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Abstract 

Borates are promising candidates as dielectric substrate materials in low temperature cofired 

ceramics technology (LTCC) due to their relative low sintering temperatures and relative 

permittivities compared to their counterparts. However, synthesizing borates having single-phase is 

still challenging because of the volatility and hydrophilicity of boron resources. In this work, a 

compositional design was utilized to synthesize single-phase LiBGeO4 ceramics over a broad 

temperature range from 600 to 840 
o
C. Radio-frequency dielectric behaviours featured a strong

temperature dependence, especially at high temperatures (> 400 
o
C), which is related to the thermally

activated polarizations. LiBGeO4 ceramic sintered at 820 
o
C has optimum microwave dielectric

properties with the relative permittivity (r) of 6.28, a quality factor (Q×f) of 21,620 GHz, and a 

temperature coefficient of resonance frequency (τf) of -88.7 ppm/
o
C. LiBGeO4 also showed chemical

inertness when cofired with silver (Ag), provided an evidence for its utilization in LTCC technology. 

Overall, this work provides a strategy for facile synthesis of phase pure borates, via the proposed 

two-step process to obtain stable boron resources. 
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1. Introduction 

With the recent commercialization and adaptation of 5G, microwave dielectric materials have 

witnessed accelerated progress towards miniaturization for high-permittivity materials and 

exploration of low-permittivity materials for fast signal propagation [1-2]. Low-temperature co-fired 

ceramics (LTCC) technology has an ability to integrate various passive microwave components like 

resonators, capacitors, filters, and antennas, etc [3-5]. It is expected that LTCC can achieve 

miniaturization and high data transmission speed simultaneously by laminating low-permittivity 

candidates to form 3D modules. One of the conditions for these LTCC is to have relatively low 

sintering temperatures (< 960 
o
C), as the ceramics can be cofired with the commonly used inner 

metal electrodes such as Ag (melting temperature 961 
o
C), without having a chemical reaction. High 

quality factors (Q×f) and temperature stability of the resonance frequency should be fulfilled [6-9]. 

Generally, the use of glass or addition of sintering aids are recognized as compelling strategies 

for reducing sintering temperature [10, 11]. However, these methods usually cause deterioration of 

the dielectric properties (especially the quality factor) as the residual and aggregated glasses or 

sintering aids act as second phases which leads to additional interfaces [12, 13]. Recently, ceramics 

with intrinsic low densification temperatures, e.g. Li2O-M2O5-TiO2 (M = Nb, Ta) system and 

Bi2O3-TeO2 system, have been widely explored, which opened a new stage for LTCC technology [14, 

15]. Until now, numerous ceramics that could be densified at temperatures lower than 960 
o
C have 

been developed [16, 17], consisting mainly of low-melting-point constituents, such as B2O3 (450 
o
C), 

Bi2O3 (824 
o
C), MoO3 (795 

o
C), and V2O5 (690 

o
C), etc [18-23]. Amongst them, borates exhibit 

extremely low densification temperatures (< 700 
o
C) and ultra-low relative permittivities (e.g. r = 

4.2 for Li3AlB2O6, and r = 4.2 for H3BO3) because of the low ionic polarizability of B
3+

 (0.05 Å), 
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making them excellent candidates for ultra-low temperature co-fired ceramics (ULTCC) [24, 25]. 

In our previous work, Li2GeO3 in a binary Li2O-GeO2 system was reported to possess excellent 

dielectric properties with a relative permittivity r ~ 6.36, quality factor Q × f ~ 29 000 GHz, and a 

temperature coefficient of resonance frequency τf ~ -72 ppm/°C [26]. There are reasons to believe 

that by introducing B2O3 (melting point of 450 
o
C) in the Li2O-GeO2 system, simultaneous low 

sintering temperature and good dielectric properties would be achieved [27]. Moreover, LiBGeO4 is 

the only crystalline compound in the Li2O-GeO2-B2O3 system, while the others are mainly 

non-crystalline (glassy), e.g. Li2O·B2O3·GeO2 and Li2O·B2O3·4GeO2 [28], which makes it a unique 

material for LTCC application. 

Single crystal LiBGeO4 grown by a melting process was first reported by Ihara in 1971 [29], 

which followed subsequent studies on its crystal structure and nonlinear optical properties [30, 31]. 

