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Abstract: The velocities of space plasma particles, often follow kappa distribution functions. The
kappa index, which labels and governs these distributions, is an important parameter in understanding
the plasma dynamics. Space science missions often carry plasma instruments on board which observe
the plasma particles and construct their velocity distribution functions. A proper analysis of the
velocity distribution functions derives the plasma bulk parameters, such as the plasma density, speed,
temperature, and kappa index. Commonly, the plasma bulk density, velocity, and temperature are
determined from the velocity moments of the observed distribution function. Interestingly, recent
studies demonstrated the calculation of the kappa index from the speed (kinetic energy) moments
of the distribution function. Such a novel calculation could be very useful in future analyses and
applications. This study examines the accuracy of the specific method using synthetic plasma proton
observations by a typical electrostatic analyzer. We analyze the modeled observations in order to
derive the plasma bulk parameters, which we compare with the parameters we used to model the
observations in the first place. Through this comparison, we quantify the systematic and statistical
errors in the derived moments, and we discuss their possible sources.

Keywords: space plasma; kappa distribution; methods; statistical analysis

1. Introduction

The velocity distribution function (VDF) of space plasma particles contains all the information
we need in order to understand the kinetic and thermodynamic properties of the plasma. Several
studies have shown that the VDFs of space plasma particles are kappa distribution functions ([1–7]
and references therein), which consist of a lower energy “core” and a higher energy “tail”. Over the
last few decades, several studies have used kappa distribution functions to describe plasma particles
in several space regions such as, the solar wind (e.g., [8–15]), planetary magnetospheres (e.g., [16–21]),
in the vicinity of a comet [22], and the inner and outer heliosheath (e.g., [23–29]). In the theoretical
framework, the kappa distribution function minimizes the Tsallis entropic form under the constraints
of the canonical ensemble [30–32], which is shown to be the only physically meaningful entropic form
consistent with thermodynamics [33].

The three dimensional (3D) isotropic kappa VDF (e.g., [3,6] and references therein) is
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where
→
u is the particle velocity vector, n,

→
u0, and T are the plasma density, bulk velocity vector,

and temperature respectively, Γ is the gamma function, m the mass of the particle species, and kB is
the Boltzmann constant. Finally, κ is the kappa index that labels and governs the VDF. In order to
describe accurately space plasmas, we need high-quality measurements which allow the accurate
determination of the VDF. State-of-the-art instruments, such as top-hat electrostatic analyzers, are
capable of measuring plasma particle fluxes in velocity space, constructing the 3D VDFs of the plasma
particles. Due to technological limitations associated with the instrument’s resolution, range, and
efficiency, the 3D VDFs are not always perfectly resolved. Inaccuracies in the measurements can lead
to inaccurate description of the plasma. Furthermore, the total error of the derived plasma parameters
also depends on the method we use to analyze the observations [34–37].

We highlight the importance of the accurate determination of κ, which describes the
thermodynamic distance from the classic thermal equilibrium (e.g., [38]) and is related with the
correlation between the plasma particles (e.g., [3,39]). Interestingly, recent studies have shown that
the kappa index is related with the polytropic index of space plasmas [21,33,40,41], which must
be determined for the valid characterization and understanding of physical mechanisms, such as
transitions through shocks [42–45], plasma turbulent compressions (e.g., [36,46]), particle collisions [47],
and many more. Importantly, previous studies demonstrated that inaccurate estimations of the kappa
index can lead to significant misestimations of other plasma bulk parameters [2,3,34].

Typical analysis of the VDF calculates the velocity moments of the VDF via numerical integration.
From the different orders of the velocity moments, we determine the plasma density, bulk velocity, and
temperature. However, there is no velocity moment that is a function of the kappa index. Instead, the
speed (or kinetic energy) moments of the VDF are functions of the temperature T and the kappa index
κ. Livadiotis [6] and [48] have derived the kinetic energy moments of the kappa distribution function

Ma
≡

〈
ε

1
2α

K

〉
= (kBT)

1
2ακ0

1
2α ·

Γ
( dK

2 + α
2

)
Γ
( dK

2

) ·

Γ
(
κ0 + 1− α

2

)
Γ(κ0 + 1)

, (2)

where εK = 1
2 m
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)2
is the kinetic energy of the plasma particles in the reference frame of the bulk

flow, α is the order of the moment, and dK denotes the kinetic degrees of freedom. In Equation (2) we
use the notation of the invariant kappa index κ0 ≡ κ−

dk
2 (for more details see [48,49]). As explicitly

shown by [6], only the 0th (α = 0) and the 2nd (α = 2) order εK moments do not depend on κ, while
any other order is a combination of κ and T. In this study we examine 3D VDFs, therefore dK = 3, and
κ = κ0 +

