
Northumbria Research Link

Citation: Zeng, Yifeng, Chen, Xuefeng, Cong, Gao, Qin, Shengchao, Tang, Jing and Xiang,
Yanping (2016) Maximizing influence under influence loss constraint in social networks.
Expert Systems with Applications, 55. pp. 255-267. ISSN 095-4174

Published by: Elsevier

URL: https://doi.org/10.1016/j.eswa.2016.01.008
<https://doi.org/10.1016/j.eswa.2016.01.008>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/43699/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

Maximizing Influence under Influence Loss Constraint

in Social Networks

Yifeng Zeng

Teesside University, UK

Xuefeng Chen

University of Electronic Science and Technology of China, Chengdu, China

Gao Cong

Nanyang Technological University, Singapore

Shengchao Qin

Teesside University, UK

Jing Tang

Teesside University, UK

Yanping Xiang

University of Electronic Science and Technology of China, Chengdu, China

Abstract

Influence maximization is a fundamental research problem in social networks.
Viral marketing, one of its applications, aims to select a small set of users to
adopt a product, so that the word-of-mouth effect can subsequently trigger
a large cascade of further adoption in social networks. The problem of influ-
ence maximization is to select a set of K nodes from a social network so that
the spread of influence is maximized over the network. Previous research on
mining top-K influential nodes assumes that all of the selected K nodes can

Email addresses: Y.Zeng@tees.ac.uk (Yifeng Zeng),
cxflovechina@gmail.com (Xuefeng Chen), gaocong@ntu.edu.sg (Gao Cong),
s.qin@tees.ac.uk (Shengchao Qin), amysurfing@gmail.com (Jing Tang),
xiangyanping@gmail.com (Yanping Xiang)

Preprint submitted to Expert Systems with Applications June 6, 2020

propagate the influence as expected. However, some of the selected nodes
may not function well in practice, which leads to influence loss of top-K
nodes. In this paper, we study an alternative influence maximization prob-
lem which is naturally motivated by the reliability constraint of nodes in
social networks. We aim to find top-K influential nodes given a threshold of
influence loss due to the failure of a subset of R(< K) nodes. To solve the new
type of influence maximization problem, we propose an approach based on
constrained simulated annealing and further improve its performance through
efficiently estimating the influence loss. We provide experimental results over
multiple real-world social networks in support. This research will further sup-
port practical applications of social networks in various domains particularly
where reliability would be a main concern in a system deployment.

Keywords: Influence Maximization, Influence Loss, Social Networks

1. Introduction

Social networks provide an intuitive representation about individual con-
nections and display interesting behavioral patterns across various popula-
tions of users (Wasserman & Faust, 1994). Social network analysis is attract-
ing more and more attention from different research areas and becomes an
important tool for developing intelligent systems in recommendation, crowd-
sourcing service and so on (Domingos & Richardson, 2001; Zafarani, Abbasi,
& Liu, 2014; Sun, Lin, & Xu, 2015; Zeng et al., 2015).

The merit of a social network lies in the power of users’ interaction that
propagates influence of individuals toward the entire network. Such effects
have been seen in many real-world applications. For example, a Tweet in
Twitter is probably followed by hundreds even thousands of the registered
users. By exploiting influence spread, a marketing campaign may target a
small set of influential individuals and expect that the selected users would
generate the largest influence coverage in the market. This is a general prob-
lem of influence maximization in social networks where the task is to find
top-K influential nodes through influence diffusion models (Kempe, Klein-
berg, & Tardos, 2003).

In an ideal circumstance, top-K nodes will spread the influence once they
are selected and subsequently activated in a social network. The maximum
influence can be achieved only if all of the selected nodes have successfully
propagated the influence. However, the influence will be compromised when

2

some of the nodes may not function as they are expected. For example, to
market a new product, a company selects a set of retailers that are active and
show interest in a similar product market. Due to the changing of financial
situations, some of the retailers may not persist the marketing focus on the
recommended product. Consequently the new product will not be exposed as
much as it should be in the market. The influence loss occurs to the selected
retailers from the perspective of the marketing company. Intuitively, the com-
pany may prefer to choose a set of retailers such that they are able to reach
a certain level of market coverage (probably not the maximum one), and the
market loss is tolerable due to possible malfunctions of the selected retailers
in the campaign. As another example application of influence maximization,
considering a water network, sensors deployed on the selected locations (pipe
junctions) to monitor contaminant spread in the network (Ostfeld, Uber, &
Salomons, 2006) as quickly as possible. The detection loss due to the possible
malfunctions of sensors would lead to a disastrous effect, and thus it is vital
that the detection loss shall be considered when locations are selected. In
this paper, we study how the consideration of influence loss would impact
the selection of top-K influential nodes in social networks.

Things become complex since the set of nodes that are proned to failure
are unknown in the selection process. In addition, it is normally hard, if not
impossible, to predict individual failure probabilities of nodes in a large scale
of social networks, which may depend on many uncertain factors and vary
from time to time. On the other hand, it is easier to estimate the number
of failure nodes according to previous observations on the malfunctioning
networks. For example, in a water network (Ostfeld et al., 2006), it is rather
difficult to predict the failure probabilities of individual sensors, which may
be affected by their environment, deployment duration, etc. However, it is
easier to estimate the number of failure sensors in the future since the sensor
quality is a main factor deciding its functions. Similarly, it is difficult to get
failure probabilities of retailers in the marking campaign (Hajian & White,
2012) while it is more feasible to predict the number of retailers that may not
perform well as expected. Hence we focus on the investigation of influence
loss given the number of failure nodes in social networks.

Failure of some nodes may lead to an invisible influence loss while the loss
could be significantly large due to failure of others. To act in a pessimistic way,
we consider the worst case that the largest influence loss occurs to the selected
nodes, and we may tolerate the loss only if it is not beyond a threshold. By
computing the influence of nodes through a traditional influence diffusion

3

model, e.g. independent cascade model as well as its improvement (Jacob,
Barak, & Eitan, 2001; B. Liu, Cong, Zeng, Xu, & Meng, 2014), we elaborate
one example of influence loss in Figure 1.

Example 1. Given K=3, we can compute the influence for the set of nodes,
{v2, v5, v7}, as follows. We first compute the influence for every node in the
social network and then sum the individual influence. As v1 is only influ-
enced by v2, the influence is 0.3 from the entire set. For the node v3, two
paths, v2− > v1− > v3 and v2− > v3, may spread the influence from the set
{v2, v5, v7}. v3 could be influenced by either of them or both. Hence, the influ-
ence is counted as: 1-(1-0.6)×(1-0.3×0.7)=0.684. Similarly, v4 receives the
influence from three paths: 1-(1-0.4)×(1-0.3×0.6)×(1-0.1)=0.5572. v6 gets
the influence: 1-(1-0.2)×(1-0.2)=0.36. Finally, the set have deterministic in-
fluence (=1) on their own nodes {v2, v5, v7}. Hence the influence induced by
{v2, v5, v7} is calculated as: 0.3+0.684+0.5572+0.36+3=4.9012.

For the network of a small size, we can compute the influence for every
set of three nodes and identify that the set of nodes, {v2, v5, v7}, exhibit the
maximum influence (influence value=4.9012) while nodes, {v1, v2, v5}, are
the second best influential ones (influence value=4.864). Assume that only
one node fails in the selected set. We then compute the influence exhibited
by the remaining two nodes in the set. The influence difference between the
original set of three nodes and the remaining nodes is the influence loss value
due to the node failure. Accordingly, the largest loss is 2.4412 for the first
set when node v2 fails; while, the largest loss is 1.2264 when v1 fails in the
second set. Given a tolerable value of influence loss (threshold=1.5), we may
accept the second set of nodes, {v1, v2, v5}, although they are not the top-3
influential ones in the conventional influence maximization problem.

To provide a reliable top-K solution to influence maximization problems
in social networks, we study influence loss in this paper. Assume that the
number of failure nodes could be predicted in influence propagation, we de-
velop an approach to finding top-K nodes that maximize the influence spread
given a threshold of the largest influence loss. We solve the task of mining
top-K nodes by formulating it as one constrained optimization problem. In
the context of social networks, solving such a problem is rather hard. The
greedy algorithm (Kempe et al., 2003) that was extensively used to solve con-
ventional influence maximization problems becomes problematic since feasi-
ble/optiomal solutions may be prevented. Incrementally adding nodes with

4

v1

v2

v3 v4 v6

v7

v5

0.7 0.6

0.1

0.3

0.4

0.1

0.2

0.2

0.6

Figure 1: A social network with influence values on the directed edges. Top-3 influen-
tial nodes are {v2,v5,v7} in the conventional influence maximization while {v2,v5,v1} are
solutions to the influence maximization with a tolerable influence loss (1.5).

the largest marginal influence may simultaneously introduce potential nodes
failure of which will result in an incredible influence loss. In addition, the
computation of influence loss may further contribute to the solution com-
plexity.

