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ABSTRACT This paper proposes a two-stage robust-stochastic framework to evaluate the effect of the 

battery-based energy storage transport (BEST) system in a day-ahead market-clearing model. The model 

integrates the energy market-clearing process with a train routing problem, where a time-space network is 

used to describe the limitations of the rail transport network (RTN). Likewise, a price-sensitive shiftable 

(PSS) demand bidding approach is applied to increase the flexibility of the power grid operation and reduce 

carbon emissions in the system. The main objective of the proposed model is to determine the optimal 

hourly location, charge/discharge scheduling of the BEST system, power dispatch of thermal units, flexible 

loads scheduling as well as finding the locational marginal price (LMP) considering the daily carbon 

emission limit of thermal units. The proposed two-stage framework allows the market operator to 

differentiate between the risk level of all existing uncertainties and achieve a more flexible decision-making 

model. The operator can modify the conservatism degree of the market-clearing using a non-probabilistic 

method based on info-gap decision theory (IGDT), to reduce the effect of wind power fluctuations in real-

time. In contrast, a risk-neutral-based stochastic technique is used to meet power demand uncertainty. The 

results of the proposed mixed-integer linear programming (MILP) problem, confirm the potential of BEST 

and PSS demand in decreasing the LMP, line congestion, carbon emission, and daily operation cost. 

INDEX TERMS Battery-based energy storage transport, demand side-management, rail transport network,  

day-ahead market clearing, hybrid optimization technique, wind energy. 
 

                                                          
NOMENCLATURE

Index  

bl Index of demand blocks  

,b b   Index of buses  

i  Index of thermal units 
j  Index of loads 

,k n  Index of train station  

m  Index for generation blocks 
t  Index of times  
ts  Index of time-spaces  
tr  Index of trains  
wp  Index of wind turbine  
w  Index of scenarios  

Constant  

BL  Number of demand blocks  

M  Number of generation blocks 

N  Number of thermal units  

T  Number of time intervals  

W  Number of scenarios  

TR  Number of trains  

TS  Number of time-spaces  

U  Number of thermal units  

WP  Number of wind turbine  

TR  Number of trains  

J  Number of electrical loads 

A Set of arcs related to time-space in RTN 

kA   
Set of arcs in a time-space network which 

end at station k. 

kA   
Set of arcs in a time-space network which 

start from station k. 

trC  The transport cost of train tr 

ch

trC  
Operation cost of trains during charging 

mode 
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dis

trC  
Operation cost of trains during charging 

mode 

,j tvoll  Value of loss load j at time t 

min max

, ,/i m i mP P  Minimum/ maximum power generated by 

unit i 
/i iMDT MUT  Minimum down/ up time of thermal unit i 

/SU SD

i iC C  Startup/shutdown cost of thermal unit i 

/down up

i iR R  Ramp down/ up of thermal unit i 

,min ,max/ch ch
tr trP P

 

Minimum/ maximum power charged by 

train tr 

,min ,max/dis dis
tr trP P

 

Minimum/ maximum power discharged by 

train tr 

/ch dis

tr tr   Charging/ discharging efficiency of train tr 

min max/tr trE E  Minimum/ maximum energy capacity in 

train tr  

,0trE  Initial energy capacity of train tr  

,j tD  Load demand j at time t 
max

,bl jdr  Maximum demand block  

,j tFL  Value of flexible load demand j at time t 

,bl jBid  Bid price of load j at block bl 

/down up

j jd d  Ramp down/up rate for demand at 

consecutive time intervals 

',b b
X  Line reactance between buses b and b   

max
Line

PX  Maximum power capacity of transmission 

line  

,wp tP


 The forecasted wind power 

EC  
Maximum allowable daily emission 

pollution  

,i tMC  Minimum marginal cost of thermal unit i 

  Load factor participation in DR 

Variable  

SF  Social welfare  

, ,bl j tdr  Demand block bl for load j at time t 

,i tP  Power generated by unit i at time t 

, ,i t wP  Power generated by unit i at time t and 

scenario w 

, ,/ch dis

tr t tr tP P  
Value of power charged/ discharged by 

train tr at time t 

w  Probability of scenario w 

, ,j t wLsh  Load shedding value for load j at t time and 

scenario w 

, ,/i u i uTU TD

 

Number of successive ON/ OFF hours of 

unit i 

, ,/ch dis

tr t tr tP P  
Power charged/ discharged by train tr at 

time t 

,tr tE  Energy capacity of train tr at time t 

,j t
DR  

Supplied demand of load j at time t after 

implementation of  DR  

', ,b b t
PX  Power flow value crossing transmission line 

between buses b and b at time t 

,( )E

i tF P  Emission function of thermal unit i 

, ,/b t b t    Angle magnitude of bus b and b at time t 

, , ,bl j t wdr  Adjusted demand of load j at time t and 

scenario w 

, , ,i t m wP  Adjusted power of unit i in real-time 

dispatch at time t and scenario w 

, ,

ch

tr t wP  
Adjusted charge power of BEST at time t 

and scenario w 

, ,

dis

tr t wP  
Adjusted discharge power of BEST at time t 

and scenario w 

, ,j t w  
Value of variable  , ,D DR FL in second 

stage 

, ,tr t w  
Value of variable  , ,

ch dis
E P P in 

second stage 

, ,i t w  Value of variable  P in second stage 

, ,b t w  
Value of variable  ,PX  in second 

stage 

Binary variable 

,i tY / ,i tZ  Binary variable for shutdown/startup i at 

time t 

,i tI  
Binary variable to denote the status of unit i 

at time t 

, ,k n tsI  Status of routes k n of train tr at time span 

ts. 