3
2 . In this consideration, κ ranges between 3/2 and ∞. According to Equation (2) and as

discussed in [6], only moments of order α ≤ 2 converge for all possible κ values. For instance, the first
order moment (α = 1) for a 3D VDF is
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and Figure 1 shows M1 as a function of κ, for five different temperatures. For all the temperatures we
show, there is a sharp increase of M1 as a function of κ within the range 1.5 < κ < 4, and a plateau for κ
> 4. The numerical calculation of Equation (3) leads to the determination of κ. Such a novel calculation
could be useful for future analyses and/or could be applied on-board in future operations for fast
estimations. However, we firstly need to validate this method considering plasma measurements
with realistic uncertainties, obtained by an instrument with realistic detection efficiency, field of view,
and resolution.
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Figure 1. The first order kinetic energy moment M1 as a function of the kappa index κ, for five different
plasma temperatures T.

The purpose of this paper is to demonstrate and quantify the derivation of the kappa index for
distributions constructed from plasma measurements. In order to do that, we model observations
of typical solar wind plasma protons with their velocities following the isotropic kappa distribution
function, considering a realistic response of an electrostatic analyzer. We then analyze the observations
by constructing the 3D VDFs from the observations and calculate the statistical moments that allow
the calculation of the plasma parameters. The difference between the derived and the input plasma
parameters quantifies the accuracy of the specific method for the specific instrument design and plasma
conditions. In the next section, we show how we construct our synthetic solar wind observations and
how we construct the VDF and analyze it to obtain the statistical moments. In Section 3, we show the
results for a synthetic solar wind plasma, and we quantify the accuracy of the derived parameters.
In Section 4, we discuss in detail our results, and in Section 5 we summarize our conclusions.

2. Methods

2.1. Synthetic Data Set

We use the forward modeling method (e.g., [20,34–37,50–56]) to simulate solar wind proton
observations by a typical top-hat electrostatic analyzer with an electrostatic aperture deflector system
and a position-sensitive Multi-Channel-Plate (MCP) detector. Our model instrument measures protons
within the energy range from 200 ev to 20 keV, in 96 electrostatic steps of the electrostatic analyzer,
each with resolution ∆E/E ~ 5%. The instrument resolves the elevation direction of the particles Θ
within the range from −22.5◦ to +22.5◦, in 9 electrostatic scans of the aperture deflector. Each elevation
angle is resolved with resolution ∆Θ = 5◦. The MCP resolves the azimuth direction of the particles Φ
within the range from −45◦ to +45◦, in 16 azimuth sectors with resolution ∆Φ = 6◦.

We model solar wind protons with velocities following the isotropic kappa distribution function.
The instrument scans through the energies and directions of the particles in discrete E, Θ, Φ bins and
registers the amount of particles that hit the MCP detector within the acquisition time ∆τ and produce
detectable signal. For this study, we use ∆τ = 1 millisecond. The expected amount of detected particles
is approximately

C(E, Θ, Φ) =
2

m2 GE2 f (E, Θ, Φ)∆τ, (4)

where m is the mass of the proton and G = A0
∆ ∆Θ∆Φ is the instrument’s geometric factor with A0 the

effective aperture, which is a function of the geometric aperture and the detection efficiency (for more
see [35–37]). For our study, we use A0 = 4.4× 10−6 m2, and combined with the energy resolution and
the solid angle covered by the instrument’s angular resolution results to G = 2 × 10−9 m2

·eV/eV·sr.
Although Equation (4) gives the expected average number of detected particles for each E, Θ, Φ pixel,
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in reality, the registered counts Cout follow the Poisson distribution function of average C(E,Θ,Φ), with
measurement probability

P(Cout) = e−C CCout

Cout!
. (5)

In the left panel of Figure 2, we show one example of registered counts as a function of energy
and elevation angle, integrated over the azimuth angles. In the right panel of Figure 2, we show the
registered counts as a function of energy and azimuth, integrated over the elevation angles. For the
specific example, we model plasma with n = 20 cm−3, u0 = 500 kms−1 with direction towards Θ = 0◦

and Φ = 0◦, T = 20 eV and κ = 3.
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Figure 2. Measurement sample for plasma with n = 20 cm−3, u0 = 500 kms−1 towards Θ = 0◦ and Φ = 0◦,
T = 20 eV, and κ = 3, recorded by the top-hat electrostatic analyzer design we consider in this study.
The left panel shows the registered number of counts Cout as a function of log10(E) and Θ integrated
over Φ, while the right panel shows Cout as a function of log10(E) and Φ, integrated over Θ.

