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Highlights  

 

 A new activated hNF-lipase was synthesized 

 Ca2+ not only induced self-assemble of nanoflowers, but also activated the 
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lipase from A. oryzae. 

 Tween-80 acts as an excellent activator for lipase from A. oryzae. 

 The activated hNF-lipase exerted enhanced enzymatic and stability.  

 

 

 

The first two authors contributed equally to this paper 

 

 

Abstract  

Lipase-inorganic hybrid nanoflowers were prepared using Ca3(PO4)2 as the inorganic 

component and lipase from Aspergillus oryzae (A. oryzae) as the organic component. 

The influences of metal ions with different valence, various additives (surfactant), and 

synthesis conditions on the activity of the lipase hybrid nanoflowers were 

systematically investigated. Results revealed that the valence state of metal ions 

played an important role on the shape and activity of lipase hybrid nanoflowers. The 

synthesized lipase hybrid nanoflowers using bivalence metal ions (Ca2+, Mn2+, and 

Zn2+) as the inorganic components exhibited relative high activity. However, very low 

activities were observed in the lipase hybrid nanoflowers using univalent metal ions 

(Ag+) or trivalent metal ions (Al3+, Fe3+). More importantly, Ca2+ not only induced 

self-assemble of lipase hybrid nanoflowers, but also activated the enzyme activity by 

inducing conformational changes in lipase from A. oryzae. As a result, 
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lipase/Ca3(PO4)2 hybrid nanoflowers (hNF-lipase) exhibited the high activity. The 

hNF-lipase displayed 9, 12, and 61 folds higher activity than lipase/Ag3PO4 hybrid 

nanoflowers, lipase/AlPO4 hybrid nanoflowers, and lipase/FePO4 nanoflowers, 

respectively. Compared with free lipase, the hNF-lipase displayed 172% increase in 

activities by using 0.15 mM Tween-80 as an activity inducer (activated hNF-lipase). 

Furthermore, the hNF-lipase and activated hNF-lipase exhibited increased stability 

against high temperature and denaturant, and had good storage stability and 

reusability.  

Keywords: Hybrid nanoflowers; Enzyme immobilization; Lipase; Biocatalysis 

1. Introduction 

Enzymes are widely used in food ingredients, pharmaceutical and fine chemical 

industry due to their excellent biocatalytic efficiency [1-4]. However, free enzymes 

are extremely expensive, and display low stability in non-natural environments such 

as at high temperature and in the organic solvents that hinder their industrial 

applicability [5]. Some methods such as DNA operation and chemical modification 

were made to address these issues [6-8]. Unfortunately, these methods are complex, 

expensive, and time-consuming for commercial application [9, 10]. In contrast, 

immobilization of enzymes on/in materials has been recognized as a promising 

approach that can overcome these limitations due to convenience in handling, 

recyclable use, and improvement in stability. In the past twenty years, novel materials 

such as hydrogels, polymer resins, magnetic nanoparticles, carbon nanotubes, gold 

nanoparticles, and ordered mesoporous silica have been used as supports to engineer 
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immobilized enzymes [14-19]. Moreover, various immobilization methods involving 

adsorption, encapsulation, cross-linking, and covalent binding have been utilized to 

improve the performances of the enzymes [20-23]. However, most of the immobilized 

enzymes exhibited lower activities than the free forms due to the change of enzyme 

conformation, and the enhanced diffusion resistance between substrate and enzymes 

[11-13]. Recently, Ge et al. have reported an elegant approach in enzyme 

immobilization [24]. The immobilized enzymes were called “enzymes-inorganic 

hybrid nanoflowers”. Compared with the conventional immobilized enzymes, 

enzymes-inorganic hybrid nanoflowers exhibited better catalytic performances than 

free enzymes. Lin et al. synthesized trypsin hybrid nanoflowers using Cu3(PO4)3 as 

the inorganic components. The prepared hybrid nanoflowers showed 270% 

enhancement in enzymatic activity [25]. Similarly, Yin et al. used calcium chloride as 

the inorganic components to prepare α-chymotrypsin-inorganic hybrid nanoflowers 

that exhibited 266% increase in catalytic activity compared with free α-chymotrypsin 

[26]. Besides, lipase/Zn3(PO4)3 hybrid nanoflowers were synthesized by Zhang et al 

[27]. The prepared lipase nanoflowers exhibited 147% higher activity than free lipase. 

