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Abstract

This paper considers the propagation of shallow-water solitary and nonlinear peri-

odic waves over a gradual slope with bottom friction in the framework of a variable-

coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using

a recent development of this theory for perturbed integrable equations. This general

approach enables us not only to improve known results on the adiabatic evolution of

isolated solitary waves and periodic wave trains in the presence of variable topography

and bottom friction, modeled by the Chezy law, but also importantly, to study the

effects of these factors on the propagation of undular bores, which are essentially un-

steady in the system under consideration. In particular, it is shown that the combined
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action of variable topography and bottom friction generally imposes certain global

restrictions on the undular bore propagation so that the evolution of the leading soli-

tary wave can be substantially different from that of an isolated solitary wave with

the same initial amplitude. This non-local effect is due to nonlinear wave interactions

within the undular bore and can lead to an additional solitary wave amplitude growth,

which cannot be predicted in the framework of the traditional adiabatic approach to

the propagation of solitary waves in slowly varying media.

1 Introduction

There have been many studies of the propagation of water waves over a slope, sometimes

also subject to the effects of bottom friction. Many of these works have considered linear

waves, or have been numerical simulations in the framework of various nonlinear long-wave

model equations. Our interest here is in the propagation of weakly nonlinear long water

waves over a slope, simultaneously subject to bottom friction, a combination apparently

first considered by Miles (1983a,b) albeit for the special case of a single solitary wave, or a

periodic wavetrain. An appropriate model equation for this scenario is the variable-coefficient

perturbed Korteweg-de Vries (KdV) equation (see Grimshaw 1981, Johnson 1973a,b),

At + cAx +
cx

2
A +

3c

2h
AAx +

ch2

6
Axxx = −CD

c

h2
|A|A. (1)

Here A(x, t) is the free surface elevation above the undisturbed depth h(x) and c(x) =
√

gh(x) is the linear long wave phase speed. The bottom friction term on the right-hand

side is represented by the Chezy law, modelling a turbulent boundary layer. Here CD is a

non-dimensional drag coefficient, often assumed to have a value around 0.01 (Miles 1983a,b).

Other forms of friction could be used (see, for instance Grimshaw et al 2003) but the Chezy

law seems to be the most appropriate for water waves in a shallow depth. In (1) the first

two terms on the left-hand side are the dominant terms, and by themselves describe the

propagation of a linear long wave with speed c. The remaining terms on the left-hand

side represent, respectively, the effect of varying depth, weakly nonlinear effects and weak

linear dispersion. The equation is derived using the usual KdV balance in which the linear
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dispersion, represented by ∂2/∂x2, is balanced by nonlinearity, represented by A. Here we

have added to this balance weak inhomogeneity so that cx/c scales as h2∂3/∂x3, and weak

friction so that CD scales with h∂/∂x. Within this basic balance of terms, we can cast (1)

into the asymptotically equivalent form

Aτ +
hτ

4h
A +

3

2h
AAX +

h

6g
AXXX = −CD

g1/2

h3/2
|A|A, (2)

where τ =

∫ x

0

dx′

c(x′)
, X = τ − t. (3)

Here we have h = h(x(τ)), explicitly dependent on the variable τ which describes evolution

along the path of the wave.

The governing equation (2) can be cast into several equivalent forms. That most com-

monly used is the variable-coefficient KdV equation, obtained here by putting

B = (gh)1/4A (4)

so that Bτ +
3

2g1/4h5/4
BBX +

h

6g
BXXX = −CD

g1/4

h7/4
|B|B . (5)

This form shows that, in the absence of friction term, i.e. when CD ≡ 0, equation (2)

has two integrals of motion with the densities proportional to h1/4A and h1/2A2. These

are often referred to as laws for the conservation of “mass” and “momentum”. However,

these densities do not necessarily correspond to the corresponding physical entities. Indeed,

to leading order, the “momentum” density is proportional to the wave action flux, while

the “mass” density differs slightly from the actual mass density. This latter issue has been

explored by Miles (1979), where it was shown that the difference is smaller than the error

incurred in the derivation of equation (4), and is due to reflected waves.

Our main concern in this paper is with the behaviour of an undular bore over a slope

in the presence of bottom friction, using the perturbed KdV equation (2), where we were

originally motivated by the possibility that the behaviour of a tsunami approaching the shore

might be modeled in this way. The undular bore solution to the unperturbed KdV equation

can be constructed using the well-known Gurevich-Pitaevskii (GP) (1974) approach (see also

Whitham 1974). In this approach, the undular bore is represented as a modulated nonlinear

periodic wave train. The main feature of this unsteady undular bore is the presence of a
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solitary wave (which is the limiting wave form of the periodic cnoidal wave) at its leading

edge. The original initial-value problem for the KdV equation is then replaced by a certain

boundary-value problem for the associated modulation Whitham equations. We note, how-

ever, that so far, the simplest, “(x/t)”-similarity solutions of the modulation equations have

been used for the modelling of undular bores in various contexts (see Grimshaw and Smyth

1986, Smyth 1987 or Apel 2003 for instance). These solutions, while effectively describing

many features of undular bores, are degenerate and fail to capture, even qualitatively, some

important effects associated with non-self-similar modulation dynamics. In particular, in the

classical GP solution for the resolution of an initial jump in the unperturbed KdV equation,

the amplitude of the lead solitary wave in the undular bore is constant (twice the value of

the initial jump). On the other hand, the modulation solution for the undular bore evolving

from a general monotonically decreasing initial profile shows that the lead solitary wave am-

plitude in fact grows with time (Gurevich, Krylov and Mazur 1989; Gurevich, Krylov and

El 1992; Kamchatnov 2000). As we shall see, the very possibility of such variations in the

modulated solutions of the unperturbed KdV equation has a very important fluid dynamics

implication: in a general setting, the undular bore lead solitary wave cannot be treated as

an individual KdV solitary wave but rather represents a part of the global nonlinear wave

structure. In other words, while at every particular moment of time the lead solitary wave

has the spatial profile of the familiar KdV soliton, generally, the temporal dependence of its

amplitude cannot be obtained in the framework of single solitary wave perturbation theory.

In the unperturbed KdV equation, the growth of the lead solitary wave amplitude is

caused by the spatial inhomogeneity of the initial data. Here, however, the presence of a

perturbation due to topography and/or friction serves as an alternative and/or additional

cause for variation of the lead solitary wave amplitude. Thus, in the present case, the

variation in the amplitude will have two components (which generally, of course, cannot be

separated because of the nonlinear nature of the problem); one is local, described by the

adiabatic perturbation theory for a single solitary wave, and the other one is nonlocal, which

in principle requires the study of the full modulation solution. Depending on the relative

values of the small parameters associated with the slope, friction and spatial non-uniformity
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of the initial modulations, we can take into account only one of these components, or a

combination of them.

The structure of the paper is as follows. First, in Section 2, we reformulate the basic model

(1) as a constant-coefficient KdV equation perturbed by terms representing topography

and friction. Then we derive in Section 3 the associated perturbed Whitham modulation

equations using methods recently developed by Kamchatnov (2004). Next, in Section 4,

this Whitham system is used to reproduce and extend the results on the propagation of

a single solitary wave. Then, in Section 5, we carry out an analogous study of a cnoidal

wave, propagating over a gradual slope and subject to friction, a case studied previously

by Miles (1983a,b) but under the restriction of zero mean flow, which is removed here.

Finally, in Section 6 we study effects of a gradual slope and bottom friction on the front of

an undular bore which represents a modulated cnoidal wave transforming into a system of

weakly interacting solitons near its leading edge.

2 Problem formulation

For the purpose of the present paper it is convenient to recast (2) into the standard KdV

equation form with constant coefficients, modified by certain perturbation terms. Thus we

introduce the new variables

U =
3g

2h2
A, T =

1

6g

∫ τ

0

hdτ =
1

6g3/2

∫ x

0

√
h(x)dx. (6)

so that UT + 6UUX + UXXX = R = F (T )U −G(T )|U |U, (7)

where F (T ) = −9hT

4h
, G(T ) = 4CD

g1/2

h1/2
. (8)

In this form, the governing equation (7) has the structure of the integrable KdV equation

on the left-hand side, while the separate effects of the varying depth and the bottom friction

are represented by the two terms on the right-hand side. This structure enables us to use

the general theory developed in Kamchatnov (2004) for perturbed integrable systems.

For much of the subsequent discussion, it is useful to assume that h(x) = constant,

CD = 0 for x < 0 in the original equation (1), which corresponds to F (T ) = G(T ) = 0 for
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Figure 1: Isolated solitary wave (a) and undular bore (b) entering the variable topogra-

phy/bottom friction region.

T < 0 in (7). We shall also assume that A = 0 for x > 0 at t = 0, which corresponds to

U = 0 for X > 0 on X = τ(T ) (see (6)). Then we shall propose two types of initial-value

problem for (1), and correspondingly for (7).

(a) Let a solitary wave of a given amplitude a0 initially propagating over a flat bottom

without friction (i.e a soliton described by an unperturbed KdV equation), enter the variable

topography and bottom friction region at t = 0, x = 0 (Fig. 1 a).

(b) Let an undular bore of a given intensity propagate over a flat bottom without friction

(the corresponding solution of the unperturbed KdV equation will be discussed in Section

5). Let the lead solitary wave of this undular bore have the same amplitude a0 and enter

the variable topography and bottom friction region at t = 0, x = 0 (Fig. 1b).

In particular, we shall be interested in the comparison of the slow evolution of these

two, initially identical, solitary waves in the two different problems described above. The

expected essential difference in the evolution is due to the fact that the lead solitary wave

in the undular bore is generally not independent of the remaining part of the bore and can

exhibit features that cannot be captured by a local perturbation analysis. The well-known

example of such a behaviour, when a solitary wave is constrained by the condition of being
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a part of a global nonlinear wave structure, is provided by the undular bore solution of the

KdV-Burgers (KdV-B) equation

ut + 6uux + uxxx = µuxx, µ ¿ 1 . (9)

Indeed, the undular bore solution of the KdV-B equation (9) is known to have a solitary

wave at its leading edge (see Johnson 1970; Gurevich & Pitaevskii 1987; Avilov, Krichever

& Novikov 1987) and this solitary wave: (a) is asymptotically close to a soliton solution

of the unperturbed KdV equation; and (b) has the amplitude, say a0, that is constant in

time. At the same time, it is clear that if one takes an isolated KdV soliton of the same

amplitude a0 as initial data for the KdV-Burgers equation it would damp with time due

to dissipation. The physical explanation of such a drastic difference in the behaviour of an

isolated soliton and a lead solitary wave in the undular bore for the same weakly dissipative

KdV-B equation is that the action of weak dissipation on an expanding undular bore is

twofold: on the one hand, the dissipation tends to decrease the amplitude of the wave

locally but, on the other hand, it “squeezes” the undular bore so that the interaction (i.e.

momentum exchange) between separate solitons within the bore becomes stronger than in

the absence of dissipation and this acts as the amplitude increasing factor. The additional

momentum is extracted from the upstream flow with a greater depth (see Benjamin and

Lighthill 1954). As a result, in the case of the KdV-B equation, an equilibrium non-zero

value for the lead solitary wave amplitude in the undular bore is established. Of course,

for other types of dissipation, a stationary value of the lead soliton amplitude would not

necessarily exist, but in general, due to the expected increase of the soliton interactions near

the leading edge, the amplitude of the lead soliton of the undular bore would decay slower

than that of an isolated soliton. Indeed, the presence here of variable topography as well

can result in an additional “nonlocal” amplitude growth.