2.2. Statistical Moments

In plasma applications, we usually consider that Cout (E,Θ,Φ) ~ C(E,Θ,Φ) and the kinetic energy
distribution function is constructed from the observations, using the inverse of Equation (4):

fout(E, Θ, Φ) =
m2Cout(, Θ, Φ)

2G2∆τ
, (6)

from which we can obtain the VDF fout(
→
u) for u =

√
2E
m . Commonly, the plasma bulk parameters are

determined from the velocity moments of f out, i.e., the plasma density

nout =

∫
fout(

→
u)d3u, (7)

the plasma bulk velocity vector

→
u0,out =

1
nout

[(∫
(
→
u · x̂) fout(
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)
x̂ +
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(
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)
ŷ +
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, (8)

and the elements of the temperature tensor

Ti j
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mw2
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where, with i and j running through the x, y, and z components. Finally, the wi j =
(
ui − u0 j,out

)
scalar

temperature is determined as

Tout =
1
3

(
Txx

out + Tyy
out + Tzz

out

)
. (10)

The α order kinetic energy moment is

Mα
out =

1
nout

∫ [1
2

m
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u −
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)2] α2
fout

(
→
u
)
d3u. (11)

and according to Equation (2), the kappa index κout is determined by solving
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Having completed the set of the statistical moments in Equations (7)–(11), we determine the
complete set of the plasma bulk parameters. Here we focus on the derivation of the κout by numerically
solving Equation (12). The accurate derivation of κout, depends on the accuracy of Tout and Mα

out,
which we examine through this paper.

3. Results

We examine the accuracy of the derived moments for plasma with n = 20 cm−3, u0 = 500 kms−1

towards Θ = Φ = 0◦, T = 20 eV, and κ = 3, which are typical solar wind proton parameters within the
heliocentric distance range from 0.3 to 1au (e.g., [57,58]). We model 1000 observation samples for the
specific input parameters. We analyze each sample as explained in Section 2.2 in order to determine
nout, u0,out, Tout, and κout. In Figure 3, we show the histograms of the derived plasma parameters for
the 1000 modeled observation samples. In the example shown in Figure 3, we calculate κout from the
first order energy moment M1

out (α = 1). On average, the analysis of the specific plasma underestimates
the plasma density and temperature and overestimates the kappa index. More specifically, the average
nout is ~19.8 cm−3, which is by ~1% smaller than the actual n. The average Tout is 19.4 eV, which is by
~3% smaller than the actual T. The average κout is about 3.5, while the actual κ = 3. Finally, we find
that the average plasma speed does not deviate from the actual value.

Our results in Figure 3, indicate that in addition to the systematic error, the plasma parameters
are derived within a certain standard deviation. We specifically calculate σn,out ~ 0.1 cm−3,
σu0,out ~ 0.2 kms−1, σT,out ~ 0.1 eV, and σκ,out ~ 0.05. The total error of the derived plasma parameters
(statistical and systematic) depends on the plasma input and the accuracy with which the instrument
measures the particle flux (e.g., [34–37]). In Section 4, we discuss further the sources of errors.

We would also like to examine the accuracy of κout as calculated from the kinetic energy moments
of different orders α. In Figure 4, we show the average κout and its standard deviation, as functions of
α for the same input plasma parameters as in the example in Figure 3. We investigate the results for α
values within 0 and 2, which are the boundaries of the converging energy moment orders (see also [6]
and references therein). For each α value, we analyze 1000 samples following the Poisson distribution
in Equation (5). The derived kappa index κout ~ 3.95 for α→ 0 and κout ~ 3.4 for α→ 2 . The standard
deviation of the mean κout values is σκ,out ~ 0.07 for α→ 0 and reduces to σκ,out ~ 0.05 for α→ 2 .
In the next section we discuss in detail our results.
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moment order we use to analyze the data-set.

4. Discussion

We demonstrate the analysis of plasma measurements that estimates the kappa index from the
statistical moments of the velocity distribution function of the plasma particles. The analysis of the
synthetic solar wind proton data sets in our study shows that the specific method systematically
overestimates the kappa index.

In fact, the kappa index is calculated by numerically solving Equation (12). Thus, an accurate
calculation of κout is based on the accuracy of Tout and Mα

out. Any systematic error of Tout and/or Mα
out

results in a systematic error of κout. In Figure 5, we examine the values of κout as a function of Tout and
the first order energy moment M1

out. The top left panel shows the histogram of M1
out and the lower
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right panel the histogram of Tout as derived from the analysis of 1000 samples considering plasma
protons with n = 20 cm−3, u0 = 500 kms−1 towards Θ = 0◦ and Φ = 0◦, T = 20 eV, and κ = 3. In the top
right panel, we show the solution matrix for κout as a function of Tout and M1

out, as calculated from
Equation (12). On the same matrix, we indicate the input and the average derived parameters in our
analysis. The derived κout in our example is overestimated due to the misestimation of Tout by ~3%
and the overestimation of M1

out by just 0.5%.
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samples of plasma with n = 20 cm−3, u0 = 500 kms−1 towards Θ = 0◦ and Φ = 0◦, T = 20 eV, and κ = 3.
(Top right) Solutions of κout as a function of Tout and M1

out according to Equation (12). On each panel,
the blue lines indicate the input parameters and the black lines the derived parameters in our example.