So far, systematic study on the influencing factors of the enzymatic activity of 

nanoflower is still lacking. Therefore, further investigation is necessary to explore the 

factors that affecting its enzyme activity.  

Lipase is a widely used biocatalyst in the food, chemical, and pharmaceutical industry, 

which can catalyze the reactions of ester synthesis, hydrolysis, inter-esterification, and 

trans-esterification [28-34]. However, free lipase exhibits poor operational stability, 
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sensitivity to harsh environments and difficulty in recycling. Additionally, majority of 

the lipases presents partial inactivation or total inactivation in solution due to interface 

effect [35]. Lipase activity can be dramatically increased by the interfacial activation. 

In our previous study, a lipase hybrid nanoflower with high activity was prepared by 

interfacial activation, and displayed 4.60-folds high activity compared with free lipase 

[28]. Generally, metal ions play an important role in the morphology and activity of 

hybrid nanoflowers [27,28]. Until now, there have been only few reports specifically 

on metal ion with different valence [29,30]. In this study, the effects of metal ions 

with different valence, different additives (surfactant), and synthesis conditions such 

as phosphate radical concentration, lipase concentration, metal ions concentration, and 

pH on the activity of the lipase nanoflowers were systematically investigated. The 

stabilities of the resultant hNF-lipase were evaluated. Furthermore, the changes in the 

secondary structure of lipase nanoflowers were examined. 

 

2. Materials and methods 

2.1 Materials 

Lipase from Aspergillus oryzae and P-Nitrophenol (p-NP) were purchased from 

Sigma-Aldrich. P-Nitrophenyl palmitate (p-NPP), fluorescein isothiocyanate (FITC), 

copper sulfate pentahydrate, zinc acetate, silver nitrate, iron chloride hexahydrate, and 

aluminum chloride hexahydrate were provided by International Aladdin Reagent Inc. 

(Shanghai, China). Dodecyl trimethyl ammonium bromide (DTAB), Tween-80, 

hexadecyl trimethyl ammonium bromide (CTAB), and triton X-100 were obtained 
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from Beijing Solarbio Science and Technology Co., Ltd (Beijing, China).  

2.2 Effects of metal ions with different valence on the morphology and activity of 

hNFs-lipase 

hNFs-lipase were synthesized according to a previous report with a minor 

modification [36]. Phosphate buffered saline (PBS, 4 mM, pH 7.4, 6 mL) containing 

lipase were mixed with 200 mM of each water solution of metal salt (100 µl, AgNO3, 

CaCl2, MgCl2, ZnSO4, MnCl2, FeCl3, and AlCl3), and incubated at 4 °C for 24 h. Then 

the precipitates were collected by centrifugation at 11,000 ×g for 5 min, washed with 

deionized water for three times and dried by vacuum freeze. The amount of lipase in 

solution before and after the immobilization was quantified by the Bradford method. 

The relative activity of hNFs-lipase was calculated using the relation given in Eq. (1): 

 

(Eq. 1) 

2.3 Effects of synthesis conditions on activity of lipase/Ca3(PO4)2 hybrid nanoflowers 

(hNF-lipase) 

The effects of lipase concentration (0.01-0.08 mg/mL), CaCl2 concentration 

(3.28-23.53 mM. Equivalent to adding 16-118 μL of 200 mM CaCl2 solution), 

phosphate radical concentration (1-10 mM), and pH value (6-11) were investigated on 

the activity of the hNF-lipase, and the relative activity was measured. 