While the problem (a) can be solved using traditional perturbation analysis for a single

solitary wave, which leads to an ordinary differential equation along the solitary wave path

(see Miles 1983a,b), the undular bore evolution problem (b) requires a more general approach

which can be developed on the basis of Whitham’s modulation theory leading to a system of
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three nonlinear hyperbolic partial differential equations of the first order. Since the Whitham

method, being equivalent to a nonlinear multiple scale perturbation procedure, contains the

adiabatic theory of slow evolution of a single solitary wave as a particular (albeit singular)

limit, it is instructive for the purposes of this paper to treat both problems (a) and (b) using

the general Whitham theory.

3 Modulation equations

The original Whitham method (Whitham 1965, 1974) was developed for conservative constant-

coefficient nonlinear dispersive equations and is based on the averaging of appropriate con-

servation laws of the original system over the period of a single-phase periodic travelling wave

solution. The resulting system of quasi-linear equations describes the slow evolution of the

modulations (i.e. of the mean value, the wavenumber, the amplitude etc.) of the periodic

travelling wave. Indeed, this Whitham method is equivalent to the traditional multiple-

scale perturbation approach, in which one requires convergence in the sense of distributions

of the leading term of the multiple-scale expansion to a single-phase periodic solution (see

Dubrovin and Novikov 1989). The Whitham procedure of averaging the conservation laws,

however, has a number of serious technical advantages over the traditional direct multiple-

scale analysis. In particular, in the case of completely integrable systems such as the KdV

equation, this procedure enables one to naturally incorporate the corresponding spectral

structure (in the sense of the inverse scattering transform) of the travelling wave solution

into the averaging, and as a result, to obtain the modulation Whitham equations in Riemann

diagonal form (Flaschka, Forest & McLaughlin 1979) which dramatically simplifies further

analytical treatment. For the important single-phase case this spectral method of averaging

has been developed in an effective form in Kamchatnov (2000). Recently, this latter proce-

dure has been extended by Kamchatnov (2004) to perturbed integrable equations. In this

extended method, one averages the perturbed conservation laws over the period of the trav-

elling wave solution of the unperturbed system. As a result, one obtains an (inhomogeneous)

system of modulation equations with a diagonal left-hand side. We note that for the case
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of the perturbed KdV equation with certain specific perturbation terms, the corresponding

modulation equations have been derived in Gurevich and Pitaevskii (1987, 1991), Avilov,

Krichever and Novikov (1987) and Myint and Grimshaw (1995). Also, it is important that

this general modulation approach takes account of variations of all parameters in the periodic

travelling wave solution, and does not use a restriction to a zero mean surface displacement

used previously in a number of studies (see Ostrovosky & Pelinovsky (1970, 1975) or Miles

(1979, 1983a,b)). Thus, one can take advantage of this general approach for the description

of undular bores where mean surface displacement is essentially nonzero.

We suppose that the evolution of the nonlinear wave is adiabatically slow, that is, the

wave can be locally represented as a solution of the corresponding unperturbed KdV equation

(i.e. (7) with zero on the right-hand side) with its parameters slowly varying with space and

time. The one-phase periodic solution of the KdV equation can be written in the form

U(X,T ) = λ3 − λ1 − λ2 − 2(λ3 − λ2)sn
2(

√
λ3 − λ1 θ,m) (10)

where sn(y, m) is the Jacobi elliptic sine function, λ1 ≤ λ2 ≤ λ3 are parameters and the

phase variable θ and the modulus m are given by

θ = X − V T, V = −2(λ1 + λ2 + λ3) , (11)

m =
λ3 − λ2

λ3 − λ1

, (12)

and L =

∮
dθ =

∫ λ3

λ2

dµ√
−P (µ)

=
2K(m)√
λ3 − λ1

, (13)

where K(m) is the complete elliptic integral of the first kind, L is the “wavelength” along the

X-axis (which is actually a retarded time rather than a true spatial co-ordinate). Here we

have used the representation of the basic ordinary differential equation for the KdV travelling

wave solution (10) in the form (see Kamchatnov (2000) for a general motivation behind this

representation)

dµ

dθ
= 2

√
−P (µ), (14)

where

µ = 1
2
(U + s1), s1 = λ1 + λ2 + λ3 (15)
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and

P (µ) =
3∏

i=1

(µ− λi) = µ3 − s1µ
2 + s2µ− s3, (16)

that is the solution (10) is parameterized by the zeroes λ1, λ2, λ3 of the polynomial P (µ).

In a modulated wave, the parameters λ1, λ2, λ3 are allowed to be slow functions of X and

T , and their evolution is governed by the Whitham equations. For the unperturbed KdV

equation, the evolution of the modulation parameters is due to a spatial non-uniformity

of the initial distributions for λj, j = 1, 2, 3 and the typical spatio-temporal scale of the

modulation variations is determined by the scale of the initial data.

In the case of the perturbed KdV equation (7), the evolution of the parameters λ1, λ2, λ3

is caused not only by their initial spatial non-uniformity, but also by the action of the

weak perturbation, so that, generally, at least two independent spatio-temporal scales for

the modulations can be involved. However, at this point we shall not introduce any scale

separation within the modulation theory and derive general perturbed Whitham equations

assuming that the typical values of F (T ) and G(T ) are O(∂λj/∂T, ∂λj/∂X) within the

modulation theory.

It is instructive to first introduce the Whitham equations for the perturbed KdV equation

(7) using the traditional approach of averaging the (perturbed) conservation laws. To this

end, we introduce the averaging over the period (13) of the cnoidal wave (10) by

〈F〉 =
1

L

∮
Fdθ =

1

L

∫ λ3

λ2

Fdµ√
−P (µ)

. (17)

In particular,

〈U〉 = 2〈µ〉 − s1 = 2(λ3 − λ1)
E(m)

K(m)
+ λ1 − λ2 − λ3, (18)

〈U2〉 = 8[−s1

6
(λ3 − λ1)

E(m)

K(m)
− 1

3
s1λ1 +

1

6
(λ2

1 − λ2λ3)] + s2
1 . (19)

Now, one represents the KdV equation (7) in the form of the perturbed conservation laws

∂Pj

∂T
+

∂Qj

∂X
= Rj , j = 1, 2, 3 , Rj ¿ 1 , (20)

where Pj and Qj are the standard expressions for the conserved densities (Kruskal integrals)

and “fluxes” of the unperturbed KdV equation. Just as in the Whitham (1965) theory for
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unperturbed dispersive systems, the number of conservation laws required is equal to the

number of free parameters in the travelling wave solution, which is three in the present case.

Next, one applies the averaging (17) to the system (20) to obtain (see Dubrovin and Novikov

1989)

∂〈Pj〉
∂T

+
∂〈Qj〉
∂X

= 〈Rj〉 , j = 1, 2, 3 . (21)

The system (21) describes slow evolution of the parameters λj in the cnoidal wave solution

(10).

Along with these derived perturbed conservative form of the Whitham equations, we

introduce the wave conservation law which is a general condition for the existence of slowly

modulated single-phase travelling wave solutions (10) (see for instance Whitham 1974) and

must be consistent with the modulation system (21). This conservation law has the form

∂k

∂T
+

∂ω

∂X
= 0 , (22)

where k =
2π

L
, ω = kV (23)

are the “wavenumber” and the “frequency” respectively (we have put quotation marks here

because the actual wavenumber and frequency related to the physical variables x, t are

different quantities from those in (23), but are related through the transformations (3, 6) ).

The wave conservation law (22) can be introduced instead of any of three inhomogeneous

averaged conservation laws comprising the Whitham system (21).

It is known that the Whitham system for the homogeneous constant-coefficient KdV

equation can be represented in diagonal (Riemann) form (Whitham 1965, 1974) by an ap-

propriate choice of the three parameters characterising the periodic travelling wave solution.

In fact, in our solution (7) the parameters λj have already been chosen so that they coincide

with the Riemann invariants of the unperturbed KdV modulation system. Introducing them

explicitly into the perturbed system (21) we obtain (see Kamchatnov 2004)

∂λi

∂T
+ vi

∂λi

∂X
=

L

∂L/∂λi

· 〈(2λi − s1 − U)R〉
4
∏

j 6=i(λi − λj)
, i = 1, 2, 3, (24)

where R is the perturbation term on the right-hand side of the KdV equation (7) and

vi = −2
∑

λi +
2L

∂L/∂λi

, i = 1, 2, 3, (25)

11



are the Whitham characteristic velocities corresponding to the unperturbed KdV equation.

It should be noted that the straightforward realisation of the above lucid general algo-

rithm for obtaining perturbed modulation system in diagonal form is quite a laborious task.

Indeed, to derive system (24), the so-called finite-gap integration method incorporating the

integrable structure of the unperturbed KdV equation has been used. The modulation sys-

tem (24) in a more particular form corresponding to specific choices of the perturbation term

was obtained by Myint and Grimshaw (1995) using a multiple-scale perturbation expansion.

In that latter setting, the wave conservation law (22) is an inherent part of the construction,

while in the averaging approach used here, it can be obtained as a consequence of the system

(24).

