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Theory of optical dispersive shock waves in photorefractive media
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The theory of optical dispersive shocks generated in the propagation of light beams through photorefractive
media is developed. A full one-dimensional analytical theory based on the Whitham modulation approach is
given for the simplest case of a sharp steplike initial discontinuity in a beam with one-dimensional striplike
geometry. This approach is confirmed by numerical simulations, which are extended also to beams with
cylindrical symmetry. The theory explains recent experiments where such dispersive shock waves have been

observed.
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I. INTRODUCTION

The study of optical solitons is a large area of modern
research which is important both scientifically and for poten-
tial applications (see, e.g., [1,2]). Different kinds of solitons
have already been observed in various nonlinear optical me-
dia, and their behavior has been explained in the frameworks
of such mathematical models as the nonlinear Schrodinger
(NLS) and generalized nonlinear Schrodinger (GNLS) equa-
tions for different dimensions and geometries, so that one
can consider the properties of single solitons as well enough
understood.

However, there are situations when many solitons are
generated so that they can comprise a dense soliton train. In
such situations, it is impossible to neglect interactions be-
tween solitons and one has to consider the evolution of the
structure as a whole rather than to trace the evolution of each
soliton separately. Usually, such soliton structures appear as
a result of the wave breaking of a large enough initial pulse
or large disturbance about a constant background. Hence,
such structures can be considered as dispersive counterparts
of shock waves well known in the physics of compressible
viscous fluids (see, e.g., [3]). In a viscous fluid, the shock can
be represented as a narrow region within which strong dissi-
pation processes take place. In optics, on the contrary, dissi-
pation effects can be neglected compared with dispersion
ones and the shock discontinuity resolves into an expanding
region filled with nonlinear oscillations. Such dispersive
shock waves are known as tidal bores in rivers [4] and have
been also observed in some other physical systems including
collisionless plasma [5] and Bose-Einstein condensates [6].
Depending on the dispersive and nonlinear properties of the
medium in which the wave propagates the dispersive shocks
can be comprised of either bright or dark solitons. For ex-
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ample, tidal bores consist of bright solitons governed by the
Korteweg—de Vries equation for shallow-water waves
whereas dispersive shocks in Bose-Einstein condensates with
repulsive interatomic interaction are governed by the “defo-
cusing” Gross-Pitaevskii equation and consist of a sequence
of dark solitons.

It is important to note that dispersive shocks should not be
confused with sequences of solitons generated in modula-
tionally unstable media described, for instance, by a focusing
nonlinear Schrodinger equation; see, e.g., [7] and references
therein. Such media cannot exist in a uniform state, and any
disturbance decays into bright solitons or even leads to a
collapse in three-dimensional case. This situation in the op-
tics of photorefractive crystals was discussed theoretically in
[8]. In the present paper we consider the modulationally
stable situation only.

Generation of multisoliton structures was observed in the
propagation of light beams in nonlinear optical media [9-11].
In these experiments, the initial nonuniformity of light beams
necessary for formation of solitons was created by a large
disturbance of either the intensity distribution or phase dis-
tribution. In both cases an initial disturbance evolves into a
sequence of solitons; the theory of a similar evolution for the
Bose-Einstein condensate case described by a one-
dimensional (1D) Gross-Pitaevskii equation was developed
in Ref. [12]. Experiments on dispersive shock-wave produc-
tion in optics have been recently reported in [13,14]. Moti-
vated by these experiments, we shall consider here the theory
of dispersive shock waves in photorefractive media.

Since the number of interacting solitons in dispersive
shocks is usually much greater than unity and these solitons
are spatially ranked in amplitude, such a dispersive shock
can be represented as a modulated periodic wave with pa-
rameters changing a little in one transverse or longitudinal
period of the envelope amplitude of the electromagnetic
wave. A slow change of the parameters of the envelope am-
plitude is governed to leading order by the Whitham modu-
lation equations obtained by averaging conservation laws
over the family of nonlinear periodic solutions or by the
application of the averaged variational principle (see, e.g.,
[3,15,16]). For the one-dimensional NLS equation, the
Whitham equations were derived in [17,18] (see also [16])
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and the mathematical theory of dispersive shock waves for
the defocusing case was developed in [19-25]. It was applied
to the propagation of signals in optical fibers in [26] and in
Bose-Einstein condensates in [6,27]. It should be mentioned
that for the case of the 1D NLS equation, the presence of an
integrable structure has important consequences for the
modulation (Whitham) system; namely, the latter can be rep-
resented in a diagonal (Riemann) form, which dramatically
simplifies further analysis. The method of obtaining the
Whitham equations in this form is based on the inverse scat-
tering transform (IST) applied to the NLS equation [17,18].
However, in the case of the GNLS equation, the IST method
cannot be used anymore and the diagonal structure of the
Whitham system is not available. Nevertheless, it was shown
in [28-30] that in this case, the main characteristics of the
dispersive shock wave still can be found by using some gen-
eral properties of the Whitham equations which remain
present even in the nonintegrable case. Here we shall use this
latter method for the derivation of parameters of one-
dimensional dispersive shock waves generated in photore-
fractive crystals and shall confirm our analytical results by
numerical simulations, which also provide more detailed in-
formation in the cases when the analytical approach is not
yet developed (say, in 2D).

II. MAIN EQUATIONS

Photorefractive optical solitons were first observed in the
experiment of [31], and in the experiments of [11,13] the
formation of dispersive shock waves has been observed in
the spatial evolution of light beams propagating through self-
defocusing photorefractive crystals, so that beam nonunifor-
mities give rise to breaking singularities and their resolution
through dispersive shocks. As is known, the propagation of
such stationary beams is described by the equation

a1 5

S A =0, (M
where ¢ is envelope field strength of electromagnetic waves
with wave number ky=27n,/\, z is the coordinate along the
beam, x,y are transverse coordinates, r=(x,y), A =/ x
+d*/ &y is transverse Laplacian, n, is a linear refractive in-
dex, and in the photorefractive medium we have

1 p
on=——nryE _—, 2
2 0733 pp +py ( )
where E), is the applied electric field, r3; the electro-optical
index, p=|¢|%, and p, is a saturation parameter.
For mathematical convenience, we introduce nondimen-
sional variables

1 Pe /1 Pe
2: —kn2r33E <_>Z, f: kno —r33E <_)x,
27 "\py 2 "\pqy
~ 1 Pc s —
= knO _r33Ep DAL lr//: \'pclrlj7 (3)
2 Pa

where p, is a characteristic value of the optical intensity (its
concrete definition depends on the problem under consider-
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ation; for instance, it can be the background intensity), so
that Eq. (1) takes the form
G 1 t?

Ay

o 2Ty |¢|2‘/’ 0. “)

where y=p./p, and tildes are omitted. If the saturation effect
is negligibly small (1{¢/>< 1), then this equation reduces to
the usual NLS equation

J 1
iﬁ—f + 3y lgPy=0. (5)

It is convenient to represent these equations in a fluid-
dynamics-type form by means of the substitution

(r,z) = V’To exp(iJ u(r,z) - dr), (6)

so that they are transformed to

p.+V.(pu)=0,

A V.p)?
u +(uV,)u+V,f(p) - VL|: LP_ ( lg) }20» (7)
4p 8p
where
flp) = P for GNLS equation (4) (8)
L+yp
and
f(p)=p for NLS equation (5). 9)

The light intensity p in the hydrodynamic interpretation
has the meaning of a density of a “fluid,” and Egs. (8) and
(9) can be viewed as “equations of state” for such a fluid.
The function u(r,z) is a local value of the wave vector com-
ponent transverse to the direction of the light beam; in hy-
drodynamic representation, it has the meaning of the “flow
velocity.” The variable z plays the role of time, so it is natu-
ral to describe the deformations of the light beam in evolu-
tionary terms. We note that the substitution (6) rules out vor-
ticity so that system (7) actually represents a restriction of
multidimensional NLS equation (5) to potential “flows.” Ob-
viously, if the initial distribution does not depend on one of
the transverse coordinates (say, y), then transverse differen-
tial vector operators reduce to the usual derivatives (V|
=d/dx, A | =&/9x*) and Egs. (7) become an equivalent fluid
dynamic representation of one-dimensional Eq. (5).

The evolution, according to Eq. (7) of an initial distribu-
tion, specified at z=0, typically leads to wave breaking and
the formation of dispersive shock waves. One can distinguish
the following typical cases: (i) generation of dispersive
shocks in the evolution of a bright strip hump above a uni-
form (background) intensity distribution, (ii) generation of
sequences of solitons from a strip “hole” in the light inten-
sity, and (iii) generation of dispersive shocks in the evolution
of a bright cylindrically symmetrical hump above a uniform
intensity distribution.

In 1D geometry such humps can be modeled qualitatively
by steplike pulses with sharp boundaries and these models
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are convenient for analytical considerations. As was shown
in [6] for the NLS equation case with y=0, this model agrees
quite well with numerical simulations of 2D dynamics.
Therefore we shall start here with these idealized models.