We propose a Constrained Simulated Annealing (CSA) (Wah & Wang,
1999; T. Wang, 2001) based technique for solving influence maximization
problems with the constraint of influence loss. The approach is guaranteed
to converge towards the optimum with probability one if such solutions ex-
ist. The CSA algorithm development is not trivial in our context since we
need to design a proper penalty function that correctly encodes the influ-
ence maximization problem with influence loss constraint in an effective way.
More importantly, we need to investigate sufficient conditions and practical
parameter settings that guarantee the algorithmic convergence in the new
problem.

To improve the efficiency of the CSA algorithm, we develop a new eval-
uation function that allows a fast computation of influence loss by reusing
calculations of individual influence in a social network. Subsequently, we
prove that the new algorithm can generate feasible solutions to the complex
influence maximization problem. We conduct extensive experiments in mul-
tiple real-life social networks and demonstrate performance of the proposed
algorithms.

The remainder of this paper is organized as follows. In Section 2, we review
the most relevant work on influence maximization techniques. In Section 3, we
formulate an influence maximization problem with influence loss constraint
and prove its hardness. In Section 4, we propose the CSA based algorithm and
further improve its efficiency by developing a new penalty function in CSA.

5

The algorithmic convergence and complexity are also analyzed. In Section 5,
we conduct a series of experiments to demonstrate the algorithm performance
in multiple social networks. Finally, we summarize this research and discuss
its limitations followed by some hints on future directions.

2. Related Work

We briefly review influence maximization problem as well as relevant tech-
niques and elaborate one state-of-art influence maximization algorithm. No-
tations used in this paper are summarized in Table 1.

Table 1: Notations
Notations Descriptions

G = {V, E} social network, its set of vertices V and edges E
N the number of nodes in G
M the number of edges in G
S the seed set

A the failure set

K the number of seed nodes

R the number of failure nodes

Pvu the propagation probability from v to u

σ(S) the expected number of nodes influenced by S

η the influence loss threshold

h(v, u) the influence spreading path from v to u

AP (v, u) the expected influence on u activated by v

LΩ(S,λ) the penalty function of joint space Ω=(S,λ)

2.1. Influence Maximization Problem

The problem of influence maximization has received substantial atten-
tion in the past decade. Richardson et al. (Domingos & Richardson, 2001;
Richardson & Domingos, 2002) are pioneers on studying influence maximiza-
tion problem in social networks. They describe the problem in a probabilistic
framework and resolve it using Markov Random Field. Kempe et al. (Kempe
et al., 2003) formulate the problem as a discrete optimization problem. They
prove the NP-hardness of influence maximization problems, and propose a
greedy algorithm to approximately solve it by repeatedly selecting the node
incurring the largest marginal influence increase to a seed set.

6

Most of the subsequent research on mining top-K influential nodes is
developed based on the greedy algorithm and improves the algorithm perfor-
mance by reducing the complexity on calculating influence spread. For exam-
ple, Leskovec et al. (Leskovec et al., 2007) propose a mechanism called Cost-
Effective Lazy Forward (CELF) to reduce the number of times required to
calculate influence spread. Chen et al. propose two fast heuristics algorithms,
DegreeDiscount (Chen, Wang, & Yang, 2009) and PMIA (Chen, Wang, &
Wang, 2010), to select nodes at each step of the greedy algorithm. Mean-
while, Wang et al. (Y. Wang, Cong, Song, & Xie, 2010) solve the problem
by exploring the underlying community structure of social networks. Based
on this work, Song et al. (Song, Zhou, Wang, & Xie, 2014) propose a more
efficient divide-and-conquer method. Jiang et al. (Jiang et al., 2011) resort
to a simulated annealing (SA) algorithm to find top-K influential nodes. As-
suming a small propagation probability, the SA algorithm adopts a simple
fitness function by exploiting the property of neighboring nodes of a seed set
in social networks. Jung et al. (Jung, Heo, & Chen, 2012) employ the influ-
ence ranking technique to scale up the mining algorithms. Liu et al. (X. Liu
et al., 2014) use the parallel processing capability of GPU to accelerate the
process of solving influence maximization problem. Liu et al. (B. Liu et al.,
2014) propose the Influence Spread Path (ISP) technique for computing in-
fluence spread. Following the similar strategy, Kim et al. (Kim, Kim, & Yu,
2013) present an independent path algorithm and parallelize the algorithm in
order to efficiently solve some large social networks. However, it seems that
there is no straightforward way to generalize the mentioned algorithms for
solving the new influence maximization problem in this paper.

Recently, the influence maximization problem with impact factors emerges
as a new line of research on social networks (Chen, Lu, & Zhang, 2012;
Gomez-Rodriguez & Scholkopf, 2012). Goyal et al. (Goyal, Bonchi, Laksh-
manan, & Venkatasubramanian, 2013) investigate the problem on search-
ing the smallest set of influential nodes whose expected spread is beyond a
threshold value at a time point. Similarly, Nguyen and Zheng (Nguyen &
Zheng, 2012) study the budgeted influence maximization in which activat-
ing each node incurs an arbitrary cost. Li et al. (Li, Chen, Feng, Tan, &
Li, 2014) consider the influence maximization with location limitation and
propose two greedy algorithms for solving their problem. Feng et al. (Feng
et al., 2014) investigate the effect of novelty decay on influence propagation
on real-life datasets and solve the influence maximization with novelty decay.
The aforementioned solutions mainly extend the greedy algorithm to solve

7

the influence maximization problem with constraints. The algorithms select
candidate nodes by making a trade-off between their marginal influence in-
crease and resulting cost to the seed set. However, influence loss studied in
this paper can only be computed when an entire selection process is com-
pleted. This prevents an immediate extension of the greedy algorithm with
a guarantee of the solution quality.

2.2. Influence Spread Path Methods

The ISP method (B. Liu, Cong, Xu, & Zeng, 2012; B. Liu et al., 2014)
provides a structural representation that can speed up the calculation of
influence spread. An influence spreading path, h(v, u), is from one of the
seed nodes, v ∈ S, to a non-seed node, u ∈ (V − S), and the path does
not contain any of the other seed nodes in between. The path probability,
Ph(v,u), is the multiplication of the propagation probability of all edges in the
path, e.g., Ph(v,u) =

∏
(v′,u′)∈h(v,u) P (v′, u′). Subsequently, we may calculate

the expected influence, AP (S, u) = 1−
∏

v∈S(1−Ph(v,u)), on a non-seed node
u activated by the seed set S, by assuming that all the paths ending at u are
independent. Thus, the influence of the seed set can then be estimated as the
sum of all AP (S, u) over the non-seed set, e.g., σ(S) =

∑
u∈(V−S) AP (S, u).

There exist a host of approaches to estimating influence spread for a given
seed set. It is not our interest to propose another method. In this paper, we
employ the ISP method (B. Liu et al., 2014) in the proposed CSA algorithms.
It is demonstrated in the experiments that ISP achieves good performance
(with a trade-off between influence spread and run time) compared to a wide
range of existing algorithms. In this paper, we will integrate the ISP method
into the proposed CSA algorithms by employing it to estimate influence of
the set of seed nodes. However, we shall note that other existing influence
calculation techniques can also be integrated into our proposed CSA algo-
rithms for the same purpose although they cannot be directly used to solve
the new influence maximization problem.

3. Problem Formulation

Consider a directed graph G = {V , E} with |V|=N vertices and |E|=M
edges. For each edge (v,u) ∈ E , Pvu is the probability of influence being prop-
agated over the edge. A conventional influence maximization problem is to
find a seed set S ⊆ V given |S|=K such that the influence, σ(S), is max-
imized according to a diffusion model. We adopt independent cascade (IC)

8

model (Kempe et al., 2003) that is widely used in the literature. Given an
initial set of seed nodes, S, the IC model propagates influence in inductive
steps. Let Zt be the set of nodes activated at t, and Z0=S. Every active node
v (∈ Zt) has a single chance to activate any of its currently inactive node,
u 6∈

⋃t
0 Zt, with the probability Pvu. The propagation process terminates if

and only if we cannot find any active node. The expected number of all active
nodes is denoted as σ(S) =

∑∞
0 |Zt|.

