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GENERALIZED K-CORE PERCOLATION IN NETWORKS WITH
COMMUNITY STRUCTURE\ast 

YILUN SHANG\dagger 

Abstract. Community structure underpins many complex networked systems and plays a vital
role when components in some modules of the network come under attack or failure. Here, we study
the generalized k-core (Gk-core) percolation over a modular random network model. Unlike the
archetypal giant component based quantities, Gk-core can be viewed as a resilience metric tailored
to gauge the network robustness subject to spreading virus or epidemics paralyzing weak nodes, i.e.,
nodes of degree less than k, and their nearest neighbors. We develop two complementary frameworks,
namely, the generating function formalism and the rate equation approach, to characterize the Gk-
core of modular networks. Through extensive numerical calculations and simulations, it is found that
G2-core percolation undergoes a continuous phase transition while Gk-core percolation for k \geq 3
displays a first-order phase transition for any fraction of interconnecting nodes. The influence of
interconnecting nodes tends to be more visible nearer the percolation threshold. We find by studying
modular networks with two Erd\H os--R\'enyi modules that the interconnections between modules affect
the G2-core percolation phase transition in a way similar to an external field in a spin system, where
Widom's identity regulating the critical exponents of the system is fulfilled. However, this analogy
does not seem to exist for Gk-core with k \geq 3 in general.
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1. Introduction. Complex networks have become a popular theoretical and
applicable tool to the modeling and analysis of interaction phenomena that occur
in a broad range of real-world systems [23, 7, 9, 24]. One of the most common
and fascinating structure properties in many real-world systems is the modularity
or community structure, where nodes are more tightly joined together in mesoscopic
groups (called modules or communities) with intraconnections than between groups
with interconnections. These interconnections often run between a small fraction of
interconnecting nodes in each group [12, 34]. For example, the world wide web has
more connections within pages on closely related topics than between distinct topics.
Metabolic networks have more connections within functional modules than between
modules. Transportation networks have more connections within cities than between
cities. Due to numerous applications across disciplines such as technology, biology,
and social sciences, detecting and characterizing community structure has been a
very prolific research area for many years; see, e.g., [11, 28, 29, 35, 27] and references
therein.

Despite enormous interest in community detection algorithms and models in data
mining and applications, nevertheless, there have been relatively few efforts toward
understanding the implication of community structure to the resilience or stability,
which plays a crucial role in maintaining the connectivity and functionality of net-
works [5]. In particular, how the small fraction of nodes sustaining interconnections

\ast Received by the editors September 30, 2019; accepted for publication (in revised form) March
23, 2020; published electronically May 20, 2020.

https://doi.org/10.1137/19M1290607
Funding: This work was supported by the UoA Flexible Fund under grant 201920A1001.

\dagger Department of Computer and Information Sciences, Northumbria Univeristy, Newcastle, NE1
8ST, UK (yilun.shang@northumbria.ac.uk).

1272

https://doi.org/10.1137/19M1290607
mailto:yilun.shang@northumbria.ac.uk


GENERALIZED K-CORE PERCOLATION 1273

affect modular network robustness is not entirely understood. Based on the multivari-
ate generating function approach, Shai et al. [30] showed that the number of modules
undergoes a tipping point separating two regimes in modular networks: in one regime,
deletion of interconnecting nodes breaks the entire network abruptly as modules are
disconnected from each other while in the other regime, the network fragments contin-
uously as the modules collapse internally with the removal of interconnecting nodes.
A recent study by Dong et al. [8] reveals that the role of interconnections in networks
with community structure can be viewed as an external field in a ferromagnetic-
paramagnetic spin system near the percolation phase transition of giant connected
component. This unique relationship for modular networks has also found to be re-
sponsible for structural resilience for modules embedded in two dimensional spaces
[10] as well as the integrity of giant secure component in the presence of different
classes of vulnerabilities [33].

In this article, we consider the resilience of modular networks in terms of a re-
cently introduced metric, Generalized k-core (or Gk-core) [1], instead of the previous
giant connected component based metrics (c.f. [30, 8, 10, 33]). Analytically, it turns
out to be challenging to tackle since Gk-core percolation has high dependency and
community structure greatly adds to its complexity. In the Gk-core percolation, we
recursively remove a k-leaf (i.e., a node with degree less than k) together with all
its nearest neighbors and their incident edges. When the process stops, the result-
ing subgraph is called Gk-core, which can be thought of as a generalization of the
usual k-core (the maximum subgraph having degrees at least k) [3, 22, 18, 6] and core
(equivalent to G2-core) [20, 19, 37]. Core has its origin in the Karp--Sipser algorithm
for finding vertex cover and is closely related to maximum matching problem and
network controllability [36, 21, 38]. Note that core has been studied under different
names in graph theory [16] and that Gk-core is not a direct generalization of the or-
dinary k-core. We choose to use this name following the previous works [1, 31, 32] to
avoid adding confusion. When assessing network resilience, unlike the connected com-
ponents, Gk-core is ideal to quantify the robustness of networks against epidemics,
in which a virus compromises weak nodes, i.e., k-leaves, and their nearest neighbors.
The spreading dynamics of information has found rich applications within and beyond
complexity science [15, 17].

Here, we propose two complementary methods, namely, the generating function
formalism and the rate equation method, for deriving the numbers of nodes and edges
of Gk-core in complex networks with community structure. The theoretical frame-
works developed here are verified by extensive numerical calculations and simulations
over modular networks with Erd\H os--R\'enyi network communities. Our results unravel
that G2-core is essentially different from Gk-core with k \geq 3 over networks having
community structure due to the following findings: (i) The emergence of G2-core un-
dergoes a continuous phase transition as the network density changes while G3-core
displays a first-order percolation phase transition, regardless of the intensity of inter-
connections; (ii) The Widom's identity relating critical exponents in physical phase
transition [26, 14, 13] is only satisfied by G2-core percolation indicating that the effect
of interconnections among modules can be analogized to an external field in a spin
system. Moreover, our results uncover that adding a small fraction of interconnecting
nodes boosts the size of Gk-core prominently only around the percolation thresh-
old, which is in sharp contrast with the no-community case [31], where adding edges
randomly or intentionally invariably gives rise to a uniform growth of Gk-core over a
wide range of average degrees. The interconnecting nodes in networks with community
structure play a unique part in bolstering the network robustness in terms of Gk-core.
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The rest of the paper is organized as follows. In section 2, we present the interact-
ing modular network model and Gk-core percolation process. The generating function
formalism and rate equation method are developed in section 3 to gauge the numbers
of nodes and edges in Gk-core. In section 4, we apply our theoretical framework to a
benchmark random network model with Erd\H os--R\'enyi modules and investigate phys-
ical phase transitions relating critical exponents in Gk-core percolation numerically
and by simulation. The paper is concluded in section 5 with some further remarks.

