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ABSTRACT

Recent advancements in deep learning have significantly improved the accuracy of multi-person pose
estimation from RGB images. However, these deep learning methods typically rely on a large num-
ber of deep refinement modules to refine the features of body joints and limbs, which hugely reduce
the run-time speed and therefore limit the application domain. In this paper, we propose a feature
transfer framework to capture the concurrent correlations between body joint and limb features. The
concurrent correlations of these features form a complementary structural relationship, which mutu-
ally strengthens the network’s inferences and reduces the needs of refinement modules. The transfer
sub-network is implemented with multiple convolutional layers, and is merged with the body part
detection network to form an end-to-end system. The transfer relationship is automatically learned
from ground-truth data instead of being manually encoded, resulting in a more general and efficient
design. The proposed framework is validated on the multiple popular multi-person pose estimation
benchmarks - MPII, COCO 2018 and PoseTrack 2017 and 2018. Experimental results show that our
method not only significantly increases the inference speed to 73.8 frame per second (FPS), but also
attains comparable state-of-the-art performance.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Human pose estimation is a computer vision problem that
aims at recovering the posture of a person via localising joints
and rigid parts from images. The obtained pose information
can be used to inform other computer vision problems such as
abnormal behaviour detection, human behaviour analysis and
action recognition. It can also be used in a variety of applica-
tions such as smart environments, human-computer interaction,
augmented reality and virtual reality.

Over the past few years, with the development of deep learn-
ing, human pose estimation from RGB images has made sig-
nificant progress. For scenes containing multiple people, the
estimation accuracy has increased by 35% (Andriluka et al.,
2018b). Typical deep learning-based methods for pose estima-
tion consists of two modules - joint detection and refinement
(Wei et al., 2016). The joint detection module generates joint
candidates for each joint type. Since different body joints may
have similar appearances, such as the left and the right knees,
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using the joint detection module alone is not enough to distin-
guish all the joints. The refinement module is therefore imple-
mented, which takes the output from the joint detection module
and introduces a higher-level context to improve the decision
process. Such a module usually consists of multiple stacked
convolutional layers to increase the receptive field, thereby ob-
taining more contextual information. In Cao et al. (2017), 6
stages of refinement modules are implemented, with each stage
consisting of 7 convolutional layers. In Newell et al. (2017), 4
stages of stacked hourglass-like refinement modules are used,
with each hourglass consisting of 45 convolutional layers. As
indicated in their experiments, the improvement does not in-
crease linearly with the number of refinement modules. In
general, the sub-sequence modules contribute smaller accuracy
improvements. Additionally, if further integrating with other
extension modules, such as 3D pose estimation (Tome et al.,
2017), video-based pose estimation and tracking (Andriluka
et al., 2018a), such a large number of refinement modules, to-
gether with the backbone network, will constrain the applica-
tion areas due to speed and memory limitations, causing diffi-
culties in training an end-to-end system. This motivates us to
improve the potential of the backbone network and to propose
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a more efficient form of convolutional feature utilisation.

Our studies indicate that with powerful backbone networks,
such as VGG-19 (Simonyan and Zisserman, 2015) and ResNet-
50 (He et al., 2016), joint detection can already obtain accept-
able localisation performance. The major source of error is the
confusion between the left and right joints of the same type, as
illustrated in Fig. 1(a). In order to address this, additional in-
formation that can strengthen the identification of human body
parts is required. As analysed by Chu et al. (2016), different
joints and limbs are highly correlated at lower feature-levels.
In theory, the feature maps of neighbouring joints and limbs
should be concurrently activated. For example, the left thigh,
left hip and left knee typically have coincident activation re-
sponses, and any two of these three parts can sustain the dis-
crimination of the third one. While this kind of clues should
be capable of constructing a complementary relationship for
inference, previous methods of multi-person pose estimation
consider the joints independently, failing to harness the power
of the concurrent feature information for pose estimation rein-
forcement.

In this paper, we propose a feature transfer structure to ex-
ploit the complementary feature information between joints and
limbs, which effectively strengthens the recognition of human
body parts. The proposed feature transfer structure has two
major functions. First, it translates the activated region of one
joint to that of the next adjacent joint in their respective feature
maps. Such translated features can then be formed as comple-
mentary features. Second, it converts the features between the
joint type and the limb type in both directions, facilitating fea-
ture fusion. Since the feature translation can be regarded as a
matrix translation operation, and the converted features are rep-
resented as convolutional features, the feature transfer structure
can be implemented with convolutional layers and its param-
eters can be learned effectively by backpropagation (Goodfel-
low et al., 2016a). This allows us to merge the feature trans-
fer structure into the pose estimation network using convolu-
tional layers, forming an end-to-end system. On top of this, our
network automatically learns transfer relationships from super-
visory data, and does not require manually defined neighbour
joint information as in Yang et al. (2016) and Chu et al. (2016).
This enables a more general design with fewer network layers.

We perform experiments on three popular multi-person pose
estimation datasets, MPII (Andriluka et al., 2014), COCO 2017
(Lin et al., 2014) and PoseTrack 2017 and 2018 (Andriluka
et al., 2018a). With only 4 stacked convolutional modules for
feature transfer and 1 refinement module for combining context
information, our method achieves comparable performance to
existing approaches with two times more weighting parameters.
This indicates the effectiveness of feature transfer in improving
the accuracy of pose estimation. With the benefit of the de-
creased number of parameters, the forward inference speed of
the whole network achieves 42.2 FPS, and further attains 73.8
FPS by optimising the implementation, when using an input
size of 368×432 on a single NVIDIA Tesla P40 GPU. This en-
ables real-time applications with consumer-level hardware. We
open our source code for further research and development in
the field.

The contributions of this work are summarised as follows:

• We propose a new design of a multi-person pose esti-
mation network by introducing feature transfer, which
utilises the complementary features of joints and limbs to
strengthen the identification of human body parts. This
reduces the needs of deep refinement modules.

• We propose and validate an implementation strategy of the
feature transfer sub-network. First, the sub-network is im-
plemented with convolution layers and therefore is merge-
able with the backbone pose estimation network to form
an end-to-end system. Second, it learns the transfer rela-
tionship automatically from ground-truth information, re-
sulting in a more general and efficient implementation.

• Using our open-source implementation, we perform exten-
sive experiments on three popular datasets - MPII, COCO
2018 and PoseTrack 2017 and 2018, which demonstrate
that our system significantly improves the run-time speed
while attaining comparable state-of-the-art performance,
enabling real-time applications with consumer-level hard-
ware.

The source code of our system can be downloaded at: http:
//hubertshum.com/CVIUSourceCode.zip

The rest of the paper is organised as follows. Section 2 in-
troduces the related work. Section 3 describes our proposed
approach. The experiment dataset, experiment results and anal-
ysis are presented in Section 4. The work is concluded in Sec-
tion 5.

2. Related Work

The problem of human pose estimation has a long history in
computer vision. Before the discovery of deep convolutional
features, pose estimation research mainly focused on build-
ing local or global human body descriptive models (Andriluka
et al., 2009; Yang and Ramanan, 2011; Gkioxari et al., 2013;
Pishchulin et al., 2013; Sapp and Taskar, 2013) and predicting
body parts based on predefined hand-crafted features. Recent
advancement in deep learning significantly improves the per-
formance. Since a comprehensive review of pose estimation
approaches is beyond the scope of this paper, here, we focus on
some recent work based on deep neural networks.

