Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells

Mattei, Fabrizio, Eich, Christina, Lasonder, Edwin, Cruz, Luis J., Reinieren-Beeren, Inge, Cambi, Alessandra, Figdor, Carl G. and Buschow, Sonja I. (2016) Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells. PLoS ONE, 11 (2). e0149637. ISSN 1932-6203

[img]
Preview
Text
journal.pone.0149637.PDF - Published Version
Available under License Creative Commons Attribution 4.0.

Download (5MB) | Preview
Official URL: https://doi.org/10.1371/journal.pone.0149637

Abstract

The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle.

Item Type: Article
Subjects: C100 Biology
C700 Molecular Biology, Biophysics and Biochemistry
C900 Others in Biological Sciences
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Rachel Branson
Date Deposited: 22 Apr 2020 08:56
Last Modified: 22 Apr 2020 09:00
URI: http://nrl.northumbria.ac.uk/id/eprint/42867

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics