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Abstract: The depressed core fiber (DCF), consisting of a low-index solid core, a high-index
cladding and air surrounding, is in effect a bridge between the conventional step-index fiber
and the tube-type hollow-core fiber from the point of view of the index profile. In this paper
the dispersion diagram of a DCF is obtained by solving the full-vector eigenvalue equations
and analyzed using the theory of anti-resonant and the inhibited coupling mechanisms. While
light propagation in tube-type hollow-core fibers is commonly described by the symmetric
planar waveguide model, here we propose an asymmetric planar waveguide for the DCFs in an
anti-resonant reflecting optical waveguide (ARROW) model. It is found that the anti-resonant
core modes in the DCFs have real effective indices, compared to the anti-resonant core modes
with complex effective indices in the tube-type hollow-core fibers. The anti-resonant core
modes in the DCFs exhibit similar qualitative and quantitative behavior as the core modes in the
conventional step-index fibers. The full-vector analytical results for the simple-structure DCFs
can contribute to a better understanding of the anti-resonant and inhibited coupling guidance
mechanisms in other complex inversed index fibers.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Inversed index fibers with a low-index core and a high-index cladding such as the tube-type
hollow-core fibers and hollow-core photonic crystal fibers have attracted a lot of interest in the
fields of high-capacity telecommunication networks [1–5], high -power/supercontinuum/ultrafast
lasers [6–11], terahertz waveguiding [12,13] and high sensitivity optical sensing [14,15]. As
opposed to conventional step-index fibers where the light is guided in the high-index core region
by total internal reflections, light guidance in the low-index core region of the inversed index
fibers can be explained by other mechanisms such as the photonic bandgap effect, inhibited
coupling effect and the anti-resonant effect. Generally, all optical fibers can be grouped into
two types based on the effective refractive index (neff) -wavelength (λ) dispersion diagram [2].
For the first type, the neff - λ of the core modes lies outside any cladding mode continuum.
The photonic bandgap fibers belong to this type, as their photonic bandgaps are formed in the
periodic dielectric cladding region, the coupling between the core modes, which have neff within
the bandgaps, and cladding modes are forbidden due to their separation in the neff - λ space
[3]. The second type is inhibited coupling fibers, for which the neff - λ of the core modes lies
inside the cladding mode continuum, but the coupling between them is minimized due to the
high degree of transverse-field mismatch [6]. Both the photonic bandgap fibers and the inhibited
coupling fibers have the same anti-resonant nature, which can be described by an anti-resonant
reflecting optical waveguide (ARROW) model [2,3,6]. In this model, the planar waveguide
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acts as a Fabry-Perot resonator, which allows the anti-resonant light to be reflected back while
allowing forward transmission of the resonant light [16–19].
In a manner similar to photonic bandgap fibers, conventional step-index fibers belong to the

first type since the neff of the core modes are higher than that of the cladding modes, in other
words, their modal dispersion space is separated [2]. Compared to conventional step-index
fibers, inversed index fibers have generally a more complex structure and modal characteristics.
However, there exists a close relationship between them. It has been stated that the photonic
bandgap fibers exhibit strikingly similar modal behavior with that of the conventional fibers,
including dispersion curves and field profiles [20,21]. The analogy to conventional fibers provides
a convenient tool to model the modes of photonic bandgap fibers. The question is whether there
is a connection between the inhibited coupling fibers and the conventional fibers in addition to
the photonic bandgap fibers.
A recent publication Ref. [22] shows that the mode density of anti-resonant elements in an

inhibited coupling guiding single-ring hollow-core photonic crystal fiber is similar to the behavior
of conventional multimode fibers. The single-ring hollow-core photonic crystal fiber studied in
[22] has a ring of 6-8 detached thin tube-type hollow-core waveguides/fibers surrounding the
hollow core. However, the results of the work were obtained using a scalar semi-analytical model,
which does not give sufficiently rigorous vector modal analysis. The tube-type hollow-core fiber
has a simple structure, where the leaky core-type modes are supported by the anti-resonant effect
[17–19]. In most of the previous works, only the fundamental mode or few low-order modes of
the tube-type hollow-core fibers were obtained with different approximation methods [17,23–25].