2.1. Single Person Pose Estimation

Earlier human pose estimation research mainly focuses on
the case of a single person. It considers a cropped region that
contains the person in order to predict the corresponding joint
locations. In this case, prediction does not involve joint group-
ing.

Convolutional neural networks (CNNs) play an important
role in pose estimation. Toshev and Szegedy (2014) use CNNs
and a cascaded structure to predict and refine the joint loca-
tions. Tompson et al. (2014) combine CNNs with a Markov
random field to explore the spatial constraints of body parts.
Wei et al. (2016) propose stacking multi-stage refinement mod-
ules of fully convolutional networks to expand the receptive
field, thereby obtaining the context information that supports
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Fig. 1: Two examples of activation maps before and after feature transfer. (a)
The backbone network can localise (upper) the shoulder joints and (lower) the
ankle joints, but cannot distinguish the left/right joint type. (b) After adding
the feature transfer sub-network, the discrimination power of the networks is
strengthened and the joint detector can recognise (upper) the right shoulder and
(lower) the left ankle.

the inference of joints. Different from Wei et al. (2016), Newell
et al. (2016) design stacked hourglass-like networks to recover
the spatial resolution of the output heatmaps while maintaining
the high-level semantic features. Based on Newell et al. (2016),
Chu et al. (2017) introduce the conditional random field and
visual attention models to capture different granularity infor-
mation. Yang et al. (2017) introduce feature pyramids to ob-
tain multi-scale joint feature information. Kawana et al. (2018)
propose clustering different poses before training the networks.
Hong et al. (2015) and Hong et al. (2016) propose 3D pose
recovery methods based on hypergraph learning. Hong et al.
(2014) adopt silhouette-based locality-sensitive sparse coding
to recover 3D human pose.

Structured models are further introduced to capture the hu-
man hierarchy structure. Chang and Lee (2018) propose a con-
ditional random field model to measure the plausibility of hu-
man poses. Yang et al. (2016) construct message passing lay-
ers for describing the pair-wise relationship among body parts.
In comparison, Chu et al. (2016) build a tree-structured model
to translate the feature information using convolutional layers
from one joint to another neighbouring joint.

Our method also develops a structured model for human
pose. However, instead of manually defining the paths of mes-
sage passing for different joints as in Yang et al. (2016) and

Chu et al. (2016), our method learns the joint-limb relationships
autonomously from ground-truth information in an end-to-end
configuration. This results in a more general and efficient im-
plementation.

2.2. Multi-person Pose Estimation
Estimating the poses of multiple people in a scene is more

practical in real-world applications. Apart from challenges such
as the complexity of appearance, the variety of gestures, occlu-
sions and multiple scales, the inclusion of multiple people in
the same image introduces another challenge — the system has
to distinguish not only the type of the body part but also the
person that the part belongs to. There are two main categories
of solutions: top-down methods and bottom-up methods.

2.2.1. Top-down Methods
Top-down methods can be seen as a two-stage pipeline from

global (i.e. the bounding box) to local (i.e. joints). The first
stage is to perform human detection and to obtain their respec-
tive bounding boxes in the image. The second stage is to per-
form single person pose estimation for each of the obtained hu-
man regions. Fang et al. (2017) propose a symmetric spatial
transformer network and a parametric pose non-maximum sup-
pression to handle the inaccurate and redundant human detec-
tion bounding boxes. He et al. (2017) deploy an interpolation
approach in the region pooling process to generate more accu-
rate feature maps, which compensates for the effect of region
pooling caused by missing feature information. Papandreou
et al. (2017) directly increase the output scale of the region
pooling by up-sampling the output to a much larger size than
that of He et al. (2017) (257 × 353 vs. 56 × 56). Experiments
show that this simple strategy is very effective in improving the
accuracy. Similarly, Xiao et al. (2018) deploy a few deconvo-
lutional layers on a backbone network to increase the resolu-
tion of feature maps and results in obtaining higher accuracy.
Sun et al. (2019) propose a high-resolution network to obtain
stronger representations and achieve top results on a wide range
of vision tasks. These results indicate that the localisation ac-
curacy of pose estimation greatly relies upon high-resolution
feature information due to the generally small size of the body
parts. Based on He et al. (2017), Alp Güler et al. (2018) design
a structure that merges the feature information from other tasks
such as 3D pose detection, for better 2D pose estimation during
the training and forward inference.

For top-down methods, high-precision feature maps of hu-
man regions are important to maintain the accuracy of joint lo-
calisation. We also notice that the run time of these methods is
affected by both the speed of human detection and that of single
person pose estimation. The latter is proportional to the num-
ber of people in the view, and is problematic for applications
requiring a consistent frame rate.

2.2.2. Bottom-up Methods
In order to handle the problem of processing speed, bottom-

up methods have received increasing attention from researchers
in recent years. They approach this problem from the oppo-
site direction, in which they detect all of the body parts be-
fore grouping and associating the parts with the relevant person.
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Pishchulin et al. (2016) modify a general object detector to de-
tect body parts and partition body part candidates into person
clusters by solving an integer linear program problem. Based
on Pishchulin et al. (2016), Insafutdinov et al. (2016) introduce
an incremental optimisation strategy to improve the grouping
speed. Belagiannis and Zisserman (2017) validate that CNNs
can generate heatmaps for both body joints and limbs using
continuous regression. Levinkov et al. (2017) consider the ar-
ticulated human body pose estimation as a combinatorial opti-
misation problem and propose two local search algorithms that
offer a feasible solution at given time constraint. Varadarajan
et al. (2018) exploit the inherent structure of the human body
to decrease the complexity of the body part grouping model.
Newell et al. (2017) propose learning both body part detec-
tion and grouping in the CNNs simultaneously. They also indi-
cate that the accuracy bottleneck of pose estimation is not joint
grouping but joint prediction. They find that by replacing the
joint predictions with the groundtruth, the final pose estimation
results can be improved from 60% to 94%, which is close to
saturation. Cao et al. (2017) propose a limb descriptor known
as the part affinity fields (PAFs), which provides additional limb
information including the type, direction and length for better
group assignments. They further deploy multiple very deep re-
finement modules to obtain accurate joint and limb information.

Our paper follows the bottom-up approaches as they have
the advantage of a consistent frame speed by detecting all body
parts of all people in a single shot. Motivated by Cao et al.
(2017), we also employ a similar limb descriptor as it has high-
efficiency in body part grouping. However, we introduce the
mutually supportive relationship between joints and limbs for
pose estimation. Experiments show that this structure effec-
tively improves the accuracy of body part detection as shown in
Sec. 4.6.2.

2.2.3. Multi-task Learning
Multi-task learning is an approach to solve multiple learning

tasks at the same time, while exploiting their shared represen-
tations and differences (Caruana, 1997). Knowledge (feature)
transfer is a related concept to multi-task learning. However,
shared representations are developed concurrently in multi-
task learning while feature transfer is to learn a sequentially
shared representation. There are three equivalent ways to learn
a shared representation, which are via a regulariser (Ciliberto
et al., 2015), an output metric (Dai et al., 2016) and an output
mapping (Kim and Xing, 2010), respectively. In the framework
of CNNs, we use an output metric and learning the structure of
feature transfer by the network outputs and loss to facilitate the
learning process. In our experiments, we validate that joint and
limb’s feature can be transferred into the type of each other.