2. Model formulation. We consider a modular network \scrG with m modules mo-
tivated by real-world networks where a certain (usually small) portion of nodes in each
module maintain interconnections to other modules [8]. For i \in \{ 1, 2, . . . ,m\} := [m],
module i has Ni nodes, and the intradegree distribution is defined as Pi(qi) meaning
the probability of having qi neighbors within module i. For each module i, there is a
random subset of interconnecting nodes, which is taken as a random subset containing
a fraction ri of all the nodes of module i. For i \not = j, edges are randomly connected
between these interconnecting nodes following interdegree distributions Pij(qij) and
Pji(qji) as shown in Figure 1(a). In other words, the probability that an interconnect-
ing node in module i has qij neighbors in module j is given by Pij(qij). For ease of
presentation, we often suppress the subscripts in the notations Pi(\cdot ) and Pij(\cdot ) simply
as P (\cdot ) when the meaning is clear from the independent variable. The interconnec-
tions between interconnecting nodes have the similar flavor as the bipartite version
of configuration model [24, 25]. We will be interested in the thermodynamic limit
as the network size tends to infinity by borrowing techniques from statistical physics
[26, 14].

Fig. 1. Schematic illustration of the modular network \scrG . (a) Three modules are interconnected
via interconnecting nodes having fractions r1 = 1/2, r2 = 1/3, and r3 = 1/4. (b) G2-core of
the network (indicated by solid nodes), where module 3 has been removed as per the 2-leaf removal
algorithm. Note that G3-core in this example is a null graph.

Recall that a k-leaf in the network is defined as a node with degree less than k.
The Gk-core percolation is implemented by a k-leaf removal algorithm, where at each
time step a randomly chosen k-leaf is removed together with all nearest neighbors and
their incident edges. The process is iterated until there is no k-leaves in the remaining
network. The residual network is called Gk-core. Figure 1(b) shows the G2-core of
the network in Figure 1(a).

It is worth noting that Gk-core defined above is not a function of the network,
but depends on the order in which the k-leaves are deleted in the given network. This
point has not been made explicitly in the previous works, e.g., [1, 31]. For instance,
the network shown in Figure 2 has two different versions of G3-core. However, what's
important is that the leaf removal process is self-averaging in the thermodynamic
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limit as the network size tends to infinity. In other words, almost all random residual
networks have the same degree distribution, which is independent of the specific order
of removal [1, 31]. Hence, we are able to tackle Gk-core using mean field analysis.

Fig. 2. An example network with 6 nodes, which has different G3-cores. If v is deleted first,
then G3-core is a complete graph over 4 nodes. If u is deleted first, then G3-core is a null graph.

3. Theoretical framework. Given k \geq 2, let nkc and lkc represent the expected
relative sizes of nodes and edges inGk-core of the random network \scrG with communities
(with respect to the size of the entire network, i.e., N :=

\sum m
i=1 Ni). In other words,

lkc is the ratio of the number of edges surviving in the Gk-core to the total number of
nodes N . We will first introduce the generating function method to derive the mean-
field solutions for these quantities. Then we develop the rate equation method which
can serve as an alternative approach to confirm the generating function formalism.

3.1. Generating function formalism. Unlike the relatively straightforward
percolation theory for giant component based metrics [24], core based percolation
benefits from a different route. During the k-leaf removal algorithm described in
section 2, we scrutinize the nodes of \scrG in three categories: (1) a-removable, if they
can become a (k - 1)-leaf; (2) b-removable, if they can become a neighbor of a k-leaf;
and (3) nonremovable, if they belong to the Gk-core. As discussed above, the Gk-
core depends on the removal order and the way a node is removed also depends on
the order [1, 2]. However, a node can not be both a-removable and b-removable at
the same time. This is similar to the paradigm established in [1, 20]; however, the
introduction of community structure requires a nontrivial refined treatment of the
probability partition to derive solvable self-consistency equations. It is tempting to
consider a version of multivariate generating functions that have been used to deal
with component based resilience in modular networks [30, 8, 10, 33]. However, we
find it cumbersome with a monolithic multivariate version and choose to track the
interconnections separately from intraconnections in Gk-core percolation.

To facilitate the discussion, we introduce the following definitions. Given i \in 
[m] = \{ 1, 2, . . . ,m\} , let ai and bi be the probabilities that an end node of a randomly
chosen intraedge (with the other end node, say v) in module i is a-removable and b-
removable in \scrG \setminus v, respectively. We will refer to nodes in module i that are a-removable
and b-removable as nodes of type ai and type bi, respectively. Furthermore, for i \not = j,
let aij and bij be the probabilities that the end node in module i of a randomly
chosen interedge (with the other end node in module j, say v) is a-removable and
b-removable in \scrG \setminus v, respectively. Define the following generating functions for the
degree distributions presented in section 2 as Gii(xii) =

\sum \infty 
qi=0 P (qi)x

qi
ii for all i and

Gij(xij) =
\sum \infty 

qij=0 P (qij)x
qij
ij for i \not = j. The sth derivative of Gij(xij) is signified by

G
(s)
ij (xij) :=

\sum \infty 
qij=0 P (qij)

qij !
(qij - s)!x

qij - s
ij and the sth derivative of Gii(xii) is signified

by G
(s)
ii (xii) likewise. The average degrees are given by \langle qi\rangle :=

\sum \infty 
qi=0 qiP (qi) =

G
(1)
ii (1) and \langle qij\rangle :=

\sum \infty 
qij=0 qijP (qij) = G

(1)
ij (1).
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Theorem 1. Given k \geq 2, the mean-field solutions for Gk-core percolation over
a network \scrG with m communities are given by

nkc =

\sum m
i=1 Nin

i
kc\sum m

i=1 Ni
and lkc =

\sum m
i=1 Nil

i
kc +

\sum 
1\leq i<j\leq m Niril

ij
kc\sum m

i=1 Ni
,(3.1)

where

ni
kc = (1 - ri)

\Biggl[ 
Gii(1 - ai) - 

k - 1\sum 
si=0

(1 - ai  - bi)
si

si!
G

(si)
ii (bi)

\Biggr] 

+ ri

\biggl[ 
Gii(1 - ai)

m\prod 
j \not =i

Gij(1 - aji)

 - 
k - 1\sum 

si+
\sum 

j \not =i sij=0

(1 - ai  - bi)
si

si!
G

(si)
ii (bi)

m\prod 
j \not =i

(1 - aji  - bji)
sij

sij !
G

(sij)
ij (bji)