,

ch

tr tI /
,

dis

tr tI  
Binary variable for charging/discharging 

mode of train tr at time t 
 
I. INTRODUCTION 

A. Overview 

The total global capacity from onshore wind energy is 

projected to reach 1787 GW by 2030 [1]. The fast-growing 

installation of fluctuating wind energy with the aim of 

coping with global warming has introduced new challenges 

like as energy imbalance, reliability and system security 

issues. In addition to the power fluctuations, one of the 

significant obstacles of renewable energy source (RES) 

development, especially wind energy, is the transfer of 

produced energy from wind farms to load centers through 

transmission lines. This issue, in addition to causing high 

costs, also results in the congestion of transmission lines. A 

suitable solution to overcome such challenges is to employ 

fast-response and flexible technologies in the power 

system. Energy storage systems (ESS) attracted much 

attention to compensate for the fluctuation of wind energy 

[2]. Among all energy storage facilities, battery energy 

storage systems (BESS) with high efficiency, high power 

density, faster response, as well as no specific geographic 

requirements can be integrated with the high penetration of 

wind energy. One of the most important features of BESS is 

the mobility potential to move easily from place to place. 

The mobility of BESS through rail transport networks 

(RTN), while facilitating the participation of BESS in the 

energy markets, also is a suitable option for overcoming the 

issues related to the transmission of wind energy from wind 

farms to load centers, thereby saving the cost of installing 

new or expanding the existing power transmission lines [3]. 
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Furthermore, battery mobility via RTN and giving out 

energy in buses with relatively low congestion can impose 

the scheduling of expensive highly polluting thermal units. 

     Restructuring the power system and the power market 

has gained new emergence, which consistently provides a  

competitive environment for both consumers and 

producers. RES and BESS owned by the different entities 

started to take part in the energy markets [4]. Besides, there 

are enormous interests in utilizing demand response (DR) 

for responsible loads as another flexible alternative that 

enables consumer participation in competitive markets [5]. 

Although the emergence of flexible resources as new 

market players leads to numerous economic and 

environmental benefits, it severely imposes on the security 

and reliability of power systems, including thermal units 

operation and unit commitment, power flow calculation, 

line congestion, locational marginal prices, and etc. 

Furthermore, integrating the RTN with the power system as 

a suitable solution to ease the challenges of renewable-

based systems should thoroughly be investigated. However, 

the development of an appropriate optimization approach to 

more realistic modeling of such integrated systems 

incorporating emerging flexible sources from technical, 

economic, and environmental perspectives while tackling 

the unknown uncertainties, including wind power 

production and load demand, has been rarely studied in 

previous works and requires further investigations.  

B. Literature review 

The fluctuation in wind power output could impose adverse 

effects on the reliability and security of power systems. 

There are several studies in the literature that focuses on the 

integration of high penetration of wind energy into the 

power systems via multiple flexible resources. A two-stage 

framework to assess the capability of bulk energy storage 

(BES) integrated with wind energy was presented in [6]. 

First, the stochastic unit commitment (UC) problem 

considering wind uncertainty was formulated. Then, the 

solution from the UC problem is implemented to derive the 

optimal scheduling of energy storage in economic dispatch. 

A stochastic day-ahead market-clearing model coordinated 

with BES, DR, and plug-in electric vehicles (PEVs) to 

cover the inflexibility gap due to the variability of wind 

energy was developed by [5]. The comprehensive proposed 

model reveals the benefits of incorporating flexible sources 

from the independent system operator (ISO) point of view 

to manage both reserve and energy markets. Authors of [7] 

have developed a day-ahead market-clearing model 

incorporated with emerging flexible resources including 

BESS, DR, and PEV to offer a flexible ramp, energy and 

reserve scheduling in the presence of wind energy. In [8], a 

security-constraint unit commitment (SCUC) problem 

integrated with large-scale BESS, RES (wind and solar) 

considering load uncertainty and degradation cost of BESS 

based on the MILP model was investigated. The techno-

economic flexibility criterion is to provide high-level 

flexibility of conventional generation capturing two 

emerging resources, including BES and DR was developed 

in [9], where a new flexibility index was studied in the day-

ahead market clearing problem. A multi-objective problem 

incorporating flexible sources such as DR, compressed air 

energy storage system, and PEV was developed in [10], 

where a two-stage stochastic framework was implemented 

to deal with the uncertainty of wind energy. The authors in 

[11], concentrated on the evaluation of ESS as a price-

maker entity in the competitive market. The proposed 

problem was formulated as a mix-min problem to evaluate 

the effect of ESS from the ISO point of view based on the 

bi-level optimization framework. In [12], a novel BESS 

operational cost for participation in energy and reserve 

markets, as well as locational marginal cost (LMP) was 

developed. This literature illustrated that the independently 

owned BESS could submit bids/offers to participate in the 

energy and spinning reserve markets during both charging 

and discharging cycles. The market-based DR and the 

comprehensive evaluation of DR’s roles in the future 

electricity markets to mitigate the variability nature of wind 

energy aiming to maximize system security, and reduce the 

total operational cost was presented in [13].  
    In the mentioned literature above, ESS has been 

introduced as a fixed resource in optimal scheduling of 

wind-based power systems, while a major obstacle of wind 

energy is the long distance between wind farms and load 

centers, which results in an increase in wind power 

curtailment due to line congestion. The mobility of BESS 

provides a suitable solution for transporting the produced 

wind energy from generation sides to load centers all over 

different areas in the system. To improve the resilience of 

the power system, a SCUC model integrated with BESS 

transportation via the railway system considering power 

and transportation systems restrictions was proposed in 

[14]. The proposed model evaluates the effects of battery-

based energy storage transport (BEST) on the hourly 

behavior of thermal units (power generation, ON/OFF 

states) while the system uncertainties have been neglected. 

Authors in [15], revealed the potential of BEST via 

shipping, trunks, and train for managing the lines 

congestion. Therefore, an hourly SCUC model integrated 

with BEST for optimal calculation of batteries 

charging/discharging schemes, as well as power exchange 

with the power system, was developed in this paper. The 

proposed model considers all the power and transportation 

systems constraints, regardless of the system uncertainties. 

