyl-lysine and acetyl-lysine can be hypothesized even if these last 375 

compounds mainly arise from sugars. However, AA could be indirectly linked to the formation of 376 

carboxylic acid amide: the alteration of the redox potential during the conversion into DHAA can 377 

promote the formation of 1-deoxyhexo-2,3-diulose and its isomers the key intermediates for the 378 

formation of formyl-lysine, lactoyl-lysine and acetyl-lysine upon β-cleavage.36 In this respect it can 379 

be assumed that the presence of cations promoted the degradation of free AA and Amadori 380 

compounds and the consequent amine induce β-cleavage, α fragmentation and decarboxylation.37    381 

Conclusions 382 

The use of encapsulated AA successfully reduced the formation of MRPs in fortified milk and 383 

promoted the increase in total lysine. By optimizing the ingredient formulation and processing 384 

methods, it was possible to finely disperse the capsules in milk and then to test their stability during 385 

the thermal treatment. The capsules worked as sequestrating agents by removing AA from the 386 

reaction mixture, and preventing oxidation of AA, thus leading to the control of Amadori products, 387 

CML and CEL formation. As revealed by HRMS it is possible also to block the formation of 388 

amide-AGEs, even if their chemical behavior in milk systems at high temperatures warrants further 389 

investigation. Moreover, the interplay between the formation of Amadori compounds and the 390 

presence of AA/DHAA in complex environments, such as milk, should be carefully compared to 391 

the formation of other reactive intermediates and end products in order to improve the effectiveness 392 

of encapsulation as a potential mitigation strategy of MRPs. 393 

The authors declare no conflict of interest.   394 
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Table 1: Ingredients used in the milk formula. In bold the quantity of AA, encapsulated AA and 486 

coating in the four recipes. Milk with encapsulated AA (EAA), milk with free AA (FAA), 487 

milk with empty capsules, palmitic acid blend (COA), control milk (CTL).  488 

Ingredient 100 g of milk FAA EAA  COA CTL 

Milk skimmed powder 1.2 1.2  1.2 1.2 

Whey powder 2.5 2.5  2.5 2.5 

Lactose monohydrate 5 5  5 5 

Oil blend 3.3 3.3  3.3 3.3 

Sucrose esters 0.1 0.1  0.1 0.1 

Ascorbic acid 0.04 /  / / 

Coating / /  0.04 / 

Encapsulated ascorbic acid / 0.08  / / 

Mineral blend 0.04 0.04  0.04 0.04 

Calcium/Potassium citrate 0.15 0.15  0.15 0.15 

Potassium phosphate 0.02 0.02  0.02 0.02 

Citric acid 0.02 0.02  0.02 0.02 

Magnesium/Potassium chloride 0.02 0.02  0.02 0.02 

Water 87.6 87.6  87.6 87.6 
 489 
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Table 2: Analytical performances of the LC-HRMS method for the identification of AA and 491 

DHAA. The mass accuracy was calculated dividing the mass error (i.e.: the difference 492 

between the theoretical mass and the experimental mass) by the theoretical mass. The results 493 

were reported in ppm by multiplying by 106. LOQ (limit of quantitation), LOD (limit of 494 

detection), r2 (coefficient of determination). 495 

Compound AA  DHAA 

Molecular ion [M-H]- [M-H]- 

Exact mass (m/z) 175.02481 173.00916 

Mass accuracy (ppm) 1.3 2.0 

LOD (ppb) 1 1 

LOQ (ppb) 10 10 

r2 >0.991 >0.992 

RSD % 9 6 

Recovery 93% 95% 
 496 
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Table 3: Concentration of lysine (g/100 g of protein), furosine, CML and CEL (mg/100 g of 498 

protein) in the different recipes during the UHT thermal treatment. Separate tests were 499 

performed for the four markers and different letters correspond to significative differences 500 

(Tukey test, α= 0.05). The test was performed within each marker throughout the thermal 501 

treatment. 502 

time (min) EAA CTL FAA COA 

 Mean SD Mean SD Mean SD Mean SD 

Lysine g/100 g            

t0 8.7 0.4A 8.7 0.4A 8.7 0.4A 8.7 0.4A 
t2 7.3 0.1B 6.8 0.5B,C 5.9 0.3C,D,E 6.4 0.6B,C,D 
t4 7.0 0.2B 5.7 0.2 D,E,F 5.4 0.3D,E,F,G 4.8 0.4F,G,H 
t6 5.8 0.9C,D,E,F 5.3 0.3E,F,G 4.5 0.2 G,H 5.1 0.6 E,F,G,H 
t8 5.2 0.3E,F,G,H 4.4 0.4G,H 4.2 0.1H 4.5 0.4G,H 

Furosine mg/100 g               

t0 227.2 11.6H 227.5 11.3H 226.9 11.8H 227.2 11.6H 

t2 237.5 11.7H 313.3 28.8F 297.2 8.8 F,G 301.1 12.8 F,G 
t4 259.4 12.3G,H 362.2 24.4 D,E 334.7 38.7 E,F 305.6 10.5F 

t6 429.7 10.0 B,C 465.8 22.0D 446.9 10.2B 520.6 5.0A 
t8 386.7 14.9 D 380.6 8.1D 388.9 5.3 C,D 450.6 11.6 B 

CML mg/100 g               

t0 3.8 0.4G 3.8 0.4G 3.8 0.4G 3.8 0.4G 
t2 6.2 0.8F 7.2 0.4E,F 6.8 0.6F 8.7 0.6D,E 

t4 8.9 0.1D 12.9 0.4C 15.2 0.7B 19.9 0.8A 

t6 10.3 0.4D 15.9 1.0B 16.3 1.1B 19.2 0.9A 

t8 12.4 0.5C 19.0 0.7A 19.4 1.0A 15.2 0.6C 

CEL mg/100 g               

t0 1.2 0.2I 1.2 0.2I 1.2 0.2I 1.2 0.2I 

t2 1.4 0.2I 2.1 0.2H 2.9 0.1G 2.9 0.2G 

t4 1.9 0.1H,I 4.5 0.2D,E 2.9 0.2G 3.7 0.2F 

t6 3.5 0.2F,G 5.0 0.4C,D 7.2 0.4A 5.6 0.5B,C 

t8 4.2 0.4E,F 6.0 0.4B 7.6 0.2A 5.6 0.4B,C 

 503 

  504 

Page 19 of 25 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
7 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i N

ap
ol

i F
ed

er
ic

o 
II

 o
n 

17
/0

5/
20

16
 1

4:
10

:3
4.