III. ANALYTICAL THEORY OF ONE-DIMENSIONAL
DISPERSIVE SHOCKS GENERATED IN THE DECAY
OF A STEP LIKE INITIAL DISTRIBUTION

We shall start with an analytical treatment of shocks de-
scribed by the 1D equation

1
i+ S = f1917)=0 (10)
or, in a fluid dynamics form, by the system
Pt (pu), =0,
d 2
uz+uux+—fpx+(%—&) =0, (11)
‘ dp 8p” 4p/,

where the nonlinear refraction function f(p) is given by Eq.
(8) or (9). Systems of the type (11) are often referred to as
dispersive hydrodynamics systems.

We consider the initial distributions of the intensity and
transverse wave vectors in the form

0 po for x <O, 0 =0 1
that is, we assume that the initial velocity u(x,0) is equal to
zero everywhere which means that the initial beam enters the
photorefractive medium at z=0 without any focusing. For
the sake of definiteness we assume also that py>1.

At the initial stage of evolution, linear waves are gener-
ated which propagate according to the dispersion law ob-
tained by means of linearization of Eqs. (11) about the uni-
form state p=p,, u=u, (we keep here a nonzero value of u,
for future convenience); that is, p=py+p; exp[i(kx—wz)] and
u=uy+u; expli(kx—wz)], where p;,u;<<1. Then a simple
calculation yields

= ( k)—k k 0 k2 (13)
= wy(pg,Up, uyx k| +—.
0\F0> %0 0 (] 0)2 1

Note that w”(k) >0, which implies the appearance of dark
solitons in full nonlinear solutions. But before consideration
of such solutions, we shall discuss a nonlinear stage of evo-
lution in a dispersionless approximation when one can ne-
glect the higher-order terms in the system (11). While in the
case of general smooth initial data this stage of evolution is
responsible for the formation of breaking singularities in the
solution, its consideration also provides important insights
into the nonlinear dissipationless dispersive dynamics of dis-
continuous disturbances of the type (12) even beyond the
breaking point.

A. Dispersionless approximation

In dispersionless approximation, the system (11) reduces
to the standard equations of compressible fluid dynamics:
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p.+ (pu), =0,

u+ un,+f (p)p, = 0. (14)

Because of the bidirectional nature of this system, generally,
an initial step (12) resolves into a combination of two waves
propagating in opposite directions. One of these waves rep-
resents a rarefaction wave with clear physical meaning, but
the other one leads to a multivalued dependence of the in-
tensity p(x,z) and transverse wave number (associated flow
velocity) u(x,z) on the x coordinate. Nevertheless, this for-
mal global solution sheds some light on the structure of the
actual physical solution and some its elements will be used
later; therefore, we shall consider it here. To this end we cast
the system (14) into a diagonal form (see, for instance,
[3,16]) by the introduction of new variables, Riemann invari-
ants

2
re=ux = arctanv%, (15)
Ny

so that it takes the form

or, or,

—+V,— =0, (16)

oz ox
where the characteristic velocities V. are expressed in terms
of the hydrodynamic variables p and u by the relationship

b
Vi=ux —. (17)
L+vyp

When y— 0 we have rt=ut2\e’;, V.=ut \s“';—i.e., the usual
expressions for the dispersionless limit of the defocusing
NLS equation (the shallow-water system—see, for instance,
[19].

Since in the case of the steplike initial conditions the vari-
ables r, must depend on a self-similar variable {=x/z alone,
Eq. (16) reduces to (V.—{)(dr./d{)=0 and we arrive at the
so-called simple-wave solutions

-
v x 2
wt—L— =% - = arctanyyp =" = const, (18)
l+vyp z Ny
or
-
\” X 2 IR
u——P I = arctanyyp = r) = const. (19)
I+y z Ny

The constants here are chosen from the continuity conditions
at the points where the simple waves enter the regions of
constant intensities. Since the left-propagating rarefaction
wave described by (19) matches with the external flow p
=py, u=0 [see Fig. 1(a)] we have r2=\% arctanyyp, and,
correspondingly,

2 — —
= —=(arctany yp, — arctan\ yp). (20)
vy

Now, substituting this into the first equation of Egs. (19) we
get

053813-3



EL et al.

<l —
=+

x

n

x|

kel
kel
o
el

|

\

\

\

Xt
FIG. 1. Decay of the initial discontinuity of light intensity in a

beam propagating through a photorefractive crystal. (a) Dispersion-

less approximation with the nonphysical region of multivalued in-

tensity. (b) Schematic picture of the formation of dispersive shock

due to the interplay of dispersive and nonlinear effects. The values

of x| and x7 are the same for (a) and (b) while the values of x; and
x5 are different.

~
AL ?(arctan\"Tp - arctan\r’,y_po) =7 , (21)
L+yp Ny z
which determines implicitly the intensity p as a function of
x/z in the rarefaction wave. For x<<x| we have p=p,
=const, so x=x] is the point of weak discontinuity which
must propagate with sound velocity (see, for instance, [32])
which in our case is

-
\Np
L+yp

Indeed, substituting p=p, into Eq. (21) we get xj/z
=—c,(py). As a matter of fact, the speeds of the propagation
of weak discontinuities in the photorefractive system agree
with the group speeds determined by the long-wavelength
limit k— 0 in the linear dispersion relation (13).

Next, for x>x; we have p=1, u=0 [see Fig. 1(a)] and
this does not agree with the relationship (20) in the con-
structed left-propagating rarefaction wave solution. Hence,
we have to introduce some intermediate distribution

e(p) = (22)

p(x/z) =p~=const, u(x/z)=u"=const, (23)

which matches with the rarefaction wave at some x=x].
Now, to connect the intermediate distribution (23) with p
=1, u=0 downstream, we have to use the right-propagating
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the constant 7°

simple wave solution (18) where "

_2 f
=75 arctanyy. Hence we get

2 !’_ !’_
u= —F(arctan\e’ vp — arctanyy) (24)
Ny
and
V”; 2 ”_ /_ x
+ —=(arctan\y — arctanyyp) = —. (25)
I+yp ANy z

Equations (20) and (24) at p=p~ must give u=u"; hence,
they yield the equation

' 1 .
arctanyyp = E(arctan \"Tpo + arctany'y), (26)

which determines the parameter p~:
— — 2
VI+ypo—1+Vp(N1 +y=1)
p = — T T :
Wpo— (N1 +ypy— (N1 +y-1)

(27

When p~ is known, the parameter u~ is found from Eq. (24),

2 !,_ !’_
u = —F(arctan\e’ yp~ —arctanyy). (28)
VY

The “internal” end points x| and x; are found by substituting
the intermediate values p~ and u~ into the similarity solutions
(18) and (19),

+ = - =
X \ X \
it R —_L_’ _2=u—+L_. (29)
Z 1+ 9yp z 1+ yp

These points correspond to the weak discontinuities which
propagate with sound velocities ¢,(p~) in opposite directions
in the reference frame associated with the uniform flow u~.
The whole structure of intensity distribution is shown in Fig.
1(a). It has the region x; <x<xj with the three-valued inten-
sity, corresponding to the formal solution (18), which is ob-
viously nonphysical and its appearance serves as an indica-
tion that an oscillating dispersive shock wave is generated in
the region of transition from p=p~,u=u" to p*=1,u*=0.
The arising physical structure is shown schematically in Fig.
1(b). Importantly, the boundaries x5 of the oscillatory zone
by no means coincide with those in the formal three-valued
dispersionless solution. It is remarkable, however, that in
spite of such a radical qualitative and quantitative change of
the flow, the values of p~ and u~ themselves turn out to be
still determined by the previous equations (27) and (28). This
is a consequence of the dispersive shock jump condition
which requires that the values of the Riemann invariant r_

=u—(2/ \s’;)arctan\s“'% at both end points of the dispersive
shock wave must be equal to each other:

r—|x£= r—|x;? (30)

which gives at once Eq. (28). Since the rarefaction wave,
even in the presence of dispersion, is still described with
good accuracy by the dispersionless approximation (see
[33,34] for the general linear asymptotic analysis of the dis-
persive resolution of the weak discontinuities at the edges of
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the rarefaction wave), we deduce that Eq. (27) obtained in
the framework of the dispersionless fluid dynamics also re-
mains valid. One should emphasize that, although all ob-
tained relationships, strictly speaking, hold only asymptoti-
cally for sufficiently large “times” z, as we shall see from the
direct numerical solution, they hold with good accuracy for
rather moderate z. The dispersive jump condition of the type
(30) was proposed for the first time in [34] where it was
based on intuitive physical reasoning and the results of nu-
merical simulations of collisionless plasma flows. A consis-
tent mathematical derivation of this condition along with
some important restrictions to its applicability was given in
the framework of the Whitham theory in [28,30].