The potential of BEST for optimal operation of power 

system integrated with wind energy was developed in [16], 

where the wind power, load demand, and outages of both 

power and railway transportation systems components are 

considered as uncertain parameters. In [17], the joint post-

disaster restoration schedule of the distribution network 

contains multiple microgrids (MGs) integrated with the 

mobile transportable energy storage system (TESS) was 

developed. Distribution network can be separated into 

multiple islanded MGs via reconfiguration in an emergency 

condition, while TESS travels among all MGs and 
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dispatches to prevent area blackout or consumer’s 

interruptions. Electrical vehicles (EVs) act as mobile 

storage/demand has the appropriate potential to integrate 

RES. Authors of [18], concentrated on EVs fleet on 

transmission-constraints in the system operation to facilitate 

the wind energy integration. The effects of EV’s batteries 

charging/discharging schemes, and the behavior of drivers 

on hourly UC considering transmission-constraint were 

evaluated in this literature. The coordinated large-scale 

PEV fleet as mobile storage and demand in the stochastic 

UC model considering wind energy, hourly demand, and 

behavior of EV’s drivers uncertainty was developed in [19]. 

In [20], a stochastic UC model integrated with the traffic 

assignment of large-scale EVs with the high penetration of 

wind energy was proposed. The traffic network was 

modeled by EVs travels. The effects of optimal 

charging/discharging schemes, and departure time of EVs 

on transmission networks, and thermal units scheduling has 

been investigated in this paper. 

     However, the growing interest in the utilization of 

hybrid optimization methods allows the system operator to 

benefit from all advantages of methods simultaneously in 

the face of existing uncertainties The hybrid 

robust/stochastic optimization framework to deal with 

uncertainty in day-ahead scheduling of active distribution 

network imposed by the unpredictable load and solar 

energy was developed by [21]. In [22], a hybrid 

stochastic/interval/information gap decision theory (IGDT) 

framework was developed to evaluate the optimal operation 

of the integrated energy hub system incorporated with the 

DR concept. A novel hybrid IGDT/stochastic co-

optimization strategy for coordinated power and gas grids 

in the presence of electrical and gas demands, as well as 

wind energy uncertainties, was developed by [23]. In [24], 

a multi-energy microgrid operation incorporated with high 

penetration of RES was optimized via a hybrid 

stochastic/interval framework exposed by multi-energy 

demands and RES power output variation. An optimal 

bidding strategy of compressed air energy storage system 

with the aim of profit maximization under a hybrid 

robust/stochastic approach was developed by [25]. The 

market price uncertainty was modeled by a set of scenarios, 

while the maximum capacity of CAES cavern is handled by 

a robust strategy. A novel hybrid stochastic/IGDT approach 

is used for decision-making of EVs aggregator in the 

presence of high-level uncertainty including initial state of 

charge, arrival and departure times of EVs into the parking 

lot, as well as market price, has been investigated by [26]. 

The IGDT-based robust optimization was applied to handle 

price uncertainty, while a scenario-based stochastic 

approach was used to address other random variables.   

C. Contributions 

To the best of the authors' knowledge, the reviewed works 

have not extensively investigated the economic, technical, 

and environmental advantages of battery-based energy 

storage mobility in an LMP-based two-stage market-

clearing framework. Moreover, the effect of the coordinated 

scheduling of demand-side resources and the BEST system 

on the result of energy market clearing was ignored in the 

literature. The significant gaps in the studied works are as 

follows:  

 In [5-13], BESSs was applied as fixed resources into 

energy market-clearing mechanism, and mobility of 

BESSs in reducing line congestion and maximizing 

social welfare was neglected. 

 In [14-20], although the authors have investigated the 

mobility of battery-based energy storage into network-

constrained unit commitment, they have not 

extensively focused on environmental issues, the 

flexibility of demand-side resources, and market-

clearing process. 

 In [5-20], the authors  mainly have utilized 

deterministic, stochastic and robust-based optimization 

approaches to solve the problem, while the operator at 

times preferred  to differentiate between the risk levels 

of the existing uncertainties and manage them 

depending on  the different optimization techniques 

 In [21-26], the authors have not applied a hybrid 

optimization approach in the market-clearing process, 

while these kinds of techniques can provide major 

benefits for the market operator to handle uncertainties 

in real-time dispatch. 

      Hence, this paper applies a new two-stage robust-

stochastic framework into energy market-clearing 

constrained to the power grid, environmental issues, and 

rail transport network (RTN) to achieve high-efficiency 

scheduling of ESS and handle the uncertainties associated 

with demand and wind power generation. Power demand 

and wind power generation uncertainties are addressed in 

the real-time dispatch by a scenario-based stochastic model 

and an info-gap-based robust technique, respectively. The 

time-space network has also been considered to study the 

effects of constraints and flexibility of RTN on the market-

clearing outputs and social welfare. Additionally, a 

demand-side management technique coordinated with the 

vehicle routing problem (VRP) is adopted to properly 

manage the fluctuating nature of renewable energy sources,  

reduce line congestion and carbon emissions. The main 

contributions of the paper can be summarized as follows: 

 The mobility of BESS is evaluated from an economic, 

environmental, and technical perspective by proposing 

a market-clearing approach constrained to 

environmental issues, rail transport, and power 

networks, in which a  time-space network is applied to 

model constraints and flexibility of RTN. 

 A demand-side management model coordinated with 

VRP is presented into the proposed market-clearing 

framework for high-efficiency scheduling of the price-

sensitive shiftable (PSS) demand. 

 A new two-stage robust-stochastic framework is 

adopted to model the uncertainties related to demand 

and wind power production. The proposed model 

increases the flexibility of the operator’s decision-
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making when facing uncertainties, since the operator 

might differentiate between the risk levels of system 

uncertainties.   

D. Paper organization 

The remainder of the paper is organized as follows. In 

Section II, the problem description contains BEST, PSS 

load, and market-clearing models are represented. Section 

III represents two-stage robust-stochastic market-clearing 

formulation, including objective function and 

corresponding restrictions. Numerical results are reported 

and discussed in Section IV. Finally, Section V concludes 

the paper. 

 
II. PROBLEM DESCRIPTION 

A. BEST model  

 RTNs are an important part of the transportation systems 

worldwide. In addition to daily passenger transportation, 

which requires an optimal schedule of trains by the classic 

VRP, the mobility capability of BESS offers an appropriate 

opportunity for RTN to transport BESS from one region to 

another. However, the BEST model via RTN requires a 

realistic model, considering all railway restrictions. In this 

paper, the time-span network as [14], is applied to model 

railway lines and stations with VRP. Let us consider small 

RTN with three stations and railroads crossing, as depicted 

in Fig. 1, there are three stations  1,2,3 that are connected 

by lines between any two neighboring stations. In addition, 

the distance time between any to neighboring stations 

offered as time span is shown at the top of each railroad. 