3. The Proposed Deep Feature Transfer Network

The proposed method consists of four components, which are
visualised in Fig. 2. The first one is the body joint and limb de-
tector, which employs fully convolutional layers to regress the
location of each body part in the image (Sec. 3.1). The second
component is the feature transfer networks, where the feature

Conv-1

Conv-3

Conv-2

Conv-4

Conv-5

Joint 
branch

Limb 
branch

Joint output Limb output

Backbone
Network (VGG-19)

Image

1Loss
2

Conv - r1

Conv - r3

Conv - r2

Conv - r4

Conv - r5

Conv - r6

Conv - r7

Refinement

Global 
context

Joint Grouping

Transfer

Part detection

Fig. 2: The architecture of our proposed method includes 4 components, which
are a part detection network, a feature transfer sub-network, a refinement mod-
ule and joint grouping. The backbone network takes an image as input and
outputs the abstract features. Then the feature information enters the two de-
tection branches, which are coloured in orange and green, respectively. The
transfer sub-network (blue blocks) extracts features from Conv-4 and outputs
the transferred features to merge with the features of the detection branch. The
merged features produce the score maps for both joint and limb branches. At
last, the refinement module is used to capture context information to refine the
results. (Best viewed in colour)

information of body joints and limbs are transferred into the
representations of each another to strengthen their feature dis-
crimination power (Sec. 3.2). The third component is a single
refinement module (Sec. 3.3). Since both body part detector
and feature transfer networks only handle the locally interested
body parts, such a module helps to capture global context infor-
mation and improve prediction accuracy. The refined feature in-
formation is used to produce the body joint and limb heatmaps,
which are input into the final component - the body part group-
ing model (Sec. 3.4). It matches each pair-wise body joint
according to the limb information and the matched pair-wise
joints are assembled into a full-body group for each person in
the image.
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Fig. 3: Comparisons of different feature transfer models. (a) Tree model (Chu et al., 2016), which has a predefined tree structure. (b) Loopy model (Yang et al.,
2016), which includes predefined loop feature flows. (c) Our one-shot transfer model, which requires no predefinition.

3.1. Body Joint and Limb Detection
Since deep CNNs possess the capacity to effectively deal

with a wide variety of objects and have been validated in many
vision-related tasks, such as object detection (Liu et al., 2016)
and segmentation (Long et al., 2015), we deploy deep CNN in
our method for pose estimation. To avoid interference, we set a
two-branch head network for multi-task learning. Referring to
Fig. 2, we use the first ten layers of VGG-19 (Simonyan and
Zisserman, 2015) as the backbone network to extract general
low-level convolutional features. Then, the feature streams en-
ter two branches, namely the joint branch and the limb branch,
for the respective high-level detection task. Each branch con-
sists of 5 convolutional layers. Each of the first four convo-
lutional layers is followed by a ReLU layer (Nair and Hin-
ton, 2010). The only exception is the fifth convolutional layer,
Conv-5, as it is the output layer of the body part score maps and
does not require nonlinear rectification.

There are two possible methods for body parts detection. The
first one considers the localisation of body parts as a problem
of discrete classification, which adopts a univariate loss func-
tion `(h, (x, y)) = Π[h(x),y] to learn a hypothesis h : x → y that
assigns a body part label y for each pixel in the input image x
(e.g., softmax (Goodfellow et al., 2016b)). The second method
is to fit a continuous regression function `(h, (x, y)) = (h(x)−y)2

to generate predictions. In CNNs, this corresponds to training
the network that produces the confidence values of different ob-
ject types at each pixel position. Since the classification method
cannot provide a smooth transition for the pixels near the anno-
tated joints, we adapt the regression method in predicting the
confidence maps of body parts.

We use J and L to represent the joint and limb confidence
maps, where J = (J1, ..., Ji, ..., Jm), L = (L1, ...,L j, ...,Ln), i ∈
[1,m], j ∈ [1, n], m and n are the numbers of the predefined
joint and limb types respectively, Ji ∈ Rw×h, L j ∈ Rw×h×2, w
and h are the width and height of the confidence maps. For
the joint ground-truth confidence maps, to smooth the training
loss, a Gaussian distribution is generated around the location
of each annotated visible joint p∗i,c ∈ R2, c ∈ [1, k], and k is
the number of visible joints of type i. The ground-truth value
J∗i (p) at position p ∈ R2 on the ground-truth confidence maps is
defined as:

J∗i (p) = max
c∈[1,k]

exp

−‖p − p∗i,c‖
2
2

σ2

 (1)

where σ is the variance. For the limb ground-truth score maps,
there are several similar representation methods that can be
used to describe the limb such as the limb spot (Belagiannis and
Zisserman, 2017) and the part affinity fields (PAF) (Cao et al.,
2017). To facilitate the comparison with PAF, we select PAF
as the limb descriptor in our system. This method represents
a limb with an ellipse between two neighbouring joints. The
pixels within the ellipse are considered to be the limb region.
Each of the pixels has a unit vector that points to the next joint.
For the pixels outside the limb region, the vector is zero-valued.
The limb ground-truth confidence maps are defined as:

L∗j(p) =


(p∗i1,h − p∗i2,h)

‖p∗i1,h − p∗i2,h‖2
, if pixel p on the limb of person h

0 otherwise
(2)

The loss functions of the branches are defined as:

eJ =

m∑
i=1

∑
p

W(p)‖Ji(p) − J∗i (p)‖22 (3)

eL =

n∑
j=1

∑
p

W(p)‖L j(p) − L∗j(p)‖22 (4)

where W(p) is the binarized mask to ignore unannotated people
in the loss computation.

3.2. Feature Transfer
As mentioned in the introduction, the features of body joints

and limbs should be concurrently activated. This complemen-
tary information can be used to mutually support the infer-
ence of both joints and limbs. Thus, we design a transfer sub-
network to cross-transfer the features from one branch to an-
other, which is visualised as the blue blocks in Fig. 2.

Let Ab be the feature maps of the branch b, the transferred
feature maps, AT

b , is calculated as:

AT
b = F(Ab ⊗ f T) (5)

where f T is the filter bank for feature transfer, ⊗ is a convolution
operation, and F is the rectified linear unit.

We observed that the largest distance between adjacent joints
on the input training images of networks is within 100 pix-
els. Therefore, we implement the transfer sub-network with
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Conv-4

(a2)
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Fig. 4: Examples of feature maps extracted from Conv-1 and Conv-4 of the joint and limb branches respectively. (a1), (b1), and (c1) show example feature maps
of Conv-1 and Conv-4 of joint branch. (a2), (b2), and (c2) show example feature maps of Conv-1 and Conv-4 of limb branch. For both branches, the features of
Conv-1 are more abstract, while that of Conv-4 are more distinctive, as highlighted.

4 transfer blocks to provide the corresponding receptive field,
where each block contains 3 convolutional layers with a kernel
size of 3 × 3 and the output features of them are aggregated to
strengthen feature propagation.