As was mentioned, the end points of the oscillatory region
of the dispersive shock in Fig. 1(b) do not coincide with the
end points of the three-valued region in Fig. 1(a). Indeed,
this oscillatory zone arises due to the interplay of dispersion
and nonlinear effects and has a structure similar to that ob-
served in the much-studied integrable defocusing NLS equa-
tion case (see [19-27]). Namely, near the leading edge x3 the
wave transforms into a vanishing amplitude linear wave
packet and at the trailing edge x, it converts into a dark
soliton. Hence, the end point of the oscillatory zone x3 must
move with the group velocity of linear waves, c,=dwy/ dk,
calculated for some nonzero value of k=k* in contrast to the
dispersionless approximation corresponding to k— 0 (in ad-
dition to a vanishing amplitude of oscillations a—0). The
end point x, moves with the corresponding soliton velocity
which also has nothing to do with the dispersionless limit
(note that in the soliton limit k— 0 but the amplitude a=a~
remains finite). Thus, our task is to determine the main quan-
titative characteristics of the oscillatory region of the disper-
sive shock—the velocities of its end points as well as the
amplitude a~ of the trailing soliton at x=x, and the wave
number k" at the leading edge point x=x;.

One can observe that the oscillatory structure of the dis-
persive shock wave is characterized by two different spatial
scales: the intensity oscillates very fast inside the shock but
the parameters of the fast oscillations change little in one
wavelength in the x direction and in one period along the
beam z axis. This suggests that the oscillatory dispersive
shock can be represented as a slowly modulated nonlinear
periodic wave and, hence, we can apply the Whitham modu-
lation theory [3] to its description. In the Whitham approach,
the original equation containing higher-order x derivatives is
averaged over the family of nonlinear periodic traveling-
wave solutions. As a result, one obtains a system of first-
order nonlinear partial differential equations of hydrody-
namic type (i.e., linear with respect to first derivatives)
governing the slow evolution of modulations. The modula-
tion system does not contain any parameters of the length
dimension, so it allows one to introduce the edges xf(z) of
the dispersive shock wave in a mathematically consistent
way, as characteristics where matching of the “internal”
(modulation) and “external” (dispersionless fluid dynamics)
solutions occurs. Of course, strictly speaking, the averaged
description is valid only when the ratio of the typical wave-
length to the width of the oscillatory zone is small. For our
case of the decay of an initial discontinuity this corresponds
to a “long-time” asymptotic behavior, z> 1. However, as we
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shall see from the comparison with a direct numerical solu-
tion, the results of the modulation approach turn out to be
valid even for rather moderate values of z.

The modulation approach to the description of dispersive
shock waves was realized for the first time by Gurevich and
Pitaevskii [33] in the framework of the Korteweg—de Vries
(KdV) equation. To put this approach into practice for light
beam deformations in a photorefractive medium, we first
have to study periodic solutions of Egs. (11).

B. Periodic waves and solitons in photorefractive crystals

The traveling-wave solution of the system (11) is obtained
by the substitution p=p(6), u=u(6), where f=x-cz is the
phase and c=const is the phase velocity. As a result, we
obtain by integrating the first equation of Egs. (11),

A
u=c+—, (31)

p
where A is an arbitrary constant. Substituting Eq. (31) into
the second equation of Eqgs. (11) and performing one integra-
tion with respect to € we obtain an ordinary differential
equation of second order,
1 dp)2 1dp , A?
= ==——%p- -Bp - —, 32
8(d0 1P PP = Bp -~ (32)

where B is another constant of integration. We shall seek its
integral in the form

dp\?
(d_a) =a1pJf(p)dp+azpz+a3p+a4, (33)
where a;, a,, as, and a4 are the constant coefficients to be
found. Substituting Eq. (33) into Eq. (32) we find, with the
account of the specific dependence f(p), the eventual form of
the sought integral,

d 2 8 8
&i)=;£m0+wﬁ«@+;%hﬁw+@EQ@)

(34)

Here a,, a; and ay, are arbitrary constants, two of which are
connected with A and B by the relations

a,=8B, a,=-4A% (35)

and a; is an additional constant so that Eq. (34) is indeed the
first integral of Eq. (32). We denote the roots of the equation
0(p)=0 as e; <e,<e;. Then the density oscillations in the
traveling wave occur between e; and e,. The amplitude of
the wave is then given by a=e,—e;. The small-amplitude
linear-wave configuration corresponds to e; — e, while for
solitons we have e,=e;. By imposing the periodicity condi-
tion p(6)=p(6+27/k) we find the wave number k of the
traveling wave in the form of the integral

e dp )—l
k= — | . (36)
W( ey \’Q(P)

While Eq. (34) cannot be integrated in closed form, it is
not difficult to find relationships characterizing its special
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FIG. 2. Plots of the function Q(p) corresponding to p,=1 and
p»=0.2 and different values of y and p,=1 and p,,=0.2, so that
(3] =0.2, €r=e3= 1.

solution in the form of a dark soliton. For this solution we
must have the following boundary conditions satisfied at in-
finity:

dpld§ — 0,

P— Pp, U Up,

d*pld®® — 0 for |6 — o, (37)

plus the condition dp/d6=0 at p=p,, =< p,, where p,, is the
value of the “density” in the minimum of the dark soliton
and p, is the “background” intensity. Applying these condi-
tions to Egs. (31) and (34) we obtain, after simple algebra,
the expressions for the coefficients in Eq. (34) for the soliton
configuration,

8pp
1+ yp,

a,=- —4(uy—c)?,

80, +4@%—cfmi+pb
(1 + yp,) Pb

s

8
az=— In(1+p,) -
7

ay=—4(u, - ¢)*p;. (38)

The curves Q(p) in a “soliton configuration” for several val-
ues of vy are shown in Fig. 2. The condition that in the soliton
limit p, be a double zero of the function Q(p)—that is,
dQ(p)/dp=0 at p=p,—yields the relationship between the
soliton velocity ¢ and the amplitude a=p,—p,, for given p,
and uy:

Zﬁ L In
valLya

1+ yp, 1
L+vyp, 1+vyp,

(c—u)’= (39)
The dependence of the soliton velocity on the saturation pa-
rameter vy is shown in Fig. 3.

For future analysis it is important to introduce one more
parameter—the inverse half-width « of the soliton—using
the exponential decay of the intensity p,—p as |6 — o:

pp—p < exp(—«|6]), |6 — . (40)

To find the relationship between « and other parameters we
take the series expansion of Q(p) for small values of p’
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2 4 6 8 10Y

FIG. 3. The plot of soliton velocity as a function of the satura-
tion parameter y. The other parameters are p,=1 and p,,=0.2.

=p,—p and find (dp'/d6)*=(1/2)(d*Q/dp’), (p')*=K*(p')*;

hence,
) 12
Pp

1 d*Q

K=\|\2 5
2 dp

={8pm+47pb(pb+pm) I TR 07 112

Yo =P+ v0,)°  Y(pp—pa)> 1+ p,

(41)

The dependence of x on 7y is shown in Fig. 4.
The profile of the intensity p(6) is determined by the in-
tegral [see Eq. (34)]

P dp
6= —_ 42
fp, VO(p) 4

m

where it is assumed that the intensity p takes the minimal
value p=p,, at #=0 which determines the integration con-
stant. The wave form of a dark soliton for different values of
the parameter 7y is shown in Fig. 5.

For y<< 1 we have the asymptotic expansions (for simplic-
ity we take u,=0)

c= \@(1 - §(2ph + pm)> +0(y). (43)
K(y)
1.75
1.5
1.25
1
0.75
0.5
0.25
2 4 6 8 10 v

FIG. 4. The plot of inverse half-width « of photorefractive soli-
ton as a function of saturation parameter . The other parameters
are p,=1 and p,,=0.2.
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0.

FIG. 5. Profiles of the intensity in photorefractive solitons for
values of y=0,1,2. The other parameters are p,=1 and p,,=0.2.

K=2\’Pb_pm|:1_§’y(3ph+pm):| +0(Y),  (44)

and for y>1 other expansions

f
c= v z{pm[]n(pb/pm) - 1] + plzn/ph}
(oo = pw)y

+0(y?), (45)

2\, ~ 2p,, In(py/p,) = P2/ .
(P = Pw)Y

One can see that the leading terms in Egs. (43) and (44)
agree with the well-known dependences for dark solitons of
the NLS equation [19].