For example, distance-time between stations 1 and 3 is 

twice the distance-time between any two neighboring 

stations, equals to a 2-time span. To simplify the modeling 

of the RTN framework, a virtual station (station number 4) 

is considered between station numbers 1 and 3. Hence, 

distance-time between any two neighboring stations in Fig. 

1 is a 1-time span.  

      The time-space network for the RTN with 4 stations is 

depicted in Fig. 2. According to Fig. 2, all possible hourly 

connections for the actual and virtual station is shown. The 

vertical axis in Fig. 2 applied to denote the railway station, 

and the hourly scheduling horizon is exhibited by a 

horizontal axis. Railway stations are represented by nodes, 

while connections line between each neighboring stations 

are represented by arcs. There are two types of arcs in the 

time-space network shown in Fig. 2: grid connecting arcs 

and transporting arc. Grid connecting arcs are horizontal 

solid arc in a time-space network, represent the BESS stop 

in any station that is connected to the upstream grid for 

power exchange. Another type, transporting arcs are sloped 

dotted arcs in a time-space network express the BEST 

system statues between neighboring stations at any given 

period of time horizon. It should be noted that the actual 

station (station 1, 2, and 3 in Fig. 1) can be connected to 

both grid connecting and transporting arcs, while virtual 

station (station number 4 in Fig. 1) can only be connected 

to second types of arcs. Obviously, the BEST cannot be 

connected to the upstream network in such a virtual station 

due to a lack of charging/ discharging equipment. All 

mathematical formulation related to the RTN will be 

presented in the next sections. 

 
FIGURE 1. Simple RTN configuration 

210

1

2

3

4

NS

Time axis

(Time spans)

Time span 1 Time span 2

Space axis

(stations)

 
 
FIGURE 2. Time-space network for a simple RTN configuration 
 

B. PSS demand bidding model 

Demand bidding program (DBP) is one type of DR 

program that has been recently adopted by different 

electrical companies such as PG&E, encourages large 

energy consumption to reduce their energy demand by 

setting their own target [27]. The bidding strategy in DR 

programs has the same concepts as in real-time and day-

ahead markets. In the day-ahead market, market players in 

the DR program, submit their bid package contains the 

amount of energy reduction in the preceding day. If 

suggested bids are accepted, consumers are obliged to 

diminish their daily energy consumption according to the 

contract. Otherwise, they will be subjected to heavy 

penalties on a monthly charge. In DBP, participants 

determine how much and at what price they would want to 

reduce or shift their load demand. Hence, a novel modeling 

strategy for DBP is presented in this paper. In fact, in this 

strategy, participants submit their bids, including the 

desired purchase price and demand to be met by the market 

operator. In other words, if the market price is less or equals 

to the submitted price bid, the desired load demand is 

served; otherwise, the market operator has the authority to 
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curtail or shift demand to times with lower electricity 

prices. Accordingly, the market operator will decide how 

much demand should be met. Figure 3 describes the 

proposed PSS demand bidding model to the market 

operator. 

C. Market Clearing Structure 

Under the proposed framework, the market operator takes 

offers and bids from different market players before 

clearing the day-ahead market. The market operator has the 

potential to apply both generation-side and demand-side 

resources to achieve more cost-effective generation 

dispatch in energy markets. The BEST systems and PSS 

demands as flexible options can be used as a generation or 

consume power according to the market operator’s 

requirements. On this basis, consumers consisting of fixed 

demand and PSS demands send energy purchase bids, and 

conventional generation units submit energy selling offers. 

The BEST system also presents discharging offers and 

charging bids to provide energy. Technical and cost 

parameters related to market players consisting of 

conventional units, wind power plants, BEST systems, and 

PSS demand are the main inputs of the proposed model. For 

example, the offered package of conventional generating 

units not only contains their price-quantity offers for 

supplying energy but also consists of their technical and 

environmental features such as minimum up/down-times, 

carbon emission, ramp rates, minimum/maximum power 

generation limits, etc. The offer and bid packages 

considered for BEST systems and PSS demand also include 

their own technical parameters. Since the market-clearing 

process is integrated with VRP, the operator solves a 

market-clearing problem constrained to power and rail 

transport networks to maximize social welfare. Therefore, 

the market operator should have access to data related to 

the power network and RTN to achieve a high-efficiency 

scheduling model in which such data are considered as 

input parameters in the proposed model. In addition, to 

handle the uncertainties related to wind power and demand 

in real-time dispatch, the market operator might apply a 

two-stage market-clearing mechanism, which is described 

in Fig. 4 in more detail. 

Price 

($/MWh)

DR bid 

(MW)

 
FIGURE 3. Price-sensitive shiftable demand bidding model 
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Figure 4. An overall perspective of the proposed model 

 

III. PROBLEM FORMULATION 

Based on the proposed framework, the market operator 

solves a two-stage robust-stochastic energy market clearing 

problem integrated with VRP, where the constraints 

associated with the power grid, RTN, and environmental 

issues are considered in the clearing process. The market 

operator during the day-ahead market clearing faces some 

significant challenges due to the resource uncertainties that 

might appear in real-time. On the other hand, the market 

operator tends to be able to differentiate between the level of 

risk of system uncertainties due to the intensity of 

uncertainty of such resources. Hence, in this paper, the 

operator applies a scenario-based stochastic model to 

manage the power demand in real-time dispatch, while 

employing an info-gap based robust optimization technique 

to handle the wind power uncertainty due to its severe 

uncertain nature. The introduced model aims to maximize 

social welfare while obtaining the optimal hourly location, 

charge/discharge schedule of the BEST system, power 

dispatch of thermal units, optimal management of PSS 

demand, and LMP in each bus. In conclusion, the two-stage 

stochastic approach is considered to investigate the 

electricity demand uncertainty in the market clearing 

process. Then, the robust optimization technique will be 

integrated into the two-stage market-clearing framework for 

facing the uncertainty of wind power in real-time dispatch. 