2.4 Effects of surfactants on the activity of lipase/Ca3(PO4)2 hybrid nanoflowers 

(activated hNF-lipase) 

Influence of four different surfactants including CTAB, DTAB, TX-100, and Tween 
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80 was also examined on the activity of the hNF-lipase. Briefly, lipase solution (24.6 

mg/mL, 100000 U/g) and appropriate amounts of surfactant were added into 4 mM 

PBS (pH 7.4), and stirred at 4 °C for 1 h. Subsequently, appropriate amounts of CaCl2 

solution (200 mM) was added into the mixtures, and allowed to incubate at 4 °C for 

12 hours. Finally, the precipitates were recovered by centrifugation, and washed with 

deionized water for three times.  

2.5 Labeled lipase with fluorescein isothiocyanate 

Firstly, 50 mg/mL of FITC solution (FITC in 8 mL dimethyl sulfoxide) was added 

into 200nM PBS (PH 8.0) containing 1 g lipase for 10 min. After that, the labeled 

lipase with FITC was immobilized as hNFs-lipase.                                        

2.6 Activity assay  

The activities of free lipase, hNF-lipase, and activated hNF-lipase were determined by 

hydrolysis of p-NPP to p-NP based on the method of Gao with some modifications 

[37]. Briefly, 0.2 mL p-NPP solution was mixed with 2.8 mL PBS-(TX-100) in 

colorimetric tube. After ultrasonic emulsification, the mixture solution was incubated 

for 5 min at 37 °C. Subsequently, lipase samples were added into the above solution 

to start hydrolysis reaction. After reaction 4.5 min, the mixture was centrifuged and 

the supernatant were measured at 410 nm using a UV spectrophotometer. One unit of 

lipase activity was defined as the amount of enzyme liberating 1 µmol of pNP from 

pNPP per minute.  

2.7 Effects of temperature and pH on the activity of the hybrid nanoflowers 

The optimum temperatures of lipase samples were measured by incorporating lipase 
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samples to substrate solution at various temperatures (ranged from 20-60 °C) for 20 

min. The relative activity was measured following the activity assay as described 

above. The optimal pH of lipase samples was determined by incubating them at 

varying pH ranging from 6.5-8.5. 

2.8 Kinetic constant 

Km and Vmax of lipase samples were determined by using the Michaelis-Menten model. 

The enzymatic reaction was carried out in the substrate concentration range of 

0.05-0.3 mM at a constant enzyme concentration. Km and Vmax values were obtained 

from the Lineweaver-Burk double-reciprocal plot. 

2.9 Characterization methods  

Scanning electron microscope (SEM, SU-1510, HITACHI, Japan) was used to 

observe the shapes of hNF-lipase. Fourier transform infrared (FTIR) spectra were 

obtained on an apparatus (Nicolet iS50, Thermo Fisher Scientific, USA) in the range 

of 400-4000 cm-1. The secondary structure element content was determined according 

to the method described by Yang et al [38]. An power x-ray diffraction (D/Max-2500 

diffractometer, Shimadzu, Japan) was used to measure the crystal structures of the 

hNF-lipase at 40 kV and 40 mA. The labeled lipase with FITC hybrid nanoflowers 

was characterized by confocal laser scanning microscopy (CLSM) (FV1000, Olympus 

Japan). An energy-dispersive spectrometer (EDS) (Apreo, FEI, USA) was used to 

determine the elemental composition of the hNF-lipase.     

2.10 The stability of lipase samples  

The thermal stability of lipase samples was measured by incubating them in PBS (10 

Jo
ur

na
l P

re
-p

ro
of



 9 

mM) at 55 °C for 30 min, and the residual activity was tested. The stability of lipase 

samples against denaturants was evaluated by testing their residual activities after 

incubation in different denaturants (95% ethanol, 6 M urea, and 2% SDS) for 30 min. 

The storage stability of lipase samples was tested at 25 °C for 27 days, and their 

residual activities were assayed every 3 days. The reusability of immobilized lipase 

was determined by repeated hydrolysis of NPP, After the completion of one cycle, the 

immobilized lipase was separated by membrane filtration and washed them with 

deionized water for three times, and then carried out the next cycle. The residual 

activity of each cycle was determined. 