However, despite its first reported synthesis was more than five decades ago, the main focus of 

research was on single crystal LiBGeO4. Synthesis of polycrystalline LiBGeO4 has been challenging 

due to the volatility and hydrophilicity of boron resources [32]. Moreover, there has been a 

controversy regarding the crystal structure of LiBGeO4 (orthorhombic or a tetragonal system), which 

results from the twinned structure of the single crystals [29, 33]. Therefore, the importance of the 

present work lies in the fact that the structure analysis based on ceramic powders will elude the 

twinned structure and provide reliable structure identification for LiBGeO4. 

Moreover, the melting temperature (Tm) of LiBGeO4 was reported to be around 900 
o
C [31], it is 

expected that LiBGeO4 could be densified at relatively low temperatures (~ 600 
o
C, 2/3Tm), 

rendering its possible applications in ULTCC. Therefore, in the current work, trials for LiBGeO4 

ceramics via different processing routes were performed and the dielectric properties were 
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characterized over a broad frequency and temperature range. 

2. Experimental 

LiBGeO4 ceramics were synthesized by a conventional solid-state reaction method, as reported 

in our previous work [2]. The raw materials were Li2CO3 (99.99%, Aladdin Industrial Corporation), 

GeO2 (99.99%, Aladdin Industrial Corporation), and B2O3 (99.99%, Guo-Yao Co. Ltd, China). To 

obtain single-phase LiBGeO4, three processes were proposed for powder synthesis: (i) Simple 

stoichiometric mixing of Li2CO3, B2O3, and GeO2 in a ratio of 1:1:2; (ii) addition of extra 5 mol% 

B2O3 to compensate the loss of boron; (iii) Precursor synthesis: LiBO2 powders were synthesized 

from Li2CO3 and B2O3 in a 1:1 ratio at 700 
o
C, as boron sources, which was subsequently mixed with 

GeO2, and finally fired at 600-840 
o
C to form LiBGeO4. 

Thermoanalysis was done to guide chemical synthesis and ceramic densification using a DTA 

499 F3 Jupiter (NETZSCH, Germany). The phase purity was investigated using an X-ray diffraction 

(XRD, CuKα1, 1.54059A, Model X’ Pert PRO, PANalytical, Almelo, The Netherlands). The 

microstructures were examined using field-emission scanning electron microscopy (FESEM; S4800, 

Hitachi, Tokyo, Japan). The densities of all samples were measured by the Archimedes’ method. 

Silver paste was coated on both sides of the ceramics and subsequently fired at 650 °C for 30 min. 

RF dielectric properties versus frequency and temperature were measured using an Agilent 4294A 

precision impedance analyzer and a TZDM-200-8001 MHz analyzer equipped with a temperature 

controller. The microwave dielectric properties were measured based on the modified 

Hakki-Coleman method [34, 35]. 

3. Results and discussion 

3.1 Phase formation of LiBGeO4 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 

Based on the compositional design, three approaches were used to explore the formation of pure 

LiBGeO4. Figure 1 shows XRD pattern of the powder synthesized from simple mixing process at 

820 
o
C temperature. By indexing with the standard JCPDS card (No. 33-0792), the main phase was 

assigned to be LiBGeO4, but some peaks belonging to Li2GeO3 (No. 17-0193) were detected. 5mol% 

excess B2O3 addition, to some extent suppressed the formation of Li2GeO3 but did not eliminate the 

second phase. These results prove that a simple mixture of raw materials of Li2CO3, B2O3 and GeO2 

failed to form single-phase LiBGeO4. This might be caused by the loss of B2O3 due to its solubility 

in the aqueous environment and volatilization during sintering at elevated temperatures. 

 

Figure 1 XRD patterns recorded on the calcined powders at 820 
o
C from the simple mixing process: 

for the stoichiometric LiBGeO4 and with 5 mol% extra B2O3 as raw materials and sintered (JCPDS 

No. 33-0792 for LiBGeO4, and No. 17-0193 for Li2GeO3). 

Inspired by the precursor method to synthesize Pb(Mg1/3Nb2/3)O3 [36], B2O3 was pre-reacted 

with Li2CO3 to form LiBO2 as a stable boron source, which was then reacted with GeO2 to form 

LiBGeO4 as shown in the following reaction sequence: 

Li2CO3+B2O3→LiBO2              (1) 
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LiBO2 + GeO2→LiBGeO4           (2) 

Figure S1 (in supplementary data) shows XRD pattern of the LiBO2 powders calcined at 900 
o
C, 

exhibiting a single phase by indexing with the JCPDF card No. 51-0517. To determine the 

thermodynamics of chemical reaction, thermal analysis was performed. Figure 2a shows the DSC 

curves of LiBO2 and GeO2 mixture in a 1:1 molar ratio in the temperature range of 25
 o

C-750 
o
C. 

Two primary exothermic peaks were observed in that temperature range (495 
o
C and ~ 600 

o
C). The 

first abroad peak can be attributed to the chemical reaction of the reactants while the second might be 

related to the transformation from the amorphous state to the crystalline state [37, 38]. A small peak 

~ 200 
o
C, demonstrated the evaporation of hydroxide and/or residual water in the raw materials [39]. 

 

Figure 2 (a) Thermogravimetric analysis and differential scanning calorimeter (TGA/DSC) analysis 

of LiBGeO4; (b) X-ray diffraction patterns of LiBGeO4 sintered from 600 to 840 
o
C. 

Figure 2b shows X-ray diffraction patterns of as-sintered LiBGeO4 at 600-840 
o
C for 6 h from 

appropriate proportions of LiBO2 and GeO2. Sharp diffraction peaks account for the high degree of 

crystallinity, which is in line with the DSC analysis. All peaks can be indexed to LiBGeO4 (JCPDS 

No. 33-0792), which indicates the formation of LiBGeO4 and its structural stability over a wide 

temperature range (600-840
 o
C). 
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Figure 3 Rietveld refinement on the LiBGeO4 sample via a two-step sintering at 820 
o
C with the 

schematic crystal structure shown in the inset (the circle represents the calculated profiles, and the 

black line denotes the measured profiles, while the difference between them are shown in blue line; 

the pink lines denote the Brag positions). 

To further validate the phase purity and study the crystal structure of LiBGeO4, Rietveld 

refinement was performed using a structural modal with an I-4 tetragonal structure based on the 

previous work [31]. The refinement was carried out in the order of the scale factor, zero shift, unit 

cell parameters, background polynomial, profile parameters, atomic positional coordinates, and 

isotropic temperature factors. A good match between the observed and the calculated patterns were 

obtained as shown in Figure 3 which indicates the valid structural model and the reliable refinement 

result. The schematic crystal structure and coordination polyhedron for Li, B and Ge are shown in 

the inset of Figure 3. The crystal structure is composed of alternating LiO4, BO4, and GeO4 

tetrahedra that are connected at corner to form frameworks. Each oxygen ion is coordinated by two 

Li
+
, one Ge

4+
, and one B

3+
 ion. The Wyckoff position, atomic occupation, cell parameters, cell 

volume, Rietveld reliable factors Rp and Rwp are summarized in Table 1. 

3.2 Microstructure evolution in LiBGeO4 
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Figure 4 SEM images of LiBGeO4 sintered at (a) 760 

o
C, (b) 780 

o
C, (c) 800 

o
C, (d) 820 

o
C, and (e) 

840 
o
C, and (f) change in the bulk and relative densities of LiBGeO4 as a function of sintering 

temperatures. 

Figure 4 (a-e) shows the scanning electron micrographs for LiBGeO4 samples sintered at various 

temperatures (760-840
 o

C). When sintered at 760 
o
C, the microstructure demonstrated largely closely 

packed grains, however, with a small amount of porosity (relative density ~ 78%). The grain size 

gradually increased with the increasing sintering temperature increased and a dense microstructure 

was achieved in the sample sintered at 820 
o
C (relative density ~ 97%). 

3.3 Dielectric properties of LiBGeO4 

 
Figure 5 Frequency dependence of the relative permittivity and loss tangent recorded at radio 

frequencies from 100 Hz to 1 MHz. 
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Relative permittivity (r) and dielectric loss tangent (tan) exhibited evident dependence on 

frequency, especially at low-frequency range with a steeper slope as shown in Figure 5. The 

dielectric constant decreases obviously when f < 1 kHz. Upon further increasing the frequency, εr 

reaches a stable value of 7.25. Similar trends were observed in loss tangent which decreases slightly 

with frequency. The frequency correlation of dielectric behaviors is attributed to the contribution to 

the polarization from slow mobile charges which cannot pace with the changing electric field at 

higher frequencies. 

 

Figure 6 The temperature dependence of the relative permittivity and loss tangent of the LiBGeO4 

ceramics. 