A. Two-Stage Stochastic Market-Clearing 

The main objective of the proposed model is to maximize 
social welfare, which is formulated as a two-stage stochastic 
mixed-integer linear programming (MILP) problem. The 
objective function (1) includes six terms. The first term is 
the consumer’s surplus in the first stage. The second term is 
the operation cost of thermal units, which includes minimum 
generation cost (no-load cost), startup/shutdown cost, and 
the cost of providing energy in the first stage. The third term 
is the operation cost of the BEST system, which consists of 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3005294, IEEE Access

 

VOLUME XX, 2017 9 

transport cost and charge/discharge cost in the first stage. 
The fourth, fifth, and sixth terms are the consumer’s surplus, 
the power production cost of thermal units, the 
charge/discharge cost of the BEST system, and the load 
shedding cost in the second stage, respectively. 
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1)  FIRST STAGE CONSTRAINTS 

In this section, the constraints associated with “here and 

now” variables are defined. The constraints of thermal units 

in the first stage are stated as (2)-(12). The power generated 

by the thermal unit is limited by upper and lower levels as 

expressed by (2) and (3). The ramp-up and ramp-down 

constraints for continuous hours are respectively indicated 

by (4)-(7). Constraints (8)-(11) represent minimum up and 

down time limits that bind the thermal unit to be turned on 

and off for a certain time before starting-up and shutting-

down. The startup and shutdown costs are expressed by 

(12) and (13), respectively. 
min max
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     The constraints related to the BEST system in the first 

stage are defined as (14)-(23). The limitation related to the 

location state of the BEST system is determined by (14). In 

a specific time span, each train can only be on one route. 

Movement limits of the BEST system are given in (15)-

(17). If the BEST system in time span s has been in one of 

the routes ending in the node k,  in the next time span s+1, 

it will be in one of the routes that start from the node k, 

which is formulated by (15). The constraints related to the 

initial and final states of the BEST system location are 

described by (16) and (17), respectively. The BEST system 

can be in one of the states of charge or discharge when it is 

connected to the grid, which is formulated by (18). The 

charge/discharge limitations of the BEST system can be 

specified by (19)-(20). The state of charge of the BEST 

system in each hour is shown by (21). The capacity limit of 

the BEST system is defined as (22). The initial and final 

state of charge of the BEST system is limited to (23). 
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     The constraints of PSS demand in the first stage are 

described by (24)-(30). The relationship between demand 

blocks and the total load considering adjustable demand are 

given by (24) and (25). In addition, the limit on the demand 

block is mentioned by (26). The constraint of the adjustable 

demand is presented by (27). The ramp rates for demand at 

consecutive time intervals are limited by (28) and (29). The 

total shifted load during the scheduling can be stated as 

(30). 
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     The constraints associated with the power grid can be 

represented by (31)-(34). Constraint (31) defines the load 

balance at each bus incorporating DR. The DC-power flow, 

model, is applied to calculate the value of power crossing 

each transmission line as represented by (32). The power 

flow in each line is restricted by the maximum allowable 

line power capacity expressed by (33).  
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     The constraint (34) limits the allowable amount of daily 

pollution emissions. 
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2)  Second Stage Constraints 

In this section, the constraints related to “wait and see” 

variables are discussed. The related constraints with the 

thermal units in the second stage can be expressed by (35)-

(39), which includes the produced power and ramp rate 

limits. The constraints of the BEST system in the second 

stage are defined by (40)-(46). The limitations on the 

scheduled load by the market operator in the second stage 

are described by (47)-(53). Finally, the limits of DC power 

flow and carbon emission are shown by (54)-(57).     
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B. Two-Stage Robust-Stochastic Market-Clearing 

In this section, the proposed two-stage robust-stochastic 

model is applied to clear the energy market involving the 

uncertainties associated with electrical load and wind power. 

In the hybrid approach, the operator can use the advantages 

of both methods simultaneously to deal with the existing 

uncertainties. Additionally, the operator can differentiate 

between the risk level of the uncertainties. Since the 

uncertainty of wind power is more severe than the electrical 

load, the operator prefers to apply a risk-based approach to 

manage wind power, while the fluctuations of electrical load 

are managed using Monte-Carlo simulation (MCs). In this 

regard, an info-gap-based robust optimization model is 

applied to manage the risk-based wind power production. 

This technique does not need extra information like 

probability distribution function and a fuzzy membership set 

of uncertain parameters [27]. More details about the IGDT 

method can be studied in [28]. The mathematical description 

of the info-gap-based two-stage hybrid model is as follows:  
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, ,,(1 ) (1 )wp t wp twp tP P P
 

       

Eqs. (2)-(57) (61) 

Where   is the maximum deviation of wind power from 

the forecasted value in real-time dispatch. 
C  is the 

acceptable level of social welfare, which the operator can 

determine it by changing the robustness parameter 
r . 

bSF  

is the value of the social welfare calculated by the operator 

under conditions in which the produced wind power in real-

time dispatch ( ,wp tP ) is the same as the forecasted wind 

power ( ,wp tP


). So, 
bSF is determined by solving the 

problem (1)-(57) without considering the uncertainty of 

wind power. 

      The defined mathematical model above is a bi-level 

optimization problem so that in the upper level, the operator 

tends to maximize the radius of wind power forecasting 

error. In contrast, in the lower level, a two-stage stochastic 

model is solved by the operator to maximize social welfare. 