Let A be the set of failure nodes of size R(=|A|) in the influence prop-
agation. Influence loss occurs when the set of nodes fail in propagating the
influence as they are expected. The selected R nodes may work properly in
an initial setting, but fail to function later in an actual propagation. In gen-
eral, nodes in any part of a network could fail; however, they may lead to
more visible influence loss when nodes in a seed set S fail. Let TR be the
total number of failure nodes and R be the number of failure seed nodes.
We compute Ratio = Ave[σ(S−A)]

σ(S)
, where Ave[σ(S − A)] is the average influ-

ence spread when TR nodes, including both R nodes in top-K nodes (S)
and (TR − R) nodes in (V − S), fail in a network once the seed set S has
been selected. We conduct experiments with the computation in two publicly
available real-world social networks: NetHEPT and Epinion. Details about
the networks will be elaborated in Section 5.

Figure 2 shows that the influence ratio decreases when the percentage
R
TR

% increases (more nodes fail in the seed set instead of the non-seed set).
In both cases (K =50 or 20), the influence spread is reduced by half (even
more) if all of the failure nodes are selected from the seed set (R

TR
% = 1).

Hence, focusing on the seed set may prevent unaffordable influence loss due
to the node failure.

In this paper, we consider the failure set as a subset of seed nodes, A ⊆ S,
where in general R ≤ K. We define influence loss as the reduced influence
[σ(S)−σ(S−A)], where σ(S−A) is the expected influence of nodes excluding
the failure nodes. Essentially we need to calculate the influence of (K − R)
nodes since a set of R nodes are to be removed from the network due to their
failure. The failure of some R nodes may not largely impact the expected
influence ofK nodes while a significant influence may be lost due to the failure
of other R nodes. We consider the worst case: the largest loss, MaxLoss,
occurs when the maximum influence of the remaining (K − R) nodes is the
minimum one compared to that of any set of other (K−R) nodes. Formally,
given |A|=R, MaxLoss= σ(S)−minA⊆Sσ(S − A).

9

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8 1

R
a

ti
o

R/TR %

K=50, TR=30
K=20, TR=10

(a) NetHEPT

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.2 0.4 0.6 0.8 1

R
a

ti
o

R/TR %

K=50, TR=30
K=20, TR=10

(b) Epinion

Figure 2: The ratio of the average influence spread of (S−A) to the influence spread
of top-K nodes decreases when more nodes fail in the seed set (S) instead of the
non-seed set (V − S).

For a given social network, our problem is to find a seed set S of size K
that maximizes σ(S) subject to that the largest influence loss is not above
a threshold η(>0) due to a failure set A of size R. We may formulate the
Influence Maximization problem with Influence Loss constraint (IMIL) as a
constrained optimization problem below.

Given : G, K,R, η
Objective : max

S⊆V,|S|=K
σ(S)

Constraint : σ(S)− min
A⊆S,|A|=R

σ(S − A) ≤ η
(1)

Note that a sufficiently large value of η may convert the IMIL problem into a
conventional influence maximization problem without constraint (IM). Since
the conventional IM problem is NP-hard, we may prove that the IMIL prob-
lem is NP-hard, which is given in Theorem 1.

Theorem 1. The Influence Maximization problem with Influence Loss con-
straint (IMIL) is NP-hard.

Proof. Given a conventional influence maximization (IM) problem instance
ϕ: G = {V , E} and K, we can construct an IMIL instance ω by adding
an influence loss constraint, σ(S) − minA⊆Sσ(S − A) ≤ η and η ≥ N . As
σ(S) ≤ N , every S meets the influence loss constraint. Hence, S are the top-
K influential nodes of ω iff S is the selected seed set of ϕ. As the IM problem

10

has been proved to be NP-hard (Kempe et al., 2003), the IMIL problem is
NP-hard as well. �

We observe that the IMIL problem requires the settings of K, R and
η for a given network. In general, K refers to the limited budget in the
marketing campaign while R is the amount of campaigning resource that
may fail to meet the expectation on propagating influence in practice. η
is tolerable loss of the market coverage and mainly depends on personal
preference, particularly the risk profile, over the expected market coverage. A
reasonable setting of R and η ensures feasible solutions to the IMIL problem,
which is assumed in this paper. On the other hand, we will examine the
impact of the parameter settings on the proposed algorithms in the following
sections.

4. Our Methods

We first show that the greedy algorithm for conventional IM problems
may not generate feasible solutions to the IMIL problem. Subsequently, we
develop a Constrained Simulated Annealing (CSA) based algorithm for solv-
ing IMIL. Meanwhile, we propose an approach to improving the efficiency of
the CSA algorithm and prove feasibility of the new algorithm.

4.1. Infeasibility of Plain Greedy Algorithms

A natural solution to the IMIL problem attempts a plain greedy algo-
rithm that is the cornerstone of many state-of-art techniques for influence
maximization (Kempe et al., 2003). This plain greedy algorithm is one of the
most important approximation techniques, with a lower bound ratio of 1−1

e
.

Its principle is to repeatedly add the node incurring the largest marginal
influence increase to the seed set S until the size of the seed set reaches K.

As the plain greedy algorithm picks up a node without considering pos-
sible influence loss of its own or other nodes, it may lead to a large amount
of influence loss when some of the selected nodes fail in the actual influence
propagation. This is mainly because the newly selected nodes (into the top-
K nodes) do not preserve the joint influence of K-1 nodes if some of the
nodes would fail. Consequently, the algorithm may not generate a feasible
solution even if such solutions exist in the IMIL problem. For example, using
the greedy algorithm to solve the IMIL problem (K=3 and R=1) in Figure 1,
we first pick the node, v2, and then v5. After that, the algorithm selects the
node v7 as it has the largest marginal influence increase to the incomplete

11

seed set {v2, v5}, which generates the maximum influence of the top-3 nodes.
However, the seed set of {v2, v5, v7} is not a feasible solution when influence
loss (given the threshold 1.5) is considered in the influence maximization
problem. As we know, the optimal selection shall be the set {v2, v5, v1} as
including v1 will compensate the influence loss due to the failure of v2.

Another attempt is to select top-(K−R) nodes, which explicitly considers
the effect of R failure nodes, through existing algorithms for conventional
influence maximization. However, since the set of failure nodes is unknown,
it is impossible to select (K − R) nodes that guarantee to be successful
on propagating the influence. Hence it is not proper to simply convert our
problem into the issue on finding top-(K −R) nodes.

To seek feasible solutions to the IMIL problem, we extend the greedy
algorithm by employing one backtracking strategy in the search. The ex-
tended algorithm, called GreedyB, first generates top-K influential nodes.
Subsequently, it updates the top-K nodes if the seed set does not meet the
constraint. For each update, only one candidate node is replaced with the one
having the largest marginal influence increase among the rest (V −S) nodes.
The procedure is terminated once a new solution satisfies the constraint.

Built upon the backtracking strategy, the GreedyB algorithm generates a
feasible solution to the IMIL problem; however, the solution optimality is not
guaranteed in a theoretical way since the replacement process does not opti-
mize the solution under the constraint. Similar to some extension of greedy
algorithms (Goyal et al., 2013; Nguyen & Zheng, 2012), one possible way
would select candidate nodes by making a trade-off between their influence
increase and influence loss to the seed set. However, the information loss is
subject to the changing of the seed set and cannot be computed without
completing the entire selection process. This motivates us to develop a new
technique for solving the IMIL problem.

4.2. CSA Based Approaches

Essentially we need an algorithm that can strategically explore an entire
solution space of a seed set and accept candidate solutions in a systematic
way. We proceed to develop a Constrained Simulated Annealing (CSA) based
algorithm for solving IMIL. The CSA technique provides a uniform way to
handle both objective functions (influence maximization) and constraints (in-
fluence loss) in the search space.

CSA extends conventional SA (Metropolis, Rosenbluth, Rosenbluth, Teller,
& Teller, 1953) to solve constrained nonlinear programming problems (Wah

12

& Wang, 1999). Particularly we resort to the CSA method for discrete con-
strained optimization problems. CSA searches solutions to a penalty function
that is a summation of its objective and constraint functions weighted by a
penalty factor. Different from SA, CSA looks for saddle points in its search
space instead of locating a local extremum.

4.2.1. Algorithm Description

In the IMIL context (formulated in (1)), we first transfer the max objec-
tive function into the min one, and then convert the inequality constraint
function into the equality one by using a max function,
max[0,σ(S)−minA⊆S σ(S − A)−η]=0. The new equality constraint is sat-
isfied iff MaxLoss ≤η. Subsequently, the penalty function is designed in
Eq 2.

LΩ(S, λ) = −σ(S) + λ×max[0, σ(S)−min σ(S − A)− η] (2)

where Ω is a joint space of seed nodes S and a penalty factor λ. A state (trial
point) D is a solution in the space, e.g., D=(S,λ)∈ Ω.

A selection of λ values varies on the problem domain. In the IMIL context,
we use a relatively large value so that the penalty becomes large once the
constraint is broken.

We outline the CSA algorithm for solving the IMIL problem in Figure 3.
In principle, the CSA searches solutions in the joint space Ω for a number
of trials per temperature and accepts a solution probabilistically in a cooling
schedule. It starts with an initial solution D and temperature T0 (lines 1-2).
By computing σ(S) and minA⊆S σ(S − A), the algorithm gets the penalty
value LD for the solution (line 4).

Lines 5-6 compute the penalty function for a neighbour of the current
solution D in the search space. A neighbour set, ND, is generated by listing
neighboring nodes of S and adjacent values of λ. We randomly sample a new
solution D′ from ND. Subsequently, we calculate difference of the penalty
functions, ∆L, between the solutions D and D′ (line 7).

Lines 9-23 proceed to check whether the new solution shall be accepted.
The algorithm considers the acceptance differently in the subspaces λ and S.
If λ has not been changed, we tend to accept the new solution with a lower
penalty value that in turn returns a larger σ(S). We only accept the solution
having a larger penalty value with the probability exp(−∆L

Tt
) that decreases

over time (lines 10-15). On the contrary, we accept the new solution that has

13

CSA for IMIL
Input: G, K, R, η, initial temperature T0,
termination temperature Tf and trial number q
Output: Seed set S, where |S|=K
1. Initialize t← 0, Tt ← T0, c←0
2. Initialize a solution D ←(S,λ) including λ=0

and a seed set S ⊆ V with (|S|=K)
3. While Tt > Tf do
4. Compute LD(S,λ)
5. Update a neighbour set ND for D
6. Generate a trail point D′ ∈ ND randomly
7. Compute the change of L: ∆L ←LD′ − LD
8. Set c← c+1
9. If λ′ = λ then
10. If ∆L<0 then
11. D ← D′

12. else
13. Generate a random number θ ∈(0,1)
14. If exp(−∆L

Tt
)> θ then

15. D ← D′

16. else
17. If S ′ = S then
18. If ∆L>0 then
19. D ← D′

20. else
21. Generate a random number θ ∈(0,1)
22. If exp(−∆L

Tt
)> θ then

23. D ← D′

24. If c>q then
25. Compute the trial temperature ρ
26. t← t+1, Tt ← q×ρ

ln(t+1)
, c←0

27.Return S

Figure 3: The CSA algorithm searches the joint space (S, λ) and computes the penalty
function. It will be improved by using a new penalty function in Section 4.3.

14

a larger penalty value if the seed nodes, S, are not updated (lines 17-23). By
doing this, we can increase the penalties of violated constraints, which will
enforce S to satisfy the constraints. After we keep searching solutions for q
times at a level of temperature Tt, we compute a new temperature (explained
later) and start a new trial (lines 25-26). The CSA is terminated when the
termination temperature Tf is reached.

4.2.2. Parameter Setting

As mentioned in (Wah & Wang, 1999), the variable S is normally tried
10 times more often than every penalty factor λ. We determine the discrete
space for λ, Λ(λ)=[0, max σ(S)

10%K∗(N−K)
, 2 max σ(S)

10%K∗(N−K)
, · · · , max σ(S)], since the

maximum number of S’s neighbors is K ∗ (N −K). The parameter ρ is one
factor of the step temperature (Tt) in the cooling schedule (line 25 in Figure 3)
of CSA. The temperature is reset once a set of q trials have been completed.
Also, ρ is relevant to the asymptotic convergence (convergence to a global
extremum with probability one given t→∞) as ρ dominates the temperature
value of every iteration in the CSA. We let ρ=2max σ(S)(1 + max σ(A))
such that the CSA convergence will be guaranteed (explained below). The
remaining problem is on how to compute the values of both max σ(S) and
max σ(A) in an efficient way.

We estimate influence values using the generalized ISP method. As the
ISP can compute the influence spread of every seed node, the influence sum
of all seed nodes that have the largest influence provides an upper bound to
max σ(S), e.g.,

∑
u∈S AP (V , u) ≥ max σ(S), which is exploiting the property

of submodular functions. Similarly we can estimate max σ(A). Note that the
estimation is not an exact influence spread, but is efficient and sufficient for
the parameter setting.

4.2.3. Asymptotic Convergence

The CSA approach solves the IMIL problem (via the penalty function
LΩ(S, λ)) by adding a penalty factor λ to every state that is a set of seed nodes
S. Let ZD,D′ be the probability of generating state D′ from D’s neighbor set
ND. Since the neighbor set is a union of both S and λ, we have ZD,D′ =

1
K(N−K)+|Λ(λ)|−1

, where |Λ(λ)| is the size of the discrete space of λ, Λ(λ).
As CSA accepts a new solution differently in the subspaces of S and

15

λ (lines 9-23 in Figure 3), the probability of accepting D′ is

FD,D′ =

{
exp(−max [0,LD′−LD])

Tt
, D′ = (S ′, λ);

exp(−max [0,LD−LD′])
Tt

, D′ = (S, λ′).

Thus, the transition probability from state D to state D′ is

ID,D′ =


ZD,D′FD,D′ , D′ ∈ ND;
1−

∑
W∈ND

ZD,WFD,W , D′=D;
0, otherwise.

As the transition probability differs in the subspaces and the transition oc-
curs over time, the CSA procedure can be modeled using an inhomogeneous
Markov chain. Let q be the maximum of the minimum number of transitions
required to reach optimum from any state. The q value can always be found
if the neighbor set is properly constructed.

In the cooling schedule (line 25 in Figure 3), we have Tt = q×ρ
ln(t+1)

. With the

specification, ρ=2 max σ(S)(1+max σ(A)), we get the following proposition.

Proposition 1. The temperature setting, Tt = q×ρ
ln(t+1)

, satisfies the proper-

ties: a) Tt > Tt+1, b) limt→∞ Tt=0, and c) Tt ≥ 2 q
ln(t+1)

×max|LD′ − LD|.

Proof. Properties a and b are obvious as both q and ρ are constant and Tt
is the monotonically decreasing function with t. We compute max|LD′−LD|
for two cases where either S or λ changes in a joint space.

Case 1 : D′ = (S′, λ)
max|LD′ − LD| = | − σ(S ′) + λ×max[0, (σ(S ′)−min σ(S ′ − A′))]
−[−σ(S) + λ×max[0, (σ(S)−min σ(S − A))]|
for ? ?σ(S)− σ(S − A) ≤ σ(A) ? ?
≤ |σ(S) + λmax σ(A′)| for ? ?λ ≤ max σ(S) ? ?
≤ max σ(S) +max σ(S)×max σ(A′)
Case 2 : D′ = (S, λ′)
max|LD′ − LD| = |λ′ ×max[0, (σ(S)−min σ(S − A)− η)]
−λ×max[0, (σ(S)−min σ(S − A)− η)]|
≤ λ′ ×max σ(A)
≤ max σ(S)×max σ(A)

Since Tt = q×ρ
ln(t+1)

=2q×max σ(S)(1+max σ(A))
ln(t+1)

, property c is fulfilled. �

16

Consequently, given definitions of the transition probability ID,D′ and
properties of the decreasing temperature Tt, we can get the asymptotic con-
vergence of the CSA for the IMIL problem by following the proof in (Wah &
Wang, 1999). Formally, we have the theorem below.

Theorem 2. The CSA based algorithm for the influence maximization prob-
lem with the influence loss constraint converges to a constraint global opti-
mum with probability one as t→∞.

4.3. Improved CSA: CSA-Q

The CSA algorithm needs to evaluate the penalty function of Eq. 2 in
each iteration. Since the penalty function involves the time-consuming com-
putation of influence loss, [σ(S) − min σ(S − A)], the CSA complexity is
further exacerbated by the complex function evaluation. This motives us to
improve the CSA’s efficiency using more tractable computation of influence
loss.

The property of the submodular function, σ(S), allows us to bound the
influence loss as shown in Proposition 2.

Proposition 2. The information loss, [σ(S) − min σ(S − A)], is bounded
by max

∑R
i=1,vi∈S σ(vi), where R is the number of failure nodes (|A|).

Proof. We aim to prove the inequation: σ(S)−min σ(S−A) ≤ max
∑R

i=1,vi∈S σ(vi).
As σ(S) is submodular, we get min σ(S − A) ≥ min [σ(S) − σ(A)] =
σ(S)−max σ(A). Thus, σ(S)−min σ(S−A) ≤ σ(S)− [σ(S)−max σ(A)] =
max σ(A).

Similarly, we get maxA⊆S σ(A) ≤ max
∑R

i=1,vi∈S σ(vi), where

max
∑R

i=1,vi∈S σ(vi) is the influence sum of the first R nodes that are ranked
according to their individual influences. �

Accordingly we may approximate the largest influence loss via comput-
ing its upper-bound value max

∑R
i=1,vi∈S σ(vi). By doing this, we make a

more protective decision on selecting top-K nodes with the consideration
of influence loss. Hence we can get the new penalty function, L′Ω(S, λ), in
Equation 3.

L′Ω(S, λ) = −σ(S) + λ×max[0,max
R∑

i=1,vi∈S

σ(vi)− η] (3)

17

We denote the improved CSA algorithm by CSA-Q that adopts the ap-
proximate penalty function, L′Ω(S, λ), and expects to solve the IMIL prob-
lem much more quickly than the original CSA in Figure 3. Intuitively the
evaluation of L′Ω(S, λ) will become much more efficient because it computes
influence spread of individual failure nodes, v ∈ A, instead of every set of
the remaining nodes (S−A). In addition, we will achieve significant compu-
tational savings as influence spread of individual nodes can be computed at
one time and be reused for all iterations.

More importantly, the CSA-Q algorithm can generate feasible solutions
to the IMIL problem, which is benefited from using the upper-bound value
of influence loss in the new penalty function. Proposition 3 formally states
feasibility of the CSA-Q algorithm.

Proposition 3. Top-K nodes generated by the CSA-Q algorithm guarantee
to be feasible for the IMIL problem.

Proof. For top-K nodes S, the CSA-Q solutions satisfy the constraint,
max

∑R
i=1,vi∈S σ(vi) ≤ η, since it takes the new penalty function L′Ω(S, λ) in

Equation 3. Using Proposition 2, we get σ(S) −min σ(S − A) ≤ η. Hence
the solutions are also feasible to the IMIL problem as defined in Section 3. �

Note that the CSA-Q algorithm still shares the convergence property
with the CSA, which is stated in Theorem 2, while it may converge to a
sub-optimal solution in term of influence spread. We will show later that
influence spread achieved by the CSA-Q algorithm is very close to that ob-
tained through the CSA algorithm in the experimental study.

Both the CSA and CSA-Q algorithms provide the principled way to
searching top-K nodes in the IMIL problem. In every iteration, they need
to calculate the penalty functions (Equation 2 and Equation 3) that involve
the computation of influence spread e.g. σ(S), σ(v) and so on. As mentioned
previously, any of the existing influence maximization techniques can be em-
ployed to compute the influence spread in the CSA and CSA-Q algorithms.
We select the ISP method and briefly describe its application in our algo-
rithms.

The ISP method is used to compute influence spread of a seed set that
is an influence sum of all activated nodes in a non-seed set (B. Liu et al.,
2014). Similarly we may use the method to compute the expected influence
on the non-seed set activated by an individual seed node v ∈ S, e.g., σ(v) =∑

u∈(V−S) AP (v, u). By doing this, we can rank the seed nodes in term of their

18

expected influence over the non-seed set. The ranking operation could be done
on the fly and provides an efficient way to estimate the influence spread of
a given seed set. For example, to estimate max σ(A), we may pick a set of
candidate nodes that have the largest expected influence, AP (v,V − A), in
the list and sum all of the influence.

4.4. Time and Space Complexities

For every iteration of the CSA algorithm in Figure 3, we compute both
σ(S) and σ(S − A) using the ISP method. As ISP requires to compute
influence of all the influence spreading paths, denoted by PATH(S) and
PATH(S−A), from the seed set and the non-failure set respectively, the run
time takes O(|PATH(S)|)+
O(|PATH(S−A)|) if the depth-first search is used to find all the paths. The
total run time is qT [O(|PATH(S)|)+O(|PATH(S−A)|)], where T is the num-
ber of iterations (in the while loop) to terminate CSA.

CSA-Q avoids to compute influence spreading paths, PATH(S−A), for
all iterations. In addition, it reuses the influence spread of individual nodes,
PATH(v), that can be computed once in the algorithm. Hence the total run
time of CSA-Q is qTO(|PATH(S)|)+NO(|PATH(v)|). This achieves a large
amount of computational savings on solving the IMIL problem.

Meanwhile, the space complexity of both algorithms isO(N+M+|PATH(S)|)
as we need to store a social network and all the paths in the computation.

5. Experiments

We used four publicly available real-world social networks in the experi-
ment and summarize their statistics in Table 2

Table 2: Statistics of Four Social Networks
Networks NetHEPT Wiki Epinions Amazon

Node Number 15, 233 7, 115 75.9K 262K
Edge Number 58, 891 103K 508.8K 1.23M

Clustering Coefficient 0.2089 0.2283 0.0617 0.3123
Average Degree 14.54 6.7 11.54 4.77

90% Effective Diameter 3.8 5 4.7 6.5

We implemented the following algorithms and compared their perfor-
mance in terms of influence spread and run time.
• CSA and CSA-Q : We implemented the CSA algorithm as presented

in Figure 3, and the CSA-Q algorithm using the new penalty function in

19

Equation 3. The algorithms generate an initial seed set in a random way and
develop a neighbour set of seed nodes without excluding previously selected
nodes (as the seed set may also be changing in the iterations). To compute in-
fluence spread, we implemented the ISP method, and as suggested in (B. Liu
et al., 2014) we remove the paths that are leading to insignificant influence
propagation (that is smaller than a threshold 0.0001 - a tradeoff between
influence spread and run time).
• GreedyB : We implemented the GreedyB algorithm as discussed in Sec-

tion 4.1. Since the GreedyB algorithm can produce feasible solutions to the
IMIL problem, it acts as a baseline comparison.
• Random: We implemented the Random algorithm that is often used in

the comparison about influence maximization techniques (Chen et al., 2009).
To solve the IMIL problem, the Random algorithm picks K nodes randomly
from a social network and accepts a solution once it meets an influence loss
constraint.

All algorithms are implemented in C++ language, and compiled by gcc
4.7.2 on a Linux PC with a 4-core Intel i7-3770 3.4GHz CPU and 8 GB
memory. To compute the number of nodes influenced by the selected seed
set of an evaluated algorithm, we apply 20,000 Monte Carlo simulations with
the seed set selected by each evaluated method, and the average number of
influenced nodes is used as influence spread of the seed set. This evaluation
method follows the previous work on influence maximization (Chen et al.,
2009).

5.1. Parameter Settings

In social networks, the activating probability, Pvu, is set by the weighted
cascade policy, e.g. Pvu=

1
Nin(u)

where Nin(u) is indegree of u, which is widely

used in the existing conventional influence maximization techniques (Kempe
et al., 2003; Chen et al., 2009). We pick values of η in the range [min σ(A),
max σ(A)], where min σ(A) is the minimum influence spread of a set of
R nodes (|A|=R), and both min σ(A) and max σ(A) can be estimated
through the ISP method as described in Section 4.3. In the CSA based algo-
rithms, following the spirit of Tt calculation, the initial temperature is set as
T0=2q×max σ(S)(max σ(A)+1). Both σ(S) and σ(A) values are estimated
through the ISP method.

As shown in Figure 3, the number of trials, q, has a large impact on the
run time of the CSA algorithms. Intuitively, few iterations may prevent the
algorithmic convergence thereby leading to smaller influence spread. A large

20

number of iterations guarantee the global convergence while incurring a large
amount of execution time. Meanwhile, the q value is most relevant to how
the neighbor set is constructed and a solution set of K nodes together with
a λ value are updated (Lines 5-6 in Figure 3). Ideally, q is equal to (K+1)
if a solution is replaced in an optimal way at each iteration. For a general
replacement strategy in the CSA algorithms, we investigate the selection of
q values in term of the algorithmic efficiency.

 70

 75

 80

 85

 90

 95

 100

1 K+1 10(K+1) 20(K+1) 50(K+1)

In
fl
u

e
n

c
e

 S
p

re
a

d

q

CSA
CSA-Q

(a) Influence Spread

 0

 50

 100

 150

 200

 250

 300

 350

1 K+1 10(K+1) 20(K+1) 50(K+1)

T
im

e

q

CSA
CSA-Q

(b) Run Time

Figure 4: Selection of q values is a trade-off between influence spread and run
time (mins). Note the run time of CSA-Q is extremely low and the representative
curve (colored by blue with cross in (b)) nearly overlaps with the q-axis.

Figure 4 shows the selection of q values in the NetHEPT network with
the setting: η=20, K=10, R=2, and Tf=10−4. With q=10(K+1), both the
CSA and CSA-Q algorithms converge to relatively large influence spread and
consume a reasonable amount of run time. Since the CSA-Q algorithm reuses
most of influence spread computation, its run time does not significantly grow
with the increasing values of q. In addition, as shown in Figure 4 (a), more
iterations may not contribute to a visible improvement on performance of
both the CSA and CSA-Q algorithms. Hence we will use q=10(K+1) in the
rest of the experiments.

We take a further step to investigate the setting of the termination tem-
perature Tf that controls the outermost loop of the algorithms in Figure 3.
In Figure 5, we show influence spread and run time of the CSA based algo-
rithms when Tf values vary in NetHEPT with the setting: η=20, K=10,
R=2, and q=10(K + 1). We observe that both the CSA and CSA-Q algo-
rithms achieve best cost-effective performance in terms of influence spread
and run time when Tf takes the value 10−4.

21

 70

 75

 80

 85

 90

 95

 100

10
-1

10
-2

10
-3

10
-4

10
-5

In
fl
u

e
n

c
e

 S
p

re
a

d

Tf

CSA
CSA-Q

(a) Influence Spread

 0

 10

 20

 30

 40

 50

 60

 70

 80

10
-1

10
-2

10
-3

10
-4

10
-5

T
im

e

Tf

CSA
CSA-Q

(b) Run Time

Figure 5: The termination temperature Tf controls the total iterations of the CSA
based algorithms. The lower the termination temperature the more the iterations.

In summary, we empirically study the parameters of q and Tf in both the
CSA and CSA-Q algorithms, and choose proper values by considering their
impact on influence spread and run time in NetHEPT . Similar performance
is also observed in other networks. We will use Tf=10−4 and q=10(K+1) in
the rest of our experiments.

5.2. Experimental Results

With the aforementioned parameter settings, we conduct experiments to
demonstrate the performance of our methods.

5.2.1. Influence Loss

As mentioned previously, failure of nodes may lead to different levels of
influence loss in social networks. We investigate how the failure of different
sets of nodes will impact influence spread in NetHEPT and Epinion. We
first employ the ISP method to compute top-K nodes, and then obtain in-
fluence spread of (K-R) nodes when any set of R nodes fails in the networks.
Subsequently, we compute the ratio of the average influence loss to the influ-
ence spread of top-K nodes: Ratio=σ(S)−Ave[σ(S−A)]

σ(S)
, where Ave[σ(S −A)] is

the influence spread averaged over P sets of (K−R) nodes randomly selected
from top-K nodes and P ranges from tens to thousands depending on the
network size and R values. Figure 6 shows the results of ratio in two networks
with the setting of K=10 and different R values.

In Figure 6, we observe that the failure of R nodes does lead to visible
influence loss (around 10% of the maximum influence spread of top-10 nodes)

22

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5

R
a

ti
o

R

(a) NetHEPT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 2 3 4 5

R
a

ti
o

R

(b) Epinion

Figure 6: The ratio of the average influence loss to the maximum influence spread
of top-K nodes when R nodes fail.

 50

 100

 150

 200

 250

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

η

CSA
CSA-Q

GreedyB
Random

(a) NetHEPT

 0

 50

 100

 150

 200

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

η

CSA
CSA-Q

GreedyB
Random

(b) Wiki

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

η

CSA
CSA-Q

GreedyB
Random

(c) Epinion

 0

 20

 40

 60

 80

 100

 120

 140

 160

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

η

CSA
CSA-Q

GreedyB
Random

(d) Amazon

Figure 7: As η increases, all algorithms achieve more influence spread. In (a), the
curves of CSA-Q and CSA overlap in NetHEPT .

even when only one node fails in the selected seed set. The proportion grows
with the increasing number of failure nodes, and rises to around 50% of the
total influence spread when half of top-10 nodes fail in both networks. Hence
it is important to consider influence loss in influence maximization problems.

23

5.2.2. Variations of η

We proceed to demonstrate performance of the CSA based algorithms
given the input parameters including η,K andR. Figure 7 shows performance
of the algorithms given K=10 and R=2 when η values are varied. A large
η value relaxes constraints of influence loss when the failure occurs to the
selected nodes. This may retain more influential nodes failure of which may
lead to visible influence loss, but still satisfy the loose constraint. As expected,
all of the algorithms generate larger influence spread when η increases.

Both the CSA and CSA-Q methods outperform the other two algorithms
in all experiments. The Random method performs poorly and does not lead
to significant increase on the influence spread even when η increases. Al-
though GreedyB may generate feasible solutions, it results in relatively small
influence spread compared to the CSA and CSA-Q algorithms. With a large
η value, the Random and GreedyB algorithms immediately accept any so-
lution that meets the constraint and do not conduct any further search to
improve the solution, which generally leads to low influence values.

The CSA and CSA-Q algorithms continuously improve their solutions
with the increasing of η values. The loose constraint, which is ascribed to a
large η value, allows both algorithms to search a large space in which more
influential nodes could be identified. On the other hand, the performance of
the CSA-Q algorithm approaches that of the CSA algorithm although CSA-
Q uses an approximate penalty function. The gap of their performance is
extremely small and even becomes invisible in some network like NetHEPT
in Figure 7 (a). It verifies that the new penalty function is good enough to
ensure the high quality of solutions achieved by the CSA-Q algorithm.

To further verify performance of the CSA based framework, we addition-
ally conduct the comparison to the ISP approach, denoted by ISPIM , that
is employed to solve conventional influence maximization problems without
influence loss constraints and to find top-K nodes. In Figure 8, we show the
results, including the reference of ISPIM , in Wiki and Amazon, with K=10
and R=2. We observe that the influence spread achieved by the CSA and
CSA-Q methods gradually converges to the value obtained by ISPIM when
η is larger than 50. Given a sufficiently large η value, the IMIL problem is
converted to the conventional IM problem. The solutions returned by the
CSA based framework are identical to top-K nodes found by ISPIM . Hence
both the CSA and CSA-Q algorithms perform as well as the ISP technique
on solving the conventional IM problem.

24

 100

 120

 140

 160

 180

 200

 220

20 30 40 50 60

In
fl
u

e
n

c
e

 S
p

re
a

d

η

CSA
CSA-Q

ISPIM

(a) Wiki

 80

 100

 120

 140

 160

 180

20 30 40 50 60

In
fl
u

e
n

c
e

 S
p

re
a

d

η

CSA
CSA-Q

ISPIM

(b) Amazon

Figure 8: Performance of the CSA and CSA-Q methods is similar to that of the
ISPIM approach when η is sufficiently large. The top horizontal line denotes the
performance of ISPIM when the ISP method is used to solve the conventional IM
problem.

5.2.3. Effect of R and K Values

 50

 100

 150

 200

 250

 300

 350

2 3 4 5 6

In
fl
u

e
n

c
e

 S
p

re
a

d

R

CSA
CSA-Q

GreedyB
Random

(a) NetHEPT

 50

 100

 150

 200

 250

 300

 350

2 3 4 5 6

In
fl
u

e
n

c
e

 S
p

re
a

d

R

CSA
CSA-Q

GreedyB
Random

(b) Wiki

 100

 200

 300

 400

 500

 600

2 3 4 5 6

In
fl
u

e
n

c
e

 S
p

re
a

d

R

CSA
CSA-Q

GreedyB
Random

(c) Epinion

 50

 100

 150

 200

 250

 300

 350

2 3 4 5 6

In
fl
u

e
n

c
e

 S
p

re
a

d

R

CSA
CSA-Q

GreedyB
Random

(d) Amazon

Figure 9: Influence spread achieved by the algorithms decreases as more nodes (R)
fail in the networks (K=20, η=40). CSA-Q is consistently close to CSA.

Figure 9 shows performance of all the algorithms when R values vary
in the experiments. We fix K=20 and η=40 for all networks. The joint im-
pact of more failure nodes normally leads to a significant reduction on the
influence spread. To prevent such a large influence loss, the algorithms are

25

 50

 100

 150

 200

 250

 300

 350

 400

 450

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

K

CSA
CSA-Q

GreedyB
Random

(a) NetHEPT

 0

 50

 100

 150

 200

 250

 300

 350

 400

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

K

CSA
CSA-Q

GreedyB
Random

(b) Wiki

 0

 100

 200

 300

 400

 500

 600

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

K

CSA
CSA-Q

GreedyB
Random

(c) Epinion

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

10 20 30 40 50

In
fl
u

e
n

c
e

 S
p

re
a

d

K

CSA
CSA-Q

GreedyB
Random

(d) Amazon

Figure 10: The algorithms obtain larger influence spread as K increases in four
networks (R=2, η=20).

likely to choose more correlated nodes that may complement each other once
the failure occurs to some of the selected nodes. This causes a low value of
influence spread achieved by top-K nodes.

In Figure 9, the influence spread generated by all the algorithms decreases
while the number (R) of failure nodes increases. Meanwhile, both the CSA
and CSA-Q algorithms identify better solutions when they are compared to
other two algorithms, GreedyB and Random. The CSA-Q algorithm still
achieves relatively large influence spread as CSA does in four networks. The
gap of their performance is even invisible in NetHEPT and Amazon, which
is indicated by the overlapping curves in Figure 9(a) and (d) respectively.

Figure 10 exhibits the influence spread of the top-K nodes returned by
four algorithms for different K values. We fix R=2 and η=20 for all networks.
It is not a surprise that the influence spread increases given a larger K value.
Both the CSA and CSA-Q algorithms consistently outperform the GreedyB
and Random algorithms for different K values over four networks. The CSA-
Q algorithm achieves similar influence spread as the CSA algorithm does in
most of the experiments.

26

5.2.4. Runtime Comparison

In Tables 3 and 4, we compare different algorithms based on the run time
each takes to identify top-K nodes in four networks. We measure the run time
of Rand.(om) in milli-seconds(ms) or seconds(s) while using minutes (mins)
to measure the time of other three methods. The cell ∗ indicates that the
program has run over one day.

Table 3: Run time of the algorithms over the networks NetH.(EPT) and Wiki .

Net. K R (η) Rand. Gre.B CSA CSA-Q

10 2(20) 9ms 168 55 0.5
2(30) 8ms 168 72 0.6
2(50) 8ms 164 125 1.6
5(50) 22ms 682 201 0.8

20 2(20) 60ms 1358 679 2.1
2(40) 10ms 1440 885 3.5
4(40) 98ms * 1305 2.4
6(40) 208ms * * 1.2

NetH. 30 2(20) 259ms * * 4.5
8(80) 27s * * 5

40 2(20) 525ms * * 5.5
10(100) 65mins * * 7.0

50 2(20) 980ms * * 8.6
10(100) 790mins * * 11.4
20(200) * * * 13.2

10 2(20) 20ms 512 157 3.3
2(30) 18ms 462 242 4.1
2(50) 16ms 400 305 6.0
5(50) 52ms 1520 271 3.8

20 2(20) 210ms * 954 12
2(40) 165ms * 1062 19.5
4(40) 315ms * 1398 13
6(40) 615ms * * 8.5

Wiki 30 2(20) 1.5s * * 27
8(80) 30s * * 34.5

40 2(20) 2s * * 36
10(100) 70mins * * 48

50 2(20) 2.8s * * 52
10(100) 870mins * * 55.3
20(200) * * * 59.6

27

Table 4: Run time of the algorithms over the networks Epin.(ions) and Amaz.(on).

Net. K R (η) Rand. Gre.B CSA CSA-Q

10 2(20) 33ms 2850 191 5.5
2(30) 30ms 2772 316 5.7
2(50) 26ms 2560 504 6.5
5(50) 81ms * 476 6.3

20 2(20) 500ms * 1216 7.8
2(40) 386ms * * 11.2
4(40) 1.2s * * 8.6
6(40) 2.5s * * 6.3

Epin. 30 2(20) 4s * * 11.5
8(80) 29s * * 13.8

40 2(20) 10s * * 14.6
10(100) 69mins * * 18

50 2(20) 18s * * 18.2
10(100) 840mins * * 19.8
20(200) * * * 23.9

10 2(20) 22ms 616 117 8
2(30) 20ms 600 159 9
2(50) 20ms 582 198 12.1
5(50) 55ms 982 462 8.8

20 2(20) 43ms * * 12.5
2(40) 33ms 1250 * 17
4(40) 84ms * * 13.6
6(40) 158ms * * 11.8

Amaz. 30 2(20) 88ms * * 19.4
8(80) 30s * * 22.5

40 2(20) 108ms * * 23.3
10(100) 70mins * * 27.8

50 2(20) 130ms * * 28
10(100) 870mins * * 32.2
20(200) * * * 37.5

Although the Rand.(om) method runs fast (measured by ms or s) in most
of cases, it is deemed to generate quite low influence spread (as shown in the
experimental results above) due to its randomness. Hence the Rand.(om)
solutions are not acceptable on solving the IMIL problem. In addition, the
Rand.(om) method still needs to compute influence loss of every subset of
the selected nodes. Consequently, it has to spend much time on solving the

28

cases of large K (or R) in all networks. For example, it costs around 870mins
to solve the IMIL problem in the network Wiki with K=50 and R=10. This
is rather time-consuming as the CSA-Q algorithm spends only 55.3mins on
solving the similar case.

The Gre.(edy)B algorithm requires a large amount of time to solve the
IMIL problem. The additional step of backtracking strategy contributes to
its complexity thereby causing more execution times. The algorithm may
repeatedly conduct the replacement process to find a feasible solution. Con-
sequently, the Gre.(edy)B algorithm cannot solve most of complex cases of
large K (or R) in all of four networks.

Both the CSA and CSA-Q algorithms consume substantially less time
compared to the Gre.(edy)B algorithm. The savings are mainly ascribed to
the systematical search of the CSA based techniques. Particularly the CSA-
Q algorithm shows significant speed-up over the CSA algorithm. Even when
either K or R increases, the CSA-Q algorithm does not require much more
run time. For example, for solving the largest network Amaz.(on), the in-
crease of run time is less than 10mins when K increases from 30 to 50 (R=2,
η=20).

When η increases given fixed (K, R) values (e.g. (10,2)), both Rand.(om)
and Gre.(edy)B do not cost more time while the CSA and CSA-Q algorithms
require more time to achieve the convergence. It is easier to find feasible solu-
tions when the constraint is relaxed. On the other hand, the loose constraint
allows the CSA based algorithms to search better solutions through more
iterations.

We observe that the run time of CSA-Q decreases when R increases given
fixed values of (K, η) (e.g. (20,40)). For a larger R, the CSA-Q algorithm
is driven to search nodes with less influence since the failure of such nodes
can still meet the constraint. The targeting nodes are normally with a small
number of paths, which reduces the computational time (as analyzed in Sec-
tion 4.4). For the CSA algorithm, the reduction is overwhelmed by the growth
of run time needed to compute influence loss for more subsets as R increases.

Except the Rand.(om) and CSA-Q methods, the other two algorithms
cannot solve most of the cases in all networks. Even the Rand.(om) method
cannot solve the case (K=50, R=20) within one day. In contrast, the CSA-Q
method can complete the search of top-K nodes in less than one hour for
any of the networks. Instead of computing influence loss for every subset of
the selected nodes, CSA-Q evaluates the constraint by summing individual
influence, which is linear with the number of failure nodes. Hence it is scalable

29

to solve all complex cases in our experiments within a reasonable amount of
time.

To further confirm the quality of solutions produced by the CSA-Q al-
gorithm, we show influence spread when the algorithm is compared to the
Rand.(om) method - the other one can solve the complex cases within ac-
ceptable time (one day). Table 5 demonstrates that the CSA-Q algorithm
achieves significantly larger influence spread while it costs much less time (as
seen in Tables 3 and 4).

Table 5: Influence spread of the Rand.(om) and CSA-Q algorithms for two complex cases.

Method K R (η) NetH. Wiki Epin. Amaz.

Rand. 40 10(100) 90 75 165 158
50 10(100) 315 283 334 351

CSA-Q 40 10(100) 112 93 196 192
50 10(100) 377 343 402 456

5.2.5. Summary

We show the impact of influence loss and reveal its importance in solv-
ing influence maximization problem. We further demonstrate that both the
CSA and CSA-Q algorithms outperform the baseline methods, GreedyB and
Random, in term of influence spread of top-K nodes. More importantly, the
CSA-Q algorithm achieves significantly improvement on the scalability while
maintaining sufficiently good solutions to the IMIL problem.

6. Conclusions

The IMIL problem is motivated by practical thoughts on viral marketing.
We aim to find top-K influential nodes given influence loss constraint in social
networks. This problem is proved to be NP-hardness and existing methods
fail to provide reasonably good solutions. To solve the problem, we devel-
oped a CSA based framework that optimizes top-K solutions while enforcing
satisfaction of influence loss constraint. The development of CSA algorithms
is not trivial in the new problem context as we need to investigate algorith-
mic convergence according to a particular domain based penalty function
and practical parameter settings. We further proposed an enhanced version
of the CSA algorithm that employs a new penalty function, and showed its
significant improvement on the algorithmic efficiency.

30

It is the first time that influence loss is considered in influence propagation
in social networks. The proposed influence maximization technique is a reli-
able top-K solution to developing practical applications of social networks in
a complex setting. Due to unpredictable factors, node failure may often occur
in the real-world environment. For example, in knowledge diffusion networks,
individuals may lose the propagation capability during the knowledge evolu-
tion (Luo, Du, Liu, Xuan, & Wang, 2015). Our technique may reduce the risk
of knowledge loss in a knowledge-transfer process. This directly facilitates a
robust development of expert systems on the knowledge elicitation and com-
bination. On the other hand, the proposed CSA framework is shown to be
very useful for solving other constrained optimization problems in social net-
works. We can perceive effective CSA based solutions to many optimization
problems in the development of intelligent systems (Marinaki & Marinakis,
2016).

As a primitive step to investigate influence loss in social networks, we em-
pirically study impact of the required inputs in the proposed technique: the
number of failure nodes and the influence loss threshold. As demonstrated in
Figs. 7 and 9, the two parameters exhibit expected impact in the influence
propagation. A precise estimation on the parameter values will definitely di-
rect the development of our technique on both its effectiveness and efficiency.
Hence the proposed technique may require much effort from domain experts
in the problem formulation and solution development. Meanwhile, we can
observe that the CSA algorithm with the new penalty function still demands
a large amount of time on solving very large networks since it needs to search
the entire solution space. This may limit its real-time applications when the
calculation shall be conducted online.

The previous limitations imply two lines of future research. On one hand,
we can study behavior of failure nodes in social networks particularly in prac-
tical applications. The investigation may provide more insightful knowledge
about influence loss in the real-time propagation, which in turn supplies exact
inputs to the solution development. This study may simultaneously indicate
potential strategies to avoid the node failure as well as to remedy the reduced
influence when nodes fail in social networks. The strategies are valuable upon
building reliable application systems and release a tedious task on eliciting
domain knowledge for developing the solutions. On the other hand, we will
continue to improve the CSA algorithm by pruning solutions with large influ-
ence loss in advance. We are particularly interested in examining the utility
of domain knowledge on the CSA performance when a complex constrained

31

optimization problem needs to be solved in applications.

Acknowledgement

The research was supported by the projects: NSFC 61375070, 61373033
and SZSTI JCYJ201418193546117.

References

Chen, W., Lu, W., & Zhang, N. (2012). Time-critical influence maximization
in social networks with time-delayed diffusion process. In Proceedings
of the twenty-sixth aaai conference on artificial intelligence (aaai) (pp.
592–598).

Chen, W., Wang, C., & Wang, Y. (2010). Scalable influence maximization for
prevalent viral marketing in large-scale social networks. In Proceedings
of the 16th acm sigkdd international conference on knowledge discovery
and data mining (kdd) (pp. 1029–1038).

Chen, W., Wang, Y., & Yang, S. (2009). Efficient influence maximization
in social networks. In Proceedings of the 15th acm sigkdd international
conference on knowledge discovery and data mining (kdd) (pp. 199–
208).

Domingos, P., & Richardson, M. (2001). Mining the network value of cus-
tomers. In Proceedings of the seventh acm sigkdd international confer-
ence on knowledge discovery and data mining (kdd) (pp. 57–66).

Feng, S., Chen, X., Cong, G., Zeng, Y., Chee, Y. M., & Xiang, Y. (2014). In-
fluence maximization with novelty decay in social networks. In Proceed-
ings of the twenty-eighth aaai conference on artificial intelligence (aaai)
(pp. 37–43).

Gomez-Rodriguez, M., & Scholkopf, B. (2012). Influence maximization in
continuous time diffusion networks. In Proceedings of the twenty-ninth
international conference on machine learning (icml).

Goyal, A., Bonchi, F., Lakshmanan, L. V., & Venkatasubramanian, S. (2013).
On minimizing budget and time in influence propagation over social
networks. Social Network Analysis and Mining , 3 (2), 179–192.

Hajian, B., & White, T. (2012). On measurement of influence in social
networks. In Asonam (pp. 101–105).

Jacob, G., Barak, L., & Eitan, M. (2001). Talk of the network: A complex
systems look at the underlying process of word-of-mouth. Marketing
Letters , 12 (3), 211-223. doi: 10.1023/A:1011122126881

32

Jiang, Q., Song, G., Gao, C., Wang, Y., Si, W., & Xie, K. (2011). Simulated
annealing based influence maximization in social networks. In Proceed-
ings of the twenty-fifth aaai conference on artificial intelligence (aaai)
(pp. 127–132).

Jung, K., Heo, W., & Chen, W. (2012). Irie: Scalable and robust influence
maximization in social networks. In Proceedings of the 2012 ieee 12th
international conference on data mining (icdm) (pp. 918–923).

Kempe, D., Kleinberg, J., & Tardos, E. (2003). Maximizing the spread of in-
fluence through a social network. In Proceedings of the ninth acm sigkdd
international conference on knowledge discovery and data mining (kdd)
(pp. 137–146).

Kim, J., Kim, S.-K., & Yu, H. (2013). Scalable and parallelizable processing
of influence maximization for large-scale social networks. In Proceedings
of the twenty-ninth international conference on data engineering (icde)
(pp. 266–277).

Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., &
Glance, N. (2007). Cost-effective outbreak detection in networks. In
Proceedings of the 13th acm sigkdd international conference on knowl-
edge discovery and data mining (kdd) (pp. 420–429).

Li, G., Chen, S., Feng, J., Tan, K.-l., & Li, W.-S. (2014). Efficient location-
aware influence maximization. In Proceedings of the 2014 acm sigmod
international conference on management of data (sigmod) (pp. 87–98).

Liu, B., Cong, G., Xu, D., & Zeng, Y. (2012). Time constrained influence
maximization in social networks. In Proceedings of the 12th ieee inter-
national conference on data mining (icdm) (pp. 439–448).

Liu, B., Cong, G., Zeng, Y., Xu, D., & Meng, C. Y. (2014). Influence spread-
ing path and its application to the time constrained social influence
maximization problem and beyond. IEEE Transactions on Knowledge
and Data Engineering , 26 (8), 1904–1917.

Liu, X., Li, M., Li, S., Peng, S., Liao, X., & Lu, X. (2014). Imgpu: Gpu-
accelerated influence maximization in large-scale social networks. IEEE
Transactions On Parallel and Distributed Systems , 25 (1), 136–145.

Luo, S., Du, Y., Liu, P., Xuan, Z., & Wang, Y. (2015). A study on coevolu-
tionary dynamics of knowledge diffusion and social network structure.
Expert Systems With Applications , 42 (7), 3619–3533.

Marinaki, M., & Marinakis, Y. (2016). A glowworm swarm optimization
algorithm for the vehicle routing problem with stochastic demands.
Expert Systems With Applications , 46 (15), 145–163.

33

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller,
E. (1953). Equation of state calculations by fast computing machines.
Journal of Chemical Physics , 21 (6), 1087-1092.

Nguyen, H., & Zheng, R. (2012). On budgeted influence maximization in
social networks. ArXiv:1204.4491v2 .

Ostfeld, A., Uber, J. G., & Salomons, E. (2006). Battle of water sensor net-
works: A design challenge for engineers and algorithms. In Proceedings
of water distribution systems analysis conference.

Richardson, M., & Domingos, P. (2002). Mining knowledge-sharing sites for
viral marketing. In Proceedings of the eighth acm sigkdd international
conference on knowledge discovery and data mining (kdd) (pp. 61–70).

Song, G., Zhou, X., Wang, Y., & Xie, K. (2014). Influence maximization on
large-scale mobile social network: A divide-and-conquer method. IEEE
Transactions On Parallel and Distributed Systems , 1-14.

Sun, X., Lin, H., & Xu, K. (2015). A social network model driven by events
and interests. Expert Systems With Applications , 42 (9), 4229–4238.

Wah, B. W., & Wang, T. (1999). Simulated annealing with asymptotic
convergence for nonlinear constrained global optimization. In Princi-
ples and practice of constraint programming (pp. 461–475). Springer-
Verlag.

Wang, T. (2001). Global optimization for constrained nonlinear programming
(PhD Thesis). University of Illinois at Urbana-Champaign.

Wang, Y., Cong, G., Song, G., & Xie, K. (2010). Community-based greedy al-
gorithm for mining top-K influential nodes in mobile social networks. In
Proceedings of the 16th acm sigkdd international conference on knowl-
edge discovery and data mining (kdd) (pp. 1039–1048).

Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and
applications. Cambridge University Press.

Zafarani, R., Abbasi, M. A., & Liu, H. (2014). Social media mining: An
introduction. Cambridge University Press.

Zeng, Y., Chen, X., Cao, X., Qin, S., Cavazza, M., & Xiang, Y. (2015).
Optimal route search with the coverage of users’ preferences. In Pro-
ceedings of the twenty-fourth international joint conference on artificial
intelligence (ijcai) (pp. 2118–2124).

34