Figure 6 shows the variations in dielectric properties as a function of temperature in a broad 

range of 20-650 
o
C. Weak temperature dependence was observed at a lower temperatures (< 300 

o
C) 

which increased when temperature increased to 400 
o
C. During the same temperature range, the 

dielectric properties also exhibited frequency independence, with a strong temperature dependence 

on both r and tan occurring at T > 400 
o
C, accompanied by an obvious frequency dispersion. The 

increased dielectric constant, losses and frequency dispersion indicate the presence of one or more 

thermal activated polarizations that are frequency-dependent and frozen at low temperatures. 

Especially, the r-T curve with f = 10 kHz shows a broad peak at 546 
o
C, which disappeared when the 
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frequency was increased to > 100 kHz. Combined with the remarkable decrease in the magnitudes of 

dielectric peaks and the nonpolar crystal space group (I-4), it is reasonable to refer that the observed 

dielectric anomaly is not related to a phase transition but a thermal-activated dielectric relaxation that 

is related to the space charges. Similar phenomena have also been reported in some ceramic 

materials, e.g. CaTiO3, Ca5Nb4TiO17 [40, 41]. 

Space charges tend to aggregate at grain boundaries, which leads to electrically heterogeneous 

microstructures characterized by insulating grains and semiconducting grain boundaries. It is well 

known that impedance spectroscopy is a favorable technique to separate inhomogeneous 

microstructures by correlating the electrical properties to the microstructures [42-44]. Hence, to get a 

comprehensive understanding of the thermal activated dielectric anomaly, complex impedance 

analysis was conducted over the temperature range of 530 to 610 
o
C (the temperature range where 

dielectric anomaly occurred). 

 

Figure 7 The frequency dependence of the real part (Z′) and the imaginary part (Z′′) of complex 

impedance at various temperatures (in log scale for the horizontal axis). 
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Figure7 (a-e) shows the frequency dependence of the real part (Z′) and the imaginary part (Z′′) 

of impedance at various temperatures from 530-610 
o
C (in log scale). At a constant temperature, Z′ 

value decreased continuously with increasing frequency. A sharp drop was observed at a 

characteristic frequency (also known as relaxation frequency fr) at which the Z′′ value reached the 

peak value. This characteristic frequency shifted fr to a high-frequency band with increasing 

temperature, suggesting a thermally activated process. The variation in fr (in log scale) is also plotted 

in Fig.6f as a function of the reciprocal of temperature (1/T). Nonlinear variation is seen between logf 

and 1/T indicating that the correlated electrical relaxation is not a simple long-range conductivity but 

related to a variable-range-hopping electrical mechanism [45]. 

Table 2 summarizes the microwave dielectric properties (r, Q×f, and τf) of LiBGeO4 sintered at 

various temperatures and compares the dielectric performances of some low-firing borates and 

germanates [13, 20, 24, 32, 46, 47]. For LiBGeO4, both relative permittivity (r) and quality factor 

(Q×f) featured a strong dependence on sintering temperature with a rise-fall variation tendency; 

whereas the variation in τf with sintering temperature is low, and fluctuated around -90 ppm/
o
C. The 

sample sintered at 820 
o
C possessed a combination of optimized dielectric properties with r = 6.28, 

Q×f = 21,620 GHz, and τf = -88.7 ppm/
o
C. In comparison, the Li-based borates have a relatively low 

permittivity whereas Bi-and Ba-containing counterparts possess higher permittivities. As shown, 

either germanates or borates show negative τf values which need additional compensation 

mechanisms to modulate and satisfy practical needs. Generally, compositional regulation, either by 

forming composites or through ionic substitution to form solid solutions, has proved to be effective 

on compensating the τf values [48, 49]. Further efforts are in progress to adjust the thermal stability 

of resonance frequency for LiBGeO4 via the addition of TiO2 with τf = +450 ppm/°C. Compared to 
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germanates, borates exhibit much lower sintering temperatures, making them a better potential 

candidate for application in LTCC or ULTCC technology. 

 

Figure 8 XRD and SEM micrograph of LiBGeO4 cofired with silver electrode at 820 °C. 