In the risk-based strategy, the generated wind power in real-

time dispatch has an undesirable influence on social 

welfare. On the other hand, a reduction in wind power in 

real-time dispatch leads to a decrease in social welfare. So, 

the proposed model can be converted into a single-level 

problem as follows: 
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, , ,

, , , ,

, , , ,

, , , , ,

( , )

, , , ,

BL J T

bl j bl j t

bl j t

i t i t i t i tT U

M
E

t i i t m i t m

m

TR TS T
ch ch dis dis

tr tr k n ts tr tr t tr tr t

tr k n A ts t

N

bl j bl j t w

bl n

w

Bid dr

MC I SU SD

C P

C I C P C P

Bid dr

  

 



   



  
 


 
  

 
     

 



 






   



1 1 1

1 1

1

1 1 1

1

, , , , ,

, , , ,

, , ,

BL

U M
E

i t m i t m wT W
i m

CTR
ch ch dis dist w

tr tr t w tr tr t w

tr

J

j t j t w

j

C P

C P C P

voll Lsh



 

 





 
 
 
 
  
   
 
    
 
 
 
 










1

1 1

1 1

1

1

 (64) 

'

,, , , , , ,

1 1 1

, , , , ,
1 1

(1 )
b b b

b

U WP TR
dis ch

wp ti t w tr t w tr t w

i wp tr

J B

j t w b b t w
j b

P P P P

DR PX



  

 

     

 

  

 



 (65) 

Eqs. (2)-(53) and (55)-(57) (66) 

The flowchart of the proposed problem-solving process is 

represented in Fig 5. 

Solve two-stage stochastic market clearing problem under the forecasted wind power

Model the uncertainty of wind power in real-time dispatch using info-gap-based robust optimization 

technique 

Update expected social welfare using robustness parameter βr

Obtain optimum robustness function  (αᵣ )

βr= βr-1

Start

Results: Social welfare, hourly scheduling of BEST system, LMP in each bus, 

allowable level of wind power error, hourly scheduling of thermal units, hourly 

scheduling of price-responsive loads

No

Yes

Calculate the expected social welfare under the forecasted wind power

Reduce the number of scenarios using SCENRED tool in GAMS software 

Generate scenario using Monte Carlo simulation for modeling the electric demand uncertainty in real-

time dispatch

 

Figure 5. The proposed hybrid problem-solving process 

IV. CASE STUDY AND SIMULATION RESULTS 

In this study, an integrated electricity and rail transport 

network is introduced to evaluate the advantages of the 

proposed model, which is shown in Fig. 6. Specifications 

associated with the electricity and transportation network 

are given by [14]. The predicted values related to wind 

power production and demand are shown in Fig. 7. Also, 
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the carbon emission coefficients of thermal units have been 

taken from [29]. In this study, it is assumed that the 

sodium-sulfur (NaS) battery technology is employed in the 

BEST system, while any different types of batteries can be 

used. The employed batteries have energy and power 

densities of 200 W/kg and 50 W/Kg, respectively. Besides, 

it is assumed that a standard railway wagon of 50-feet can 

handle 100 tons of cargo; so each wagon carries NaS 

batteries with a capacity of 100×103×200×10−6 = 20 MWh 

and a specific power of 100 × 103 × 50× 10−6 = 5MW. The 

BEST system involves one locomotive and six railway 

wagon. Consequently, the energy and power of the BEST 

system are 120 MWh and 30 MW, respectively. In addition, 

the travel time between the two stations is assumed to be 2 

hours, so a 2-hour time span is selected. The cost of charge 

and discharge power of the BEST system is assumed to be 

1$/MWh [14]. The marginal benefit of consumers is also 

assumed to be 45$/MWh [30].  

      The power demand forecasting error follows a normal 

distribution function with a mean of zero and a standard 

deviation of 10%. The 1000 scenarios are generated by 

MCs, which is reduced to 10 scenarios using the 

SCENRED tool in GAMS software. The proposed model is 

a MILP problem, which is solved by CPLEX solver in 

GAMS software. Three case studies are considered to 

investigate the benefits of the proposed model, which are 

summarized as follows: 

Case 1: In this case, the effect of the BEST system on 

social welfare, power dispatch of thermal units, line 

congestion, LMP, and carbon emission is evaluated under 

the two-stage stochastic approach. In addition, a 

comparison between the BEST system and fixed BESS is 

provided in this case to specify the model effectiveness. In 

this case, wind power uncertainty is not considered. 

Case 2: In this case, the benefits of shiftable demand along 

with the BEST system on the social welfare, power 

dispatch of thermal units, line congestion, LMP, and carbon 

emission are evaluated under the two-stage stochastic 

approach. Besides, the effect of DR on hourly optimal 

location and scheduling of the BEST system is investigated 

to show the benefits of demand-side management 

coordinated with VRP. In this case, wind power uncertainty 

is also ignored. 

1

G1

2 3 5 6

G2

4

G3

Wind

Station A Station B Station C

 

Figure 6. The integrated power and rail transport networks  
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Figure 7. The forecasted demand and wind power  

Case 3: In this case, instead of the two-stage stochastic 

approach, a two-stage robust-stochastic technique is 

preferred to manage the wind power uncertainty under the 

risk-averse approach. In this case, DR and the BEST system 

are considered. 

      The studied cases are discussed in detail as follows: 

Case 1: The optimal location and state of the BEST system 

are shown in Table 1. It is assumed that the BEST system is 

located initially at station A and the transport cost is zero. It 

can be seen that the BEST system is moved from station A 

to station C in the first time span. In the second time span, 

the BEST system is located in station C (fifth bus) and is 

operated in charge mode. Then in the third time span it is 

moved from station C to station B. From the fourth to the 

eighth time span, the BEST system stays at station B 

(fourth bus) and it is employed in charge and discharge 

modes, respectively. In the ninth time span, the BEST 

system is returned to Station C. In the tenth and eleventh 

time span, the BEST system is used in the discharge and 

charge mode, and in the last time span, it is returned to the 

station A.  
      The effect of charge and discharge scheduling of the 

BEST system on the average LMP is shown in Fig. 8. It can 

be seen that in the hours when the average LMP is low 

(between t=1 and t=11 ), the BEST system is used in the 

charge mode. Then it is operated in the discharge mode in 

the hours between  t=11 and t=21, which causes a decrease 

in average LMP during peak hours. The main reason for the 

power prices reduction during peak hours is the power 

dispatch increase of unit G1 (The cheapest unit), which 

results in reducing the power dispatch of unit G2 in the 

mentioned periods. Fig. 9 shows the effect of the BEST 

system on the optimal operation of the generation units. It 

was observed that the BEST system during peak hours 

increases effectively whilst the power dispatch of unit G1  

reduces the power dispatch of unit G2 compared to the 

fixed BESS and without the presence of BEST. In fact, the 

obtained results confirm that the BEST system effectively 

reduces line congestion during peak hours and increases the 

power dispatch of unit G1. As a result, social welfare is 

increased to $16,1831.05 with the BEST system, which is 

$2,895.43 and $3,487.78 more than the fixed BESS and 

without BESS, respectively. 
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TABLE 1. Location and state of BEST system without considering the 
transport cost 