To obtain an explicit representation of the Whitham equations for the present case of

equation (7), we must substitute the perturbation R from the right-hand side of (7) and

perform the integration (17) with U given by (10). From now on, we are going to consider

only the flows where U ≥ 0 so that the perturbation term assumes the form

R(U) = G(T )U − F (T )U2 . (26)

Substituting (26) into (24) we obtain, after some detailed calculations (see Appendix),

the perturbed Whitham system in the form

∂λi

∂T
+ vi

∂λi

∂X
= ρi = Ci[F (T )Ai −G(T )Bi], i = 1, 2, 3 (27)

where C1 =
1

E
, C2 =

1

E − (1−m)K
, C3 =

1

E −K
; (28)

A1 =
1

3
(5λ1 − λ2 − λ3)E +

2

3
(λ2 − λ1)K,

A2 =
1

3
(5λ2 − λ1 − λ3)E − (λ2 − λ1)

(
1

3
+

λ2

λ3 − λ1

)
K,

A3 =
1

3
(5λ3 − λ1 − λ2)E −

[
λ3 +

1

3
(λ2 − λ1)

]
K;

(29)
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B1 =
1

15
(−27λ2

1 − 7λ2
2 − 7λ2

3 + 2λ1λ2 + 2λ1λ3 + 22λ2λ3)E

− 4

15
(λ2 − λ1)(3λ1 + λ2 + λ3)K,

B2 =
1

15
(−7λ2

1 − 27λ2
2 − 7λ2

3 + 2λ1λ2 + 22λ1λ3 + 2λ2λ3)E

+
1

15

λ2 − λ1

λ3 − λ1

(7λ2
1 + 15λ2

2 + 11λ2
3 − 6λ1λ2 − 18λ1λ3 + 6λ2λ3)K,

B3 =
1

15
(−7λ2

1 − 7λ2
2 − 27λ2

3 + 22λ1λ2 + 2λ1λ3 + 2λ2λ3)E

+
1

15
(7λ2

1 + 11λ2
2 + 15λ2

3 − 18λ1λ2 − 6λ1λ3 + 6λ2λ3)K;

(30)

and the characteristic velocities are:

v1 = −2
∑

λi +
4(λ3 − λ1)(1−m)K

E
,

v2 = −2
∑

λi − 4(λ3 − λ2)(1−m)K

E − (1−m)K
,

v3 = −2
∑

λi +
4(λ3 − λ2)K

E −K
.

(31)

The equations (27) – (31) provide a general setting for studying the nonlinear modulated

wave evolution over variable topography with bottom friction. In the absence of the pertur-

bation terms (i.e. when F (T ) ≡ 0, G(T ) ≡ 0), the system (27), (31) indeed coincides with

the original Whitham equations (Whitham 1965) for the integrable KdV dynamics. In that

case the variables λ1, λ2, λ3 become Riemann invariants, so in this general (perturbed) case

we shall call them Riemann variables.

It is important to study the structure of the perturbed Whitham equations (27) – (31) in

two limiting cases when the underlying cnoidal wave degenerates into (i) a small-amplitude

sinusoidal wave (linear limit), when λ2 = λ3 (m = 0), and (ii) into a solitary wave when

λ2 = λ1 (m = 1). Since in both these limits the oscillations do not contribute to the mean

flow (they are infinitely small in the linear limit and infinitely rare in the solitary wave limit)

one should expect that in both cases one of the Whitham equations will transform into the

dispersionless limit of the original perturbed KdV equation (7) i.e.

UT + 6UUX = F (T )U −G(T )U2, (32)
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Indeed, using formulae (27) – (31) we obtain for m = 0:

λ2 = λ3 ,

∂λ1

∂T
− 6λ1

∂λ1

∂X
= λ1F + λ2

1G,

∂λ3

∂T
+ (6λ1 − 12λ3)

∂λ3

∂X
= λ1F + λ2

1G .

(33)

Similarly, for m = 1, one has

λ2 = λ1 ,

∂λ1

∂T
− (4λ1 + 2λ3)

∂λ1

∂X
=

1

3
(4λ1 − λ3)F +

1

15
(7λ2

3 − 24λ1λ3 + 32λ2
1)G,

∂λ3

∂T
− 6λ3

∂λ3

∂X
= λ3F + λ2

3G .

(34)

We see that, in both cases, one of the Riemann variables (taken with inverted sign) coincides

with the solution of the dispersionless equation (32) (recall that in the derivation of the

Whitham equations we assumed U ≥ 0 everywhere), namely U = 〈U〉 = −λ1 when λ2 = λ3

(m = 0) and U = 〈U〉 = −λ3 when λ2 = λ1 (m = 1).

To conclude this section, we present expressions for the physical wave parameters such as

the surface elevation wave amplitude a, mean elevation 〈A〉 speed and wavenumber in terms

of the modulation solution λj(X, T ). Using (6) and (10) we obtain for the wave amplitude

and the mean elevation

a =
4h2

3g
(λ3 − λ2) , 〈A〉 =

2h2

3g
〈U〉 , (35)

where the dependence of 〈U〉 on λj(X, T ), j = 1, 2, 3 is given by (18) and X = X(x, t),

T = T (x, t) by (3, 6). In order to obtain the physical wavenumber κ and the frequency Ω

we first note that the phase function θ(X,T ) defined in (11) is replaced by a more general

expression defined so that k = θX and kV = −θT are the “wavenumber” and “frequency” in

the X −T coordinate system. Then we define the physical phase function Θ(x, t) = θ(X, T )

so that we get

κ = Θx , Ω = −Θt . (36)

It now follows that

κ =
k

c
(1− hV

6g
) , Ω = k , and

Ω

κ
=

c

1− hV/6g
. (37)
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Note that the physical frequency is the “wavenumber” in the X − T coordinate system,

and that the physical phase speed is Ω/κ. Since the validity of the KdV model (1) requires

inter alia that the wave be right-going it follows from this expression that the modulation

solution remains valid only when hV < 6g. Of course, the validity of (1) also requires that

the amplitude remains small, and this would normally also ensure that V remains small.

4 Adiabatic evolution of an isolated solitary wave

In this section, we shall use the general modulation approach, described in the previous

section, to reproduce and extend some known results concerning the adiabatic variation of

a solitary wave due to topography and bottom friction (see Miles 1983a,b). We note that

formally, the Whitham method of averaging is not applicable to a single solitary wave as

the averaging procedure implies availability of large number of oscillations on the interval of

averaging (see, for instance, Grimshaw 2006). However, we recall that averaging the conser-

vation laws over the period of the travelling wave is just a convenient method for deriving

the modulation equations whereas the modulation equations themselves, being equivalent to

the first-order equations in the general multiple-scale perturbation procedure (see Dubrovin

and Novikov (1989) and references therein) do not necessarily have inherent restrictions on

their application to the limiting case as k → 0 (m → 1). In terms of the Riemann vari-

ables the soliton limit is achieved when λ1 → λ2 and can be readily computed using the

explicit expressions (28) – (31) for the characteristic velocities and perturbation terms of the

modulation system.

In the limit λ2 → λ1 (m → 1) the periodic solution (10) of the KdV equation goes over

to its solitary wave solution

U(X, T ) = U0sech
2[

√
λ3 − λ1(X − VsT )]− λ3, (38)

where

U0 = 2(λ3 − λ1) , Vs = −(4λ1 + 2λ3) (39)
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are the solitary wave amplitude and “velocity” respectively. The solution (38) depends on

two parameters λ1 and λ3 whose adiabatic slow evolution is governed by the system (34).

It is important that the second equation in this system is decoupled from the first one.

Hence, evolution of the pedestal −λ3 on which the solitary wave rides, can be found from

the solution of this dispersionless equation by the method of characteristics. When λ3(X, T )

is known, evolution of the parameter λ1 can be found from the solution of the first equation

(34). As a result, we arrive at a complete description of adiabatic slow evolution of the

soliton parameters taking account of its interaction with the (given) pedestal.

However, it is important to note here that while this description of the adiabatic evolution

of a solitary wave is complete as far as the solitary wave itself is concerned, it fails to describe

the evolution of a trailing shelf, which is needed to conserve total “mass” (see, for instance,

Johnson 1973b, Grimshaw 1979 or Grimshaw 2006). This trailing shelf has a very small

amplitude, but a very large length scale, and hence can carry the same order of “mass” as

the solitary wave. But note that the “momentum” of the trailing shelf is much smaller than

that of the solitary wave, whose adiabatic deformation is in fact governed to leading order by

conservation of “momentum”, or more precisely, by conservation of wave action flux (strictly

speaking, conservation only in the absence of friction).

The situation simplifies if the solitary wave propagates into a region of still water so

that there is no pedestal ahead of the wave, that is λ3 = 0 in X > τ(T ). But then, since

λ3 = 0 is an exact solution of the degenerate Whitham system (34) for this solitary wave

configuration, we can put λ3 = 0 both in the solitary wave solution,

U(X, T ) = −2λ1sech
2[

√
−λ1 (X − VsT )], Vs = −4λ1, (40)

and in equation (34) for the parameter λ1 to obtain,

∂λ1

∂T
− 4λ1

∂λ1

∂X
=

4

3
Fλ1 +

32

15
Gλ2

1 , (41)

As we see, the soliton moves with the instant velocity

dX

dT
= −4λ1, (42)

16



and the parameter λ1 changes with T along the soliton trajectory according to the ordinary

differential equation

dλ1

dT
=

4

3
F (T )λ1 +

32

15
G(T )λ2

1. (43)

It is instructive to obtain (43) using the traditional perturbation approach for a slowly-

varying solitary wave (see Grimshaw (1979) for instance). For that, we use the “momentum”

balance equation for the perturbed KdV equation (7):

PT = 2FP −GQ , (44)

where P =

∫ +∞

−∞

U2

2
dX , Q =

∫ ∞

−∞
|U |3dX . (45)

The slowly-varying solitary wave is given by, at the leading order,

U(X, T ) = 2γ2sech2[γ(X − φ(T )] , (46)

where
dφ

dT
= Vs = 4γ2 . (47)

Then, substituting (46) into (44) we obtain an ordinary differential equation (Riccati) for

γ(T ):

∂γ

∂T
=

2

3
Fγ − 16

15
Gγ3 , (48)

which is equivalent to the Whitham equation (43) since from (40), (47) one has γ2 = −λ1.

Next, we re-write equation (43) in terms the original independent x-variable. For that,

we find from (6), that

dT = (h1/2/6g3/2)dx (49)

and F = −27

2

(g

h

)3/2 dh

dx
, G = 4CD

(g

h

)1/2

. (50)

Then substituting these expressions into (43) yields the equation

dλ1

dx
= −3

1

h

dh

dx
λ1 +

64

45

CD

g
λ2

1 (51)

which can be easily integrated to give

1

λ1

= h3

(
−C0 − 64

45

CD

g

∫ x

0

dx

h3

)
, (52)
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where C0 is an integration constant and x = 0 is a reference point where h = h0. According

to (40), U0 = −2λ1 is the amplitude of the soliton expressed in terms of variable U(X, T ).