A depressed core fiber (DCF) is a type of inversed index fibers, described by a three-layer fiber
model with a low-index solid core, a finite high-index cladding, and surrounding air. This fiber
structure is different from the M-type fiber [26], although in some papers it has been referred
to as M-type fiber [27]. The refractive index of the central region of the M-type fiber has a
minimum value set by the need for the core to have a refractive index equal to or lower than that
of the surrounding medium, which if the surrounding region is air means that the core must also
be air. For a DCF the core refractive index is lower than the next outermost region but does not
need to take on the lowest or minimum value in a three-layer fiber model. The M-type fiber can
be considered as a leaky waveguide with the anti-resonant structure, in which the core mode
is leaky with a complex effective refractive index, similar to the case of the hollow-core fiber
[17,28]. Compared to the M-type fiber, the core mode of the DCF is guided by both total internal
reflection and anti-resonance guidance, and its core mode has a real effective refractive index
[27,29–32]. The DCFs have been studied for various applications including pulse compression
in fiber lasers [29–31], generation of supercontinuum [27] and top-hat beams [32], due to their
manageable waveguide dispersion and exceptional modal field changes. However, these studies
in regard to DCFs [27,29–32] were limited to the analysis of a few modes in the strong dispersion
region.

In this paper, the modal dispersion and field distributions of a DCF are calculated and analyzed
with the vector field functions and eigenvalue equations for the three-layer fiber as given in
[33–35]. To the best of our knowledge, it is the first report providing a complete vector modal
dispersion diagram for the DCFs. In the section 2, the ray method is used to analyze the mode
characteristics in the DCFs, in comparison to asymmetric planar waveguides. The possibility
of anti-resonant core modes and the positions of the mode coupling (resonances) is analyzed
using the ARROW model. In section 3, the dispersion curves and mode field distributions of the
vector modes TE, TM, HE and EH are analyzed, along with their comparison for the case of
conventional step-index fibers. It is found that the waveguiding mechanism of core-type modes
in DCFs with a simple structure can be explained by the anti-resonant and inhibited coupling
effects, similarly to the complex single-ring hollow-core photonic crystal fibers discussed in Ref.
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[22]. In section 4, the implications of the analytical results for the tube-type hollow-core fibers
and single-ring hollow-core fibers are discussed.

2. Theory of the DCFs

Anti-resonant core mode and asymmetric planar ARROW model

Figure 1 shows a DCF and its cross section and refractive index profile. The radii of the rod
core and the tube cladding are r1 and r2 while the surrounding medium (air) is unlimited. The
refractive index of the rod core region n1 is smaller than the refractive index of the tube cladding
region n2 but greater than that of the surrounding air n3, as n3 < n1 < n2.

Fig. 1. A depressed-core optical fiber and its cross section and refractive index profile.

The high-index tube cladding region of the DCF can be considered as an asymmetric planar
waveguide, where a high-index core region with the same thickness (d = r2 - r1) as the cladding
of the DCF is sandwiched between two different low-index regions, as shown in Fig. 2. It
is useful to analyze the DCFs using a ray optics approach. Since the asymmetric planar
waveguide supports guided modes with n1 < neff = n2*sinθ1 < n2 [36] shown in Fig. 2(b), it can
be deduced that a DCF can support the annular-like (transverse field profile) cladding modes with
n1 < neff = n2*sinθ1 < n2 guided by the total internal reflections at the inner and outer boundaries
of the cladding region as shown in Fig. 2(a). The modes with n3 < neff = n1*sinθ1 < n1 in the
asymmetric planar waveguide are radiation modes with power escaping into the higher-index
(upper) region (where will form a standing wave field) [36], as shown in Fig. 2(d). In the DCF an
incident ray representing a mode with n3 < neff = n1*sinθ1 < n1, partially reflected at the inner
boundary of the cladding region and totally reflected at the outer boundary of the cladding region,
excites multiple path rays reflecting into the core region. The light field of these modes with
n3 < neff < n1 is distributed in across the entire cross section of the DCF, which is similar to the
cladding modes in conventional three-layer step-index fibers [37,38].
Due to the inversed index distribution in the DCF, the total internal reflection effect does not

work at the inner boundary of the cladding region. Therefore, there is no core modes guided by
the total internal reflections like those in conventional step-index fibers.
The high-index layers can be considered as Fabry-Perot resonators in the ARROW model