The particular case of soliton solutions with p,,=0 and

u,=0 (hence ¢=0) in photorefractive media has been found
in [35].

o(y?).  (46)

C. Dispersive shock wave

The general periodic solution of the photorefractive equa-
tion depends on the fast phase variable # and is characterized
by four parameters e;, e,, e3, and ¢, where e, j=1 ,2,3, are
the zeros of the function Q(p), Eq. (34), which determine the
profile of the intensity, and ¢ is the phase velocity. In a
modulated wave, these four parameters become slow vari-
ables of x and z. In the Whitham theory [3], it is postulated
that this slow evolution (modulation) e;(x,z), c¢(x,z) can be
found from the conservation laws of the dispersive equation
averaged over fast oscillations with respect to the phase vari-
able 6. An additional modulation equation naturally arises as
the wave number conservation law k,+w,=0 and essentially
represents a condition of the existence of a slowly modulated
periodic wave (see, for instance, [3]). Several averaging pro-
cedures have been proposed, yielding equivalent results for
various physical systems (see [15]), so the Whitham modu-
lation theory can be now considered as quite well estab-
lished. As a result, using the original procedure of averaging
conservation laws, the Whitham system for the GNLS equa-
tion can be obtained in the following general form:

[Pi(er,ere5.0)],+[Oier enesc)], =0, i=1,2,3,
(47)
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[k(el,ez,e3,c)]z+[w(el,ez,e3,c)]x=O, w:kc. (48)

Here P,=p, P,=u, and P3=pu are the conserved “densities”
of the GNLS equation (7) and Q;, i=1,2,3, are the corre-
sponding “fluxes.” The averaging is performed over the pe-
riodic family (31) and (34) according to

>y k ez ; b b 2
fley.ese3,¢)=— wdﬂ (49)
T (3] \Q(p)

Now the system (47) and (48) is, in principle, completely
defined.

The modulation system (47) and (48) being the system of
hydrodynamic type can be hyperbolic (real characteristic
velocities—modulationally stable case) or elliptic (complex
characteristic velocities—modulationally unstable case). It is
known very well (see [16—18]) that for the defocusing NLS
equation, which is an integrable particular case of the the
GNLS equation (4), the modulation system is strictly hyper-
bolic. Our numerical simulations show that traveling waves
in the GNLS equation are modulationally stable and this sug-
gests that the corresponding Whitham system is hyperbolic
as well. So, in what follows, we shall assume hyperbolicity
of the Whitham system, which will allow us to use some
arguments of classical characteristics theory [3,32,36].

Now, to describe analytically the dispersive shock wave
as a whole, we have to solve four modulation equations (47)
and (48) for the slowly varying parameters ¢, e,, 3, and ¢ of
the periodic solution. These equations must be equipped with
special matching conditions to guarantee continuity of the
mean flow at the free boundaries x*(z) defining the edges of
the dispersive shock wave. In view of the numerically estab-
lished qualitative spatial structure of the photorefractive dis-
persive shock wave [see Fig. 1(b)] we require that
a=0,

+

at x =x"(2): p=p*, u=u', (50)

atx=x(z): k=0, p=p, u=u, (51)

where x*=xj (from now on we shall omit the subscript 2 in
x, and x;’). The dependences of p, i, k, and a on ey, e,, e3,
and ¢ are defined by Eq. (49) and the formulas of Sec. III B,
and the pairs (p~,u”) and (p*,u*) represent the solution of
the dispersionless approximation (14) evaluated at the trail-
ing and leading edges of the dispersive shock wave, respec-
tively. The edges x*(z) of the dispersive shock wave repre-
sent free boundaries defined by the kinematic boundary
conditions with clear physical meaning explained in Sec.
1T A:

dx* dx”

d_Z = Cg(P+,M+»k+)a d_Z = Cso/(P_aM_»a_), (52)
where c¢,(p*,u*,k)=dw,/ dk is the group velocity of the lin-
ear wave packet with the dominant wave number k propagat-
ing against the hydrodynamic background p* and u™ [see Eq.
(13) for the linear dispersion relation w=wq(py,ug,k)] and
cso(p~,u”,a) is the velocity of the dark soliton with ampli-
tude a propagating against the background p~ and u~ [see Eq.
(39) for the dependence of the soliton velocity on its ampli-
tude]. Of course, the values of the wave number k* at the
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leading edge and the amplitude a~ of the trailing dark soliton
are both to be determined, so the determination of the edges
x*(z) represents a part of this nonlinear boundary value prob-
lem.

Following the pioneering work of Gurevich and Pitaevskii
[33] on the dispersive shock-wave description in the frame-
work of the KdV equation, the effective methods for treat-
ment of such problems have been developed for the whole
class of evolution equations which share with the KdV equa-
tion the unique property of complete integrability (see, e.g.,
[16]). On the level of the Whitham equations, one of the
manifestations of integrability is the presence of the full sys-
tem of Riemann invariants, an event generally highly un-
likely for the systems of hydrodynamic type with number of
equations exceeding 2. In particular, the NLS equation (5)
belongs to this class, and the corresponding theory of disper-
sive shock formation was developed in [19-25] and success-
fully applied to the description of shocks in nonlinear optics
[26] and Bose-Einstein condensates [6,27]. However, the
photorefractive equation (4) is not completely integrable and
therefore the methods based on the presence of rich underly-
ing algebraic structure of such equations cannot be applied
here. Nevertheless, as was shown in [28-30], the main quan-
titative characteristics of the dispersive shock wave can be
derived using the general properties of the Whitham equa-
tions (47) and (48) reflecting their origin as certain averages,
and here we shall apply this method to the description of
dispersive shock waves in photorefractive media. To be spe-
cific, we shall be interested in the locations of the edges of
the dispersive shock wave and in the amplitude of the largest
(deepest) soliton at the trailing edge, the parameters that are
usually observed in experiment.

The method of Refs. [28—30], which will be used below,
is formulated most conveniently in terms of the physical
modulation parameters p, i, k, and a appearing in the match-
ing conditions (51) and (50). The key of the method lies in
the fact that the modulation system (47) and (48), dramati-
cally simplifies in the cases (a=0, k#0) and (k=0, a #0)
corresponding to the limiting wave regimes realized at the
boundaries of the dispersive shock wave.

1. Leading edge

At the leading edge x=x"(z) the amplitude of oscillations
vanishes, a=0. Since the Whitham averaging procedure re-
mains valid for the case a=0 (averaging over the periodic
family with vanishing amplitude), then we conclude that the
Whitham system must admit an exact reduction at a=0 and,
therefore, the system of four Whitham equations must reduce
here to only three equations. Now, if the amplitude of oscil-
lations vanishes, then the average of a function of the oscil-
lating variable equals to the same function of the averaged
variable: F(p,u)=F(p,u). Thus, when a=0 the Whitham
system must agree with the dispersionless approximation
(14) describing large-scale nonoscillating flows; i.e., the
modulation equations for p, i and a reduce to

a=0, u.+ui,+f (p)p,=0. (53)

We note that this reduction of the Whitham equations is also
consistent with the matching condition (50) at the leading

p.+ (pin), =0,
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edge of the dispersive shock wave where a=0 and which
requires that the solution of the Whitham equations must
match the solution of the equations of the dispersionless ap-
proximation. Of course, Egs. (53) can be derived directly
from the modulation equations (47) by passing in them to the
limit a=e,—e;—0 (see, for instance, [39] for the corre-
sponding calculation in the context of fully nonlinear
shallow-water waves); however, the validity of Egs. (53) ap-
pears to be obvious from the presented qualitative reasoning.

To complete the zero-amplitude reduction of the modula-
tion system we need to pass to the same limit as a— 0 in the
“number of waves” conservation law (48) in which we as-

sume the aforementioned change of  variables
(e1.e3,e3,0)—>(p,it,k,a),
k. +[w(p,i,k,a)], =0, w=kc. (54)
As a result, we get
ke + [wo(p.it,k)] =0, (55)
where
- 2
wo(ﬁ,ﬁ,k)zk(ﬁ+ erz) (56)

is the dispersion relation (13) of linear waves propagating
about a slowly varying background with locally constant val-
ues of p and u# (here we restrict ourselves to right-
propagating waves). Equations (53) and (55) comprise a
closed system which represents an exact zero-amplitude re-
duction of the full Whitham system (47) and (48) (see
[28,30] for a detailed justification of this reduction for a class
of weakly dispersive nonlinear systems) and, as we shall see,
its analysis with an account of boundary conditions (50) and
(51) yields the necessary information about the leading edge
x=x*(z) of the dispersive shock wave.

Now we observe that the “ideal” hydrodynamic equations
(53) are decoupled from Eq. (55) and, thus, can be solved
independently for p(x,z), i(x,z). However, since the values
of p and i at a=0 are subject to boundary conditions (50),
one should take into account the restriction on the admissible
values of p and i at the boundaries of dispersive shock wave
imposed by the simple-wave transition condition (30). Since
this restriction is consistent with Egs. (53), it can be incor-
porated directly into the reduced modulation system by put-
ting

2
it = —(arctan V/y_ﬁ — arctan \@) ) (57)

v
Substitution of Eq. (57) into the system (53) and (55) further
reduces it to only two differential equations

P+ V)P, =0, k+[Q(EH],=0, (58)

where

2 — Y
V.(p) = —=(arctanV yp — arctan\e‘q/) + P -, (59)
Vy L+,
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2 —
Q(p,k) = wy(p,u(p),k) = k[ ?(arctan\/y_ﬁ— arctany'y)
VY
L_z +— . (60)
(I+yp)”~ 4

The system (58) has two families of characteristics:

dx
—=V.(p 61
dz +(P) ( )
and
dx  JQp,k
dx _ op.k) 62)
dz ok

The family (61) is completely determined by the simple-
wave evolution of the function p(x,z) according to the dis-
persionless approximation of the GNLS equation. This fam-
ily transfers ‘“external” hydrodynamic data into the
dispersive shock-wave region and does not depend on the
oscillatory structure. Contrastingly, the behavior of the char-
acteristics belonging to the family (62) depends on both p
and k. Comparison of the definition (52) of the leading edge
x*(z) with Eq. (62) with the account of Eq. (60) shows that
the leading edge of the dispersive shock wave represents a
characteristic belonging to the family (62). Now, since the
system (58) consists of two equations, then according to gen-
eral properties of characteristics of nonlinear hyperbolic sys-
tems of partial differential equations (see, for instance,
[3,32,36]), one cannot specify two values k and p indepen-
dently of one characteristic, so the admissible combinations
of p and k at the leading edge of the dispersive shock wave
are determined by a characteristic integral of the reduced
modulation system (58).