\biggr] 
\forall i,

(3.2)

likc = (1 - ai  - bi)
2 \langle qi\rangle 

2
\forall i,

lijkc = (1 - aij  - bij)(1 - aji  - bji)\langle qij\rangle \forall i < j,

and the probabilities \{ ai\} mi=1, \{ aij\} j \not =i, \{ bi\} mi=1, \{ bij\} j \not =i are given by solving the 2m2

equations:

ai =
1 - ri
\langle qi\rangle 

k - 2\sum 
si=0

(1 - ai  - bi)
si

si!
G

(si+1)
ii (bi)

+
ri
\langle qi\rangle 

k - 2\sum 
si+

\sum 
j \not =i sij=0

(1 - ai  - bi)
si

si!
G

(si+1)
ii (bi)

\cdot 
m\prod 
j \not =i

(1 - aji  - bji)
sij

sij !
G

(sij)
ij (bji) \forall i,(3.3)

aij =
1

\langle qij\rangle 

k - 2\sum 
si+

\sum 
j\prime \not =i sij\prime =0

(1 - ai  - bi)
si

si!
G

(si)
ii (bi)

\cdot 

\left(  m\prod 
j\prime \not =i

(1 - aj\prime i  - bj\prime i)
sij\prime 

sij\prime !

\right)  G
(sij+1)
ij (bji)

m\prod 
j\prime \not =i,j

G
(sij\prime )

ij\prime (bj\prime i) \forall j \not = i,(3.4)

bi = 1 - 1

\langle qi\rangle 
G

(1)
ii (1 - ai)

\left(  1 - ri + ri

m\prod 
j \not =i

Gij(1 - aji)

\right)  \forall i,(3.5)

bij = 1 - 1

\langle qij\rangle 
Gii(1 - ai)G

(1)
ij (1 - aji)

m\prod 
j\prime \not =i,j

Gij\prime (1 - aj\prime i) \forall j \not = i.(3.6)

Proof. Fix any i \in [m]. A node v in module i, which is reached by following a
random intraedge in module i with the other end node u, is not a-removable or b-
removable in \scrG \setminus u if v links to k - 1 neighbors which are not a-removable or b-removable
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in \scrG \setminus v and v has other neighbors only of type bj in \scrG \setminus v for j \in [m]. Therefore, we
have

1 - ai  - bi = (1 - ri)

\infty \sum 
qi=k

qiP (qi)

\langle qi\rangle 

qi - 1\sum 
si=k - 1

\biggl( 
qi  - 1

si

\biggr) 
(1 - ai  - bi)

sibqi - 1 - si
i

+ ri

\infty \sum 
qi+

\sum 
j \not =i qij=k

qiP (qi)

\langle qi\rangle 

m\prod 
j \not =i

P (qij)

\cdot 
qi - 1+

\sum 
j \not =i qij\sum 

si+
\sum 

j \not =i sij=k - 1

\biggl[ \biggl( 
qi  - 1

si

\biggr) 

\cdot (1 - ai  - bi)
sibqi - 1 - si

i

m\prod 
j \not =i

\biggl( 
qij
sij

\biggr) 
(1 - aji  - bji)

sij b
qij - sij
ji

\biggr] 
.(3.7)

There are two terms on the right-hand side of (3.7). The first term is responsible for
the case that v is a noninterconnecting node, whose neighbors are all within module i.
qiP (qi)
\langle qi\rangle is the probability that v has degree qi [25]. Apart from the edge leading to v,

it has qi - 1 incident edges, si of whom must lead to those not of type aj or bj in \scrG \setminus v.
Analogously, the second term is responsible for the case of v being an interconnecting
node. In this term, qi and qij represent the numbers of its neighbors in module i and
module j (j \not = i), respectively. In this case, we have to consider the aggregation of
neighbors of v in all m modules.

Next, fix any j \not = i and j \in [m]. We consider a node v in module i, which is
reached by following a random interedge between module i and module j with the
other end node u in module j. Again, v is not a-removable or b-removable in \scrG \setminus u if v
links to k  - 1 neighbors which are not a-removable or b-removable in \scrG \setminus v and v has
other neighbors only of type bj in \scrG \setminus v for j \in [m]. We obtain

1 - aij  - bij =

\infty \sum 
qi+

\sum 
j\prime \not =i qij\prime =k

P (qi)
qijP (qij)

\langle qij\rangle 

m\prod 
j\prime \not =i,j

P (qij\prime )

qi - 1+
\sum 

j\prime \not =i qij\prime \sum 
si+

\sum 
j\prime \not =i sij\prime =k - 1

\biggl[ \biggl( 
qi
si

\biggr) 

\cdot (1 - ai  - bi)
sibqi - si

i

\biggl( 
qij  - 1

sij

\biggr) 
(1 - aji  - bji)

sij b
qij - 1 - sij
ji

\cdot 
m\prod 

j\prime \not =i,j

\biggl( 
qij\prime 

sij\prime 

\biggr) 
(1 - aj\prime i  - bj\prime i)

sij\prime b
qij\prime  - sij\prime 

j\prime i

\biggr] 
,(3.8)

where qi and qij\prime represent the numbers of v's neighbors in module i and module j\prime 

(j\prime \not = i), respectively, and the expression can be similarly explained as in (3.7).
We have obtained m2 equations from (3.7) and (3.8), and the rest of equations

can be found by examining b-removable nodes in the network. A node v in module
i, which is reached by following a random intraedge in module i with the other end
node u, is b-removable if it has a neighbor of type aj for some j \in [m] in \scrG \setminus v. We
derive that

1 - bi = (1 - ri)

\infty \sum 
qi=1

qiP (qi)

\langle qi\rangle 
(1 - ai)

qi - 1

+ ri

\infty \sum 
qi+

\sum 
j \not =i qij=1

qiP (qi)

\langle qi\rangle 

m\prod 
j \not =i

P (qij)(1 - ai)
qi - 1

m\prod 
j \not =i

(1 - aji)
qij ,(3.9)
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where the first term on the right-hand side above accounts for the case that v is a
noninterconnecting node whose outgoing neighbors are all of type ai, and the second
term corresponds to the case where v is an interconnecting node having qi - 1 outgoing
neighbors in module i and qij outgoing neighbors in module j for j \not = i. Similarly, if
we follow a random interedge between module i and module j to a node v in module
i, it is b-removable when it has a neighbor of type aj in \scrG \setminus v for some j \in [m]. For
any fixed j \not = i, we have

1 - bij =

\infty \sum 
qi+

\sum m
j\prime \not =i

qij\prime =1

P (qi)
qijP (qij)

\langle qij\rangle 

\cdot 
m\prod 

j\prime \not =i,j

P (qij\prime )(1 - ai)
qi(1 - aji)

qij - 1
m\prod 

j\prime \not =i,j

(1 - aj\prime i)
qij\prime ,(3.10)

where qi and qij\prime represent the numbers of v's neighbors in module i and module j\prime 

(j\prime \not = i), respectively, and the expression can be similarly explained as in (3.9).
In (3.9), using the binomial expansion, we can write

(1 - ai)
qi - 1 =

qi - 1\sum 
si=0

\biggl( 
qi  - 1

si

\biggr) 
(1 - ai  - bi)

sibqi - 1 - si
i

and

(1 - ai)
qi - 1

m\prod 
j \not =i

(1 - aji)
qij =

qi - 1+
\sum 

j \not =i qij\sum 
si+

\sum 
j \not =i sij=0

\biggl[ \biggl( 
qi  - 1

si

\biggr) 
(1 - ai  - bi)

sibqi - 1 - si
i

\cdot 
m\prod 
j \not =i

\biggl( 
qij
sij

\biggr) 
(1 - aji  - bji)

sij b
qij - sij
ji

\biggr] 
.