[16]. Analogous to a symmetric planar waveguide in the ARROW model for the tube-type
hollow-core fibers [18,19], an asymmetric planar waveguide is proposed for the DCFs. Indeed,
the characteristics of multiple path reflections formed in the DCF shown in Fig. 2(c) indicate that
the cladding region of the DCF acts as a Fabry-Perot resonator, corresponding to an asymmetric
planar waveguide shown in Fig. 2(d). In a Fabry-Perot resonator the resonances usually occur
over a narrow band of wavelengths while the antiresonances are spectrally broad [16,39]. The
energy of the incident ray can be strongly reflected back to the core region at the anti-resonant
wavelengths, forming anti-resonant core modes in the anti-resonant reflecting optical waveguides
[16] and the tube-type hollow core fibers [18]. Similarly, it can be concluded that DCFs have
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Fig. 2. (a) and (b) show the ray trajectory of a mode with n1 < neff = n2sinθ1 < n2 in a DCF
and an equivalent asymmetric planar waveguide, respectively. (c) and (d) show the ray
trajectory of a mode with n3 < neff = n1sinθ1 < n1 in the DCF and the equivalent asymmetric
planar waveguide, respectively.

anti-resonant core modes with the light field is mainly confined in the core region, with disc-like
transverse field profiles.
The resonant wavelengths of an asymmetric planar waveguide-like Fabry-Perot resonator

shown in Fig. 2(d), corresponding to the minimal total energy of all the reflected rays, are equal
to the cutoff wavelengths of the guided core modes. The cutoff wavelengths for the guided core
modes TEN and TMN in the asymmetric waveguide can be written as [36]:

λN,c =
2d

√
n22 − n21[

N + 1
π tan−1

(
κ

√
n21−n23
√

n22−n21

)] , κ =


1, for TEN modes
n22
n23

for TMN modes
(1)

where N is the mode number. The second term in the denominator of Eq. (1) arises from the
asymmetry of the waveguide and vanishes for the symmetric case as shown in Ref. [19].

3. Results

Similar to the conventional step-index fibers, the modes in a DCF are denoted as TE0,N, TM0,N,
HEm,N and EHm,N, where the numbers ‘0’ and ‘m’ on the left side of the comma in the subscript
positions are the azimuthal mode number while the number symbols ‘N’ on the right side are the
radial mode number. The eigenvalue equations for the vector modes in the DCFs are shown in
Appendix, which were solved by a graphical method. In the calculations, the fiber parameters of
the studied DCF are assumed as n1 = 1.445, n2 = 1.51, n3 = 1, r1 = 62.5 µm and r2 = 125 µm. The
parameters correspond to those of the fibers used in our experimental work, which will soon be
presented in another paper.
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3.1. TE/TM modes in DCFs

Figure 3(a) shows the dispersion diagram (neff vs. λ) for the modes TE0,N with n1 < neff < n2.
There are 38 TE0,N modes, from upper to lower as the radial mode number N increases, as
indicated by the black arrow. All dispersion curves of the TE0,N modes with the purple dashed
line at n1, but only the modes TE0,N, N= 34, 35, 36, 37 and 38 have their cutoff in the investigated
spectral range. The wavelengths of the intersect points are approximated as the cutoff wavelengths
of the TEN modes in the asymmetric planar waveguide calculated by Eq. (1), indicated by the red
vertical dashed lines. The difference between the wavelength of the intersect point for the TE0,N
mode and the cutoff wavelength of the TEN mode is less than 1 nm. Compared to the curves
above the horizontal line at n1, the curves bellow n1 show a step-like decrease as the λ increases,
showing periodic strong and moderate index dispersion bands. The slopes of the dispersion
curves with a strong index dispersion are similar to those of the curves above the horizontal line
at n1 and that in the equivalent asymmetric waveguide (not shown). The slopes of the dispersion
curves with a moderate index dispersion in DCFs are similar to those of the dispersion curves of
the core modes in the conventional step-index fiber, as discussed in part 3.3.

Fig. 3. Dispersion curves (neff vs. λ) of TE modes with neff corresponding to (a) n1 < neff
< n2, (b) n1-0.001< neff < n1+0.001, n1 = 1.445, n2 = 1.51. (c) shows the modal intensity
and electric field vector distributions of TE modes whose positions (neff , λ) are indicated by
the black circle dots in (a) and (b). The red vertical dashed lines in (a) and (b) indicate the
resonant bands.