We design a more effective feature transfer scheme compared
to existing works. As illustrated in Fig 3, Chu et al. (2016)
utilise a predefined tree structure with over 100 convolutional
layers, and Yang et al. (2016) utilise a predefined loopy model,
to transfer the feature maps between neighbour joints for a sin-
gle person. Both models explicitly encode the one-to-one rela-
tionship between joints. Adapting such single person models to
deal with multiple people implies that a much larger network
structure is required. As a solution, we transfer the feature
maps of all joints and that of all limbs in a single shot using
four convolution modules, in which the feature maps of dif-
ferent joints and that of different limbs are represented as two
respective stacked blocks. This design allows the network to
autonomously learn the complementary features while signifi-
cantly reducing the number of layers required, thereby saving
the computation cost.

Here, we explain how we select the suitable convolutional
layer for feature transfer. We analyse the feature maps ex-
tracted from Conv-1 and Conv-4 of the joint branch and the
limb branch respectively. Some examples are shown in Fig. 4.

We observe that the features in Conv-1 of both branches are
abstract and less distinctive. This shows that the feature maps
cannot effectively represent the joints and the limbs. In contrast,
Conv-4 of the joint and the limb branches shows more distinc-
tive and concrete joint and limb features respectively. We can
observe that the concreteness of the feature maps increases with
the convolution depth, and that Conv-4 of each branch produces
results that are distinctive enough for feature transfer. There-
fore, we connect Conv-4 to the transfer sub-network for feature
transfer. Notice that Conv-5 is the output layer which has only
the confidence and location information, and is not suitable for
feature transfer. In Sec. 4, we give quantitative comparisons to
validate the selection of the transfer layer.

Through the transfer sub-network, the features are trans-
ferred into the feature type of the other branch, and are merged
with the features of the other branch. Because the transfer sub-
network is composed of convolutional layers, it can be com-
bined into the backbone network to form an end-to-end system.
Qualitative and quantitative results are provided in Sec. 4 to
show that the transfer sub-network can convert and translate the
features between the branches. We also show that combining
the transferred features with the detection features effectively
improves the performance of pose estimation as shown in Sec.
4.6.2.
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3.3. Refinement with Context Information

Since the previous body-part detector and feature transfer
networks only handle the locally interested body parts, it is nec-
essary to include global context information to further improve
the prediction performance. As analysed in Sec. 3.2, the fea-
tures before/on Conv-1 are more abstract and global. There-
fore we extract global context from the bifurcation layer of the
backbone network. This approach is also similar to the methods
employed by Wei et al. (2016) and Newell et al. (2016).

The architecture of the refinement module is shown in Fig.
2. It concatenates the heatmaps of joint and limb detection
with the feature maps of the backbone network and takes them
as the input. The input then enters two refinement branches
to refine joint and limb detections separately. Both branches
use the same network configuration, consisting of 7 modules
which have the same layer structure as used in the transfer sub-
network. Each convolutional layer in the module has 128 chan-
nels with each followed by a ReLU layer except for the last
output layer. The 7 stacked modules increase the receptive field
of the network and enable the network to capture context infor-
mation around the predictions to refine them.

3.4. Group Assignments

Here, we assemble a full body group of joints and limbs for
each person. The outputs of body joint and limb branches are
the confidence maps of the respective type. We perform a non-
maximal suppression of 4-neighbourhoods over each score map
and choose the pixels with the largest score in every search as
the corresponding candidate body part.

Given two pair-wise candidate joints, J+
i1 and J+

i2 , from a pre-
defined kinematic chain, their matching score is computed by
the cosine similarity between their line segment and the limb
unit vector. More specifically, the matching score is approxi-
mated by:

s =

D∑
d=1

L+
j (p(d))

(J+
i1 − J+

i2 )

‖J+
i1 − J+

i2‖2
(6)

where D is the total number of equidistant line segments be-
tween two joints, and is set as 10 following existing works.

After computing the matching scores of all the candidate
joint pairs, we search for the definite connections of the hu-
man skeletons according to the matching score. We follow the
search approach of Cao et al. (2017) due to its high efficiency.
For a predefined skeleton connection, the search starts from the
connection with the highest score. The obtained connection is
considered a definite connection. Then, it finds the next connec-
tion with the second highest score. If such a connection has no
duplicate joints with the previous definite connection, it will be
preserved. Otherwise, it will be removed. The system repeats
the search until no candidate connections can be found. This
process allows us to obtain the definite connections of all the
predefined skeleton connections. Finally, we assemble the defi-
nite connections that share the same joint to form the complete
human skeletons of multiple people.

4. Experimental Results

4.1. Datasets

We perform qualitative and quantitative experiments on the
three most popular multi-person pose estimation datasets: MPII
Human Pose (Andriluka et al., 2014), MS-COCO 2018 Key-
points Challenge dataset (Lin et al., 2014) and PoseTrack 2017
and 2018 dataset (Andriluka et al., 2018a).

The MPII Human pose contains 24,589 images, in which
17,408 images are split as the training set with 28,883 anno-
tated people. During the testing stage, the evaluation focuses
on different regions in an image, and one image may include
one or more regions that consist of a non-identical number of
people. Pishchulin et al. (2016) defines a set of 1,758 regions
with rough position and scale information as the test set and
provides an evaluation tool to calculate mean Average Preci-
sion (mAP) of the whole body joint prediction. The accuracy
results are evaluated and returned by the staff members of the
MPII dataset.

MS-COCO 2018 keypoint detection dataset (Lin et al., 2014)
consists of training, validation and testing sets. On the COCO
2018 training and validation sets, there are 118,287 and 5000
images respectively, totally containing over 150,000 people
with around 1.7 million labelled keypoints. For open testing,
the testing set has two splits: test-dev and test-challenge. Each
split contains roughly 20,000 images. We train our models on
the training set and perform ablation experiments on the vali-
dation set. The model is evaluated on the test-dev set and the
accuracy results are obtained from the online evaluation server
for public comparisons.

PoseTrack 2018 dataset (Andriluka et al., 2018a) is split into
593, 74 and 375 videos for training, validation and testing, re-
spectively. The videos in the training set consist of 18,064 im-
age frames. After filtering out some bad cases according to
our defined rules, the number of effective annotated human in-
stances in the training set is 85,967. PoseTrack 2017 dataset
is split into 300, 50 and 214 videos for training, validation and
testing, respectively. The annotation has defined 15 body key-
points. The dataset contains three challenges, single-frame,
multi-frame pose estimation and pose tracking. Here we fo-
cus on the first challenge, i.e. single-frame multi-person pose
estimation.

4.2. Evaluation Protocols

Both MPII and PoseTrack multi-person pose estimation
datasets use the mean average precision (mAP) as the evalu-
ation metric, similar to Yang and Ramanan (2011). First, multi-
ple people’s pose predictions are generated and are assigned to
the groundtruth according to the highest PCKh matching score
(Andriluka et al., 2014). Each groundtruth can possess only one
prediction. Unassigned predictions are counted as false posi-
tives. Furthermore, the average precision (AP) for each body
part type is computed over all person instances and the mAP is
reported over all body part types.