Therefore, (3.3) readily follows from (3.7), (3.9), and some standard algebra. In a
similar way, we can derive (3.4) by drawing on (3.8) and (3.10). Moreover, it is clear
that (3.5) and (3.6) are direct results of (3.9) and (3.10), respectively.

For any i \in [m], let ni
kc be the probability that a randomly chosen node v in

module i belongs to Gk-core. The node v belongs to Gk-core if it has k neighbors
which are not a-removable or b-removable and has other neighbors only of type bj in
\scrG \setminus v for j \in [m]. Hence,

ni
kc = (1 - ri)

\infty \sum 
qi=k

P (qi)

qi\sum 
si=k

\biggl( 
qi
si

\biggr) 
(1 - ai  - bi)

sibqi - si
i

+ ri

\infty \sum 
qi+

\sum 
j \not =i qij=k

P (qi)

m\prod 
j \not =i

P (qij)

\cdot 
qi+

\sum 
j \not =i qij\sum 

si+
\sum 

j \not =i sij=k

\biggl[ \biggl( 
qi
si

\biggr) 
(1 - ai  - bi)

sibqi - si
i

m\prod 
j \not =i

\biggl( 
qij
sij

\biggr) 
(1 - aji  - bji)

sij b
qij - sij
ji

\biggr] 
,

(3.11)

where the two terms on the right-hand side are analogous to those in (3.7) except
we here choose v0 uniformly at random (rather than follow a random edge). The
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compact expression (3.2) follows directly from (3.11), the binomial expansion, and
some standard algebra. Recall that nkc is the expected fraction of nodes in the whole
network. Hence, the first part of (3.1) follows.

Next, we consider the expected normalized number of edges lkc (with respect to
the number of nodes) in the network. For any i, j \in [m], and i < j, denote by likc
the expected normalized number of edges in the Gk-core with both end nodes within
module i and similarly, lijkc the expected normalized number of edges in the Gk-core
with one end node in module i and the other in module j. Let Ei and Eij be the
expected numbers of edges in module i and those joining modules i and j, respectively.
Since an edge is in the Gk-core if both of its end nodes are in the Gk-core, we have

likc = (1 - ai  - bi)
2Ei

Ni
= (1 - ai  - bi)

2 \langle qi\rangle 
2

and

lijkc = (1 - aij  - bij)(1 - aji  - bji)
Eij

riNi
= (1 - aij  - bij)(1 - aji  - bji)\langle qij\rangle .

Finally, the expected number of edges in theGk-core can be calculated as
\sum m

i=1 Nil
i
kc+\sum 

1\leq i<j\leq m Niril
ij
kc, which proves the second part of (3.1) and hence concludes the

proof of Theorem 1.

It can be seen that when ri = 0 for i \in [m] and m = 1 (namely, the network
under consideration has a single degree distribution P (qi)), the main result in [1] can
be recovered from Theorem 1.

3.2. Rate equation method. Rate function method has been proved to be
instrumental in modeling the evolution of degree distribution of the remaining network
in the process of percolation [24, 1, 14]. In our network with community structure,
recall that each module i has Ni nodes for i \in [m]. For simplicity, we assume the
modules have the same size, i.e., the number of nodes in the network can be denoted
by N := mN1. The following method can be generalized for the general scenario of
Ni.

To obtain the evolution equation for the expected number of nodes, we consider
a modified k-leaf removal algorithm, where at each time step all incident edges of a
randomly chosen k-leaf and those of its nearest neighbors are removed. The process
continues until there is no k-leaves except isolated nodes in the remaining network.
In other words, we only delete edges as compared to the original algorithm described
in section 2, and the number of nodes in the network, N , is kept constant.

Set \Delta t := N - 1 as the scaled time step of the modified removal process. Fix any
i, j \in [m] and j \not = i. Denote by Ni(qi, t) the expected number of nodes in module
i, which has qi neighbors within module i at time t. Similarly, denote by Nij(qij , t)
the expected number of interconnecting nodes in module i, which has qij neighbors
in module j at time t. Recalling the degree distributions defined in section 2, we have
Ni(qi, t) = NiPi(qi, t) = N

mP (qi, t) and Nij(qij , t) = riNiPij(qij , t) = riN
m P (qij , t).

Hence, the change of number of nodes after one iteration can be delineated by

Ni(qi, t+\Delta t) - Ni(qi, t) =
1

m\Delta t
(P (qi, t+\Delta t) - P (qi, t)) =

1

m

\partial P (qi, t)

\partial t
(3.12)

and

Nij(qij , t+\Delta t) - Nij(qij , t) =
ri

m\Delta t
(P (qij , t+\Delta t) - P (qij , t)) =

ri
m

\partial P (qij , t)

\partial t

(3.13)
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for all i, j \in [m] and i \not = j. Let L(t) be expected number of edges in the network at
time t. We have

L(t+\Delta t) - L(t) =
1

N\Delta t
(L(t+\Delta t) - L(t)) =

1

N

dL(t)

dt
.(3.14)

The evolution equations for (3.12)--(3.14) will be given in Theorem 2 below. We
can obtain the degree distributions Pi(qi, t), Pij(qij , t) and the expected normalized

number of edges L(t)
N at each time step t by solving these equations. Moreover, define

\^P (q, t) be the (overall) degree distribution of a random node in our network model at
time t. By using the total probability rule, we can calculate the degree distribution
as

\^P (q, t) =

m\sum 
i=1

1 - ri
m

Pi(q, t) +

m\sum 
i=1

ri
m

\sum 
qi+

\sum 
j \not =i qij=q

Pi(qi, t)

m\prod 
j \not =i

Pij(qij , t).(3.15)

Suppose that the initial network has intradegree distribution Pi(qi, t = 0) and
interdegree distribution Pij(qij , t = 0) for i, j \in [m] and i \not = j. For a given k, the

algorithm is iterated until some time \^tk at which \^P (q, \^tk) = 0 for all 1 \leq q \leq k  - 1.
Once \^tk is obtained, we can compute nkc and lkc as follows:

nkc =

\sum m
i=1 Nin

i
kc

N
=

\sum m
i=1 n

i
kc

m
and lkc =

L(\^tk)

N
,(3.16)

where ni
kc = 1 - Pi(0, \^tk).