Returning to the original surface displacement A(x, t) by means of (6) and denoting C0 =

4/(3ga0h0), we find the dependence of the surface elevation soliton amplitude a = (2h2/3g)U0

on x in the form

a = a0

(
h0

h

) [
1 +

16

15
CDa0h0

∫ x

0

dx

h3

]−1

, (53)

where a0 is the solitary wave amplitude at x = 0. We note that for CD = 0 this reduces to

the classical Boussinesq (1872) result a ∼ h−1, while for h = h0 it reduces to the well-known

algebraic decay law a ∼ 1/(1 + constant x) due to Chezy friction. Miles (1983a,b) obtained

this expression for a linear depth variation, although we note that there is a factor of 2

difference from (53) (in Miles (1983a,b) the factor 16CD/15 is 8CD/15). The trajectory of

the soliton can be now found from (42) and (52):

X =

∫ x

0

dx√
gh
− t =

a0h0

2
√

g

∫ x

0

dx′h−5/2(x′)

[
1 +

16

15
CDa0h0

∫ x′

0

dx

h3(x)

]−1

. (54)

This equation determines implicitly the dependence of x on t along the wave path. It is

instructive to derive an explicit expression for the solitary wave speed by computing the

derivative dx/dt from (54), or more simply, directly from (37),

vs =
dx

dt
=

c

1− a/2h
. (55)

The formula (55) yields the restriction for the relative amplitude γ = a/h < 2 which is

clearly beyond the applicability of the KdV approximation (wave breaking occurs already

at γ = 0.7 (see Whitham 1974)). In the frictionless case (CD = 0) equation (53) gives

a/h = a0h0/h
2, and so the expression (55) for the speed must fail as h → 0. It is interesting

to note that this failure of the KdV model as h → 0 due to appearance of infinite (and

further negative!) solitary wave speeds is not apparent from the expression (53) for the

solitary wave amplitude, and the implication is that the model cannot be continued as

h → 0. Curiously this restriction of the KdV model seems never to have been noticed before

in spite of numerous works on this subject. Note that taking account of bottom friction
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leads to a more complicated formula for the solitary wave speed as a function of h but the

qualitative result remains the same.

It is straightforward to show from (51) or (53) that

ax

a
= −hx

h
− 16

15

CDa0h0

h3

[
1 +

16

15
CDa0h0

∫ x

0

dx

h3

]−1

. (56)

It follows immediately that for a wave advancing into increasing depth (hx > 0), the ampli-

tude decreases due to a combination of increasing depth and bottom friction. However, for

a wave advancing into decreasing depth, there is a tendency to increase the amplitude due

to the depth decrease, but to decrease the amplitude due to bottom friction. Hence whether

or not the amplitude increases is determined by which of these effects is larger, and this in

turn is determined by the slope, the depth, and the consolidated drag parameter CDa0/h0.

To illustrate, let us consider the bottom topography in the form

h(x) = h1−α
0 (h0 − δx)α , α > 0 , (57)

which satisfies the condition h(0) = h0; the parameter δ characterizes the slope of the bot-

tom. In this case the formula (53) becomes

a = a0

(
h0

h

) [
1 +

16

15

CDa0

δ(3α− 1)h0

{(
h0

h

)(3α−1)/α

− 1

}]−1

(58)

if α 6= 1/3. One can see now that if α < 1/3, then the the bottom friction term is relatively

unimportant due to the smallness of CD. Of course, for this case we again recover the

Boussinesq result, now slightly modified,

a ≈ a0
h0

h

[
1 +

16

15

CDa0

δ(1− 3α)h2
0

]−1

, 0 < α <
1

3
, h ¿ h0. (59)

Of course, this result is impractical in the KdV context as the KdV approximation used here

requires the ratio a/h to remain small.

If α > 1/3 now obtain asymptotic formula

a ≈ 15(3α− 1)δ

16CD

h0

(
h0

h

) 1
α
−2

, h ¿ h0 , (60)

which is independent of the initial amplitude a0. This expression is consistent with the small-

amplitude KdV approximation as long as (3α− 1)δ/CD is order unity. Simple inspection of

(60) shows that the solitary wave amplitude

19



• increases as h → 0 if 1
3

< α < 1
2
,

• is constant as h → 0 if α = 1
2
,

• decreases as h → 0 if α > 1
2
.

Thus for 1/3 < α < 1/2, as for the case α < 1/3, the amplitude will increase as the depth

decreases, in spite of the presence of (sufficiently small) friction. However, for α > 1/3, even

although there is usually some initial growth in the amplitude, eventually even small bottom

friction will take effect and the amplitude decreases to zero. We note that if α = 1/3 then

the integral
∫ x

0
h−3dx in (53) diverges logarithmically as h → 0, which just slightly modifies

the result (60) for h ¿ h0 and implies growth of the amplitude ∝ ln h/h as h → 0.

Of particular interest is the case α = 1. In that case formula (58) becomes

a = a0

(
h0

h

) [
1 +

8

15

CDa0

δh0

{(
h0

h

)2

− 1

}]−1

. (61)

and a ≈ 15

8

δ

CD

h , h ¿ h0 (62)

These expressions (61, 62) were obtained by Miles (1983a,b) using wave energy conservation

(as above, note, however, that in Miles (1983a,b) the numerical coefficient is 15/4 rather

than 15/8). Thus, these results obtained from the Whitham theory are indeed consistent, at

the leading order, with the traditional perturbation approach for a slowly-varying solitary

wave.

5 Adiabatic deformation of a cnoidal wave

Next we consider a modulated cnoidal wave (10) in the special case when the modulation does

not depend on X. While this case is, strictly speaking, impractical as it assumes there is an

infinitely long wavetrain, it can nevertheless provide some useful insights into the qualitative

effects of gradual slope and friction on undular bores which are locally represented as cnoidal

waves. In the absence of friction, the slow dependence of the cnoidal wave parameters on T

was obtained by Ostrovosky & Pelinovsky (1970, 1975) and Miles (1979) (see also Grimshaw
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2006), assuming that the surface displacement had a zero mean (i.e. 〈U〉 = 0), while,

the effects of friction were taken into account by Miles (1983b) using the same zero-mean

displacement assumption. However, this assumption is inconsistent with our aim to study

undular bores where the value of 〈U〉 is essentially nonzero. Hence, we need to develop a

more general theory enabling us to take into account variations in all the parameters in the

cnoidal wave. Such a general setting is provided by the modulation system (27).

Thus we consider the case when the Riemann variables in (27) do not depend on the

variable X so that the general Whitham equations become ordinary differential equations

in T , which can be conveniently reformulated in terms of the original spatial x-coordinate

using the relationship (49):

dλi

dx
= Ci

[
−9

4

1

h

dh

dx
Ai − 2CD

3g
Bi

]
, i = 1, 2, 3, (63)

where all variables are defined above in section 3 (see 28, 29, 30). This system can be readily

solved numerically. But it is instructive, however, to first indicate some general properties

of the solution.

First, the solution to the system (63) must have the property of conservation of “wave-

length” L (or “wavenumber” k=2π/L)

L =
2K(m)√
λ3 − λ1

= constant (64)

Indeed, the wave conservation law (22) in absence of X-dependence assumes the form

∂k

∂T
= 0 , (65)

which yields (64). Thus the system of three equations (63) can be reduced to two equations.

Next, applying Whitham averaging directly to (7) yields

dM

dx
= −9

4

1

h

dh

dx
M − 2CD

3g
P̃ , M = 〈U〉 , P̃ = 〈|U |U〉 . (66)

dP

dx
= −9

2

1

h

dh

dx
P − 4CD

3g
Q̃ , P = 〈U2〉 , Q̃ = 〈|U |3〉 . (67)

The equation set (64), (66), (67) comprise a closed modulation system for three independent

modulation parameters, say M , P̃ and m. While this system is not as convenient for further
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analysis as the system (27) in Riemann variables, it does not have a restriction U > 0 inherent

in (27), and allows for some straightforward inferences regarding the possible existence of

modulation solutions with zero mean elevation, that is with M = 0. Indeed, one can see

that the solution with the zero mean is actually not generally permissible when CD 6= 0, a

situation overlooked in Miles (1983b). Indeed, M = 0 immediately then implies that P̃ = 0

by (66). But then due to (64) we have all three modulation parameters fixed which is clearly

inconsistent with the remaining equation (67) (except for the trivial case M = 0, P = 0,

Q̃ = 0). However, in the absence of friction, when CD = 0, equation (66) uncouples and

permits a nontrivial solution with a zero mean. In general, when CD = 0 equations (66),

(67) can be easily integrated to give

d = Mh9/4 = constant; σ = Ph9/2 = constant. (68)

Then, using (18, 19, 64) one readily gets the formula for the variation of the modulus m,

and hence of all the other wave parameters, as a function of h

K2[2(2−m)EK − 3E2 − (1−m)K2] =

(
4

3

)5
(σ − d2)L4

h9/2
. (69)

Formula (69) generalises to the case M 6= 0 (i.e. d 6= 0) the expressions of Ostrovsky &

Pelinovsky (1970, 1975), Miles (1979) and Grimshaw (2006) (note that in Grimshaw (2006)

the zero mean restriction in actually not necessary). We note here that, again with CD = 0,

equation (5) implies conservation of 〈B〉 and 〈B2〉 (the averaged wave action flux), which,

together with (64), also yield (69).

The physical frequency Ω and wavenumber κ in the modulated periodic wave under study

are given by the the formula (37), and we recall here that k = 2π/L is constant (see (64)). As

discussed before at the end of Section 3 we must require that the phase speed stays positive as

the wave evolves, and here that requires that the physical wavenumber κ > 0. Since a/h (and

hence hV/6g) is supposed to be small within the range of applicability of the KdV equation

(2) the expression (37) implies the behaviour κ ' Ω/
√

gh which of course agrees with the

well known result for linear waves on a sloping beach (see Johnson 1997 for instance). This

effect will be slightly attenuated for the nonlinear cnoidal wave, since V h/6g > 0, but the
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Figure 2: Dependence of the modulus m on the space coordinate x in the cases without and

with bottom friction in the X-independent modulation solution.

overall effect will be a “squeezing” of the cnoidal wave, a result important for our further

study of undular bores. Next we study numerically the combined effect of slope and friction

on a cnoidal wave.