On the COCO keypoint dataset, 5 metrics are used to de-
scribe the performance of a model. They are AP (i.e. average
precision), AP0.5, AP0.75, APM, APL, as illustrated in Table 1.
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Table 1: Evaluation metrics on the COCO dataset

Metric Description
AP AP at OKS∗=0.50:0.05:0.95 (primary metric)
AP0.5 AP at OKS=0.50
AP0.75 AP at OKS=0.75
APM AP for medium objects: 322 < area < 962

APL AP for large objects: area > 962

∗OKS–Object Keypoint Similarity, same role as IoU

In order to assign predictions to groundtruth, an object keypoint
similarity (OKS) is defined to compute the overlapping ratio
between groundtruth and predictions in terms of point distribu-
tion (Lin et al., 2014). Here the OKS plays the same role as the
intersection over union (IoU) in the case of object detection.
Thresholding the OKS adjusts the matching criterion. All met-
rics computed allow a maximum of 20 top-scoring predictions
per image. Notice that in general applications, AP0.5 gives good
accuracy already. AP (averaged across all 10 OKS thresholds)
is a stricter metric in which 6 of the OKS matching thresholds
exceed 0.70.

4.3. Implementation Details

We train the network with an input size of 368×368 and an
output scale of 46x46. The ratio of the network input to output
size is 8.0. We utilise the SGD method to optimise the network
weights. Optimisation super-parameters are selected as: 4e-5
initial learning rate, 0.9 momentum, 0.0005 weight decay, and
a batch size of 28. During training, we use a person-centric
sampling strategy. The augmentation of each sample in a batch
is focused on one person-instance. For example, an image is
first scaled so that the height of the selected person in the im-
age is around 220 pixels (a ratio of 0.6), then the image is ran-
domly augmented by rotating, scaling and flipping using the
centre of the selected person as the centre of transformation.
Lastly, a patch of 368×368 is centred on the selected instance
and cropped from the image. The regions out of the image are
padded with a value of 128. In order to learn a detection con-
fidence within the range of [0, 1] and smooth the training gra-
dients, the pixel values of the cropped patch are normalised by
256 and are subtracted by 0.5. The implementation is built on
the open-sourced Caffe framework (Jia et al., 2014). During
testing, for the single scale evaluation, an input image is scaled
to the height of 368 with the length-to-width ratio is maintained.
For the multi-scale evaluation, an input image is scaled to four
sizes with a gap of 0.25 and the heatmaps of joints and limbs
are averaged across sizes.

4.4. Comparison with State-of-the-art Methods on Accuracy

For the MPII test subset, our approach outperforms other
methods in computational time and achieves comparable per-
formance in accuracy (within 1.2%) with PAF(Cao et al., 2017),
as illustrated in Table 2. In this case, we use the network’s depth
of 26 compared to PAF’s network depth of 50, resulted in a sig-
nificantly increased frame speed. Specifically, the precision of
head detection achieves a very high value of 92.7%, this being

the case due to appearance variation and occlusion not affect-
ing the human head as prominently. For the remaining body
parts, the accuracy of the upper-body is higher than that of the
lower body due to an increased chance of occlusion in the lower
body areas of the dataset. In addition, the upper body and lower
body show a great class-imbalance in the dataset. We find that
the number of visible human ankle joints is lower than that of
the upper body joints (e.g. shoulder, wrist and elbow) by about
25%. Therefore the lower precision values for ankle joints is
not unexpected. Note that the accuracy of ankle identification
found in our method is higher than PAF.

For the COCO test-dev set, we achieved the same perfor-
mance with PAF (Cao et al., 2017) while attaining a 2 times
faster speed of 42.2 FPS, as illustrated in Table 3. From our
observation, the large human instances have higher precision
and recall than medium-sized human instances. For the AP0.5

metric our method achieves a very high value of 0.821. In Ta-
ble 6, we show that our model outperforms PAF by 1.4% in the
single-scale evaluation and has the same performance to PAF in
the multi-scale evaluation.

For the PoseTrack dataset, the comparison results are pre-
sented in Table 4. Our method outperforms Detect&Track
(Girdhar et al., 2018) and AlphaPose (Xiu et al., 2018) on the
PoseTrack 2017 validation and testing sets. On the 2017 vali-
dation set, for the parts of shoulder and hip, the accuracy of our
method is higher than or comparable to Xiao et al. (2018). On
the 2017 testing set, our method is ranked 2nd for most of the
body parts. On the 2018 validation, our method outperforms
Xiao et al. (2018) in the detection accuracy of several body
parts, such as shoulder, elbow and hip, by 5%, 2.1% and 1%,
respectively. In addition, the speed of our method is much faster
than the other algorithms we compared in this experiment.

4.5. Comparison with State-of-the-art Methods on Computa-
tional Complexity

Our networks consist of a backbone, a feature transfer mod-
ule and a refinement module. The parameter number of the
whole network is 21,278,912. In contrast, the total amount of
parameters in the PAF(Cao et al., 2017) is 52,298,816, which
is two times more than our network. The parameter number of
each module of our network is shown in Fig. 5. For the run time
of our approach, we record the inference time on a desktop with
one NVIDIA Tesla P40 GPU over 1000 images, which include
different numbers of people from 1 to 20. The whole network
with 368×432 sized inputs only costs 22.71 ms on average (i.e.
44.0 FPS). Group assignment takes 0.2 ms for 2 people and 0.6
ms for 10 people. This shows that our network has higher in-
ference efficiency due to the contribution of feature transfer.

We also use the same environment for speed comparisons
with the state-of-the-art, except Papandreou et al. (2017) who
have not released the source code, as illustrated in Table 2 and
Table 3. In Table 5, we compare our method with two typical
top-down and bottom-up methods in terms of computational
complexity. We observe that our method is 9.6 times faster
than the top-down one, and 2.1 times faster than the bottom-up
method. In addition, our model has smaller model size, number
of parameters and FLOPs than other models, which accelerates
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Table 2: Comparisons of different methods on the MPII test subset of 288 images. Bold: the best performance. Bold-Italic: comparable or better performance than
PAF.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP FPS
Iqbal and Gall (2016) 70.0 65.2 56.4 46.1 52.7 47.9 44.5 54.7 0.1
DeeperCut(Insafutdinov et al., 2016) 87.9 84.0 71.9 63.9 68.8 63.8 58.1 71.2 0.005
AE(Newell et al., 2017) 91.5 87.2 75.9 65.4 72.2 67.0 62.1 74.5 6.5
PAF(Cao et al., 2017) 92.9 91.3 82.3 72.6 76.0 70.9 66.8 79.0 20.4
AlphaPose(Fang et al., 2017) 89.3 88.1 80.7 75.5 73.7 76.7 70.0 79.1 3.4
Our method 92.7 89.3 80.0 71.3 73.8 70.0 67.6 77.8 42.2

Table 3: Comparisons of different approaches on the COCO 2018 test-dev set. Bold: the best performance. Bold-Italic: comparable or better performance than PAF.
Papandreou et al. (2017) have not released source code.