To estimate potential of LiBGeO4 for practical application in LTCC, the sample was cofired 

with silver (Ag) electrode to determine the chemical compatibility as it is a vital part in LTCC 

technology. XRD was conducted on the cofired sample at 820 
o
C and shown in Figure 8. XRD 

exhibited separated diffraction peaks for Ag and LiBGeO4
.
 Ag was indexed with a standard PDF 

cards (No. 01-1167). SEM images (in the inset of Figure 8) showed distinct grains which are 

different in sizes and elemental contrasts. These combination of XRD and SEM results indicate that 

no chemical reaction took place between LiBGeO4 and silver, which is a convincing evidence for its 

utilization in LTCC technology. 

4. Conclusions 

Single-phase LiBGeO4 ceramics were successfully prepared by a two-step process by which 

LiBO2 was initially synthesize as a reliable boron resource followed by the synthesis of LiBGeO4 

powder. X-ray diffraction and Rietveld refinement confirmed that LiBGeO4 crystallized in an I-4 
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tetragonal structure. Frequency and temperature had a dominant effect on dielectric properties above 

400
 o

C. At l MHz, a low relative permittivity of 7.25 was obtained and at microwave frequency 

bands, the optimized dielectric properties with r = 6.28, Q×f = 21,620 GHz, and τf = -88.7 ppm/
o
C 

were achieved in the sample sintered at 820 
o
C. LiBGeO4 also retain stable crystal structure when 

cofired with silver, which renders its capacity in low-temperature-cofiring ceramic technology. Our 

work provides a strategy for facile synthesis of phase pure borates, via the proposed two-step process 

to obtain stable boron resources. 
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Table 1 The Wyckoff position, atomic occupation, cell parameters, cell volume, and Rietveld reliable 

factors Rp and Rwp 

Atom Wyckoff x y z Occ. 

Li1 2b 0.000 0.000 0.500 1.000 

Ge1 2a 0.000 0.000 0.000 1.000 

B1 2c 0.000 0.500 0.250 1.000 

O1 8g 0.178 0.300 0.135 1.000 

a = b = 4.508 Å, V = 139.9 Å
3
, Rp = 7.47%, Rwp = 9.82% 
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Table 2 Sintering temperature and microwave dielectric properties of LiBGeO4 compared with some 

low-firing borates and germanates. 

Compound S.T. (
o
C) r Q×f (GHz) f (ppm/

o
C) electrode Reference 

LiBGeO4 

760 6.17 17,490 -94.1 

Ag This work 

780 6.22 18,900 -89.2 

800 6.25 20,980 -92.0 

820 6.28 21,620 -88.7 

840 6.20 19,760 -86.3 

BaCu(B2O5) 810 7.4 50,000 -32 not studied [13] 

Bi6B10O24 660 10 10,800 -41 not studied [20] 

Bi4B2O9 625 39 2600 -203 not studied [20] 

Li3AlB2O6 640 6.0 41,800 -72 not studied [24] 

Li6B4O9 640 5.95 41,800 -72 Ag [32] 

Bi2Ge3O9 875 9.7 48,573 -29.5 not studied [46] 

Li2NiGe3O8 940 8.6 42,200 -78.2 Ag [47] 

Li2CoGe3O8 950 9.0 40,500 -42 Ag [47] 
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Figure captions: 

Figure 1 XRD patterns for stoichiometric LiBGeO4 and LiB1.05GeO4 with B2O3 and H3BO3 as raw 

materials and sintered at 820 
o
C.

Figure 2 (a) Thermogravimetric analysis and differential scanning calorimeter (TGA/DSC) analysis 

of LiBGeO4; (b) X-ray diffraction patterns of LiBGeO4 sintered from 600 to 840 
o
C.

Figure 3 Rietveld refinement on the LiBGeO4 sample via a two-step sintering at 820 
o
C with the

schematic crystal structure shown in the inset. 

Figure 4 SEM images of LiBGeO4 sintered at (a) 760 
o
C, (b) 780 

o
C, (c) 800 

o
C, (d) 820 

o
C, and (e)

840 
o
C, and (f) change in the bulk and relative densities of LiBGeO4 as a function of sintering

temperatures. 

Figure 5 The frequency dependence of the relative permittivity and loss tangent recorded at radio 

frequencies from 100 Hz to 1 MHz. 

Figure 6 The temperature dependence of the relative permittivity and loss tangent of the LiBGeO4 

ceramics. 

Figure 7 The frequency dependence of the real part (Z′) and the imaginary part (Z′′) of complex 

impedance at various temperatures (in log scale for the horizontal axis). 

Figure 8 (a) XRD and (b) SEM micrograph of LiBGeO4 cofired with silver electrode at 820 °C. 