To this end, we substitute k=k(p) into Egs. (58) to obtain
at once

dk  9QIdp dx Q)
a=0: —=—""—" on—=—. (63)
dp V.- ook dz ok

The above ordinary differential equation for k must be solved

with the initial condition k(p~)=0. Indeed, since Eq. (63) was

derived for the case a=0, it must remain valid in the case of

the dispersive shock wave of zero intensity, so the depen-

dence k(p) should correctly reproduce the zero-wave-number

condition at the trailing edge where p=p~ [see Eq. (51)].
By introducing the variable

(1 + vp)?
[+ L (64)
4p

instead of k, in (63), and using Eq. (60), we arrive at the
ordinary differential equation

da _ (1+a)1+3yp+2a(l - yp)] (63)
dp 25(1+yp)(1+2a)

with the initial condition
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a(p’) =1, (66)

where p~ is determined in terms of the initial discontinuity
(12) by Eq. (27). Once the solution a(p) is found, the wave
number k* at the leading edge, where p=p*=1, is determined
from Eq. (64) as

2Va*(1) -1
k+=k(1)=&- (67)
1+
The velocity of propagation of the leading edge is defined by
the kinematic condition (52), which, with an account of Eq.
(62), assumes the form

dx* Q) 1 1
S+=_=_(1,k+)=_ (2&(1)— ) (68)
dz ok 1+y a(l)
For the NLS equation case—i.e., when y=0—the expres-
sion for s* in terms of the density jump across the dispersive
shock wave can be obtained explicitly: the equation

da 1+«
—=-—— alp)=1, (69)
dp 2p

is readily integrated to give

a(p)=2 \/Z__ -1 (70)
p

_8p - 8\/;?+ 1
2p -1

and thus

+

s for y=0, (71)

in agreement with known results [19].

For small values of the saturation parameter y<<1 one can
find the correction to this formula with the use of Egs. (65)
and (68). Indeed, if we introduce a=awy+a;, where « is
given by Eq. (70) and «a; has the order of magnitude of 7,
then the series expansion of Eq. (65) yields the differential
equation for the correction «;:

doy a; 8\Np/p—-6 |[p~
ToET ot T\ (72)
dp 2p 4\Np/p-1V p

which can be easily solved with account of the initial condi-
tion a;(p7)=0 to give

—
4qWp -1 1- \’F
—
3\p~ 4\/;

1-p
+ 32 }} (73)

Then substitution of this expression into Eq. (68) gives an
explicit approximate formula for s™:

a (1) = 2)/\”;{1 -p 4+ 64{ln

——
8p —8\p —1 1
=P TP T 2 ———— |y (1),
| - | - 2
2p -1 2Vp -1)

(74)

which is correct for small y as long as a;(1)<<1.
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2. Trailing edge

In the vicinity of the trailing edge x=x"(z) the photore-
fractive dispersive shock wave represents a sequence of
weakly interacting dark solitons propagating on the slowly
varying background p and u. Since one has k—0 as x—x7,
we shall be interested in passing to a soliton limit in the
modulation system (47) and (48). Instead of performing this
limiting passage by a direct calculation (which can be quite
involved technically), we shall invoke a reasoning similar to
that used in the study of the zero-amplitude regime to inves-
tigate a reduced modulation system as k— 0.

In the limit as k— 0, the distance between solitons (i.e., a
wavelength 277/k) tends to infinity, so the contribution of
solitons to the averaged flow p and & vanishes, and similarly

to the case of the vanishing amplitude, we have F(p,u)
=F(p,u). Hence, we arrive again at the ideal hydrodynamics
system (53) for p and . Next, using the arguments identical
to those used earlier for the case a=0, but applied now to the
case k=0, we conclude that, for the matching condition (51)
at the trailing edge to be consistent with the simple-wave
transition condition (30) we should incorporate the relation
(57) into the reduced as k— 0 modulation system to obtain
the same equation for p [see Eq. (58)], which we reproduce
one more time:

P+ V.(p)p, = 0. (75)

Now we need to pass to the limit as k—0 in the wave
conservation law. This limiting transition, unlike that as a
—0, is a singular one, so it requires a more careful consid-
eration. First we note that the wave conservation law is iden-
tically satisfied for k=0, so we need to take into account
higher-order terms in the expansion of Eq. (54) for small k.
Following [28,30] we introduce a “conjugate wave number”

e -1
k= 71'( f _dp ) (76)
2 \‘J_ Q(P)

instead of the amplitude a and the ratio A=k/ k instead of the

original wave number k, so that the parameters (p,u ,A,l;)
provide a new set of modulation parameters which is conve-
nient for consideration of the vicinity of the soliton edge of a

dispersive shock. The variable k can be considered as a wave
number of oscillations of the variable p in the interval e,
< p=<e; governed by the “conjugate” traveling-wave equa-
tion

2
(d—’i) —_0(p), 77)
do

where Q(p) is defined in Eq. (34) and 6 is a new phase
variable. In the soliton limit e, — e; we can expand Q(p) in
the vicinity of its minimum point p=e,=e5 so that Eq. (77)
takes the form of the “energy conservation law” of the har-
monic oscillator,
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1<dp>2 1 4?0
() 42 EX
2 do 4 dp

Then comparison with Eq. (41) shows that in this limit

(p=p)*=0(p)=0.
P

(78)

which explains the physical meaning of the variable k in the
limit we are interested in. This analogy can be amplified by
noticing that Eq. (77) can be viewed as the traveling-wave
equation corresponding to the “conjugate” GNLS equation
obtained from Eq. (4) by replacing the variables x and z by ix
and iz, respectively, so that 6 in Eq. (34) is replaced by i6,
which leads to the change of sign in Eq. (34) transforming
this equation into Eq. (77). Now, the same transformation
maps a harmonic wave exp[i(kx—wz)] to the tails of the soli-
ton solution exp[+x(x—c,,z)]; that is, in the soliton limit the
conjugate frequency @, can be obtained from the harmonic
dispersion relation by a substitution

l.lﬁ(): (l)o(iK). (79)

Actually, this fact is well known and can be used for the
calculation of the dependence of the soliton velocity c,,,
=/ k on its inverse half-width « from the dispersion rela-
tion for linear waves (see, e.g., [37]). Thus, for photorefrac-
tive dark solitons propagating along the slowly varying back-
ground p and i we have the conjugate dispersion relation

- 2
ao(ﬁ,ﬁ,x):x<ﬁ+ \/ﬁ—'i), (80)

which, after substitution of the simple-wave relation (57),
assumes the form [cf. Eq. (60)]

ﬁ(ﬁ? K) = (;50([_)9 ﬁ(ﬁ), K)
l 2 — I
= k| —=(arctany yp — arctany'y)
VY

2

P K
(1+ p)? 4} 8D

Now we are ready to study the asymptotic expansion as k
—0 of the wave conservation law (54). First we substitute

k=Ak into Eq. (54) to obtain
kA, + @A, + Ak, + @) =0, (82)

where @=ck. Next we consider Eq. (82) for small A<1 and
assume that A<<A_, A, for the solutions of our interest (this
is known to be the case modulation solutions describing dis-
persive shock waves in weakly dispersive systems, where at
the soliton edge one has k— 0 but |k,|, k.| — w—see [28] for
a general discussion of this behavior and [33] for detailed
calculations in the KdV case). Then to leading order we get
the characteristic equation
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oA QoA
—+——=0, (83)
dz K ox
which is to say
dx  Q(p,
A=A, on &-ER (84)
dz K

where Ay<<1 is a constant. In particular, when Ay,=0 the
characteristic (84) specifies the trailing edge [see Eq. (52)].
Now, considering Eq. (82) along the characteristic family

dx/dz=Q/k and using k= K, =0 to leading order, we ob-
tain

dx  Q(p,k)
n—=——.