As we have shown, in the presence of Chezy friction M 6= 0, and we have also assumed

that U > 0, which is necessary when we come to study undular bores. Now we use the

stationary modulation system (63) in Riemann variables, which was derived using this as-

sumption. We solve the coupled ordinary differential equation system (63) for the case of a

linear slope

h(x) = h0 − δx (70)

with h0 = 10, δ = 0.01, and with the initial conditions

λ1 = −0.441, λ2 = 0.147, λ3 = 0.294 at x = 0, (71)

which corresponds to a nearly harmonic wave with m = 0.2, a/h0 = 0.2, 〈A〉/h0 ≈ 0.3

at x = 0 (see (35)). Also we note that for the chosen parameters we have V = 0, so at

x = 0 we have κ = Ω/
√

gh0 as in linear theory. It is instructive to compare solutions with

(CD = 0.01) and without (CD = 0) friction. In Fig. 2 the dependence of the modulus m

on x is shown for both cases. We see that for the frictionless case m → 1 with decrease

of depth, i.e. the wave crests assume the shape of solitary waves when one approaches the
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Figure 3: Left: Dependence of the mean value 〈A〉 in the X-independent modulation solution

on the physical space coordinate x without (dashed line) and with (solid line) bottom friction;

Right: Same but multiplied by the Green’s law factor, h1/4

shoreline. When CD 6= 0 the modulus also grows with decrease of depth but never reaches

unity. The dependence on x of the mean surface elevation 〈A〉 for the cases without and

with friction is shown in Fig. 3. We have checked that the “wavelength” L (64) is constant

for both solutions. Also, one can see from Fig. 3 (right) that the value h1/4〈A〉 ∝ d is indeed

conserved in the frictionless case but is not constant if friction is present (the same holds

true for the value h1/2〈A2〉 ∝ σ but we do not present the graph here). Finally, in Fig. 4 the

dependence of the physical elevation wave amplitude a on the spatial coordinate x is shown.

One can see that the amplitude adiabatically grows with distance in the frictionless case

due to the effect of the slope (without friction) but, not unexpectedly, gradually decreases

in the case when bottom friction is present, where the decrease for these parameter settings

is comparable in magnitude to the effect of the slope. In both cases the main qualitative

changes occur in the wave shape and the wavelength.

Overall, we can infer from these results that the main local effect of a slope and bottom

friction on a cnoidal wave, along with the adiabatic amplitude variations, is twofold: a wave

with a m < 1 at x = 0 tends to transform into a sequence of solitary waves as x decreases,

and at the same time the distance between subsequent wave crests tends to decrease. This is

in sharp contrast with behaviour of modulated cnoidal waves in problems described by the
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Figure 4: Dependence of the surface elevation amplitude a on the space coordinate x. Dashed

line corresponds to the frictionless case and solid line to the case with bottom friction.

unperturbed KdV equation, where growth of the modulus m is accompanied by an increase

of the distance between the wave crests. Generally, in the study of behaviour of unsteady

undular bores in the presence of a slope and bottom friction we will have to deal with the

combination of these two opposite tendencies.

6 Undular bore propagation over variable topography

with bottom friction

6.1 Gurevich-Pitaevskii problem for flat-bottom zero-friction case

We now turn to the problem (b) outlined in Section 2. We study the evolution of an undular

bore developing from an initial surface elevation jump ∆ > 0, located at some point x0 < 0.

As discussed below, the undular bore will expand with time so that at some t = t0 its lead

solitary wave enters the gradual slope region, which begins at x = 0 (see Fig. 1b). We assume

that for x < 0 one has h = h0 = constant and CD ≡ 0. We shall first present a formulation

of the Gurevich-Pitaevskii problem for the perturbation-free KdV equation and reproduce

the well-known similarity modulation solution describing the evolution of the undular bore

until the moment it enters the slope. We emphasize that, although this formulation and,
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especially, this similarity solution are known very well and have been used by many authors,

some of the inferences important for the present application to fluid dynamics have not been

widely appreciated, as far as we can discern. Pertinent to our main objective in this paper,

we undertake a detailed study of the characteristics of the Whitham modulation system in

the vicinity of the leading edge of the undular bore solution, and show that the boundary con-

ditions of Gurevich-Pitaevskii type permit only two possible characteristics configurations,

implying two qualitatively different types of the leading solitary wave behaviour. Next, we

shall show how this Gurevich-Pitaevskii formulation of the problem applies to the perturbed

modulation system in the form (27) and finally we will study the effects of the perturbation

on the modulations in the vicinity of the leading edge of the undular bore.

In the case of a flat, frictionless bottom the original equation (1) becomes the constant-

coefficient KdV equation which can be cast into the standard form

ηζ + 6ηηξ + ηξξξ = 0 (72)

by introducing the new variables

η =
2

3h0

A , ξ =
3

2h0

(x + x0 −
√

gh0t) , ζ =
9

16

√
g

h0

t , (73)

where x0 < 0 is an arbitrary constant. In the Gurevich-Pitaevskii (GP) approach, one

considers a large-scale initial disturbance η(ξ, 0) = f(ξ), in the form of a smooth decreasing

profile, f ′(ξ) < 0 (e.g. a smooth step: f(ξ) → 0 as ξ → +∞; f(ξ) → η0 > 0 as ξ →
−∞), whose initial evolution until some critical (breaking) time ζb can be described by the

dispersionless limit of the KdV equation, i.e. by the Hopf equation,

ζ < ζb : η ≈ r(ξ, ζ), rζ + 6rrξ = 0 , r(ξ, 0) = f(ξ) . (74)

The evolution (74) leads to wave-breaking of the r(ξ)-profile at some ζ = ζb, with the

consequence that the dispersive term in the KdV equation then comes into play, and an

undular bore forms, which can be locally represented as a single-phase travelling wave. This

travelling wave is modulated in such a way that it acquires the form of a solitary wave at the

leading edge ξ = ξ+(ζ) and gradually degenerates, via the nonlinear cnoidal-wave regime, to
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a linear wave packet at the trailing edge ξ = ξ−(ζ). It is important that this undular bore

is essentially unsteady, i.e. the region ξ−(ζ) < ξ < ξ+(ζ) expands with time ζ.

The single-phase travelling wave solution of the KdV equation (72) has the form (cf.

(10))

η(ξ, ζ) = r3 − r1 − r2 − 2(r3 − r2)sn
2(
√

r3 − r1θ, m) (75)

θ = ξ + 2(r1 + r2 + r3)ζ , m =
r3 − r2

r3 − r1

. (76)

The parameters r1 ≤ r2 ≤ r3 ≤ 0 in the undular bore are slowly varying functions of ξ, ζ,

whose evolution is governed by the Whitham equations

∂rj

∂ζ
+ vj(r1, r2, r3)

∂rj

∂ξ
= 0 , j = 1, 2, 3. (77)

The characteristic velocities in (77) are given by (31). We stress that, although analytical

expressions (75) and (10) (as well as (77) and the homogeneous version of (27)) are identical,

they are written for completely different sets of variables, both dependent and independent.

The Riemann invariants rj(ξ, ζ) are subject to special matching conditions at the free

boundaries, ξ = ξ±(ζ) defined by the conditions m = 0 (trailing edge) and m = 1 (lead-

ing edge), formulated in Gurevich and Pitaevskii (1974) (see also Kamchatnov (2000) or El

(2005) for a detailed description). These matching conditions follow from the physically nat-

ural requirement of the continuity of the mean elevation 〈η〉 at the undular bore boundaries

ξ = ξ±(ζ). At both edges the mean 〈η〉 is matched with the ”external” smooth solution

r(ξ, ζ) of the dispersionless KdV equation (i.e. the Hopf equation (74)). Using expression

(18) for the mean value with U replaced by η and λjs replaced by rjs, we obtain 〈η〉 = −r1

for m = 0 and 〈η〉 = r3 for m = 1. As a result, we arrive at the following formulation of the

problem in terms of the Riemann invariants.

At the trailing (harmonic) edge, where the wave amplitude a = 2(r3 − r2) vanishes and

m = 0, one has

ξ = ξ−(ζ) : r2 = r3 , −r1 = r . (78)

At the leading (soliton) edge, where m = 1 one has

ξ = ξ+(ζ) : r2 = r1 , −r3 = r . (79)

27



In both (78) and (79), r(ξ, ζ) is the solution of the Hopf equation (74).

The boundaries ξ = ξ±(ζ) are unknown at the onset and their determination is an

inherent part of the solution of the modulation system. According to the limiting properties

of the characteristic velocities vj as m → 0 and m → 1 (see Section 3), the undular bore

edges ξ = ξ±(ζ) must coincide with double characteristics of the modulation system. Indeed,

this is the only way to provide continuous matching of the solution of the system of the third

order (Whitham equations (77)) with the solution of the single first-order Hopf equation

(74). Of course, the Hopf equation itself is consistent with the Whitham system (77) in

both limits as m → 0 and m → 1 (see (33), (34)), which makes the whole GP formulation

self-consistent.

The curves ξ = ξ±(ζ) are defined for the solution of the GP problem (77), (78), (79) by

the ordinary differential equations

dξ−

dζ
= v−(ξ−, ζ) ,

dξ+

dζ
= v+(ξ+, ζ) , (80)

where v± are calculated as the values of double characteristic velocities of the modulation

system at the undular bore edges,

v− = v2(r1, r3, r3)|ξ=ξ−(ζ) = v3(r1, r3, r3)|ξ=ξ−(ζ), (81)

v+ = v2(r1, r1, r3)|ξ=ξ+(ζ) = v1(r1, r1, r3)|ξ=ξ+(ζ) (82)

These equations (80) essentially represent kinematic boundary conditions for the undular

bore (see El 2005). Indeed, the double characteristic velocity v2(r1, r3, r3) = v3(r1, r3, r3) can

be shown to coincide with the linear group velocity of the small-amplitude KdV wavepacket

while the double characteristic velocity v2(r1, r1, r3) = v1(r1, r1, r3) is the soliton speed.

One might infer from this GP formulation of the problem that, since the leading edge of

the undular bore specified by (80), (82) is a characteristic of the modulation system, then

the value of the double Riemann invariant r+ ≡ r2 = r1 is constant. Then, on consider-

ing an undular bore propagating into still water, where r = 0, one would obtain from the

matching condition (79) at the leading edge that r3|ξ=ξ+ = 0 and thus, the amplitude of the

lead solitary wave a+ = 2(r3 − r1)|ξ=ξ+ = −r+ would always be constant as well. However,
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this contradicts the general physical reasoning that the amplitude of the lead solitary wave

should be allowed to change in the case of general initial data. The apparent contradiction

is resolved by noting that the leading edge specified by (80), (82) can be an envelope of

the characteristic family, i.e. a caustic, rather than necessarily a regular characteristic, and

hence there is no necessity for the double Riemann invariant r+ to be constant along the

curve ξ = ξ+(ζ) in general case. On the other hand, since the leading edge is defined by the

condition m = 1, the wave form at the leading edge will coincide with the spatial profile of

the standard KdV soliton. Thus we arrive at the conclusion that, in general, the amplitude

of the leading KdV solitary wave will vary, even in the absence of the perturbation terms.

Of course, in the unperturbed KdV equation, such varying solitary waves cannot not exist

on their own, and require the presence of the the rest of the undular bore. We also stress

that these variations of the leading solitary wave in the undular bore, as described here,

have a completely different physical nature to the variations of an individual solitary wave

parameters due to small perturbations as described in Section 4. They are caused by non-

linear wave interactions within the undular bore rather than by a local adiabatic response

of the solitary wave to a perturbation induced by topography and friction. Importantly for

our study, however, it will transpire that the action of these same perturbation terms on

the undular bore can lead to both a local and a nonlocal response of the leading solitary wave.