Method FPS AP AP0.5 AP0.75 APM APL

Papandreou et al. (2017) - 0.605 0.822 0.662 0.576 0.666
MaskRCNN(He et al., 2017) 4.4 0.627 0.870 0.684 0.574 0.711
AE(Newell et al., 2017) 6.5 0.655 0.868 0.723 0.606 0.726
PAF(Cao et al., 2017) 20.4 0.584 0.815 0.626 0.544 0.651
Our method 42.2 0.584 0.821 0.626 0.537 0.658

Table 4: Comparisons of different methods on the PoseTrack 2017 and 2018 dataset. Bold: the best performance. The results of Xiao et al. (2018) is trained and
tested by us since the original implementation has not performed training on the PoseTrack 2018 dataset.

Method Head Shoulder Elbow Wrist Hip Knee Ankle mAP FPS
PoseTrack 2017 Validation

Detect&Track(Girdhar et al., 2018) 67.5 70.2 62 51.7 60.7 58.7 49.8 60.6 4.4
AlphaPose-PoseFlow(Xiu et al., 2018) 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5 3.4
JointFlow(Doering et al., 2018) - - - - - - - 69.3 0.2
Xiao et al. (2018), ResNet50 79.1 80.5 75.5 66.0 70.8 70.0 61.7 72.4 9.1
STAF-SS(Raaj et al., 2019) - - - 55.0 - - 53.5 64.6 27
Our method 65.0 81.6 72.8 60.8 69.2 63.3 54.7 66.6 42.2

PoseTrack 2017 Testing
BUTD(Jin et al., 2017) 74.7 71.9 65.6 56.4 62.2 57.5 51.0 63.6 -
Detect&Track(Girdhar et al., 2018) - - - - - - - 59.6 4.4
AlphaPose-PoseFlow(Xiu et al., 2018) 64.9 67.5 65.0 59.0 62.5 62.8 57.9 63.0 3.4
JointFlow(Doering et al., 2018) - - - 53.1 - - 50.4 63.3 0.2
Xiao et al. (2018), ResNet50 76.4 77.2 72.2 65.1 68.5 66.9 60.3 70.0 9.1
STAF-MS(Raaj et al., 2019) - - - 62.8 - - 59.5 69.4 7
Our method 65.5 75.9 68.1 58.9 63.1 59.0 52.1 63.4 42.2

PoseTrack 2018 Validation
Xiao et al. (2018), ResNet50 74.4 76.9 72.2 65.2 69.2 70.0 62.9 70.4 9.1
STAF-SS(Raaj et al., 2019) - - - 56.2 - - 54.2 63.7 27
Our method 66.2 81.9 74.3 62.8 70.1 66.2 57.5 68.3 42.2

Table 5: Comparisons of properties of different models. FPS is tested on a single NVIDIA Tesla P40. MaskRCNN(He et al., 2017) correspond to the configuration
of ResNet-50 with feature pyramid network. Our method is 10 times faster than MaskRCNN(He et al., 2017), and 2 times quicker than PAF(Cao et al., 2017).

Type Method Model Size (MB) # Parameter FLOPs AP FPS
Top-down MaskRCNN(He et al., 2017) 480.8 62.4×106 536.6×109 0.627 4.4
Bottom-up PAF(Cao et al., 2017) 209.3 52.3×106 159.6×109 0.584 20.4
Bottom-up Our method 85.2 21.2×106 82.5×109 0.584 42.2

the training speed and reduces the requirements of the proces-
sor’s memory, frequency, etc.

4.6. Detailed Analysis
In this section, we carry out ablation experiments to vali-

date the design of the network architecture. These include de-

termining the position of extracted features for transfer, test-
ing with/without the feature transfer sub-networks to determine
their effect on performance, testing with/without the refinement
module to determine its effect on performance, and evaluating
the effect of multi-scale evaluation. Finally, we show the re-
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Table 6: Comparisons of multi-scale evaluation on the COCO 2018 test-dev set

Method AP AP0.5 AP0.75 APM APL

PAF(Cao et al., 2017), single-scale 0.469 0.737 0.493 0.403 0.561
PAF(Cao et al., 2017), multi-scale 0.584 0.815 0.626 0.544 0.651
Our method, single-scale 0.483 0.751 0.503 0.462 0.515
Our method, multi-scale 0.584 0.821 0.626 0.537 0.658

Table 7: The comparisons of transfer from different layers on the COCO 2018 validation set

Method AP AP0.5 AP0.75 APM APL

Transfer from Conv-1 0.452 0.740 0.456 0.387 0.549
Transfer from Conv-2 0.463 0.741 0.475 0.401 0.557
Transfer from Conv-3 0.475 0.741 0.493 0.415 0.565
Transfer from Conv-5 0.459 0.742 0.454 0.433 0.501
Transfer from Conv-4 0.484 0.741 0.512 0.429 0.573

8.9 Million

4.7 Million

7.6 Million

Backbone

Transfer

Refinement

Fig. 5: The number of parameters for each module of our network.

sults of error analysis to suggest future modification directions.
Since the COCO dataset provides standard validation set and
performance analysis tools, we undertake all ablation experi-
ments on the COCO 2018 validation set using single scale in-
put.

4.6.1. The Effect of Features Extraction Layer Placement
We compare the effect of extracting features from different

layers to the accuracy by quantitative evaluations. Table 7
presents the results of extracting features from Conv-1 to Conv-
5. We can see that the accuracy (AP metric) is increased pro-
gressively by extracting features from higher layers until Conv-
5. Extracting features from the Conv-5 layer has the effect of
lowering accuracy, suggesting that this layer is not as suitable
as an output layer for feature transfer.

4.6.2. The Effect of Feature Transfer Sub-network
Here, we determine the effect that the feature transfer sub-

networks have on performance. We do this by removing the
relevant feature transfer layers (i.e. the blue blocks in Fig. 2)
while keeping all other structures and parameters the same for
the equality of experiments. The results of the experiments are
presented in Table 8. We find that the feature transfer sub-
network accounts for up to 4.0% of improvement in estimation
accuracy (AP metric). This result indicates that feature transfer
has a significant effect on network performance.

4.6.3. The Effect of Refinement Module
We determine the effect that the refinement module has on

network performance. We do this by removing the entire re-
finement module (i.e. the blocks surrounded by the dotted blue

Table 8: The comparisons of with and without transfer sub-networks on the
COCO 2018 validation set

Method AP AP0.5 AP0.75 APM APL

Ours no transfer 0.444 0.737 0.440 0.391 0.530
Ours 0.484 0.741 0.512 0.429 0.573

Table 9: The comparisons of with and without refinement module on the COCO
2018 validation set

Method AP AP0.5 AP0.75 APM APL

Ours no refine 0.467 0.751 0.453 0.400 0.576
Ours 0.484 0.741 0.512 0.429 0.573

line in Fig. 2) and set the nodes of 1 and 2 (Fig. 2) as the out-
puts of joint and limb branches. In Table 9, we can see that the
refinement module contributes a 1.7% improvement in estima-
tion accuracy (AP metric). This value reveals that refining the
score maps with context information is an effective strategy for
improving accuracy.

4.6.4. The Effect of Multi-scale Evaluation
In order to analyse the effect of multi-scale evaluation, we re-

port the results of single-scale and multi-scale evaluation on the
PAF(Cao et al., 2017) and our method on the COCO test-dev set
in Table 6. We observe that our single-scale model outperforms
the single-scale PAF model by about 1.4% in accuracy. We
also notice that both single-scale models using the AP0.5 met-
ric already achieve a high accuracy of around 0.75. Multi-scale
evaluation mainly compensates for the precision at extremely
strict OKS matching thresholds from AP0.75 to AP95.