Figure 3(c) shows the modal intensities and electric field vector distributions at seven different
points marked A-G (black circle dots) in Figs. 3(a) and 3(b). The electric field vector helps to
distinguish between different kinds of vector modes and helps to compare the modes in the DCF
and the conventional step-index fiber, as discussed in following parts. The radial maxima in the
modal field profiles represent intensity oscillations, and the number of the radial maxima is equal
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to the radial mode number N. In Fig. 3(c) the modal field profile of the mode TE0,1 at point A
shows one radial maxima in the fiber cladding region r1 < r < r2. The TE0,2 at point B shows
two radial maxima in the fiber cladding region.
In order to count the number of radial maxima in the distributions corresponding to points

C-G in Fig. 3(c), we draw the normalized intensity distribution along the r-coordinate, as shown
in Fig. 4. One oscillation peak on a curve in Fig. 4 corresponds to one radial maxima in a modal
field profile. Similar to the modal field profiles at points A and B, all 37 radial maxima are
distributed within the fiber cladding region for the mode at point C. The oscillation peaks shift
from the cladding region to core region one by one along the points C-G. The modes at points
D, F and G exhibit 1, 2 and 3 maxima in the core and 36, 35 and 34 maxima in the cladding,
respectively. The energy is mainly confined in the core region of the modes at points D, F and
G, as seen in Figs. 4(b), 4(d) and 4(e), where the field intensity in the cladding region is almost
negligible compared to that in the core region. The mode at point E with a very strong index
dispersion represents a mode in a transition state from the mode at point D to the mode at point F,
where the energy is more evenly distributed between the core and the cladding regions as seen in
Fig. 4(c). There are two maxima in the core region and 35 maxima in the cladding region for the
mode at point E.

We propose the following nomenclature for the modes with neff < n1, identified as TE0, n+(N−n).
The subscript ‘n’ denotes the radial number in the core region, while the number ‘N-n’ denotes
the radial number in the cladding region. Therefore, the modes at points D, F and G in Fig. 3(b)
with moderate index dispersion can be named as TE0,1+(36), TE0,2+(35) and TE0,3+(34). The mode
at point E in Fig. 3(b) can be named as [TE0,2+(35)], where the brackets indicate that the mode is
with a strong effective index dispersion and is in a transition state. It is clear that the field profiles
of the modes TE0,1+(36), TE0,2+(35) and TE0,3+(34) are similar to that of the modes TE0,1, TE0,2
and TE0,3 in conventional step-index fibers, respectively. As discussed, the TE0,1+(36), TE0,2+(35)
and TE0,3+(34) in the DCF should be formed by the anti-resonant effect of the high-index cladding
region, therefore, they represent anti-resonant core modes.

According the above nomenclature, the modes at points I and J on the dispersion curve of TE0,36
indicated by the black triangle dots in Fig. 3(b) are both anti-resonant core modes and named as
TE0,1+(35) and TE0,2+(34), respectively. The mode transition from the core mode TE0,1+(35) at point
I to the cladding mode TE0,36 at point H and the mode transition from the higher-order core mode
TE0,2+(35) at point F to the lower-order core mode TE0,1+(36) at point D leads to an anti-crossing
phenomenon near the mode [TE0,2+(35)] at point E around the resonant bands indicated by the red
vertical dashed line. Due to mode reorganization [38,40–42], the anti-crossing phenomenon also
takes place for the higher order modes. A similar phenomenon is also observed for the TM, HE
and EH modes. The anti-crossing phenomenon originates from the resonant coupling between
the core and the cladding modes, leading to the exceptional waveguide dispersion and modal
field changes. As shown in Figs. 3 and 4 the modal field distribution and effective refractive
index dispersion change drastically from the points D or F to the point E. The mode [TE0,2+(35)]
at point E show similar strong dispersion with the cladding modes in the DCF and the modes in
the equivalent asymmetric waveguide. Therefore, the wavelength position and the dispersion
shape of the anti-crossing are related to the thickness and the refractive index of the high-index
cladding, in accordance with the ARROW model and Eq. (1) as discussed in the theory section.
Due to the manageable waveguide dispersion and modal field changes in a DCF, the generation
of supercontinuum [27] and top-hat beams [32] can be achieved.
The dispersion diagram of TM0,N modes is similar to that of TE0,N modes, as seen in Fig. 5.