Social welfare= $161831.05 

Time span (h) 0-2 2-4 4-6 6-8 

Location of BEST  A-C C-C C-B B-B 

State of BEST  Transport Charge Transport Charge 

Time span (h) 8-10 10-12 12-14 14-16 

Location of BEST  B-B B-B B-B B-B 

State of BEST  Charge Charge Discharge Discharge 

Time span (h) 16-18 18-20 20-22 22-24 

Location of BEST  B-C C-C C-C C-A 

State of BEST  Transport Discharge Charge Transport 
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Figure 8. The impact of optimal hourly scheduling of the BEST system 
on LMP  

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
en

er
at

ed
 p

o
w

er
 b

y
 G

1
 

(M
W

)

Without BEST

With fixed BESS

With BEST

 

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
en

er
at

ed
 p

o
w

er
 b

y
 G

2
 

(M
W

)

Without BEST

With fixed BESS

With BEST

 

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o
w

er
 g

en
er

at
ed

 b
y

 G
3

 

(M
W

)

Time (h)

Without BEST

With fixed BESS

With BEST

  
Figure 9. The effect of the BEST system on the optimal scheduling of 
the thermal units. 
 

      Table 2 shows the effect of transport costs on the BEST 

system scheduling. Transport cost is estimated to be $200 

[14]. It can be seen that considering the cost of transport, 

the operator prefers to employ the BEST system in less 

time span in transport mode, which shows the dependence 

between the transport cost and optimal scheduling of the 

BEST system. Under these conditions, social welfare is 

equal to $160,656.42, which is less than it without 

considering the cost of transport. Table 3 shows the effect 

of the BEST system, and the carbon emission limits on the 

total dispatched power taking into account the cost of 

transport. It can be observed that with the BEST system, the 

power generation of unit G1 is increased compared to the 

fixed BESS and without BESS, which leads to a decrease in 

the power production of more expensive units like G2 and 

G3. In fact, the BEST system acts as a viable option to 

reduce the effect of line congestion on power dispatch of 

unit G1, which results in increasing social welfare. Besides, 

with consideration of the carbon emission constraint, the 

operator's willingness to use the unit G2 increases due to 

the lower carbon emission of this unit compared to other 

generation units. Table 4 also shows the overall effect of 

the BEST system on social welfare under different 

conditions. It can be seen that social welfare increases from 

$155,727.25 without the BEST system compared to 

$158,612.22 with the BEST considering the carbon 

emission constraint. It should be noted that the carbon 

emission constraint is estimated at 3,000 lbs/day. 

 
Table 2. Location and state of BEST system considering the transport 
cost and without carbon emission limit 

Social welfare= $160656.42 

Time span (h) 0-2 2-4 4-6 6-8 

Location of BEST  A-B B-B B-B B-B 

State of BEST  Transport Charge Charge Charge 

Time span (h) 8-10 10-12 12-14 14-16 

Location of BEST  B-B B-B B-B B-B 

State of BEST  - Discharge Discharge Charge/- 

Time span (h) 16-18 18-20 20-22 22-24 

Location of BEST  B-B B-B B-B B-A 

State of BEST  -  Charge Charge/- Transport 

Table 3. The impact of the BEST system and carbon emission limit on 
the total dispatched power  

 G1  G2  G3  

Total power without BEST 4,006.22 345.64 246.46 

Total power with fixed BESS 4,007.64 338.79 251.88 

Total power with BEST 4,165.19 184.99 248.14 

Total power with BEST and emission 
constraint (MWh) 

4,106.92 372.58 118.81 

Table 4. The impact of the BEST system on social welfare considering 
carbon emission limit  

 - Fixed BESS BEST 

Social welfare without 

emission constraint ($) 
158,343.27 158,935.62 160,656.42 

Social welfare with emission 

constraint ($) 
155,727.25 156,402.65 158,612.22 

 

Case 2: The effect of shiftable load on the hourly demand 

considering the carbon emission limit is shown in Fig. 10. 

The shiftable load participation factor in the DR program is 

assumed to be 10%. It can be seen that by implementing the 

DR program, the load is shifted from peak hours to non-

peak hours, which results in a reduction in the participation 

of expensive units and decreasing LMP during peak hours. 

Besides, it can be seen that by considering the BEST 

system, the pattern of shiftable load scheduling changes, 

which shows the dependence between the BEST system 

and responsive-load scheduling. So, to meet high-efficiency 

demand-side management, the operator must integrate the 

BEST system routing problem with the demand-side 

management problem. Tables 5 and 6 also show the effect 

of DR on the scheduling of the BEST system, taking into 
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account the carbon emission constraint. It can be observed 

that with the implementation of the DR program, the 

optimal location, charge and discharge state of the BEST 

system changes entirely from the ninth to the twelfth time 

span, which shows the importance of integrated 

management. The effect of coordinated scheduling of the 

BEST system and DR on the average LMP is also shown in 

Fig. 11. although with DR and BEST increases the LMP 

during non-peak hours, it also decreases significantly 

during peak hours. Also, Fig. 12 confirms the benefit of the 

integrated scheduling of demand response of the BEST 

system to reduce the line congestion. under the coordinated 

method, the power produced by unit G1 increases by 197.4 

MWh during peak hours, which results in decreasing the 

hourly commitment of the unit G2, reduction of LMP, and 

increasing social welfare. In this case, social welfare is 

equal to $163,378.54, which is viewed as an increase of 

2.9% in social welfare in comparison without DR. 
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Figure 10. The effect of shiftable load on the hourly demand considering 
the carbon emission limit 
 

Table 5. Location and state of BEST system considering the transport 
cost, carbon emission limit and without DR 