4.6.5. Performance Analysis on COCO 2018 Validation Set
We use the evaluation tools of Ronchi and Perona (2017) to

analyse the error constitutions of our model. Ronchi and Perona
(2017) define 3 error types including background error, scoring
error, and localisation error. Background error includes false
positives (FP) and false negatives (FN). Scoring error occurs
when one prediction with a high confidence score has a low
OKS value. Localisation error contains four specific types of
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Fig. 6: Error distribution and sensitivity analysis. The plot on the left shows the effect of progressively rectifying errors of each type on the accuracy of our method
at the OKS evaluation threshold of 0.5. The legend indicates the corresponding AP values. The plot on the right shows the results using the same sensitivity analysis
method at the OKS threshold of 0.75.

error - jitter, inversion, swap and miss. Jitter is when the pre-
dictions have a small error around the correct keypoint location.
Inversion is defined as the errors of inversions between the left
and right parts of the body. Swap denotes the predictions with
the same part type on incorrect instances. This metric is use-
ful for overlapping people. Miss is used when the predictions
have large localisation errors which exceed the defined keypoint
similarity thresholds.

The impact of all types of error above on the accuracy of our
approach is summarised in Fig. 6 where the OKS threshold is
at 0.5 and 0.75. Each plot consists of a set of Precision-Recall
(PR) curves where each curve is strictly larger than the previous
as the method’s errors are progressively rectified. For the OKS
threshold of 0.5 (Fig. 6(a)), we can see that the overall AP is
0.741. Rectifying all the miss errors obtains a large improve-
ment of the AP to 0.843. Correcting swap, inversion, and jitter
have almost no change to the AP (0.853). When localisation is
correct, revising the confidence score can contribute a small AP
improvement of about 1.8% (0.871). With the optimal confi-
dence score, correcting background false positives has a trivial
effect on the AP as predictions barely remain unmatched. Fi-
nally, eliminating background false negatives results in perfect
performance. In contrast, using a more strict OKS threshold of
0.75 enlarges the impact of localisation error but has no effect
on scoring error and background error, as shown in Fig. 6(b).
From here we know that the errors of our method are dominated
mostly by localisation error and background false negatives.

Finally, we give some qualitative results in Fig. 7, which
includes the cases of scale, appearance and viewpoint variation,
occlusion and crowding.

5. Deployment Acceleration

The existing deep learning frameworks provide several ba-
sic layers or operators (OP) to support specific computations
due to the consideration of flexibility during model designing
and training. However, if the network structure and weights

Table 10: The comparisons of network’s inference speed before and after using
TensorRTTM library

Optimisation Before After
Inference time (ms) 22.71 12.45

are fixed, some layers or operators could be merged as one
operation and model forward inference can be further accel-
erated. For example, one convolutional layer followed by one
bias layer have to deploy memory operation twice. Actually,
these two layers could be merged into one layer according to
the mathematical derivation. In addition, some layers could be
ignored in the implementation, such as concatenation operation
as multiple corresponding tensors can be utilised directly by the
next layer. Currently, there are some open source libraries pro-
viding network optimisation and acceleration. Here, we pro-
totype the acceleration solution using TensorRTTM (NVIDIA,
2019), which is the state-of-the-art library that facilitates opti-
misation on NVIDIA GPUs. The optimised inference imple-
mentation does not affect the prediction accuracy since the net-
work weights and parameter precision are not changed. The
acceleration results are shown in Table 10. The inference time
of the network is decreased from 22.71 ms to 12.45 ms on
one NVIDIA Tesla P40 GPU. The last pose estimation speed
achieves 73.8 FPS.

6. Conclusion

In this work, we have proposed a deep feature transfer net-
work that captures concurrently activated joint and limb fea-
tures to form a complementary inference architecture for multi-
person pose estimation. Experiments are performed on the three
most popular multi-person pose estimation benchmarks. Re-
sults show that the proposed structure effectively improves the
accuracy. In addition, our method achieved comparable state-
of-the-art accuracy with speeds exceeding 42.2 FPS, which is
between 2 and 10 times faster than existing works. We further
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Fig. 7: Qualitative results of our method on the MPII dataset. Each color corresponds to a human instance.
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accelerate the inference speed to 73.8 FPS by using the deep
learning optimisation library of TensorRT.

As a future direction, we would like to further improve the
method by combining other strategies from existing literature,
such as the feature pyramid by Yang et al. (2017) and the at-
tention mechanism by Chu et al. (2016), to reduce localisation
and background false negative errors. Various network archi-
tectures for structural relation inference tasks in existing works
Chen et al. (2018) could also provide guidance to improve body
part detection. In addition, using light-weight and low-bit net-
work to obtain high speed while maintaining the accuracy is a
promising future research direction.
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Alp Güler, R., Neverova, N., Kokkinos, I., 2018. Densepose: Dense human
pose estimation in the wild, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7297–7306.

Andriluka, M., Iqbal, U., Milan, A., Insafutdinov, E., Pishchulin, L., Gall, J.,
Schiele, B., 2018a. Posetrack: A benchmark for human pose estimation and
tracking, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5167–5176.

Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2014. 2d human pose
estimation: New benchmark and state of the art analysis, in: Proceedings of
the IEEE Conference on computer Vision and Pattern Recognition (CVPR),
pp. 3686–3693.

Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B., 2018b. Mpii human pose
database. URL: http://human-pose.mpi-inf.mpg.de/#results.

Andriluka, M., Roth, S., Schiele, B., 2009. Pictorial structures revisited: People
detection and articulated pose estimation, in: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1014–
1021.

Belagiannis, V., Zisserman, A., 2017. Recurrent human pose estimation,
in: 2017 12th IEEE International Conference on Automatic Face Gesture
Recognition (FG), pp. 468–475.

Cao, Z., Simon, T., Wei, S.E., Sheikh, Y., 2017. Realtime multi-person 2d pose
estimation using part affinity fields, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 7291–7299.

Caruana, R., 1997. Multitask learning. Machine learning 28, 41–75.
Chang, J.Y., Lee, K.M., 2018. 2d 3d pose consistency-based conditional ran-

dom fields for 3d human pose estimation. Computer Vision and Image Un-
derstanding (CVIU) 169, 52 – 61. URL: http://www.sciencedirect.
com/science/article/pii/S107731421830016X, doi:https://doi.
org/10.1016/j.cviu.2018.02.004.

Chen, X., Li, L.J., Fei-Fei, L., Gupta, A., 2018. Iterative visual reasoning
beyond convolutions, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 7239–7248.

Chu, X., Ouyang, W., Li, H., Wang, X., 2016. Structured feature learning
for pose estimation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4715–4723.

Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L., Wang, X., 2017.
Multi-context attention for human pose estimation, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1831–1840.

Ciliberto, C., Mroueh, Y., Poggio, T., Rosasco, L., 2015. Convex learning of
multiple tasks and their structure, in: Proceedings of the 32nd International
Conference on Machine Learning (ICML), pp. 1548–1557.