The positions of the intersect points between the dispersion curves of the TM0,N and the horizontal
line at n1 can be approximated as the cutoff wavelengths of the TMN modes in the asymmetric
planar waveguide calculated by Eq. (1), indicated by the black vertical dashed lines in Figs. 5(a)
and 5(b). Figure 5(c) shows the modal intensity and electric field vector distributions of TM
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Fig. 4. The left panel (a)-(e) shows the normalized intensity distributions along the r-
coordinate for the modes shown at points C-G in Fig. 3. The right panel (a′)-(e′) shows the
zoomed-in part of (a)-(e), delineated by the vertical dashed lines.

modes at points A’-G’ indicated by the black squares in Figs. 5(a) and 5(b). The modes at points
A’ and B’ are TM0,1 and TM0,2, respectively. The points C’-G’ are on the dispersion curve of
TM0,37. The field intensity distributions of TM modes in Fig. 5(c) are similar with those of TE
modes shown in Fig. 3(c). However, the directions of the electric field vector of TM and TE
modes are different: the former is parallel to the radial direction while the latter is normal in the
radial direction.

Similarly to the nomenclature of the TE modes, the TM modes with neff < n1 can be named as
TM0,n+(N−n). Therefore, the anti-resonant core modes at points D’, F’ and G’ in Fig. 5(b) with
a moderate effective index dispersion can be named as TM0,1+(36), TM0,2+(35) and TM0,3+(34),
respectively. The mode at point E’ in Fig. 5(b) can be named as [TM0,2+(35)]. From the modal field
distributions, it is clear that the anti-resonant core modes TM0,1+(36), TM0,2+(35) and TM0,3+(34)
are similar to the core modes TM0,1, TM0,2 and TM0,3 in the conventional step-index fibers,
respectively.
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Fig. 5. Dispersion curves (neff vs. λ) of TM modes with neff corresponding to (a) n1 < neff
< n2, (b) n1-0.001< neff < n1+0.001, n1 = 1.445, n2 = 1.51. (c) shows the modal intensity
and electric field vector distributions of TM modes whose positions (neff , λ) are indicated by
the black squares in (a) and (b). The black vertical dashed lines in (a) and (b) indicate the
resonant bands.

3.2. HE/EH modes in DCFs

The HE or EH in the DCFs are two-fold degenerate modes with the same effective refractive
index but different field vector directions, similar to the HE/EH modes in conventional step-index
fibers. Here we only show the results for one of these two-fold degenerate modes.
Figure 6 illustrates the dispersion curves of the modes HE1,N and EH1,N (N= 34, 35,. . . , 38).

Similar with the TE and TM modes in Figs. 3(b) and 5(b), the neff of HE1,N and EH1,N decrease
linearly with the increase of λ when neff > n1 while bellow n1 the neff decrease in a step-like
fashion as λ increases. The curves show periodic strong and moderate index dispersion bands.
The positions of the intersect points between the dispersion curves of modes HE1,N (EH1,N) and
the horizontal line at n1 can be approximated as the cutoff wavelengths of the TEN (TMN) modes
in the asymmetric planar waveguide calculated by Eq. (1), indicated by the red (black) vertical
dashed lines in Fig. 6.

For HEm,N or EHm,N modes, each radial mode order ‘N’ supports a larger number of azimuthal
mode orders ‘m’. Figure 7(a) as an example shows a dispersion diagram of the HEm,N modes
with m= 1, 2, . . . and N= 34, 35, . . . , 38. The curves with the same radial mode order ‘N’
are shown in the same color. For the sake of clarity, the transparency of the curves has been
increased toward higher azimuthal mode orders in each group. All these curves form a very
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Fig. 6. Dispersion curves (neff vs. λ) of HE1,N (red) and EH1,N (black) modes with neff
corresponding to (n1-0.001< neff < n1+0.001, n1 = 1.445. The black and red vertical dashed
lines indicate the resonant bands.

dense dispersion diagram, where the curves with moderate slopes intersect with those having
steeper slopes.