The misestimation of the statistical moments is due to the instrument’s limited efficiency, energy
and angular range, energy and angular resolution, and poor statistics related to the sampling of the
distribution function in discrete steps (e.g., [34–37]). For instance, the instrument’s limited efficiency
prevents the detection of low particle fluxes which are allowing the construction of the high energy tails
of a distribution function. Additionally, there are cases when the distribution function drifts beyond
the instrument’s energy and angular range. In these cases, Equations (7) and (9) underestimate the
plasma density and temperature respectively, as f out is under-sampled. Moreover, plasma instruments
resolve the distribution function in finite ∆E, ∆Θ, and ∆Φ intervals. As a result, the shape of the actual
distribution within individual ∆E, ∆Θ, and ∆Φ pixels and its contribution to the statistical moments
cannot be quantified. Similarly, the distribution is sampled in discrete energy and angular steps, and
the statistical moments are numerically calculated according to the specific limited sampling (binning).

Importantly, we expect the accuracy to depend on all the plasma bulk parameters, as they affect
the shape of the VDF e.g., [35–37]. For instance, plasmas with higher temperatures have broader
VDFs with bigger portion of their tails drifting beyond the instrument’s angular range, causing an
underestimation of nout and Tout. On the other hand, colder plasmas have narrower VDFs, which
are harder to sample with a limited angular resolution. In another example, plasmas with higher
densities will increase the number of recorded counts, therefore will reduce the statistical (Poisson)
error. The detailed characterization of the accuracy as a function of the plasma parameters is beyond
the scope if this study but will be the subject of a future project.

We note that several missions apply moments calculation algorithms on-board spacecraft to
enable fast calculations and anticipate the limited telemetry. The specific method we demonstrate here
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provides novel estimations of the kappa index, which completes the set of the plasma bulk parameters.
Moreover, we note that such a method is useful for on-ground calculations in any application beyond
plasma VDFs, where kappa distributions play a significant role (e.g., [59,60]). However, users of this
method should be aware of the potential errors exposed in this study and use similar approach for
their quantification.

Finally, we demonstrate how the accuracy depends on the instrument’s field of view and resolution.
We do that by analyzing the same plasma as in Section 3 considering two different instrument designs;
one as described in Section 2, and a second one with double the Θ range (−45◦ < Θ < +45◦) and with
better angular resolution (∆Θ = ∆Φ = 2.5◦). In Figure 6, we show the results of the analysis in the
same format as in the top right panel of Figure 5. As expected, the analysis of the observations by the
second instrument design calculates more accurately the plasma moments. The improved angular
resolution minimizes numerical errors associated with the limited sampling of the VDF’s shape, while
the increased field of view captures a bigger portion of the distribution function which contributes to
the statistical moments.
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Figure 6. Solutions of κout as a function of Tout and M1
out according to Equation (12). The black circle

indicates the average parameters as derived from the analysis of 1000 observation samples by our
standard instrument model with field of view −22.5◦ < Θ < +22.5◦, −45◦ < Φ < +45◦, and angular
resolution ∆Θ = 5◦ and ∆Φ= 6◦ respectively. The green circle indicates the average parameters as derived
from the analysis of 1000 observation samples by an instrument with field of view −45◦ < Θ < +45◦,
−45◦ < Φ < +45◦, and angular resolution ∆Θ = ∆Φ = 2.5◦. The input plasma parameters are the same
as in Section 3 and are indicated by the blue circle.

5. Conclusions

We demonstrate the derivation of plasma bulk parameters by calculating the statistical velocity
and kinetic energy moments of a modeled kappa distribution as constructed from the observations by
a typical electrostatic analyzer. We apply the mathematical tools demonstrated by [6,48] to simulated
observations and we quantify the accuracy of the plasma parameters when derived from the specific
method. Our analysis shows that:

• The velocity moments of the observed distribution underestimate the plasma density and
temperature, but they provide an accurate estimation of the plasma bulk speed.

• The calculation of the kinetic energy moments of order between 0 and 2 leads to the estimation of
the kappa index value. The accuracy of the derived index value is slightly improved as the order
of the used energy moment increases. Nevertheless, due to instrument limitations, the analysis
systematically overestimates the kappa index of the plasma.

• The misestimations of the plasma parameters are due to the instrument’s limited efficiency,
energy and angular range, resolution, and limited sampling of the actual plasma distribution.
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Our analysis quantifies the error of the derived parameters for a specific instrument design and
plasma conditions. Similarly, future applications could quantify the expected errors by adjusting
the instrument and plasma parameters. Moreover, our results could drive future instrument
designs in order to achieve the desired accuracy in specific applications.
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