3. Results and discussion 

3.1 Preparation and characterization of the hNF-lipase 

The schematic diagram for the synthesis of the hNF-lipase and activated hNF-lipase 

was presented in Fig. 1. The morphology analysis of the hNF-lipase by SEM clearly 

revealed that the nanoflower exhibited flower-like shape (Fig. 2a) and was further 

confirmed by TEM images (Fig. 2b). The results demonstrated that lipase promoted 

the anisotropic growth of Ca3(PO4)2 crystals and the formation of flower-like structure 

[39]. The CLSM image showed that immobilization of lipase was immobilized onto 

the hNF-lipase because fluorescein isothiocyanate (FITC) labeled lipase protein 

exhibited strong green fluorescence (Fig. 2c). In addition, the presence of C and N 

were also found in the lipase nanoflowers when conducted the EDS experiment (Fig. 

3a). However, no C and N elements were not found in the pure Ca3(PO4)2 (Fig. 3b). 

The results demonstrated that lipase was embedded in the hNF-lipase. FTIR spectral 
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analysis indicated the appearance of numerous peaks at different wavenumbers (Fig. 

4a). The characteristic peaks at 1655 cm-1 and 1542 cm-1 were derived from stretching 

vibration of C=O and N-H in amide I and amide II, respectively, which revealed the 

presence of lipase. Typical peaks at 1027 cm-1 were assigned to vibration of PO4
3-, 

indicating the existence of Ca3(PO4)2 in the hNF-lipase. In addition, power x-ray 

diffraction (PXRD) was conducted in the range of 5-100° to explore the crystal 

structure of the lipase nanoflowers. The results are shown in Fig. 4b. Both hNF-lipase 

and activated hNF-lipase had similar the diffraction peaks, representing that 

surfactants did not influenced the crystalline structure of hNF-lipase. Furthermore, the 

positions and relative intensities of all diffraction peaks of hNF-lipase and Ca3(PO4)2 

matched well with those obtained from the JCPDS card (18-0303)(Fig. 4c) [26,42]. 

These results indicated that lipase/Ca3(PO4)2 hybrid nanoflowers were synthesized 

successfully. 

3.2 Influences of metal ions with different valence on the morphology and activity of 

hNF-lipase 

As shown in Fig. 5, the hNF-lipase/Ca3(PO4)2 and hNF-lipase/Mn3(PO4)2 have a 

hierarchical like flower morphology (Fig. 5b and 5c). However, the lipase/Ag3PO4 

hybrid nanoflowers, lipase/Zn3(PO4)2 hybrid nanoflowers, lipase/AlPO4 hybrid 

nanoflowers, and lipase/FePO4 hybrid nanoflowers exhibit large amorphous 

clusters(Fig. 5a, 5d, 5e, 5f). These results showed that the morphology of the 

hNF-lipase is depended on the metal used. The previous reports also suggested that 

lipase hybrid nanoflowers from porcine pancreas exhibited compact spherical shape 
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when zinc phosphate was used as the inorganic component. However, the lipase 

hybrid nanoflowers displayed like flower shape when zinc phosphate was used as the 

inorganic component [39, 40]. In addition, the influences of metal ions with different 

valence on the activity of hNF-lipase were also investigated. The results were shown 

in Table 1, low activity was observed for the lipase/FePO4 hybrid nanoflowers, 

lipase/AlPO4 hybrid nanoflowers, and lipase/Ag3PO4 hybrid nanoflowers. No 

nanoflower precipitates were observed when magnesium phosphate was used as the 

inorganic component. In contrast, the lipase/Mn3(PO4)2 hybrid nanoflowers, 

lipase/Zn3(PO4)2 hybrid nanoflowers, and lipase/Ca3(PO4)2 hybrid nanoflowers 

exhibited relatively high activity. Furthermore, the highest activity of the hNF-lipase 

was obtained when calcium phosphate was used as the inorganic component. Zhang et 

al found that Ca2+ could improve the activity of a lipase named ZC12 from 

Psychrobacter sp. ZY124 in hybrid nanoflowers [41]. They considered that Ca2+ 

induced self-assemble, but also activated the enzyme activity by inducing 

conformational changes in lipase ZC12. Furthermore, lipase ZC12 retained its “active 

form” after the immobilization [41, 42]. In order to confirm whether calcium ions 

induce conformational change of lipase in the lipase/Ca3(PO4)2 hybrid nanoflowers, 

FTIR experiments were performed to analyze the lipase secondary structure variation. 

The results were shown in Table 2. Compared with free lipase, lipase/Ag3PO4 hybrid 

nanoflowers, lipase/AlPO4 hybrid nanoflowers and lipase/FePO4 hybrid nanoflowers, 

the lipase in the lipase/Ca3(PO4)2 hybrid nanoflowers exhibited a decrease in α-helix 

and β-turn content. However, random coil content increased in the lipase in the 
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lipase/Ca3(PO4)2 hybrid nanoflowers (Table 2). These results coincide with 

observations by Liu et al. who reported that the active site of free lipase was occluded 

by α-helix in the closed conformation (called lid), the conformational transition could 

lead to a decrease in α-helix and an increase in random coil [43]. The lipase with the 

“open” conformation was immobilized in calcium phosphate nanocrystals by 

interacted with the specific calcium binding pocket, which allows easier access to the 

substrate [42,43]. On the contrary, other metal ions (Ag+, Al3+, Fe3+), could not induce 

the “open” conformation of the lipase. Therefore, the lipase/Ca3(PO4)2 hybrid 

nanoflowers exhibited higher activity than other nanoflowers.      

3.3 Influences of preparation conditions on the activity of the hNF-lipase  

It is well known that the synthesis conditions have a great influence on the activity of 

the hNF-lipase. For example, Zhang et al. found that lipase content of the lipase 

hybrid nanoflower could be affected by adjusting lipase concentration, reaction 

temperature and stirring form [27]. Ke et al. reported that PBS concentration and 

lipase loading could affect immobilization efficiency of the lipase hybrid nanoflower 

[36]. To further understand the changes on activity of the formed hNF-lipase under 

the various reaction parameters, effects of various synthesis conditions including 

phosphate radical concentration in PBS, lipase concentration, Ca2+ concentration, and 

pH value activity of the hNF-lipase were systematically investigated. The results were 

shown in Fig. 6. Low activity of the hNF-lipase was observed in low phosphate 

radical concentration (<2 mM). With increasing phosphate radical concentration (>2 

mM), the activity of hNF-lipase increased. The maximum activity was obtained when 
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phosphate radical concentration was 7 mM (Fig. 6a). Furthermore, it was found that  

with increase of lipase concentration the activity of the hNF-lipase increased 

significantly. However, a further increase of lipase concentration (>0.02 mg/mL) 

resulted in decrease of activity of the hNF-lipase (Fig. 6b). In addition, the activity of 

the hNF-lipase was closely related to Ca2+ concentration. The activity of the 

hNF-lipase was increased dramatically with the increase of Ca2+ concentration (Fig. 

6c). Maximum activity of the hNF-lipase was obtained at 12.5 mM Ca2+ concentration. 

Besides, when pH value of PBS was higher than 7, activity of the hNF-lipase 

basically unchanged. However, low activity of the hNF-lipase was observed when the 

pH of PBS is 6 (Fig. 6d).  

3.4 Effects of various surfactants on the activity of the hNF-lipase 

It is generally known that the catalytic activity of lipase can be dramatically increased 

by the surfactant activation (interfacial activation) [30].With an aim to further 

improve the catalytic activity of the hNF-lipase, the lipase activated by surfactants 

were sequentially used for the hNF-lipase preparation. Four surfactants (including 

CTAB, DTAB, TX-100, and Tween 80) were used to activate lipase, and the results 

are shown in Fig. 7. Compared with hNF-lipase, the activated hNF-lipase with 

tween-80 showed a substantial hyperactivation, and the maximum relative activity of 

the activated hNF-lipase reached 172% when 0.15 mM Tween-80 was used as 

activator. However, both CTAB and DTAB showed little effect on the activity of 

hNF-lipase. Interestingly, the activity of hNF-lipase was decreased when TX-100 was 

added, indicating negative effect of TX-100 on the activity of lipase. Therefore, 
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Tween 80 at a concentration of 0.15 mM was the optimal activator to for the 

preparation of the hNF-lipase. The previous reports showed that surfactants could 

induce lipase changes from closed conformation to open conformation [44, 45]. All of 

these results demonstrated that the surfactants play an important role in the activation 

of lipase. 