 

View Article Online
DOI: 10.1039/C6FO00151C

http://dx.doi.org/10.1039/C6FO00151C


Figure captions 505 

Fig.1: Reaction mechanisms between AA and lysine according to, Larisch and coworkers 33, Dunn 506 

and coworkers15 and Smuda & Glomb 14. 507 

Fig.2: Profile of AA (A) and DHAA (B) during the thermal treatment. EAA: milk with 508 

encapsulated AA, FAA: milk with free AA. 509 

Fig.3: Evolution of furosine, CML, CEL and total lysine over the thermal treatment. The results are 510 

in mg/100 g of protein, while for lysine they are in g/100 g of protein. EAA: milk with 511 

encapsulated AA, FAA: milk with free AA, COA: milk with empty capsules, CTL: milk 512 

without free AA, encapsulated or empty capsules.  513 

Fig.4: Extracted ion chromatogram of oxalyl-lysine (exact mass [M+H]+: 219.09755), glycerinyl-514 

lysine (exact mass [M+H]+: 235.12994), threonyl-lysine (exact mass [M+H]+: 265.13941), 515 

xylonyl-lysine (exact mass [M+H]+: 295.14998) and lyxonyl-lysine (exact mass [M+H]+: 516 

295.14998) from the top to the bottom. Mass tolerance, 10 ppm, identification via isotopic 517 

pattern and retention time. The red line represents the center of the peak, while the gray hill 518 

is the Gaussian smoothed profile defined by the peak score (black solid line). 519 

Fig.5: Evolution of oxalyl-lysine (exact mass [M+H]+: 219.09755), glycerinyl-lysine (exact mass 520 

[M+H]+: 235.12994), threonyl-lysine (exact mass [M+H]+: 265.13941), xylonyl-lysine 521 

(exact mass [M+H]+: 295.14998) and lyxonyl-lysine (exact mass [M+H]+: 295.14998) in 522 

EAA milk (with encapsulated AA) and FAA milk (with free AA). The values are reported as 523 

area counts. 524 

Page 20 of 25Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
7 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i N

ap
ol

i F
ed

er
ic

o 
II

 o
n 

17
/0

5/
20

16
 1

4:
10

:3
4.

 

View Article Online
DOI: 10.1039/C6FO00151C

http://dx.doi.org/10.1039/C6FO00151C


  

 

 

Fig.2: Profile of AA (A) and DHAA (B) during the thermal treatment. EAA: milk with encapsulated AA, FAA: 
milk with free AA.  

228x357mm (300 x 300 DPI)  
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Fig.3: Evolution of furosine, CML, CEL and total lysine over the thermal treatment. The results are in 
mg/100 g of protein, while for lysine they are in g/100 g of protein. EAA: milk with encapsulated AA, FAA: 

milk with free AA, COA: milk with empty capsules, CTL: milk without free AA, encapsulated or empty 

capsules.  
188x136mm (300 x 300 DPI)  
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Fig.4: Extracted ion chromatogram of oxalyl-lysine (exact mass [M+H]+: 219.09755), glycerinyl-lysine 
(exact mass [M+H]+: 235.12994), threonyl-lysine (exact mass [M+H]+: 265.13941), xylonyl-lysine (exact 

mass [M+H]+: 295.14998) and lyxonyl-lysine (exact mass [M+H]+: 295.14998) from the top to the 

bottom. Mass tolerance, 10 ppm, identification via isotopic pattern and retention time. The red line 
represents the center of the peak, while the gray hill is the Gaussian smoothed profile defined by the peak 

score (black solid line).  
47x99mm (600 x 600 DPI)  
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Fig.5: Evolution of oxalyl-lysine (exact mass [M+H]+: 219.09755), glycerinyl-lysine (exact mass [M+H]+: 
235.12994), threonyl-lysine (exact mass [M+H]+: 265.13941), xylonyl-lysine (exact mass [M+H]+: 

295.14998) and lyxonyl-lysine (exact mass [M+H]+: 295.14998) in EAA milk (with encapsulated AA) and 

FAA milk (with free AA). The values are reported as area counts.  
211x490mm (300 x 300 DPI)  

 

 

Page 24 of 25Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
7 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i N

ap
ol

i F
ed

er
ic

o 
II

 o
n 

17
/0

5/
20

16
 1

4:
10

:3
4.

 

View Article Online
DOI: 10.1039/C6FO00151C

http://dx.doi.org/10.1039/C6FO00151C


  

 

 

 

40x20mm (600 x 600 DPI)  

 

 

Page 25 of 25 Food & Function

Fo
od

&
Fu

nc
tio

n
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 1
7 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
 D

eg
li 

St
ud

i d
i N

ap
ol

i F
ed

er
ic

o 
II

 o
n 

17
/0

5/
20

16
 1

4:
10

:3
4.

 

View Article Online
DOI: 10.1039/C6FO00151C

http://dx.doi.org/10.1039/C6FO00151C