In addition to the average degrees introduced in section 3.1, we further define
\langle q2ij\rangle :=

\sum \infty 
qij=0 q

2
ijP (qij) and a time-dependent version \langle q2ij\rangle t :=

\sum \infty 
qij=0 q

2
ijP (qij , t).

To complete this section, we present our rate equations as follows.

Theorem 2. Given k \geq 2, the rate equations for Gk-core percolation over a
network \scrG with m communities are given by

1

m

\partial P (qi, t)

\partial t
= R1i +R2i +R3i +R4i \forall i \in [m],(3.17)

where

R1i =  - 1

m

\left(      (1 - ri)
\theta (k  - qi)P (qi, t)\sum \infty 

si=0 \theta (k  - si)P (si, t)

+ ri

\theta (k  - qi)
\sum 

si+
\sum 

j \not =i sij=qi

P (si, t)
\prod m

j \not =i P (sij , t)

\infty \sum 
si=0,sij=0

(j \not =i)

\theta (k  - si  - 
\sum 

j \not =i sij)P (si, t)
\prod m

j \not =i P (sij , t)

\right)      ,

R2i = \delta qi,0

\Biggl( 
1

m
(1 + \Phi i(t)) +

m\sum 
j \not =i

rj
m
\Theta ij(t)

\Biggr) 
,

R3i =  - 1

m
\Phi i(t)

\Biggl( 
ri

\sum 
si+

\sum 
j \not =i sij=qi

siP (si, t)

\langle qi\rangle t

m\prod 
j \not =i

P (sij , t) + (1 - ri)
qiP (qi, t)

\langle qi\rangle t

\Biggr) 

 - 
m\sum 
j \not =i

rj
m
\Theta ij(t)

\Biggl( \sum 
si+

\sum 
j \not =i sij=qi

P (si, t)
sijP (sij , t)

\langle qij\rangle t

m\prod 
j\prime \not =i,j

P (sij\prime , t)

\Biggr) 
,
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R4i =
1

m
\Phi i(t)

\sum \infty 
si=0 si(si  - 1)P (si, t)

\langle qi\rangle t

\biggl( 
(qi + 1)P (qi + 1, t) - qiP (qi, t)

\langle qi\rangle t

\biggr) 
+

ri
m

m\sum 
j \not =i

\Biggl( 
\Theta ji(t)

\sum \infty 
sji=0 sji(sji  - 1)P (sji, t)

\langle qji\rangle t
(P (qi + 1, t) - P (qi, t))

\Biggr) 

+

m\sum 
j \not =i

rj
m
\Theta ij(t)

\Biggl( \infty \sum 
si=0

(si  - 1)P (si, t)

\Biggr) \biggl( 
(qi + 1)P (qi + 1, t) - qiP (qi, t)

\langle qi\rangle t

\biggr) 
,

\Phi i(t) :=

\sum \infty 
si=0 si\theta (k  - si)P (si, t)\sum \infty 
si=0 \theta (k  - si)P (si, t)

,

\Theta ij(t) :=

\sum \infty 
sji=0 sji

\infty \sum 
sj=0,s

ji\prime =0

(i\prime \not =i,j)

\theta (k  - sj  - 
\sum 

i\prime \not =j sji\prime )P (sj , t)
\prod m

i\prime \not =j P (sji\prime , t)

\infty \sum 
sj=0,s

ji\prime =0

(i\prime \not =j)

\theta (k  - sj  - 
\sum 

i\prime \not =j sji\prime )P (sj , t)
\prod m

i\prime \not =j P (sji\prime , t)
;

and

ri
m

\partial P (qij , t)

\partial t
= R5ij +R6ij +R7ij +R8ij \forall i, j \in [m], i \not = j,(3.18)

where

R5ij =  - ri
m

\theta (k  - qij)P (qij , t)\sum \infty 
sij=0 \theta (k  - sij)P (sij , t)

, R6ij = \delta qij ,0

\biggl( 
ri
m
(1 + \Phi i(t)) +

rj
m
\Phi ij(t)

\biggr) 
,

R7ij =  - ri
m
\Phi i(t)P (qij , t) - 

rj
m
\Theta ij(t)

qijP (qij , t)

\langle qij\rangle t
,

R8ij =

\left[   - ri
m
\Theta ji(t) +

\left(  m\sum 
i\prime \not =j

ri\prime 

m
\Theta ji\prime (t) +

rj
m
\Phi j(t)

\right)  \langle q2ji\rangle t
\langle qji\rangle t

\right]  
\cdot 
\biggl( 
(qij + 1)P (qij + 1, t) - qijP (qij , t)

\langle qij\rangle t

\biggr) 
;

and

1

N

dL(t)

dt
= R9,(3.19)

where

R9 =  - 1

m

m\sum 
i=1

\Phi i(t)

\biggl( 
\langle q2i \rangle t
\langle qi\rangle t

+ ri

m\sum 
j \not =i

\langle qij\rangle t
\biggr) 

 - 
m\sum 
i=1

ri
m

m\sum 
j \not =i

\Theta ji(t)

\biggl( \langle q2j \rangle t
\langle qj\rangle t

+ rj

m\sum 
j\prime \not =j

\langle qjj\prime \rangle t
\biggr) 
.

Proof. Define the step function \theta (q) = 1 if q > 0 and \theta (q) = 0 if q \leq 0. We prove
the three equations (3.17)--(3.19), respectively.
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(i) Equation (3.17): We first choose randomly a k-leaf in the network and remove
all its incident edges. If the chosen node resides in module i and is a noninterconnect-

ing node, then with probability \theta (k - qi)P (qi,t)\sum \infty 
si=0 \theta (k - si)P (si,t)

the number of nodes in module i

having degree qi < k within module i decreases by 1. On the other hand, if the chosen
node is in module i but is interconnecting, then with probability

\theta (k  - qi)
\sum 

si+
\sum 

j \not =i sij=qi

P (si, t)
\prod m

j \not =i P (sij , t)\sum \infty 
pi=0 \theta (k  - pi)

\sum 
si+

\sum 
j \not =i sij=pi

P (si, t)
\prod m

j \not =i P (sij , t)

the number of nodes in module i having degree qi < k within module i decreases by
1. By the total probability formula, the R1i term represents the contribution of the
chosen node to the left-hand side of (3.17) or equivalently (3.12).