3.5 Catalytic activity of lipase nanoflowers 

The results of kinetic parameters (Km and Vmax) are listed in Table 3. Km value of the 

lipase nanoflowers was higher than the free lipase, indicating the high diffusion 

resistance between substrate and lipase. However, higher Vmax indicated the high 

catalytic efficiency of hNF-lipase relative to the free lipase. It was worth noting that 

the activated hNF-lipase displayed higher Vmax/Km than the free lipase and the 

hNF-lipase, respectively. The results further demonstrated that the activated 

hNF-lipase have the highest catalytic efficiency among all of lipase samples. This 

increased catalytic efficiency is due to the active conformation of lipase in the 

activated hNF-lipase. In addition, effects of temperature and pH on the activity of 

lipase samples were determined (Fig. 8). The optimum temperature for the hybrid 

nanoflowers was 40 °C, which was in consonance with free lipase (Fig 8a). 

Furthermore, it was found that the optimum pH for free lipase, hNF-lipase and 

activated hNF-lipase was at pH 4 (Fig 8b).  

3.6 Stability of the hNF-lipase 

The stability of the immobilized enzymes is important for industrial applications. 

Therefore, the stabilities of lipase samples were tested against heat and various 
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denaturants (Fig. 9). Results showed that the lipase nanoflowers presented excellent 

thermal stability at 70 °C for 30 min. The hNF-lipase and activated hNF-lipase retained 

56% and 85% of their initial activities, respectively. However, free lipase maintained 

only 49% of its initial activity (Fig. 9a). In addition, the hybrid nanoflowers also 

showed higher stability against denaturants including 6 M urea, 2% (W/V) SDS, and 

95% ethanol than that to the free counterpart (Fig. 9b). For example, after incubation in 

6 M urea for 30 min, the hNF-lipase and activated hNF-lipase retained 92.42% and 

93.24% of their residual activities, respectively. However, the free lipase maintained 

only 51.39% of its initial activity. Besides, the storage stability of lipase samples was 

determined at 25 °C for 27 days. The results showed that the hNF-lipase and activated 

hNF-lipase still retained 90% and 80% of their initial activities respectively. However, 

the free lipase only maintained 58% of its initial activity. In addition, the reusability of 

the lipase nanoflowers was investigated (Fig. 9d). It can be found that the hNF-lipase 

and activated hNF-lipase were capable of preserving 61% and 68% of their original 

activities after six consecutive cycles. Overall, the findings indicated the potential of 

hNF-lipase for diverse industrial applications. 

4. Conclusions 

In conclusion, we systematically investigated the influences of metal ions with different 

valence, surfactants, and synthesis conditions on the shape and activity of the lipase 

hybrid nanoflowers. The synthesized lipase hybrid nanoflowers using bivalence metal 

ions (Ca2+, Mn2+, and Zn2+) presented more higher activity than that of using 

univalent metal ions (Ag+) or trivalent metal ions (Al3+ or Fe3+). Especially, the 
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lipase/Ca3(PO4)2 hybrid nanoflowers displayed 9, 12, and 61 folds higher activity than 

lipase/Ag3PO4 hybrid nanoflowers, lipase/AlPO4 hybrid nanoflowers, and 

lipase/FePO4 nanoflowers, respectively. Ca2+ not only induced self-assemble of 

nanoflowers, but also activated the lipase from A. oryzae. The activity of the 

hNF-lipase was further increased by the surfactant activation. The activated 

hNF-lipase displayed an 172% increase in activity using 0.15 mM Tween-80 as an 

activity inducer. At the same time, the hNF-lipase and activated hNF-lipase exhibited 

high stability against heat and various denaturants. Furthermore, the hybrid 

nanoflowers demonstrated excellent reusability. In conclusion, lipase nanoflowers 

would be an efficient immobilized lipase with broad-spectrum potential for practical 

applications. 
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Table 1. The relative activity of hNF-lipase synthesized using metal ions with a range 

of different valence. 