Dai, J., He, K., Sun, J., 2016. Instance-aware semantic segmentation via multi-
task network cascades, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 3150–3158.

Doering, A., Iqbal, U., Gall, J., 2018. Jointflow: Temporal flow fields for
multi person pose estimation, in: Proceedings of the British Machine Vision
Conference (BMVC), p. 261.

Fang, H.S., Xie, S., Tai, Y.W., Lu, C., 2017. Rmpe: Regional multi-person
pose estimation, in: Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pp. 2334–2343.

Girdhar, R., Gkioxari, G., Torresani, L., Paluri, M., Tran, D., 2018. Detect-
and-track: Efficient pose estimation in videos, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 350–
359.

Gkioxari, G., Arbelaez, P., Bourdev, L., Malik, J., 2013. Articulated pose
estimation using discriminative armlet classifiers, in: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
3342–3349.

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016a. Deep learning.
volume 1. MIT press Cambridge.

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016b. Deep learning.
volume 1. MIT press Cambridge.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn, in: Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV), pp.
2980–2988.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image
recognition, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778.

Hong, C., Chen, X., Wang, X., Tang, C., 2016. Hypergraph regularized au-
toencoder for image-based 3d human pose recovery. Signal Processing 124,
132–140.

Hong, C., Yu, J., Tao, D., Wang, M., 2014. Image-based three-dimensional
human pose recovery by multiview locality-sensitive sparse retrieval. IEEE
Transactions on Industrial Electronics 62, 3742–3751.

Hong, C., Yu, J., Wan, J., Tao, D., Wang, M., 2015. Multimodal deep autoen-
coder for human pose recovery. IEEE Transactions on Image Processing
(TIP) 24, 5659–5670.

Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B., 2016.
Deepercut: A deeper, stronger, and faster multi-person pose estimation
model, in: Proceedings of the European Conference on Computer Vision
(ECCV), pp. 34–50.

Iqbal, U., Gall, J., 2016. Multi-person pose estimation with local joint-to-
person associations, in: Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 627–642.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T., 2014. Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiv:1408.5093 .

Jin, S., Ma, X., Han, Z., Wu, Y., Yang, W., Liu, W., Qian, C., Ouyang, W.,
2017. Towards multi-person pose tracking: Bottom-up and top-down meth-
ods, in: Proceedings of the IEEE International Conference on Computer
Vision (ICCV) PoseTrack Workshop, p. 7.

Kawana, Y., Ukita, N., Huang, J.B., Yang, M.H., 2018. Ensemble convolu-
tional neural networks for pose estimation. Computer Vision and Image Un-
derstanding (CVIU) 169, 62 – 74. URL: http://www.sciencedirect.
com/science/article/pii/S1077314217302308, doi:https://doi.
org/10.1016/j.cviu.2017.12.005.

Kim, S., Xing, E.P., 2010. Tree-guided group lasso for multi-task regression
with structured sparsity, in: Proceedings of the 27th International Confer-
ence on Machine Learning (ICML), p. 1.

Levinkov, E., Uhrig, J., Tang, S., Omran, M., Insafutdinov, E., Kirillov, A.,
Rother, C., Brox, T., Schiele, B., Andres, B., 2017. Joint graph decompo-
sition & node labeling: Problem, algorithms, applications, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6012–6020.

Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár,
P., Zitnick, C.L., 2014. Microsoft coco: Common objects in context, in:
Proceedings of the European conference on computer vision (ECCV), pp.
740–755.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.,
2016. Ssd: Single shot multibox detector, in: Proceedings of the European
conference on computer vision (ECCV), pp. 21–37.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for se-
mantic segmentation, in: Proceedings of the IEEE Conference on computer
Vision and Pattern Recognition (CVPR), pp. 3431–3440.

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted boltz-
mann machines, in: Proceedings of the 27th International Conference on



14

Machine Learning (ICML), pp. 807–814.
Newell, A., Huang, Z., Deng, J., 2017. Associative embedding: End-to-end

learning for joint detection and grouping, in: Proceedings of the Neural In-
formation Processing Systems (NIPS), pp. 2277–2287.

Newell, A., Yang, K., Deng, J., 2016. Stacked hourglass networks for human
pose estimation, in: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 483–499.

NVIDIA, 2019. Tensorrt. URL: https://developer.nvidia.com/

tensorrt.
Papandreou, G., Zhu, T., Kanazawa, N., Toshev, A., Tompson, J., Bregler, C.,

Murphy, K., 2017. Towards accurate multi-person pose estimation in the
wild, in: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B., 2013. Poselet conditioned
pictorial structures, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 588–595.

Pishchulin, L., Insafutdinov, E., Tang, S., Andres, B., Andriluka, M., Gehler,
P.V., Schiele, B., 2016. Deepcut: Joint subset partition and labeling for
multi person pose estimation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4929–4937.

Raaj, Y., Idrees, H., Hidalgo, G., Sheikh, Y., 2019. Efficient online multi-person
2d pose tracking with recurrent spatio-temporal affinity fields, in: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4620–4628.

Ronchi, M.R., Perona, P., 2017. Benchmarking and error diagnosis in multi-
instance pose estimation, in: Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), pp. 369–378.

Sapp, B., Taskar, B., 2013. Modec: Multimodal decomposable models for hu-
man pose estimation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3674–3681.

Simonyan, K., Zisserman, A., 2015. Very deep convolutional networks for
large-scale image recognition, in: Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang, X.,
Liu, W., Wang, J., 2019. High-resolution representations for labeling pixels
and regions, in: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Tome, D., Russell, C., Agapito, L., 2017. Lifting from the deep: Convolutional
3d pose estimation from a single image, in: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 2500–2509.

Tompson, J.J., Jain, A., LeCun, Y., Bregler, C., 2014. Joint training of a convo-
lutional network and a graphical model for human pose estimation, in: Pro-
ceedings of the Neural Information Processing Systems (NIPS), pp. 1799–
1807.

Toshev, A., Szegedy, C., 2014. Deeppose: Human pose estimation via deep
neural networks, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 1653–1660.

Varadarajan, S., Datta, P., Tickoo, O., 2018. A greedy part assignment algo-
rithm for real-time multi-person 2d pose estimation, in: Proceedings of the
IEEE Winter Conference on Applications of Computer Vision (WACV), pp.
418–428.

Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y., 2016. Convolutional pose
machines, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 4724–4732.

Xiao, B., Wu, H., Wei, Y., 2018. Simple baselines for human pose estimation
and tracking, in: Proceedings of the European Conference on Computer
Vision (ECCV), pp. 466–481.

Xiu, Y., Li, J., Wang, H., Fang, Y., Lu, C., 2018. Pose flow: Efficient online
pose tracking, in: Proceedings of the British Machine Vision Conference
(BMVC), pp. 1–12.

Yang, W., Li, S., Ouyang, W., Li, H., Wang, X., 2017. Learning feature pyra-
mids for human pose estimation, in: Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Yang, W., Ouyang, W., Li, H., Wang, X., 2016. End-to-end learning of de-
formable mixture of parts and deep convolutional neural networks for hu-
man pose estimation, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 3073–3082.

Yang, Y., Ramanan, D., 2011. Articulated pose estimation with flexible
mixtures-of-parts, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1385–1392.