When all edges incident to the chosen k-leaf and its neighbors are removed, the
k-leaf and all the neighbors become isolated nodes. If the chosen node lies in module
i, then on average 1 + \Phi i(t) nodes in module i become isolated. Here, \Phi i(t) =\sum \infty 

si=0 si\theta (k - si)P (si,t)\sum \infty 
si=0 \theta (k - si)P (si,t)

counts the average number of neighbors of the k-leaf node in

module i. If the chosen k-leaf lies in module j (j \not = i) and is an interconnecting node,
then the average number of nodes in module i that become isolated turns out to be\sum \infty 

pj=0 sji\theta (k  - pj)
\sum 

sj+
\sum 

i\prime \not =j sji\prime =pj

P (sj , t)
\prod m

i\prime \not =j P (sji\prime , t)\sum \infty 
pj=0 \theta (k  - pj)

\sum 
sj+

\sum 
i\prime \not =j sji\prime =pj

P (sj , t)
\prod m

i\prime \not =j P (sji\prime , t)
= \Theta ij(t).

Therefore, the term in the square brackets of R2i counts the average number of nodes
that become isolated in module i. The quantity \delta q,0 is the Kronecker delta, where
\delta q,0 = 1 if q = 0 and vanishes otherwise. Hence, the R2i term summarizes the
contribution of isolated nodes to the left-hand side of (3.17).

On the other hand, when edges incident to the nearest neighbors of the chosen
k-leaf are removed, the contribution of these neighbors of degree qi is represented by
the term R3i. In fact, when the chosen k-leaf node resides in module i, the number of
neighbors of degree qi within module i decreases by the average number of neighbors
of the chosen node in module i, i.e., \Phi i(t), with probability

ri
\sum 

si+
\sum 

j \not =i sij=qi

siP (si, t)

\langle qi\rangle t

m\prod 
j \not =i

P (sij , t) + (1 - ri)
qiP (qi, t)

\langle qi\rangle t
.

Here, the probability is calculated by considering whether the chosen node is inter-
connecting (the first term) or noninterconnecting (the second term), and we recall
that \langle qi\rangle t :=

\sum \infty 
si=0 siP (si, t). Next, when the chosen k-leaf node resides in module j

(j \not = i), the number of neighbors of degree qi within module i decreases by the average
number of neighbors of the chosen node in module i (which is \Theta ij(t) in this case) with
probability \sum 

si+
\sum 

j \not =i sij=qi

P (si, t)
sijP (sij , t)

\langle qij\rangle t

m\prod 
j\prime \not =i,j

P (sij\prime , t),

where we recall the definition \langle qij\rangle t :=
\sum \infty 

sij=0 sijP (sij , t).
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The final term R4i is responsible for the contribution of the second nearest neigh-
bors due to modification of their degrees. When all edges incident to the chosen
k-leaf and its nearest neighbors are removed, the degree of each of the second nearest
neighbors of the k-leaf node decreases by 1. Therefore, any second nearest neighbor
will contribute 1 to the left-hand side of (3.17) if its degree in module i at time t is
qi + 1 while contribute  - 1 if its degree in module i at time t is qi. In the first term
of R4i, when the chosen k-leaf is in module i, it has \Phi i(t) neighbors in module i and
each of them has

\sum \infty 
si=0 si(si  - 1)P (si, t)/\langle qi\rangle t outgoing neighbors on average within

module i. In the second term of R4i, when the chosen node is an interconnecting
node in module i, it has \Theta ji(t) neighbors in module j for j \not = i and each of them
leads to

\sum \infty 
sji=0 sji(sji  - 1)P (sji, t)/\langle qji\rangle t nodes on average back to module i. In the

third term of R4i we consider the situation when the chosen node is an interconnect-
ing node in module j (j \not = i). In this case, it has \Theta ij(t) neighbors in module i on
average, and each of them has

\sum \infty 
si=0(si  - 1)P (si, t) outgoing neighbors on average

within module i.
(ii) Equation (3.18): First, we choose randomly a k-leaf in the network and remove

all its incident edges. If the chosen node resides in module i and is an interconnecting
node, then with probability \theta (k  - qij)P (qij , t)/

\sum \infty 
sij=0 \theta (k  - sij)P (sij , t) the number

of interconnecting nodes in module i having qij < k neighbors in module j decreases
by 1. This gives the R5ij term, which represents the contribution of the chosen k-leaf
to the left-hand side of (3.18) or equivalently (3.13).

Next, when all edges incident to the chosen k-leaf and its neighbors are removed,
the k-leaf and all the neighbors become isolated nodes (hence no edge running between
modules i and j). If the chosen node is a noninterconnecting node in module i,
then \Phi i(t) nodes on average in module i become isolated. As edges are randomly
connected, \Phi i(t)ri of these nodes would be interconnecting. Similarly, if the chosen
node is an interconnecting node in module i, on average 1 + \Phi i(t)ri nodes become
isolated. Adding these two parts gives

1 - ri
m

\Phi i(t)ri +
ri
m
(1 + \Phi i(t)ri) =

ri
m
(1 + \Phi i(t)),

which leads to the first half of R6ij . If the chosen node is an interconnecting node in
module j, the number of nodes becoming isolated is \Theta ij(t) on average, which leads to
the second half of R6ij .

On the other hand, when edges incident to the nearest neighbors of the chosen
k-leaf are removed, the contribution of these neighbors in module i running qij edges
between modules i and j is represented by the term R7ij (each of these neighbors
will contribute  - 1 to the the left-hand side of (3.18)). In fact, when the chosen
k-leaf node is a noninterconnecting node in module i, there are on average \Phi i(t)ri
interconnecting neighbors in module i, each of which has qij outgoing neighbors in
module j with probability P (qij , t). When the chosen k-leaf node is an interconnecting
node in module i, there are again \Phi i(t)ri interconnecting neighbors in module i, each
of which has qij outgoing neighbors in module j with probability P (qij , t). Combining
these two parts yields

1 - ri
m

\Phi i(t)riP (qij , t) +
ri
m
\Phi i(t)riP (qij , t) =

ri
m
\Phi i(t)P (qij , t).

This gives the first half of R7ij . If the chosen node is an interconnecting node in
module j, it has \Theta ij(t) interconnecting neighbors in module i, each of which has
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outgoing degree qij (including the edge leading to it) to module j with probability
qijP (qij , t)/\langle qij\rangle t. This provides the second half of R7ij .