6.2 Undular bore developing from an initial jump

Next we consider the simplest solution of the modulation system, which describes an undular

bore developing from an initial discontinuity placed at the point x = −x0. In (η; ξ, ζ) -

variables we have the initial conditions

η(ξ, 0) = ∆ for ξ < 0 ; η(ξ, 0) = 0 for ξ > 0 , (83)

where ∆ > 0 is a constant. Then, on using (74), the initial conditions (83) are readily

translated into the free-boundary matching conditions (78), (79) for the Riemann invariants.

Because of the absence of a length scale in this problem, the corresponding solution of the
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Figure 5: Left: Riemann invariants behaviour in the similarity modulation solution for the

flat-bottom zero-friction case ; Right: corresponding undular bore profile η(ξ).

modulation system must depend on the self-similar variable τ = ξ/ζ alone, which reduces

the modulation system to the ordinary differential equations

(vi − τ)
dri

dτ
= 0 , i = 1, 2, 3. (84)

The boundary conditions for (84) follow from the matching conditions (78), (79) using the

initial condition (83):

τ = τ− : r2 = r3 , r1 = −∆

τ = τ+ : r2 = r1 , r3 = 0 .
(85)

where τ± are self-similar coordinates (speeds) of the leading and trailing edges, ξ± = τ±ζ.

Taking into account the inequality r1 ≤ r2 ≤ r3 one obtains the well-known modulation

solution of Gurevich and Pitaevskii (1974) (see also Whitham 1974) in the form

r1 = −∆ , r3 = 0 , r2 = −m∆ , (86)

ξ

ζ
= v2(−∆,−m∆, 0) = 2∆[(1 + m)− 2m(1−m)K(m)

E(m)− (1−m)K(m)
] . (87)

This modulation solution (86), (87) (see Fig. 6a) represents the replacement, due to averag-

ing over the oscillations, of the unphysical formal three-valued solution of the dispersionless

KdV equation (i.e. of the Hopf equation) which would have taken place in the absence of

the dispersive regularisation by the undular bore. We see that (87) describes an expansion
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fan in the characteristic (ξ, ζ)-plane and thus is a global solution. Substituting (86), (87)

into the travelling wave solution (75) one obtains the asymptotic wave form of the undular

bore (see Fig. 5b), which then can be readily represented in terms of the original physical

variables using the relationships (73).

The equations of the trailing and leading edges of the undular bore are determined from

(87) by putting m = 0 and m = 1 respectively

ξ−

ζ
= τ− = v2(−∆, 0, 0) = −6∆ ,

ξ+

ζ
= τ+ = v2(−∆,−∆, 0) = 4∆ . (88)

The leading solitary wave amplitude is η0 = 2(r3−r1) = 2∆, which is exactly twice the height

of the initial jump. This corresponds to the amplitude of the surface elevation a = 3h0∆ (see

(73)). Note that, to get the leading solitary wave of the same initial amplitude a0 as for the

separate solitary wave considered in Section 4, one should use the jump value ∆0 = a0/3h0,

which of course is just 2∆̃, where ∆̃ = 3h0∆/2 is the initial discontinuity in the surface

elevation.

6.3 Structure of the undular bore front

We are especially interested in behaviour of the modulation solution (86), (87) in the vicinity

of the leading edge ξ = ξ+(ζ). This behaviour is essentially determined by the manner in

which the pair of characteristics corresponding to the velocities v2 and v1 merge into a

multiple eigenvalue v+ of the modulation system at ξ = ξ+(ζ).

First, one can readily infer from the modulation solution (86), (87) that the phase velocity

c = −2(r1 + r2 + r3) = 2∆(1 + m) > v2(−∆,−m, 0) for m < 1 and c = v2 for m = 1. Thus,

any individual wave crest generated at the trailing edge of the undular bore moves towards

the leading edge, i.e. for any crest m → 1 as ζ → ∞. Thus, for any particular wave crest,

except for the very first one, the solitary wave ‘status’ is achieved only asymptotically as

ζ →∞.

Without loss of generality we assume in this section that ∆ = 1 in (86), (87). First, as

we have already mentioned, the characteristic family Γ2 : dξ/dζ = v2 is an expansion fan in
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the ξ, ζ - plane,

Γ2 : ξ = C2ζ , (89)

parameterised by a constant C2, −6 ≤ C2 ≤ 4 . Next, in (87) we make an asymptotic

expansion of v2(−1,−m, 0) for small (1−m) ¿ 1, to get

2(1−m) ln(16/(1−m)) ' τ+ − ξ/ζ (90)

or, with logarithmic accuracy,

(τ+ − ξ/ζ) ¿ 1 : 1−m ' τ+ − ξ/ζ

2 ln[1/(τ+ − ξ/ζ)]
. (91)

Next, expanding v1(−1,−m, 0) for (1 − m) ¿ 1 and using (91) we get the asymptotic

equation for the characteristics family Γ1,

dξ

dζ
= v1 = τ+ + (τ+ − ξ/ζ) +O(1−m) , (92)

which is readily integrated to leading order to give

Γ1 : ξ ' τ+ζ − C1

ζ
, (93)

where C1 ≥ 0 is an arbitrary constant ‘labeling’ the characteristics; C1 = 0 corresponds to

the leading edge of the undular bore. This asymptotic formula (93) is valid as long as ζ À 1.

The behaviour of the characteristics belonging to the families Γ1 and Γ2 near the leading

edge is shown in Fig. 6a.

Next, expanding the equation for the third characteristic family, Γ3: dξ/dζ = v3(−1,−m, 0)

for (1−m) ¿ 1, we get on using (91)

dξ

dζ
=

τ+ − ξ/ζ

ln(1/(τ+ − ξ/ζ))
+O(τ+ − ξ/ζ) . (94)

Integrating (94) we obtain to first order

Γ3 : ξ ' C3 − g(ζ) , (95)

where g(ζ) =

∫
1

ζ

τ+ζ − C3

ln |τ+ζ − C3| − ln ζ
dζ , g(C3/τ

+) = 0 , (96)
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Figure 6: Characteristics behaviour for the similarity modulation solution near the leading

edge ξ+(ζ): (a) families Γ1: dξ/dζ = v1 and Γ2 : ξ = C2ζ, (b) family Γ3: dξ/dζ = v3

C3 being am arbitrary constant. The asymptotic formula (95) is valid as long as g(ζ)/C3 ¿
1. Since the characteristics Γ3 intersect the leading edge ξ = τ+ζ we must indicate their

behaviour outside the undular bore. It follows from the matching condition (79) and the

limiting structure (34) of the characteristic velocities of the Whitham system, that the

characteristics from the family Γ3 match with the Hopf equation characteristics dξ/dζ = 6r

carrying the value of the Riemann invariant r = 0 corresponding to still water upstream the

undular bore. Therefore, the sought external characteristics are simply vertical lines ξ = C3.

The qualitative behaviour of the characteristics from the family Γ3 is shown in Fig. 6b.

It is clear from the asymptotic behaviour of the characteristics that the edge characteristic

ξ = τ+ζ corresponding to the motion of the leading solitary wave intersects only with

characteristics of the family Γ3 carrying the Riemann invariant value r3 = 0 into the undular

bore domain. Since, according to the matching condition (85), r3 ≡ 0 everywhere along the

edge characteristic one can infer that the leading solitary wave motion is completely specified

by its amplitude at ζ = 0. Indeed, in this case, the leading edge represents a genuine multiple

characteristic of the modulation system, along which the Riemann invariant r+ = r2 = r1 is

a constant. Given the constant value of r1 = −1 for the solution (87), one infers that the

amplitude of the lead soliton of the self-similar undular bore, η0 = 2(r3 − r+) = 2 is also a

constant value. Thus, in the undular bore evolving from an initial jump, the leading solitary

wave represents an independent soliton of the KdV equation. Of course, this fact follows
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Figure 7: a) Leading edge ξ+(ζ) of non-self-similar undular bore as an envelope of pairwise

merging characteristics from the families dξ/dζ = v1 and dξ/dζ = v2; b) behaviour of the

Riemann invariants in non-self-similar modulation solution with r3 ≡ 0

directly from the modulation solution (87) but now we have established its meaning in the

context of the characteristics, which will play an important role below.

Next we discuss the structure of the undular bore front in the case when the initial

profile η(ξ, 0) is not a simple jump discontinuity, and instead has the form of a monotonically

decreasing function, for instance, (−ξ)1/2 when ξ ≤ 0 and η(ξ, 0) = 0 for ξ > 0. In that case,

the modulation solution for the undular bore no longer possesses x/t-similarity as in the

jump resolution case and, as a result, the speed (and therefore, the amplitude) of the lead

solitary wave is not constant. For instance, for the afore-mentioned square-root initial profile

the amplitude of the lead solitary wave grows as ζ2 (see Gurevich, Krylov and Mazur 1989,

or Kamchatnov 2000). Clearly, such an amplitude variation is impossible if the leading edge

ξ+(ζ) was a regular characteristic carrying a constant value of the Riemann invariant r+. As

discussed above, however, the GP matching conditions (78) -(82) admit another possibility;

the leading edge curve is the envelope of the characeristic families Γ1: dξ/dζ = v1 and Γ2:

dξ/dζ = v2 merging when m = 1. This configuration is shown in Fig. 7a. In this case, the

behaviour of the modulus m in the vicinity of the leading edge is given by the asymptotic

formula found in Gurevich & Pitaevskii (1974):

(1−m)2

(
ln

16

1−m
+

1

2

)
=

2

(r+)2

dr+

dζ
(ξ+ − ξ) (97)
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where the function r+(ζ) 6= constant is assumed to be known. Another specific feature of

this (general) configuration is that dr1,2/dξ → ±∞ as ξ → ξ+ (see Fig. 7b - also found in

Gurevich & Pitaevskii 1974, see also Kamchatnov 2000), which is in drastic contrast with

similarity solution (see Fig. 6a). This particular difference was discussed in relation with

undular bores in the KdV-Burgers equation in Gurevich and Pitaevskii (1987).

In summary, we see from (97) that the structure of the modulation solution in the vicin-

ity of the leading edge of an undular bore defined as a characteristic envelope is qualitatively

different compared to that for the similarity case (see (90)). The more general (but qual-

itatively similar to (97)) asymptotic formula which takes into account small perturbations

due to a variable topography and bottom friction will be derived later. At the moment,

it is important for us that in this configuration, when the leading edge is a characteristic

envelope rather than just a characteristic, the value r+, and thus, the leading solitary wave

amplitude are allowed to vary.