Figure 7(b) shows the zoomed view of the part indicated by a red rectangle in Fig. 7(a), showing
the transition of modes HEm,37, m= 1, 2, . . . . The dispersion curve of the mode HEm,37 changing
from a steep slope to a moderate slope indicates the formation of an anti-resonant core-type mode
HEm,1+(36) (the nomenclature similar to TE/TM modes). For example, the modes HE1,37 at point
H1 and HE3,37 at point H3 are transferred into the modes HE1,1+(36) at point H2 and HE3,1+(36) at
point H4, respectively. Their modal field intensity and electric vector distributions are shown in
Fig. 7(c). As the azimuthal mode order ‘m’ increases, the transition of the cladding-type HEm,37
to anti-resonant core-type HEm,1+(36) will occur at a longer wavelength and a smaller effective
index at the point where the slope of the dispersion curve changes. Therefore, the transition
process for the modes with large azimuthal mode orders ‘m’ may not be visible in the given range
of the dispersion diagram. As an example, although the dispersion curve of the mode HE15,37 in
Fig. 7(b) intersects the horizontal line corresponding to the value n1, it does not change direction
abruptly, indicating no mode transition in the given range. Two modes at points H5 and H6
on this dispersion curve of the mode HE15,37 show similar modal field intensity and electric
vector distributions as seen in Fig. 7(c). These two modes are both cladding-type modes with
energy confined in the cladding region, however, their formation mechanisms are likely different.
Compared to the cladding mode at point H5 with neff > n1 guided by the total internal reflections
at both the inner and outer boundaries of the cladding region, the cladding mode at point H6 with
neff < n1 cannot be guided by the total internal reflections at the inner boundary of the cladding
region. The existence of the cladding modes in the dispersion space below the horizontal line
at n1 in Figs. 7(a) and 7(b) is likely attributed to the inhibited coupling effects as per following
discussion.
The modal field intensity and electric vector distributions of two anti-resonant core modes

HE1,1+(37) at points H7 and H8 are drawn in Fig. 7(c), showing that for both of the modes the field
energy is confined in the fiber core region. The intersection of the dispersion curve of HE1,1+(37)
with that of HE15,37 indicates that the disc-like core modes and the annular-like cladding modes
can exist in the same dispersion space (neff vs. λ). The same neff indicates that the modes have
the same longitudinal components of the light field. However, they cannot couple with each other
since their transverse components of the light field are different, corresponding to the inhibited
coupling effect [6].
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Fig. 7. Dispersion curves (neff vs. λ) of HE modes with neff corresponding to (a) n1-
0.001< neff < n1+0.001, n1 = 1.445. (b) partially enlarged image of (a), indicated by the
red frame. (c) shows the modal intensity and electric field vector distributions of HE modes
whose positions (neff , λ) are indicated by the circles in (b). The black and red vertical dashed
lines in (a) and (b) indicate the resonant bands.

3.3. Mode degeneracy in DCFs

The dispersion curves of several lower order TE, TM, HE and EH modes in the DCF are drawn
together in the same dispersion diagram, shown in Fig. 8(a). Other higher order modes in
the DCF are not shown in order to preserve clarity of the diagram. The dispersion diagram
shows periodic resonant and anti-resonant bands corresponding to the strong and moderate
index dispersion, and the resonant bands are indicated by the black and red vertical dashed lines.
Figure 8(b) displays one of such periodic bands, indicated by the black dashed rectangle. The
dispersion curves of the anti-resonant core modes in the DCF such as {HE1,1+(36)}, {TE0,1+(36),
HE2,1+(36) and TM0,1+(36)} and {EH1,1+(36) and HE3,1+(36)} can be respectively grouped together.
In calculation, the longitudinal components of the light field are very small compared to the
transverse components of the light field for the anti-resonant core modes. Therefore, the modes
in each group can be grouped into a single degenerate scalar mode or a linear polarized mode,
similar to that in the conventional step-index fibers. These degeneracies are broken in the resonant
bands, where dispersion curves of TE, TM, HE and EH modes are separated.
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Fig. 8. (a) Dispersion curves (neff vs. λ) of a depressed core fiber. (b) partially enlarged
image of (a), indicated by the black dashed frame. The text labels and the corresponding
dispersion curves are of the same color. The orange solid lines in (a) and (b) are for LPm,n
modes in a conventional step-index fiber (nco = 1.445, ncl = 1, rco = 62.5 um and rcl =∞).
The black and red vertical dashed lines indicate the resonant bands.