The last term R8ij is responsible for the contribution of the second nearest neigh-
bors due to modification of their degrees. When all edges incident to the chosen k-leaf
and its nearest neighbors are removed, the degree of each of the second nearest neigh-
bors of the k-leaf node decreases by 1. Hence, any second nearest neighbor will
contribute 1 to the left-hand side of (3.18) if it has qij + 1 neighbors in module j
at time t while contribute  - 1 if it has qij neighbors in module j at time t. When
the chosen k-leaf is an interconnecting node in module i, it has \Theta ji(t) neighbors in
module j and each of them has

\sum \infty 
sji=0 sji(sji  - 1)P (sji, t)/\langle qji\rangle t outgoing neighbors

on average back to module i. This yields the following contribution to the left-hand
side of (3.18):

ri
m
\Theta ji(t)

\sum \infty 
sji=0 sji(sji  - 1)P (sji, t)

\langle qji\rangle t

\biggl( 
(qij + 1)P (qij + 1, t) - qijP (qij , t)

\langle qij\rangle t

\biggr) 
.(3.20)

When the chosen k-leaf is an interconnecting node in module i\prime for i\prime \not = i, j, it has
\Theta ji\prime (t) neighbors in module j and each of them has \langle q2ji\rangle t/\langle qji\rangle t outgoing neighbors
on average to module i. This yields the contribution:

m\sum 
i\prime \not =i,j

ri\prime 

m
\Theta ji\prime (t)

\langle q2ji\rangle t
\langle qji\rangle t

\biggl( 
(qij + 1)P (qij + 1, t) - qijP (qij , t)

\langle qij\rangle t

\biggr) 
.(3.21)

When the chosen k-leaf is in module j, it has \Phi j(t)rj interconnecting neighbors in
module j on average. Each of them has \langle q2ji\rangle t/\langle qji\rangle t outgoing neighbors on average
to module i. Therefore, this gives the following contribution:

1

m
\Phi j(t)rj

\langle q2ji\rangle t
\langle qji\rangle t

\biggl( 
(qij + 1)P (qij + 1, t) - qijP (qij , t)

\langle qij\rangle t

\biggr) 
.(3.22)

Adding (3.20), (3.21), and (3.22) up, we derive the last contribution R8ij .
(iii) Equation (3.19): We consider the Gk-core percolation process. At each step,

the average number of edges removed is equal to the product of the average number
of nearest neighbors of the k-leaf and the average degree of a neighbor. When the
chosen k-leaf node is a noninterconnecting node in some module i \in [m], the average
number of neighbors is given by \Phi i(t). If a neighbor is noninterconnecting, its mean
degree is \langle q2i \rangle t/\langle qi\rangle t; if it is interconnecting, the mean degree becomes \langle q2i \rangle t/\langle qi\rangle t +\sum m

j \not =i\langle qij\rangle t. Hence, this yields the following contribution to the left-hand side of (3.19)
or equivalently (3.14):

 - 
m\sum 
i=1

1 - ri
m

\Phi i(t)

\left[  (1 - ri)
\langle q2i \rangle t
\langle qi\rangle t

+ ri

\left(  \langle q2i \rangle t
\langle qi\rangle t

+

m\sum 
j \not =i

\langle qij\rangle t

\right)  \right]  .(3.23)

When the chosen k-leaf node is an interconnecting node in some module i \in [m],
the average number of its neighbors within module i is again given by \Phi i(t). By
analyzing a neighbor in module i according to whether it is noninterconnecting or
interconnecting as above, we obtain a similar contribution as in (3.23). Moreover,
the average number of the chosen k-leaf's neighbors in module j (j \not = i) is given by
\Theta ji(t). If such a neighbor is noninterconnecting, its mean degree is \langle q2j \rangle t/\langle qj\rangle t; if it is
interconnecting, the mean degree is \langle q2j \rangle t/\langle qj\rangle t +

\sum m
j\prime \not =j\langle qjj\prime \rangle t. Therefore, the above

discussion yields the following contribution to the left-hand side of (3.19):
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 - 
m\sum 
i=1

ri
m

\Biggl[ 
\Phi i(t)

\biggl( 
(1 - ri)

\langle q2i \rangle t
\langle qi\rangle t

+ ri

\biggl( 
\langle q2i \rangle t
\langle qi\rangle t

+

m\sum 
j \not =i

\langle qij\rangle t
\biggr) \biggr) 

+

m\sum 
j \not =i

\Theta ji(t)

\biggl( 
(1 - rj)

\langle q2j \rangle t
\langle qj\rangle t

+ rj

\biggl( \langle q2j \rangle t
\langle qj\rangle t

+

m\sum 
j\prime \not =j

\langle qjj\prime \rangle t
\biggr) \biggr) \Biggr] 

.(3.24)

Adding (3.23) and (3.24) up, we obtain R9. This completes the proof of Theorem 2.

4. Numerical applications in networks with Erd\H os--R\'enyi modules. To
verify the theoretical results and explore the influence of communities on the Gk-core
percolation process, we consider a modular network of N = 108 nodes and m = 2
modules. We set N1 = N2 = N

2 and both modules are modeled by Erd\H os--R\'enyi (ER)

random networks following degree distribution P1(q) = P2(q) := P (q) = e - \lambda \lambda q

q! for

q \geq 0. Hence, the average degree of each module is given by \langle q\rangle = \lambda . Set r1 = r2 = r
and edges joining the interconnecting nodes in the two modules are characterized by
a random matching. In other words, P12(q) = P21(q) = \delta 1,0.

We show the expected relative fractions of nodes and edges in Gk-core with k = 2
in Figure 3 and with k = 3 in Figure 4. In particular, we use the generating function
formalism, i.e., Theorem 1, for calculating analytical G2-core and apply the rate
equation method developed in section 3.2 for calculating analytical G3-core. As the
Poisson degree distribution decays rapidly, we set the maximum degree as qmax = 40
and only solve the set of first 41 \times 3 = 123 equations in (3.17) and (3.18). In both
cases we observe good agreement between numerical and simulation results.