74 K

K, + ﬁx =0 (85)

We note that the equation Kz+ﬁx=0 arises as a “‘soliton wave
number” conservation law in the traditional perturbation
theory for a single soliton (see, for instance, [38]) but to be
consistent with the full modulation theory it should be con-

sidered along the soliton path dx/ dz=cml=(~2/ K.

Since p and « cannot be specified independently on one
characteristic, there should exist a local relationship «(p)
consistent with the system (75) and (85). Substituting «
=x(p) into (85) and using (75) we obtain

de  90/ap (36)
dp v, - /o

The initial condition for the ordinary differential equation
(86) follows from the requirement that the obtained depen-
dence k(p) should be applicable to the case of the zero-
intensity dispersive shock wave, which corresponds to initial
values p"=p*=1. In this case, the width of solitons gets in-
finitely large—that is, k— 0 in the limit p— p*; this follows
also from Eq. (41) in the limit p,,— p,. Hence we require
k(1)=0.

According to the kinematic condition (52) the velocity of
the soliton edge is equal to the soliton velocity, so we have

o Dl
o (p_K)’ (87)
dz K
where kK =k(p”).
By introducing a new variable
2 —\2
1+
&= 1= M (88)
4p

instead of x, Eq. (86) reduces to the ordinary differential
equation

@__ (I+a)[1+3yp+2a(l - yp)]
dp 25(1 + yp)(1 +28)

; (89)

with the initial condition
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a(l)=1. (90)

When the function &(p) is found, the velocity of the trailing
soliton is determined by Egs. (81), (87), and (88) as

I

\p
+vp

2 o I ~
s~ = —=(arctanyyp_ — arctanyy) + ) —a(p”). (91)
VY

Then the amplitude a=p~—p,, of the trailing soliton as a

function of the intensity jump p~ across the dispersive shock

can be found from Eq. (39) with ¢=s7, u,=u", and p,=p~:
pa(p) 2p -afl 1 |
(1+yp)? ya | va

1+ yp~ 1
L+y(p—a) 1+yp |
(92)
Again, in the case y=0 corresponding to the NLS equa-

tion, all formulas can be written down explicitly: Equation
(89) reduces to

da l+a
== ) (93)
dp 2p
and its solution satisfying the boundary condition (90) is
2
a(p)=—1=-1. (94)
\p
Then Egs. (91) and (92) give
s=\p~ (95)
and
a=4(\p - 1), (96)

respectively, in agreement with known results [19]. Again for
small y we can find the correction to Eq. (95) in an explicit
form. If we denote a=a&,+ &, where &, is given by Eq. (94),
then & satisfies the equation
da, @ Shp-6
o A, =P Fm=0. 97)
dp 2p 4NWNp-1+p
which is readily integrated to give

L 2y] 4= Np -1
a(p7)=—F=1p - 1+64/1n 3 + 1
\p

+”_3—;1”, (98)

!’_ 2 !,_
s=\Np[1+a(p)]- {g(p'\’p' ~D+p2=\p) |y
(99)

It is worth noticing that this perturbation approach breaks
down for p~=16 because of logarithmic divergence in Eq.
(98) as p~— 16—0. The velocities of the dispersive shock
edges as functions of the saturation parameter y are shown in
Fig. 6. As we see, the presence of even small values of the
saturation parameters y change the expansion velocities con-

and hence
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FIG. 6. Dependence of velocities s* and s~ on the saturation
parameter vy for fixed values of the intensities at two sides of the
dispersive shock: p™=2 and p*=1.

siderably compared with the NLS case y=0 because the
saturation effects diminish the effective nonlinearity which
forces the intensive light beam to expand.

3. Characteristic velocity ordering

From general point of view, it is important to note that a
simple-wave dispersive shock considered above is subject to
the conditions similar to “entropy” conditions in viscous
shocks theory [28,30]. Basically, these conditions require
that the number of independent parameters characterizing the
modulation solution for the dispersive shock must be equal
to the number of characteristics families transferring initial
data from the x axis info the dispersive shock region in the
(x,1) plane. For the photorefractive dispersive shock we have
four parameters characterizing the initial step (12) and one
algebraic restriction due to the simple-wave transition condi-
tion (30). Thus, the number of independent parameters is 3.
Then, analysis of the characteristic directions at the edges of
the dispersive shock waves leads to the following inequali-
ties establishing the ordering between the velocities of the
dispersive shock edges and the characteristic velocities (17)
of the dispersionless system:

Vo<s <V, Vi<s"

where subscripts correspond to definitions (17) and super-
scripts to two edges of the dispersive shock with constant
values of p* and u*. Inequalities (100) provide consistency of
the above analytical construction for the derivation of the
dispersive shock edges, which heavily relies on the proper-
ties of characteristics. We have checked that inequalities
(100) are satisfied for a wide range of parameters. As an
illustration, we present in Fig. 7 the plots of the characteristic
speeds in the simple-wave photorefractive dispersive shock
for y=0.2 as functions of the intensity jump across the
shock. One can see that the ordering (100) is satisfied.

st>sT, (100)

4. Vacuum point

We now investigate dependence of the main properties of
the dispersive shock wave on the value of the intensity jump
across the shock, which is equal to the value p~ at the trailing
edge as the value p*=1 at the leading edge is fixed [of
course, we assume u*=0 and u~ given by Eq. (28)].

It is clear already from the simplest case y=0 that there is
a possibility for the value p,, at the minimum of the trailing
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FIG. 7. Ordering of the characteristic velocities in the system
satisfies inequalities (100).

dark soliton to become zero (or, which is the same, a=p~) for
a certain value of the initial jump p~. Then it follows from
Eq. (96) that this happens at p~=4. This gives rise to a
vacuum point with p=0 at the trailing edge of the dispersive
shock [20]. When the initial step p~>4, the vacuum point
occurs at some x, inside the dispersive shock zone, x~<x,
<x*, and the typical profile of the shock changes (see [20]).
The appearance of the vacuum point in the dispersive shock
is manifested by the singularity in the profile of u at x=x, but
the “momentum” pu remains finite.

For the photorefractive case, when y# 0, the critical value
of p~=p,_, corresponding to the appearance of the vacuum
point at the trailing edge of the dispersive shock can be
found by putting p~=a in Eq. (92) which immediately yields
the equation for p_,,

a(p;) =0. (101)
where a@(p) is the solution of the ordinary differential equa-
tion (89). The dependence p_(y) is shown in Fig. 8. Com-
parison of Eq. (91) with Eq. (28) shows that at the critical
point p~=p_. we have s”=u"; that is, the trailing soliton is at
rest in the reference frame of the intermediate constant state
in the decay of an initial discontinuity (12) (see Sec. IIT A).

The dependence of & on p~ is shown in Fig. 9. One should
note that the change of sign of @ at p~=p,, does not consti-
tute nonphysical behavior even though & as defined by Eq.
(88) is a positive value. In fact, for p~>p,,, the velocity u
changes its sign at x=x, so that the trailing edge of such a

P¥)

4.1

39

38

3.7

3.6

35

FIG. 8. Dependence of the critical intensity p~ at the trailing
edge of the dispersive shock on the saturation parameter vy for fixed
value of the intensity p*=1 at the leading edge.

053813-12



THEORY OF OPTICAL DISPERSIVE SHOCK WAVES IN ...

o
1

0.8
0.6
0.4
0.2 -

2 3 4 TP
-0.2 !
0.4 ‘

FIG. 9. Dependence of the variable & on the intensity p~ at the
trailing edge of the dispersive shock for fixed value of the intensity
pt=1 at the leading edge at y=0.2; the “termination” point corre-
sponds to the intensity p,.=4.873 where analytical theory loses its
applicability.

“supercritical” dispersive shock wave propagates to the left
relative to the vacuum point. To incorporate this change, one
should use another branch in the linear dispersion relation
(13) which leads to the change of the sign in the definition of
a. As aresult, the consistent change of signs in Egs. (81) and
(89) leads to the same result for the trailing edge speed s~
defined by Eq. (99).

One can also see from Eq. (89) that a singularity in the
behavior of @(p~) is expected at some “termination point”
p~=p,, satisfying 2a(p7)+1=0 for y#0. For y=0.2 the
value p,.~4.873. This singularity has also its counterpart in
the perturbation theory represented by Eq. (98). The de-
scribed pathology in the modulation solution for p~™=p, ,
however, is not confirmed by direct numerical solutions (see
Sec. IV below) and does not seem to have physical sense.
One of the explanations of such a discrepancy is that for
large values of p~ the accepted assumption of applicability of
the single-phase modulation theory can fail. Indeed, the de-
veloped theory is based on the supposition that solutions of
our nonintegrable photorefractive system (11) behave quali-
tatively similar to their counterparts in the integrable NLS
equation case so that the dispersive shock wave can be de-
scribed with high accuracy by the single-phase modulated
solution. However, such a supposition can fail in the regions
where a drastic change of the behavior of a modulated wave
takes place. Just this situation occurs in the vicinity of the
vacuum point, at which the profile of u(x) has a singularity.
So one can expect some discrepancy between predictions of
the modulation theory and exact numerical solutions for the
dispersive shock waves with p~ sufficiently close to or
greater than p.,. As a rough estimate for p,, one can use the
value p_.=4 obtained for the integrable NLS equation. Since,
by definition, @(p;,,)=-1/2<0 for all y>0, one can con-
clude that one always has p,.>p_,, so the predictions of the
developed modulation theory can become unreliable for such
large intensity jumps across the dispersive shock.

D. Number of solitons generated from a localized initial pulse

Now we consider an asymptotic evolution of a large-scale
decaying initial disturbance

p(xvo) = pO(x) = lv M(.X,O) = uO('x);
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po(x) = 1, up(x) =0 as |x| - %, (102)

so that the typical spatial scale of this disturbance L>1. As
the numerical simulations for the GNLS equation show, such
an initial “well” generally decays as z— o into two groups of
dark solitons propagating in opposite directions, which is
consistent with the “two-wave” nature of the GNLS equa-
tion. For y=0 the dynamics is described by the integrable
NLS equation and the soliton parameters are found from the
generalized Bohr-Sommerfeld rule [24]. In the present non-
integrable case of the GNLS equation (11) these parameters
can be obtained by an extension of the modulation method of
obtaining the parameters of the dispersive shock wave for the
case when the initial distribution corresponds to the simple
wave solution of the dispersionless equations; that is, one of
the Riemann invariants (15) is supposed to be constant. This
extension has been developed in [39] in the context of fully
nonlinear shallow-water waves, and we shall use it here to
derive the formula for the total number of solitons resulting
from the initial disturbance (102). First, we assume that for
the large-scale initial data (102) one can neglect the contri-
bution of the radiation into the asymptotic as z— ¢ solution,
which implies that the whole initial disturbance eventually
transforms into solitons (this is known to be the case for the
integrable NLS equation and is also confirmed by our nu-
merical simulations for the GNLS equation). Next, we notice
that this transformation into solitons occurs via an interme-
diate stage of the dispersive shock-wave formation, so we
can apply the general modulation theory to its description
and then make some inferences pertaining to the eventual
soliton train state as z— .

For definiteness, we consider here the right-propagating
dispersive shock wave forming from the profile (102) satis-
fying an additional simple-wave restriction (28)

2 —
uo(x) = —=[arctan\ yp,(x) — arctan\*’;]. (103)

VY
We consider the wave number conservation law (54), which
is one of the modulation equations describing the dispersive
shock wave. For the considered case with decaying at infin-
ity initial profile (102) we have k—0 as |x| — and, there-
fore, Eq. (54) implies conservation of the total number of
waves,
("

N=—

= kdx = const.
2m7) o

(104)

We use an approximate equality sign here due to asymptotic
character of the modulation theory which inherently cannot
predict an integer N exactly. In the Whitham description of
the dispersive shock wave, the x axis is subdivided, after the
wave breaking at 7>z, into three regions described in Sec.
I c:

—o<x<x(z2), x(@<sx<=x"(2), x"(z)<x<ee,

(105)
where x*(z) are the boundaries of the dispersive shock wave.

Generally, these boundaries are not straight lines as in the
case of the decay of the initial steplike pulse considered
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above, but their nature as characteristics of the modulation
system remains unchanged. In view of (105), the integral in
(104) can be expressed as a sum of three integrals,

1 x~(2) x*(2) ”
N=— k(x,z)dx + k(x,z)dx + k(x,z)dx (.
2m | ) (@) )

(106)

To apply formula (106) we need first to define the wave
number k outside the dispersive shock wave as it has been
actually defined so far only within the nonlinear modulated
wave region [x(z),x*(z)]. The extended definition of k
should be consistent with the matching conditions (50) and
(51) for all z.

We know that at the soliton edge x7(z) of the Whitham
zone we have k(x™(z),z)=0, so we can safely put k(x,z)=0
in the region x <x7(z) and, hence, the first integral vanishes.
At the same time, the value of & is not explicitly prescribed at
the leading edge x*(z) by the boundary condition (50) but is
rather determined as a function of p due to the fact that the
leading edge is a characteristic of the modulation system—
see Sec. III C. The dependence k*(p) is determined then by
the ordinary differential equation (63) [we note that the
simple-wave transition condition (28) is already embedded in
(63) and is consistent with the initial conditions (103)]. This
ordinary differential equation should be, again, solved with
the initial condition k(p~)=0, and now p =p,=1 where we
have taken into account that for large pulse (102) the wave
breaking occurs close to the background intensity, p,=1.
Thus, we get the characteristic integral k=k*(p) along the
leading edge. The intensity p(x,z) in the downstream region
x>x"(z) satisfies the simple-wave dispersionless equation

p.+Vi(p)p, =0, (107)

with the initial condition p(x,0)=py(x); i.e., the solution is
given implicitly by p=po[x—V,(p)z]. Therefore, to be con-
sistent with the boundary values of k prescribed by the char-
acteristic integral of the modulation equations, we have to
define the wave number downstream the dispersive shock
wave as k*(p(x,z)), where p(x,z) is the aforementioned
simple-wave solution. Then, at z=0 we get an effective ini-
tial distribution of k in terms of the initial data for p given by
Eq. (102):

k(x,0) = k*(po(x))

for x=x,, where x, is the coordinate of the breaking point;
obviously, x,=x"(z,)=x"(z;). Note that this definition is also
consistent with our definition k=0 upstream of the disper-
sive shock wave, since k*(1)=0. Thus, Eq. (108) describes
initial data for the wave number for all x. The function
k(x,0) can be interpreted as the wave number distribution for
a “virtual” linear modulated wave which accompanies the
initial hydrodynamic distributions p(x,0) and u(x,0) and
transforms, after the wave breaking, into the dispersive
shock and, eventually, into a train of solitons.

Now, we consider (106) for z=0 and notice that, since the
second integral disappears for z<z, z;,>0 [there is no dis-
persive shock before the breaking point formation so we put

(108)
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x*(z)=x"(z) for z<z,], this expression reduces to

N= J‘” k(x,0)dx = fw k*(po(x))dx.

—00

(109)

—o0

As was shown in Sec. III C, it is convenient to introduce
an auxiliary function a(p) instead of k*(p) according to Eq.
(64) so that

I
k+_2\”p(a’2_ l)
l+yp

Then a(p) satisfies the ordinary differential equation (65)
with the initial condition a(1)=1. As a result, the number of
solitons as z— is determined by the formula

- +o0 ’y/f
N=- | kro)dx=— f Vpolagle) - 11,
1+ ypo(x)

(110)

b}

=27T w 7)o
(111)

where a(x)=a(py(x)).
When y=0, the solution a(p) of Eq. (65) is given by Eq.
(70) and assumes here the form
2 0+ 0 (112)
a=—F—- or y=0.
"

Then, for the total number of solitons we have from (111)

[ '
N=— f V2 = Vpo() T = po(x)

2 (Y ——
= —f V1 —pi?dx  for y=0, (113)
W —00

which agrees with the “simple-wave” reduction of the semi-
classical quantization results for the defocusing NLS equa-
tion obtained in [24].

IV. NUMERICAL SIMULATIONS OF NONLINEAR WAVES
IN PHOTOREFRACTIVE MEDIA

In this section, we compare the analytical predictions of
the preceding sections with the results of direct numerical
simulation of the formation of dispersive shock waves in
photorefractive equation (4).

First, we have studied numerically evolution of the step-
like pulse. The corresponding results are shown in Fig. 10.
As we see, all parameters (velocities of the edges of the
rarefaction wave and the dispersive shock, intensity of the
intermediate state) are in good agreement with the analytical
predictions of Sec. III A.

We have constructed the dependence of p~ and u~ on the
saturation parameter y using the results of the numerical
simulations. The results shown in Fig. 11 agree very well
with the analytical predictions based on the “simple-wave”
jump condition (30) which is applicable for not too large
values of p~ (=4) such that the vacuum point is not formed.
In Fig. 12 we show the dependence of the edge “velocities”
s* on the intermediate intensity p~ [with u~ calculated ac-
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FIG. 10. Evolution of the initial steplike pulse with py=5 and
p=1 for the case of y=0.1. The general structure confirms forma-
tion of a rarefaction wave, a dispersive shock, and an intermediate
constant state in between. Intensity p~=2.466 calculated according
to Eq. (27) coincides with the numerical result for the intensity of
the intermediate state. Coordinates of the edges of the rarefaction
wave at =32 calculated analytically are equal to x7=-47.7, x}
=-9.02 for the rarefaction wave and x;=42.57, x;=99.52. One can
see that they agree quite well with numerical results. Small-
amplitude waves generated at around x=-50 correspond to the lin-
ear dispersive “resolution” of the weak discontinuity occurring at
the trailing edge of the rarefaction wave.

cording to “simple-wave” jump condition (28)]. As we see,
good agreement is observed for p~<<4. However, as p~ in-
creases with growth of p, and becomes greater than p_, =4,
Eq. (28) no longer yields the values of u~ compatible with
the prescribed value of p~ so that only a single right-
propagating dispersive shock is generated; this is illustrated
by Fig. 13, where a new “intermediate” region of constant
flow is seen to be formed which matches with the dispersive
shock propagating to the right, while another dispersive
shock is apparently forming to the left of this new constant
state, providing matching with p,. Surprisingly, we have
found that the large-amplitude dispersive shock-wave transi-
tion between the new intermediate constant state and p=1
now satisfies a classical shock jump condition which follows
from the balance of “mass” and “momentum” across the
shock as it takes place in classical dissipative shocks. Using
the dispersionless equations (14) represented in a conserva-
tive form we find that formal shock jump conditions yield
the dependence

) \V2(p" - 1)

W= ) (114)
Vip~+ D1+ yp)(1 + )

We have checked that the dependence (114) is indeed satis-
fied very well for p~>4. The physical mechanism supporting
the appearance of the classical shock conditions in a dissipa-
tionless system such as (11) is not quite clear at the moment.
We note that a similar effect of the appearance of the classi-
cal shock jump condition across the expanding dispersive
shock has been recently observed in [40] for large-amplitude
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FIG. 11. Dependence of intermediate values (solid lines) of in-
tensity (a) and transverse wave vector (b) on the saturation param-
eter y for fixed values of the initial discontinuity parameters: p,
=5, up=0 for x<0 and p*=1, u*=0 for x>0 at z=0. Numerically
calculated values are shown by dots.

shallow-water undular bores modeled by the Green-Naghdi
system, which is also not integrable by the IST. At the same
time, it is known very well that for the dispersive shocks
described by the integrable NLS equation, the simple-wave
jump condition is satisfied exactly for all values of initial
density jump—this follows from the full modulation solution

35
3 st

25
2

15 s . .
1 _

1.5 2 25 3 35 4 p

FIG. 12. Dependence of s* on p~ [with u~ calculated according
to (28)]; y=0.2. Solid lines correspond to analytical formulas (68)
and (91), and dots correspond to results of numeric simulations.
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FIG. 13. Dispersive shock evolving from the steplike pulse with
p~ and u~ related by the “simple-wave” jump condition for large
values of p~=10 much greater than p~=4. Occurrence of a vacuum
point in the region between x=100 and x=150 is clearly seen. A
new intermediate constant state is formed in the region behind the
dispersive shock, showing that the simple-wave jump condition
(28) does not prevent anymore the formation of the second wave for
large values of p~.

(see [6,20,26]) and is also confirmed by our numerical simu-
lations. So it is possible that the described phenomenon of
the appearance of the classical shock conditions constitutes a
specific manifestation of nonintegrability in dispersive dissi-
pationless systems which is yet to be explored.

Next, we have compared the analytical predictions of Sec.
III D for a number of dark solitons generated from a holelike
disturbance with numerical simulations. We took the initial
distribution of intensity,

1 2
cosh(0.2x)> ’ (115)

po(x) = (1 -
and the initial distribution of transverse wave number was
calculated according to Eq. (103). The evolution of such a
pulse according to the photorefractive equation with y=0.2
is illustrated by Fig. 14 where the profile of intensity is
shown at z=100. As we see, this pulse, after the wave break-
ing and formation of a dispersive shock, evolves eventually
into a number of dark solitons. We note that the appearance
of several solitons propagating to the left does not contradict
to the unidirectional restriction guaranteed by the simple-
wave initial conditions (115) and (103)—these left-
propagating solitons occur due to relatively high amplitude
of the initial disturbance (115), which leads to the appear-
ance of the vacuum point at the intermediate stage of the
dispersive shock wave and, therefore, to the formation of
some number of left-propagating solitons—see Sec. III C.
The total number of created solitons calculated by means of
the modulation formula (111) as a function of the saturation
parameter vy is shown by the solid line in Fig. 15 and the
corresponding results of numerical simulations are indicated
by dots. Taking into account the asymptotic nature of the
developed analytical theory for this integer-valued function
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FIG. 14. Profile of intensity at z=100 evolved from the initial
pulse (115) (dashed line) with initial profile of u(x) calculated ac-
cording to (103).

and the fact that the considered initial data (115) produce a
vacuum point (i.e., at some stage of the dispersive shock
development the “instantaneous” initial jump p~>p_ ), the
agreement can be considered as quite good.

In Refs. [6,13] the theory of dispersive shocks, evolving
from a steplike pulse according to the NLS equation (5) (y
=0), was used for qualitative explanation of dispersive
shocks with other geometries in concrete physical situations
(see also [27] where the NLS theory of the wave breaking
was also used for description of dispersive shocks in Bose-
Einstein condensates). In a similar way, the theory developed
here of dispersive shocks in photorefractive media can be
used for the description of experiments on the generation of
optical shocks. Such experiments were described in [11,13],
and here we present some results based on the numerical
solutions of the photorefractive equation (4) with initial con-
ditions similar to the initial light distributions in the men-
tioned experimental works (similar results of numerical
simulations were presented in [13]).

In [13] the distribution of output intensities are presented
for initial distributions in the form of a strip, a circle, and
two separated circles. We have performed numerical simula-
tions with similar initial conditions. In Fig. 16 we present a

N
16

14
12

_ O’Y

FIG. 15. Number of solitons, N, as a function of 7; the solid line
represents the analytical dependence (111) and dots correspond to
numerical simulations.
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FIG. 16. Density plot of the output intensity evolved from a
striplike initial distribution; y=0.1 and output coordinate is equal to
z=10.

IN)

density plot of the output intensity evolved, according to the
photorefractive equation with y=0.1, from the striplike ini-
tial distribution given by the formula

{1 +5(1 =x%25)%% for |x] <5,
plx) =

116
1 for |x| > 5, (116)

which approximates with a good enough accuracy the con-
stant values of intensities inside the strip and outside it. A
similar density plot for the circle initial distribution is shown
in Fig. 17.

As we see, in both cases the initial “hump” breaks with
the formation of dispersive shocks—in the striplike geometry
we get two shocks propagating in opposite directions and in
circular geometry we have a ringlike dispersive shock ex-
panding in the radial direction.

50

-50

-40

20 0 20 40
X

FIG. 17. Density plot of the output intensity evolved from a
circle initial distribution; y=0.1 and output coordinate is equal to
z=10.
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FIG. 18. Interaction of two circular dispersive shocks; y=0.1
and output coordinate is equal to z=15.

In Fig. 18 an interaction of two circular dispersive shock
waves is shown. It is remarkable that even in this two-
dimensional nonintegrable photorefractive case, the nonlin-
ear dispersive shock waves are robust enough and do not
produce intensive waves in the region of their overlap at
least for y=0.1. In the region of nonuniform intensity circu-
lar solitons refract but do not decay into other waves. It is
this kind of picture that is expected in the system with y
=0 described by the integrable NLS equation where the in-
teraction of two dispersive shocks leads to the formation of a
two-phase modulated-wave region described by the corre-
sponding multiphase-averaged modulation system [25].
While an analytical description of multiphase nonlinear
waves in the photorefractive equation (11) is not available,
the qualitative similarity between the solution behavior for
the nonintegrable photorefractive equation and for the NLS
equation for moderate values of initial amplitudes can be
considered as a confirmation of the robustness of the modu-
lated traveling-wave ansatz in the description of dispersive
shock waves in nonintegrable systems, at least for some rea-
sonable range of initial amplitudes.

V. CONCLUSION

In this paper, we have developed a theory of the formation
of dispersive shocks in the propagation of intensive light
beams in photorefractive optical systems. The theory is
based on Whitham’s modulation approach in which a disper-
sive shock is described as a modulated nonlinear periodic
wave and slow evolution along the propagation axis is gov-
erned by the averaged modulation equations. In spite of the
absence of complete integrability of the equation describing
the propagation of light beams in photorefractive media, the
main characteristic parameters of shocks can be determined
by means of the approach developed in [28-30] and based on
the study of reductions of Whitham equations for the wave
regimes realized at the boundaries of the dispersive shock. In
particular, “velocities” of the dispersive shock edges as well
as the amplitude of the soliton at the rear edge of the shock
are found as functions of the intensity jump across the shock.
The number of solitons produced from a finite initial distur-
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bance is also determined analytically for initial distributions
satisfying the so-called simple-wave condition. The analyti-
cal theory agrees very well with numerical simulations as
long as there is no vacuum point in the shock. The appear-
ance of a vacuum point leads to the formation of a singular-
ity in a “transverse” wave vector distribution, and such a
drastic change in the wave behavior cannot be traced by the
developed approach. However, this situation occurs at very
high input intensities of a light beam so that for practical
purposes the developed theory provides an accurate enough
approximation.

PHYSICAL REVIEW A 76, 053813 (2007)

Although the theory is essentially one dimensional (i.e.,
with one transverse space coordinate), it can give a qualita-
tive explanation of experiments with other geometries, which
is illustrated by the results of numerical simulations.
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