Biocatalysts Relative activity (%) 

hNF-lipase/Ag3PO4 4.87±0.008 

hNF-lipase/Mn3(PO4)2  24.11±0.12 

hNF-lipase/Zn3(PO4)2  30.20±0.15 

hNF-lipase/Ca3(PO4)2  43.05±0.18 

hNF-lipase/AlPO4  3.48±0.07 

hNF-lipase/FePO4  0.71±0.008 

hNF-lipase/Mg3(PO4)2 0 (No precipitation) 
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Table 2. Quantitative estimation of the secondary structure elements of free lipase, 

and lipase hybrid nanoflowes using different metal ions 

biocatalysts α-Helix (%) β-Sheet (%) β-Turn (%) Random coil (%) 

Free lipase 23.39±0.12 43.74±0.09 19.35±0.13 8.46±0.09 

hNF-lipase/Ag3PO4  18.13±0.11 38.32±0.08 16.55±0.09 6.96±0.08 

hNF-lipase/Ca3(PO4)2 17.98±0.12 29.00±0.11 12.69±0.12 15.08±0.11 

hNF-lipase/AlPO4  21.08±0.13 46.29±0.13 19.55±0.11 7.07±0.07 

hNF-lipase/FePO4  21.08±0.12 34.70±0.08 15.21±0.09 2.29±0.02 
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Table 3. The kinetic parameters of free lipase, lipase/Ca3(PO4)2 hybrid nanoflowers 

and activated lipase/Ca3(PO4)2 hybrid nanoflowers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biocatalysts Km (mM) Vmax (mM/min) Vmax/Km 

Free lipase 1.606±0.008 0.122±0.006 0.076±0.003 

hNF-lipase/Ca3(PO4)2 11.908±0.06 0.853±0.004 0.072±0.003 

Activated hNF-lipase/Ca3(PO4)2 5.96±0.03 0.458±0.002 0.077±0.003 
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Figure legends 

 

Figure 1 Schematic illustration of the preparation of hNF-lipase/Ca3(PO4)2 and 

activated hNF-lipase/Ca3(PO4)2. 

Figure 2 SEM, TEM and CLSM images of hNF-lipase/Ca3(PO4)2.  

Figure 3 EDS patterns of (a) hNF-lipase and (b) Ca3(PO4)2. 

Figure 4 FTIR spectra (a) of free lipase, Ca3(PO4)2, hNF-lipase and activated 

hNF-lipase and (b) XRD patters of Ca3(PO4)2, hNF-lipase and activated hNF-lipase. 

Figure 5 SEM images of hNF-lipase synthesized using metal ions with different 

valence (a-e). (a) Ag+; (b) Ca2+; (c) Mn2+ ; (d) Zn2+; (e) Al3+; (f) Fe3+.  

Figure 6 Optimization of synthesis conditions of hNF-lipase. (a) phosphate radical 

concentration, (b) lipase concentration, (c) calcium chloride concentration, and (d) pH 

of PBS. 

Figure 7 Effect of different surfactants on the activity of hNF-lipase. 

Figure 8 Effect of (a) temperature and (b) pH on the activity of free lipase, 

hNF-lipase, and activated hNF-lipase. 

Figure 9 Stability of free lipase, hNF-lipase, and activated hNF-lipase against (a) 

temperature; (b) denaturants; (c) storage stability of free lipase, hNF-lipase, and 

activated hNF-lipase; (d) reusability of hNF-lipase and activated hNF-lipase. 
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Figure 1 
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Figure 3 
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Figure 4 
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Figure 8 
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Figure 9 
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