If the high-index cladding region is removed, the fiber becomes a conventional step-index
fiber, consisting of a bare core and the surrounding air acting as the fiber cladding, where
nco = 1.445, ncl = 1, rco = 62.5 um and rcl =∞. The dispersion curves of the core modes in such a
step-index fiber were calculated by graphical method. The vector modes in the obtained fiber
such as {HE1,1}, {TE0,1, HE2,1 and TM0,1} and {EH1,1 and HE3,1} can be respectively grouped
into linear polarization modes LP0,1, LP1,1 and LP2,1, due to their mode fields being far from
cutoff [37,38]. Figure 8 shows the dispersion curves of modes LPm,n in the step-index fiber in
orange color, which are overlapped with the moderate dispersion curves of the anti-resonant
core modes in the DCF. The results indicate that the anti-resonant core modes {HE1,1+(36)},
{TE0,1+(36), HE2,1+(36) and TM0,1+(36)} and {EH1,1+(36) and HE3,1+(36)} in the DCF show similar
qualitative and quantitative behaviour with the corresponding core modes {HE1,1}, {TE0,1, HE2,1
and TM0,1} and {EH1,1 and HE3,1} in the conventional step-index fiber. In addition, the effective
refractive index of the anti-resonant core modes in the DCF can be approximated as that of the
corresponding LPm,n modes in a conventional step-index fiber.
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4. Discussion

The dispersion diagram of the DCF shows some similar characteristics with the dispersion
diagram of a single-ring hollow-core anti-resonant fiber given in [22]. Firstly, they both show
periodic resonant and anti-resonant bands. Secondly, they both show the inhibited coupling
phenomenon between the core modes and the cladding modes. However, due to the complex
structure of the single-ring hollow-core anti-resonant fibers, only an approximate scalar method
was used in [22]. Using the full-vector analytical method in this paper, the transition between the
cladding modes and the anti-resonant core modes has been demonstrated. The degeneracy in the
anti-resonant bands and the loss of degeneracy around the resonant bands make the dispersion
curves of anti-resonant core modes merge together or separate, which may correspond to the
narrow and wide variations in bands of anti-resonant modes in [22].
Although the inhibited coupling fiber is different with the photonic bandgap fiber from

the modal dispersion perspective, both fibers can be viewed as analogous to the conventional
step-index fibers. Reference [20] shows that the density of core modes in the bandgap fibers is
similar to that of the conventional step-index multimode fibers. Our work verified that the density
of the anti-resonant core modes in the DCF (a inhibited coupling fiber) is equal to that of the core
modes in the equivalent conventional step-index fiber, since the anti-resonant core modes in the
former have a one-to-one correspondence to the core modes in the latter.

The core modes in both DCFs and tube-type hollow-core fibers are formed by the anti-resonant
effect, yet their properties are different. The neff of the core modes in DCFs is higher than the
refractive index of the surrounding air, therefore they are guided by total internal reflections at the
outer boundary of the cladding region and they are non-leaky modes with a real neff . Compared
to the DCFs, the core modes in a tube-type hollow-core fiber are usually treated as leaky modes
with a complex neff . The leaky modes can be solved by the eigenvalue equations in the complex
plane, but it is extremely cumbersome. In most of the previous works, only the fundamental mode
or a few low-order modes of the hollow-core fibers were obtained with different approximation
methods [17,23–25]. However, the available results for the tube-type hollow-core fibers show
some similar characteristics with those for the DCFs. Reference [17] reports step-like dispersion
curves for the modes HE1,n+(N−n) (n= 1, 2, 3, 4, where the radial number ‘N-n’ in the cladding is
not clear), which is similar to the behaviour of the HE1,n+(N−n) modes in the DCFs presented here.
Therefore, it can be concluded that all other modes for the tube-type hollow-core fibers are similar
to those in DCFs. Since the tube-type hollow-core fiber has a dispersion diagram similar to that
of the DCF, the tube-type hollow-core fibers should be considered as inhibited coupling fibers.
The anti-resonance derived anti-crossing phenomenon takes place both in the DCF and in

the hollow-core photonics crystal fibers (for either the photonic bandgap guiding or inhibited
coupling guiding). The anti-crossing phenomenon has been intensively studied in hollow-core
photonic crystal fibers for applications such as generation of the multi-octave supercontinuum
[10], ultrafast nonlinear dynamics optics [11] and the broadband robustly single-mode guidance
[12]. Therefore, given that DCFs can readily provide manageable waveguide dispersion and
exceptional modal field changes, they are worthy further study for a wide range of applications,
in addition to the few existing works such as the generation of the supercontinuum [27] and
top-hat beams [32]. Furthermore high refractive index coated step-index fibers have been used
for sensing of organic vapors, humidity, voltage, pH, and chemical/bio analytes [43] and have a
similar refractive index profile to that of DCF which suggests the possibility that DCF might also
be useful for sensing. Probably because the thickness of the coating in these structures is small,
the inverted refractive index profile and the anti-resonant effect were not observed. Our ongoing
works will explore the application of the anti-resonant and inhibited coupling characteristics of
the DCFs in optical fiber sensing.
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5. Conclusion