Several interesting observations can be drawn as follows. First, G2-core emerges
continuously in terms of both nkc and lkc for any fraction r of interconnecting nodes;
see Figure 3. In contrast, G3-core displays a first-order percolation transition for
both nkc and lkc and any fraction r; see Figure 4. We confirm this discontinuous
phase transition for Gk-core with k \geq 3 by performing extensive calculations. In
other words, the type of phase transition in Gk-core percolation is determined by k
and does not change with the intensity of interconnections between modules. Note
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Fig. 3. (a) Expected relative fraction of nodes in Gk-core, nkc, as a function of \lambda for modular
networks with two ER modules having size N = 108 and k = 2. Corresponding expected relative
fraction of edges in Gk-core, lkc, as a function of \lambda is shown in (b). Insets show the magnified
views around the percolation threshold \lambda \ast . Analytical results (solid lines) are based on the generating
function formalism in Theorem 1, and simulations (red squares for r = 0, blue upper triangles for
r = 0.001, green circles for r = 0.01, and magenta lower triangles for r = 0.1) are averaged over
300 realizations.
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Fig. 4. (a) Expected relative fraction of nodes in Gk-core, nkc, as a function of \lambda for modular
networks with two ER modules having size N = 108 and k = 3. Corresponding expected relative
fraction of edges in Gk-core, lkc, as a function of \lambda is shown in (b). Insets show the magnified
views around the percolation threshold \lambda \ast . Analytical results (dashed lines) are based on the rat
equation method in section 3.2, and simulations (red squares for r = 0, blue upper triangles for
r = 0.001, green circles for r = 0.01, and magenta lower triangles for r = 0.1) are averaged over
300 realizations.

that for r = 0, nkc and lkc for our example are equivalent to those for a single ER
network by Theorem 1. Our observation is in line with the known results found in
[1, 31] in the case of r = 0. When r = 0, the percolation threshold \lambda \ast (k = 2) is
estimated as 2.709 (c.f. Figure 3) and \lambda \ast (k = 3) is estimated as 6.415 (c.f. Figure 4).
Second, we find that nkc(r, \lambda ) > nkc(0, \lambda ) = 0 and lkc(r, \lambda ) > lkc(0, \lambda ) = 0 for r > 0,
showing a nontrivial Gk-core at the percolation threshold \lambda \ast . The small fraction of
interconnecting nodes boosts nkc and lkc prominently only around the critical point \lambda \ast .
This contrasts with the recent observation in [31], where increase of average degree
through random addition, hub-targeted addition, and localized addition invariably
yields uniform growth of nkc and lkc in ER networks with any \lambda . This phenomenon
reveals that the network with community structure is essentially different from the
no-community case. The interconnecting nodes play a unique role in enhancing the
network robustness in terms of Gk-core.

Next, we further examine the field-type physical effect of the fraction r of intercon-
necting nodes on the percolation transitions by investigating the scaling relationship
between nkc(r, \lambda ), r, and \lambda , possibly serving as order parameter (magnetization), ex-
ternal field and temperature, respectively [26]. The effect of a magnetic field in a spin
system can be described by three critical exponents \beta , \delta , and \gamma near the criticality
following the universal Widom's identity \beta (\delta  - 1) = \gamma [4]. In our Gk-core percolation
processes, the exponent \beta characterizes the behavior of order parameter nkc with zero
magnitude of the field near the criticality \lambda \ast and is given by

nkc(0, \lambda ) - nkc(0, \lambda 
\ast ) \sim (\lambda  - \lambda \ast )\beta .

The exponent \delta relates the order parameter with the magnitude of the magnetic field,
r, at the critical point following

nkc(r, \lambda 
\ast ) \sim r

1
\delta .

The exponent \gamma describes the susceptibility of the spin system in the critical region
as \Bigl( \partial nkc(r, \lambda )

\partial r

\Bigr) 
r\rightarrow 0

\sim | \lambda  - \lambda \ast |  - \gamma .
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Figure 5 presents our results for G2-core (or simply core) percolation over modular
networks with two ER modules as above. We obtain \beta = 2.6, \delta = 1.292, and \gamma = 0.759
based on numerical calculations using the generating function formalism. These values
are consistent with the Widom identity, indicating that the interconnecting nodes act
analogously as an external field on the G2-core percolation. Hence, the system of
three exponents \beta , \delta and \gamma has two degrees of freedom in G2-core percolation. This
phenomenon echoes a recent discovery for giant component based metric in modular
network resilience [8, 10] for continuous phase transitions.
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Fig. 5. Estimation of critical components for G2-core of the modular networks with two ER

modules. (a) nkc(0, \lambda ) as a function of \lambda  - \lambda \ast . (b) nkc(r, \lambda 
\ast ) as a function of r. (c)

\partial nkc(r,\lambda )
\partial r

\bigm| \bigm| \bigm| 
r

as a function of \lambda \ast  - \lambda with r = 0.0001. Numerical results (cyan diamonds) are plotted based on
Theorem 1 with added lines as an aid to eye. All parameters are the same as in Figure 3.

As a comparison, we show in Figure 6 the estimates of \beta = 0.07, \delta = 87, and
\gamma = 0.08 for G3-core percolation, which apparently do not satisfy the Widom identity.
Very recently, it is discovered remarkably in [13] that an interdependent ER network
with community structure undergoing first-order percolation transitions fulfills the
Widom identity with nontrivial exponents (\delta = 2, \gamma = \beta = 0.5). Therefore, our
observation from Figure 6 suggests that the violation is presumably not a result
from abrupt transitions but uncovers a radical physical discrepancy between G2-
core percolation and Gk-core percolation for k \geq 3 over networks with community
structure.
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Fig. 6. Estimation of critical components for G3-core of the modular networks with two ER

modules. (a) nkc(0, \lambda ) as a function of \lambda  - \lambda \ast . (b) nkc(r, \lambda 
\ast ) as a function of r. (c)

\partial nkc(r,\lambda )
\partial r
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as a function of \lambda \ast  - \lambda with r = 0.0001. Numerical results (cyan diamonds) are plotted based on
Theorem 1 with added lines as an aid to eye. All parameters are the same as in Figure 4.

5. Concluding remarks. In this paper, we have studied a complex network
model with community structure mediated by a small fraction of interconnecting
nodes. We have developed two complementary theoretical frameworks, namely, the
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generating function formalism and the rate equation method, to tackle the Gk-core
percolation over the random networks with community structure. Different from tra-
ditional giant component based metrics, the Gk-core structure is ideal for reflecting
network resilience affected by spreading virus or epidemics when weak nodes (k-leaves)
and their nearest neighbors are knocked out. It is found numerically and by simu-
lations that G2-core displays a continuous phase transition while Gk-core for k \geq 3
undergoes a discontinuous percolation transition for any fraction of interconnecting
nodes. The influence of interconnecting nodes is salient around the critical value.
Moreover, our numerical results reveal that the effect of interconnections on G2-core
percolation behaves like a magnetic field in a ferromagnetic-paramagnetic spin sys-
tem, following Widom's identity. Interestingly, this relationship in general does not
hold for G3-core experiencing discontinuous percolation transitions. However, given
our simulations are performed on a finite system, it might also be likely that the
critical exponents observed in Figure 6 are numerical approximates to the true values
\beta = 0, \delta = \infty , and \gamma = 0, which are consistent with Widom's identity \gamma = \beta (\delta  - 1).
It is hoped that the methodology developed in this paper could be applied to deepen
our understanding of structure characteristics of modular networks and facilitate the
design of resilient networked systems featuring community structures.
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