Social welfare= $158,612.22 

Time span (h) 0-2 2-4 4-6 6-8 

Location of BEST  A-B B-B B-B B-B 

State of BEST  Transport Charge Charge Charge 

Time span (h) 8-10 10-12 12-14 14-16 

Location of BEST  B-B B-B B-B B-B 

State of BEST  -/Discharge  Discharge  Discharge  Charge 

Time span (h) 16-18 18-20 20-22 22-24 

Location of BEST  B-B B-B B-A A-A 

State of BEST  Discharge Discharge Transport - 

Table 6. Location and state of BEST system considering the transport 
cost, carbon emission limit and DR 

Social welfare= $163,378.54 

Time span (h) 0-2 2-4 4-6 6-8 

Location of BEST  A-B B-B B-B B-B 

State of BEST  Transport Charge Charge Charge/- 

Time span (h) 8-10 10-12 12-14 14-16 

Location of BEST  B-B B-B B-B B-B 

State of BEST  Discharge  -/Discharge  Discharge  Transport 

Time span (h) 16-18 18-20 20-22 22-24 

Location of BEST  A-A A-A A-A A-A 

State of BEST  -/Charge Discharge/- Charge/- - 
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Figure 11. The effect of coordinated scheduling of the DR and the BEST 
on the LMP 

120

130

140

150

160

170

180

190

200

210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
o

w
er

 g
en

er
at

ed
 b

y
 G

1
 (

M
W

)

Time (h)

Without BEST and DR

With  DR

With BEST

With BEST and DR

 
Figure 12. The effect of coordinated scheduling of the DR and the BEST 
system on the hourly dispatch of unit G1 

Case 3: In order to handle the uncertainty of wind power 

generation under the IGDT-based robust strategy, the 

robustness parameter 
r  is increased by steps 0.01 from 

0.01 to 0.04. The initial amount of social welfare is 

estimated at $163,378.54, which is obtained by solving the 

optimization problem (1)-(57) under the predicted wind 

power. The carbon emission constraint is estimated at 3,000 

lbs/day. Figure 13 shows the effect of variations of the 

robustness parameter
r on the optimal robustness function 

r and social welfare. It is observed that by increasing the 

robustness parameter 
r , the optimal robustness function 

r increases, and social welfare decreases, which means 

that by increasing the robustness parameter r , the market 

operator can handle a wider range of wind power forecast 

errors. However, this increase in the range of wind power 

forecast errors leads to a decrease in social welfare. In fact, 

by increasing 
r , the market operator adopts a more robust 

approach with less social welfare against the uncertainty of 

wind power. For instance, for 
r =0.01 and 0.03, social 

welfare is calculated as $161,744.8 and $158,477.2, 

respectively. Therefore, these social welfare values for the 

market operator are guaranteed under the condition that at 

no time, the error of forecasting wind power production in 

real-time is more than 9.6% and 29.1%, respectively. 

      Fig. 14 shows the effect of variations of the robustness 

parameter
r on the optimal scheduling of power generation 

units. It can be seen that by increasing parameter 
r , the 
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produced power by unit G1 increases, which is due to the 

decrease in generated wind power in bus 1 in real-time 

dispatch. Due to the direct relationship between the 

reduction of wind-produced power and the carbon emission 

increase of thermal units, the optimal scheduling of units 

G2 and G3 also change with increasing the robustness 

parameter 
r  in a way that maximizes social welfare and 

satisfies the constraint of daily carbon emission. Fig. 15 and 

16 also show the optimal scheduling of price-responsive 

load and the BEST system for different values 
r . It can be 

seen that the optimal scheduling of these resources depends 

on the level of moderation that the market operator adopts. 
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     Figure 13. The effect of variations of the robustness parameter

r on 

the optimal robustness function
r and social welfare 
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Figure 14. The effect of variations of the robustness parameter

r on the 

hourly dispatch of units 
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Figure 15. The effect of variations of the robustness parameter

r on the 

hourly scheduling of price-responsive load 
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Figure 16. The effect of variations of the robustness parameter

r on the 

hourly scheduling of the BEST system 

V. CONCLUSION 

This paper evaluated the economic, technical, and 

environmental effects of BESS mobility and price-based 

DR program under coordinated scheduling in the day-ahead 

market-clearing. A time-space network was also utilized to 

model the constraints of the rail transport network and 

couple the market-clearing process with the vehicle routing 

problem. In addition, a two-stage robust-stochastic 

approach was proposed to manage the uncertainties 

associated with electric demand and wind power generation 

in the real-time. The proposed model obtained the optimal 

hourly location,  charge/discharge scheduling of the BEST 

system, power generation of thermal units, price-responsive 

loads scheduling, and the LMP considering the daily carbon 

emission limit of thermal units.  The obtained results can be 

summarized as follows: 

 Applying the BEST system in the energy market-

clearing process constrained to the power grid could 

increase social welfare by 1.3% and 1.8%, respectively, 

in comparison with the fixed BESS and without BESS. 

Additionally, it could decrease the line congestion 

during peak hours by 9.3% compared to the fixed 

BESS. 

 The transport cost had a significant effect on the 

optimal hourly location, charge and discharge 

scheduling of the BEST system. It decreased social 

welfare by 0.7% in comparison without the transport 

cost. 

 Coordinated scheduling of the price-responsive loads 

and the BEST system could enhance social welfare by 
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about 2.9% compared to the non-coordinated 

scheduling. Besides, the line congestion during peak-

hours was reduced by 4.5% in comparison with non-

integrated management. 

 The proposed two-stage hybrid framework enabled the 

market operator to differentiate between the risk level 

of the existing uncertainties and achieve a more 

flexible decision-making model. The operator could 

adjust the robustness level of the day-ahead scheduling 

using info-gap-based robust optimization to cover the 

uncertainty of wind power in real-time, while electric 

demand uncertainty was handled using a risk-neutral-

based stochastic technique. 

      We will extend the proposed model in our future 

research, where the efficiency of battery 

charging/discharging in renewable energy integration will 

be completely considered. Moreover, when the proposed 

model is employed in larger-scale power and transport 

systems, the model could be over complicated to be solved 

as a single MILP problem. The proposed model will be 

improved by considering the application of decomposition 

technologies such as Benders decomposition and 

Lagrangian relaxation in our future works.       
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