DCFs were studied analytically in comparison with the conventional step-index fibers and the
tube-type hollow-core fibers and were found to be a form of anti-resonant and inhibited coupling
fibers. In this work an asymmetric planar waveguide approach was proposed for the DCFs in
the ARROW model. It has been shown that the DCFs support annular-like cladding modes in
the tube cladding region and disc-like anti-resonant core modes in the rod core region and both
of them were obtained by solving the same group of full-vector eigenvalue equations using the
graphical method. The calculated dispersion diagram shows periodic resonant and anti-resonant
bands, where the dispersion curves of the anti-resonant core modes intersect with those of the
cladding modes. The formation of core-type modes in a low-index core region can be explained
by both the anti-resonant and inhibited coupling mechanisms. The anti-resonant core modes
exhibit similar qualitative and quantitative behaviors as those of the conventional step-index
fibers. The analogy to conventional step-index fibers may provide a convenient tool to model the
modes of the DCFs (the inhibited coupling fibers). To the best of our knowledge, it is the first
report on the complete vector modal dispersion diagram calculated analytically for an inversed
index fiber. Our results can be used to provide a better understanding of the anti-resonant and
inhibited coupling guidance mechanisms in complex inversed index fibers such as hollow-core
photonic-bandgap fibers, tube-type hollow-core fibers and single-ring hollow-core fibers.

Appendix

Eigenvalue equations for TE, TM, HE and EH modes in DCFs

From the analysis in Section 2, the modes with n3 < neff < n1 are like the cladding modes in
three-layer step-index fibers. Therefore, the eigenvalue equations used to calculate the effective
refractive index of the modes with n3 < neff < n1 in DCFs is the same as that for the cladding
modes in the three-layer stepped-index fibers, as follows [33]:
for the TE0,N modes with n3 < neff < n1:

Ĵ
(
Kpm +

rm

α2U2

)
=

1
U2

(
K̂qm +

sm

α2U2

)
, m = 0 (2)

for the TM0,N modes with n3 < neff < n1:

Ĵ
(
K̂pm + s23

rm

α2U2

)
=

s21
U2

(
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sm

α2U2

)
, m = 0 (3)

for the HEm,N and the EHm,N modes with n3 < neff < n1:
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(
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[
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Ĵ
(
K̂pm + s23 rm

α2U2

)
−

s21
U2

(
K̂qm + s23 sm

α2U2

)]
= x21

(
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The fiber parameters of the DCF shown in Fig. 1 are r1, r2, n1, n2 and n3. The wavenumber in
vacuum is: k0 = 2π/λ, where λ is the wavelength. The longitudinal propagation constant is:
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β = k0neff. In the Eqs. (2), (3) and (4), the parameters used are as follows:
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r1
, (5)
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√
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2
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2 , (6)
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√
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2
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2
3 , (8)
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The parameters u1, u2, ω3, U1, U2, W3 in Eqs. (6)-(9) are phase parameters. The functions
Jm, Ym and Km in Eqs. (10)-(15) denote the Bessel function of the first kind, the Bessel function
of the second kind and the modified Bessel function of the second kind. J ′m, Y ′m, and K ′mdenote
the derivatives of the corresponding Bessel functions.

To calculate the TE, TM, HE and EH modes with n1 < neff < n2, the phase parameter u1 in the
Eq. (6) needs to be modified as:

u1 =
√
β2 − k20n

2
1 (20)

and Ĵ in the Eq. (10) need to be modified as:

Ĵ = −
I ′m(U1)

U1Im(U1)
, (21)

where Im and I ′m denote the modified Bessel function of the first kind and its derivative.
The modal intensity and electric field vector distributions can be calculated with the field

functions shown in Refs. [33–35].
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