The analysis of the corresponding modulation solution in Gurevich, Krylov and Mazur

(1989) showed that, while in the case of an initial jump the wave crests generated at the

trailing edge reach the leading edge (and therefore, transform into solitary waves) only

asymptotically as t → ∞, for the more general case of decreasing initial data each wave

crest generated at the trailing edge reaches the leading edge in finite time and replaces

(overtakes) the existing leading solitary wave. This process is manifested as a continuous

amplitude growth of the (apparent) leading solitary wave. As in classical soliton theory,

an alternative explanation of the leading solitary wave amplitude growth can be made in

terms of the momentum exchange between the “instantaneous” leading solitary wave and

solitary waves of greater amplitude coming from the left. Indeed, as the rigorous analysis of

Lax, Levermore and Venakides showed (see Lax, Levermore and Venakides (1994) and the

references therein), the whole modulated structure of the undular bore can be asymptotically

described in terms of the interactions of a large number of KdV solitons initially ‘packed’

into a non-oscillating large-scale initial profile.

This latter interpretation is especially instructive for our purposes. Our point is that

the specific cause of the enhanced soliton interactions resulting in amplitude growth at the
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leading edge is not essential; it can be large-scale spatial variations of the initial profile as

just described, but it could also equally well be an effect of small perturbations in the KdV

equation itself. Indeed, in the weakly perturbed KdV equation, the local wave structure

of the undular bore must be described to leading order by the periodic solution (75) of

the unperturbed KdV equation, so if one assumes the GP boundary conditions analogous to

(78) – (82) for the perturbed modulation system (27), one invariably will have to deal with

one of the two possible types of the characteristics behaviour (shown in Figs. 7a and 8a)

in the vicinity of the leading edge of the undular bore, because this qualitative behaviour

is determined only by the structure of the GP boundary conditions and by the associated

asymptotic structure of the characteristic velocities of the Whitham system for (1−m) ¿ 1,

which are the same for both unperturbed and perturbed modulation systems. Next, we will

show that, by using the knowledge of this qualitative behaviour of the characteristics, one

is able to construct the asymptotic modulation solution for the undular bore front in the

presence of variable topography and bottom friction even if the full solution of the perturbed

modulation system is not available.

6.4 Gurevich-Pitaevskii problem for perturbed modulation sys-

tem

We investigate now how the GP matching problem applies to the perturbed modulation

system (27). As in the original GP problem, we postulate the natural physical requirement

that the mean value 〈U〉 is continuous across the undular bore edges, which represent free

boundaries and are defined by the conditions m = 0 (trailing edge X = X−(T )) and m = 1

(leading edge X = X+(T )). Also, we consider propagation of the undular bore into still

water, hence 〈U〉|X=X+(T ) = 0. Now, using the explicit expression (18) for 〈U〉 in terms of

complete elliptic integrals and calculating its limits as m → 0 and m → 1 one has

X = X−(T ) : λ2 = λ3 , 〈U〉 = −λ1 = u ,

X = X+(T ) : λ2 = λ1 , 〈U〉 = −λ3 = 0 ,
(98)
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where u(X, T ) is solution of the dispersionless perturbed KdV equation (7), i.e.

uT + 6uuX = F (T )u−G(T )u2, (99)

with the boundary conditions

u

(
τ,

1

6g

∫ τ

0

hdτ

)
=

9g

2h0

∆0 if τ < τ0; u

(
τ,

1

6g

∫ τ

0

hdτ

)
= 0 if τ > τ0 , (100)

where τ0 = −x0/
√

gh0. The boundary conditions (100) correspond to a discontinuous initial

surface elevation A(x, t) at x = −x0, obtained by using transformations (3) and (6) where

one sets t = 0. As earlier, ∆0 = a0/(3h0) is the value of the discontinuity in A, chosen in

such a way that the amplitude of the lead solitary wave in the undular bore was exactly a0

in the flat-bottom zero-friction region (see Section 6.2).

This free-boundary matching problem is then complemented by the kinematic conditions

explicitly defining the boundaries X = X±(T ). These are formulated using the multiple

characteristic directions of the perturbed modulation system (27) in the limits as m → 0

and m → 1 (cf. (80) - (82)),

dX−

dT
= V −(X−, T ) ,

dX+

dT
= V +(X+, T ) , (101)

where V − = v2(u, λ−, λ−) = v3(u, λ−, λ−), (102)

V + = v2(λ
+, λ+, 0) = v1(λ

+, λ+, 0) , (103)

and λ− = λ2(X
−, T ) = λ3(X

−, T ) , λ+ = λ2(X
+, T ) = λ1(X

+, T ). (104)

Thus, for the perturbed KdV equation the leading and trailing edges of the undular bore are

defined mathematically in the same way as for the unperturbed one, albeit for a different

set of variables.

6.5 Deformation of the undular bore front due to variable topog-

raphy and bottom friction

Finally we study the effects of gradual slope and bottom friction on the leading front of the

self-similar expanding undular bore described in Sections 6.2, 6.3. The result will essentially
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depend on the relative values of the small parameters appearing in the problem. We note

that in general there are three distinct relevant small parameters,

ε =
h0

x0

¿ 1 , δ = max(hx) ¿ 1, CD ¿ 1 (105)

The first small parameter is determined by the ratio of the equilibrium depth in the flat

bottom region, to the distance from the beginning of the slope region to the location of the

initial jump discontinuity in the surface displacement. This measures the typical relative

spatial variations of the modulation parameters in the undular bore when it reaches the

beginning of the slope. The second and third parameters are contained in the KdV equation

(1) itself and measure the values of the slope and bottom friction respectively. In terms of

the transformed variables appearing in (7), |F (T )| ∼ δ, |G(T )| ∼ CD (see (8)). Generally

we assume δ ∼ CD (the possible orderings δ ¿ CD or CD ¿ δ can be then considered as

particular cases).

To obtain a quantitative description of the vicinity of the leading edge of the undular

bore we perform an expansion of the Whitham modulation system (27) for (1 − m) ¿ 1.

We first introduce the substitutions

λi(X, T ) = λ+(T ) + li(X̃, T ) , vi = V + + v′i , ρi = ρ+ + ρ′i, i = 1, 2. (106)

where X̃ = X+ −X , V + = −4λ+ , ρ+ =
4

3
F (T )λ+ +

32

15
G(T )(λ+)2. (107)

Since λ2 ≥ λ1, v2 ≥ v1 one always has l2 ≥ l1, v′2 ≥ v′1. Assuming X̃/X+ ¿ 1 ⇔ 1−m ¿ 1

and using that λ3 = 0 to leading order in the vicinity of the leading edge (see the matching

condition (98)), we have from asymptotic expansions of (27) – (31) as (1−m) ¿ 1

v′1 = M1(l2 − l1) ≡ −2

[
1 +

ln(16/(1−m))

1 + 1
4
(1−m) ln(16/(1−m))

]
(l2 − l1),

v′2 = M2(l2 − l1) ≡ −2

[
1− ln(16/(1−m))

1− 1
4
(1−m) ln(16/(1−m))

]
(l2 − l1),

(108)
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Figure 8: Riemann variables behaviour in the vicinity of the leading edge of the undular

bore propagating over gradual slope with bottom friction (a) Adiabatic variations of the

similarity GP regime, δ ¿ ε, CD ¿ ε; (b) General case, δ ∼ CD ∼ ε.

ρ′1 = N1(l2 − l1) ≡
{
− 1

3

[
1 + ln

l2 − l1
−16λ+

]
F

− 4

15

[
2λ+ ln

l2 − l1
−16λ+

− 3λ+

]
G

}
(l2 − l1)

ρ′2 = N2(l2 − l1) ≡
{

1

3

[
5 + ln

l2 − l1
−16λ+

]
F

+
4

15

[
2λ+ ln

l2 − l1
−16λ+

+ 13λ+

]
G

}
(l2 − l1).

(109)

Naturally, v′i and ρ′i vanish when l2 = l1. Now, substituting (106), (107) into the modulation

system (27) we obtain

dλ+

dT
+

∂li

∂X̃

dX+

dT
− (V + + v′i)

∂li

∂X̃
= ρ+ + ρ′i, i = 1, 2, (110)

On using the kinematic condition (101) at the leading edge, this reduces to

dλ+

dT
− v′i

∂li

∂X̃
= ρ+ + ρ′i, i = 1, 2. (111)

There are two qualitatively different cases to consider:

(i) limX̃→0 |dli/dX̃| < ∞, i = 1, 2 (Fig. 8a)

(ii) limX̃→0 |dli/dX̃| = ∞, i = 1, 2 (Fig. 8b)

The case (i) implies that to leading order (111) reduces to

dλ+

dT
= ρ+ , (112)
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which, together with the kinematic condition dX+/dT = −4λ+, defines the leading edge

curve X+(T ). One can observe that this system coincides with (43), (42) defining the

motion of a separate solitary wave over a gradual slope with bottom friction. Its integral

expressed in terms of original physical x, t-variables is given by (54). Therefore, in the case

(i) the lead solitary wave in the undular bore to leading order is not restrained by interactions

with the remaining part of the bore and behaves as a separate solitary wave. Physically this

case corresponds to adiabatic deformation of the similarity modulation solution (86), (87)

and implies the following small parameter ordering : δ ¿ ε, CD ¿ ε.

Next, we study the structure of this weakly perturbed similarity modulation solution in

the vicinity of the leading edge. The next leading order of the system (111) yields

−v′i
∂li

∂X̃
= ρ′i, i = 1, 2, (113)

that is

∂l1

∂X̃
= −N1

M1

,
∂l2

∂X̃
= −N2

M2

. (114)

Subtraction of one equation (114) from another with account of the relationship l2 − l1 ∼=
−λ+(1−m) leads consistently to leading order to the differential equation for 1−m

∂(1−m)

∂X̃
= 2

[
F (T )

−3λ+
− 16G(T )

15

] (
ln

16

1−m

)−1

, (115)

This equation should be solved with the initial condition

1−m = 0 at X̃ = 0 . (116)

Elementary integration gives with the assumed here accuracy (cf. (90))

(1−m) ln
16

1−m
= −2

[
1

3
F (T )− 16

15
λ+G(T )

]
X+ −X

−λ+
. (117)

This formula determines the dependence of the modulus m on T and X (as long as 1−m ¿
1).

Now, we make use of the solution λ+ of equation (112) given by (52) with C0 =

4/(3ga0h0) (see (53)). Under supposition that the integral
∫ x

h−3dx diverges as h → 0,

40



so that the turbulence plays an essential role in the undular bore front behaviour (see Sec-

tion 4 for a similar approximation for an isolated solitary wave), we obtain for h ¿ h0

(1−m) ln
16

1−m
=

64

15
CD

(
2 + 3h2

∫ x

0

dx

h3

)
(X+ −X). (118)

At last, if the bottom topography is approximated by the dependence (57), we get with the

same accuracy

(1−m) ln
16

1−m
=

64

15
CD

[
2 +

3

(3α− 1)δ

(
h

h0

)1/α
]

(X+ −X). (119)

The second term in square brackets tends to zero as h → 0. However, the region where it

can be neglected may be very narrow because of smallness of the parameter δ. We recall

that in this formula X+ is given by (54) and X is defined by (3) in terms of the original

physical independent variables x and t.

Summarising, if the conditions δ, CD ¿ ε are satisfied, the lead solitary wave of the

undular bore behaves as an individual (noninteracting) solitary wave adiabatically varying

under small perturbation due to variable topography and bottom friction. The modulation

solution in the vicinity of the leading edge also varies adiabatically, however, its qualitative

structure considered in Section 6.4 (see Figs 5,6) remains unchanged.

In a sharp contrast with the described case of adiabatic deformation of an undular bore

front is case (ii) when the second term in the left-hand side of (110) contributes to the

leading order, i.e. to the motion of the leading edge itself. Namely, we have

dλ+

dT
= ρ+ + v′i

∂li

∂X̃
, i = 1, 2. (120)

Now dλ+/dT 6= ρ+ which means that the amplitude of the lead solitary wave a = −2λ+

varies essentially differently compared to the case of an isolated solitary wave. Indeed, the

term ρ+ in the right-hand side of (120) is responsible for local adiabatic variations of the

solitary wave while the term v′i∂li/∂X̃ describes nonlocal part of variations associated with

the wave interactions within the undular bore. Using asymptotic formulae (108) implying

v′2 ≥ 0, v′1 ≤ 0, and the condition limX̃→0 |dl1,2/dX̃| = ∞ along with l2 ≥ l1, it is not

difficult to show that this nonlocal term is always nonnegative , i.e. the lead solitary wave
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in the undular bore propagating over a gradual slope with bottom friction always moves

faster (and, therefore, has greater amplitude) than an isolated solitary wave of the same

initial amplitude in the beginning of the slope. Indeed, as we have shown in Section 5,

presence of a slope and bottom friction always result in “squeezing” the cnoidal wave, hence

increasing momentum exchange between solitary waves in the vicinity of the leading edge

of the undular bore and acceleration of the lead solitary wave itself. The situation here

is qualitatively analogous to that described in Section 6.4 where general global modulation

solution for the unperturbed KdV equation was discussed. Similarly to that case, the leading

edge now represents a characteristic envelope – a caustic (otherwise we are back in the case

(i) implying dλ+/dT = ρ+) (see Fig. 6a).

Unlike the case of adiabatic variations of the leading edge, determination of the function

λ+(T ) requires now knowledge of the full solution of the perturbed modulation system (27)

with the matching conditions (98). While the analytic methods to construct such a solution

for inhomogeneous quasilinear systems are not available presently, it is instructive to assume

that dλ+/dT − ρ+ is a known function of T and to study the structure of the solution in

close vicinity of the leading edge. With an account of the explicit form (108) of the velocity

corrections, equations (120) assume the form

∂l2

∂X̃
= −dλ+/dT − ρ+

2(l2 − l1)

[
1

ln[16/(1−m)]
+

1

4
(1−m)

]
, (121)

∂l1

∂X̃
= −dλ+/dT − ρ+

2(l2 − l1)

[
− 1

ln[16/(1−m)]
+

1

4
(1−m)

]
. (122)

Taking the difference of (121) and (122) we transform it to the form

∂(1−m)

∂X
=

dλ+/dT − ρ+

(λ+)2
· 1

(1−m) ln[16/(1−m)]
. (123)

This equation can be readily integrated with the initial condition (116) to give

(1−m)2

(
ln

16

1−m
+

1

2

)
=

2(dλ+/dT − ρ+)

(λ+)2
(X+ −X). (124)

This solution coincides with the asymptotic formula (97) for the behaviour of the modulus

in the vicinity of the leading edge of the undular bore in general unperturbed GP problem

[16] but instead of the derivative dλ+/dT in (97) we have the difference dλ+/dT −ρ+ (which

is always positive as we have established).
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7 Conclusions

We have studied the effects of a gradual slope and turbulent (Chezy) bottom friction on the

propagation of solitary waves, nonlinear periodic waves and undular bores in shallow-water

flows in the framework of the variable-coefficient perturbed KdV equation. The analysis has

been performed in the most general setting provided by the associated Whitham equations

describing slow modulations of a periodic travelling wave due to the slope, bottom friction

and spatial nonuniformity of initial data. This modulation theory, developed in general form

for perturbed integrable equations in Kamchatnov (2004) was applied here to the perturbed

KdV equation and allowed us to take into account slow variations of all three parameters

in the cnoidal wave solution. The particular time-independent solutions of the perturbed

modulation equations were shown to be consistent with the adiabatically varying solutions

for a single solitary wave and for a periodic wave propagating over a slope without bottom

friction obtained in Ostrovsky & Pelinovsky (1970, 1975) and Miles (1979, 1983a). It was

shown, however, that the assumption of zero mean elevation used in these papers for the

description of slow variations of a cnoidal wave, ceases to be valid in the case when the

turbulent bottom friction is present. In this case, a more general solution was obtained

numerically improving the results of Miles (1983b).

Further, the derived full time-dependent modulation system was used for the descrip-

tion of the effects of variable topography and bottom friction on the propagation of undular

bores, in particular on the variations of the undular bore front representing a system of

weakly interacting solitary waves. By the analysis of the characteristics of the Whitham

system in the vicinity of the leading edge of the undular bore, two possible configurations

have been identified depending on whether the leading edge of the undular bore represents a

regular characteristic of the modulation system or its singular characteristic, i.e. a caustic.

The first case was shown to correspond to adiabatically slow deformations of the classi-

cal Gurevich-Pitaevskii modulation solution and is realised when the perturbations due to

variable topography and bottom friction are small compared with the existing spatial non-

uniformity of modulations in the undular bore (which is supposed to be formed outside the
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region of variable topography/bottom friction). In the case when the modulations due to the

external perturbations are comparable in magnitude with the existing modulations in undu-

lar bore, the leading edge becomes a caustic, and this situation was shown to correspond to

enhanced solitary wave interactions within the undular bore front. These enhanced interac-

tions have been shown to lead to a “nonlocal” leading solitary wave amplitude growth, which

cannot be predicted in the frame of the traditional local adiabatic approach to propagation

of an isolated solitary wave in a variable environment. As we mentioned in the Introduc-

tion, one of our original motivations for this study was the possibility to model a shoreward

propagating tsunami as an undular bore. In this context, we would suggest that the second

scenario described above is the more relevant, which has the implication that the growth,

and eventual breaking of the leading waves in a tsunami wavetrain, cannot be modeled as a

local effect for that particular wave, but is determined instead by the whole structure of the

wavetrain.
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Appendix A: Derivation of the perturbed modulation system

We express the integrand function in the right-hand side of (24) in terms of the µ-variable

(15):

(2λi − s1 − U)R = 8Gµ3 − [8Gλi + 4(F + 2s1G)]µ2

+ [4(F + 2s1G)λi + 2s1(s1G + F )]µ− 2s1(s1G + F )λi.
(125)

Then we obtain with the use of (13), (14), and (16) the following expressions:

〈µ〉 =
1

L

∮
µdθ =

1

L

∮
µ

dθ

dµ
dµ =

1

L

∮
µdµ

2
√
−P (µ)

= − 2

L

∂I

∂s2

,

〈µ2〉 =
1

L

∮
µ2dθ =

2

L

∂I

∂s1

〈µ3〉 =
1

L

∮
µ3dθ = − I

L
+ s1〈µ2〉 − s2〈µ〉+ s3,

(126)
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where I is a known integral

I =

∫ λ3

λ2

√
(λ3 − µ)(µ− λ2)(µ− λ1) dµ

=
4

15
(λ3 − λ1)

5/2[(1−m + m2)E(m)− (1−m)(1−m/2)K(m)],

(127)

K(m) and E(m) being the complete elliptic integrals of the first and second kind, respec-

tively. The derivatives of I with respect to λi are also known table integrals (Gradshtein &

Ryzhik 1980):

∂I

∂λ1

= −1

2

∫ λ3

λ2

√
(λ3 − µ)(µ− λ2)

µ− λ1

dµ

= −1

3

√
λ3 − λ1[(λ2 + λ3 − 2λ1)E − 2(λ2 − λ1)K],

∂I

∂λ2

= −1

2

∫ λ3

λ2

√
(λ3 − µ)(µ− λ1)

µ− λ2

dµ

= −1

3

√
λ3 − λ1[(λ3 − λ1)K + (λ1 + λ3 − 2λ2)E],

∂I

∂λ3

=
1

2

∫ λ3

λ2

√
(µλ2)(µ− λ1)

λ3 − µ
dµ

=
1

3

√
λ3 − λ1[(2λ3 − λ1 − λ2)E − (λ2 − λ1)K].

(128)

We can easily express the si-derivatives in terms of λi derivatives by differentiation of the

formulae (see (16))

s1 = λ1 + λ2 + λ3, s2 = λ1λ2 + λ1λ3 + λ2λ3, s3 = λ1λ2λ3 (129)

and solving the linear system for differentials. Simple calculation gives

∂λi

∂sk

=
(−1)3−k

∏
j 6=i(λi − λj)

. (130)

Then, combining (128) and (130), we obtain the derivatives ∂I/∂si and hence the expressions

I

L
=

2

15
(λ3 − λ1)

[
(s2

1 − 3s2)
E

K
− 1

2
(λ2 − λ1)(λ2 + λ3 − 2λ1)

]
,

1

L

∂I

∂s1

=
1

6

[
2s1

E

K
+ s1λ1 + λ2

1 − λ2λ3

]
,

1

L

∂I

∂s2

= −1

2

[
(λ3 − λ1)

E

K
+ λ1

]
.

(131)
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To complete the calculation of the right-hand side of (24), we need also expressions

L

∂L/∂λ1

= 2(λ2 − λ1)
K

E
,

L

∂L/∂λ2

= −2(λ3 − λ2)(1−m)K

E − (1−m)K
,

L

∂L/∂λ3

=
2(λ3 − λ2)K

E −K
.

(132)

Collecting all contributions into perturbations terms, we obtain the Whitham equations in

the form

∂λi

∂T
+ vi

∂λi

∂X
= ρi = Ci[F (T )Ai −G(T )Bi], (133)

where Cj, Aj, Bj and vj, j = 1, 2, 3 are specified by formulae (28) - (30).
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