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Resilient cluster consensus of multi-agent systems
Yilun Shang

Abstract—We investigate the problems of resilient cluster
consensus in directed networks under three types of multi-agent
dynamics, namely, continuous-time multi-agent systems, discrete-
time multi-agent systems, and switched multi-agent systems
composed of both continuous-time and discrete-time components.
Resilient cluster censoring strategies are proposed to ensure
cluster consensus against locally bounded Byzantine nodes in a
purely distributed manner, where neither the number/indentity
of Byzantine nodes nor the division of clusters is assumed.
We do not require complicated algebraic conditions or any
balance conditions over inter-cluster structures, distinguishing
the current work from previous results on cluster consensus
problems besides a fortiori the attack-tolerant feature. Sufficient
conditions are established in all the three scenarios based on
the graph robustness. Furthermore, we solve the heterogenous
cluster robustness problems and resilient scaled cluster consensus
problems as extensions. The theoretical results are illustrated
through numerical examples including the Santa Fe collaboration
network.

Index Terms—Robustness; cluster consensus; continuous-time;
discrete-time; switched multi-agent system.

I. INTRODUCTION

Over the past decade, consensus problems of cooperative
multi-agent systems have appeared as an emerging research
area with broad applications and attracted interests from many
fields, such as computer science, control engineering, physics,
and social science [1]–[3]. For a networked system, consensus
means that the states of all agents in the network converge
to a common value based on local information available to
each agent. A large amount of consensus algorithms have been
reported for varied systems with continuous-time and discrete-
time agent dynamics [4], [5].

It is widely known that distributed engineered multi-agent
systems are prone to errors and malicious attacks. Therefore,
it is imperative to study the resilient consensus of multi-
agent systems which can defy the compromise of a group
of adversarial nodes within the network. In [6], [7], Zhang
et al. and LeBlanc et al. developed an interesting concept of
network robustness, referred to as r-robustness, characterizing
robust networks on which discrete-time resilient consensus
algorithms are designed. The proposed algorithm is purely
distributed for normal nodes in the network in the sense
that no initial knowledge of the network topology as well
as the identities of adversarial nodes is assumed. The results
were later extended to a class of hybrid dynamics [8] and
second-order multi-agent systems under locally bounded errors
[9]. In [10], continuous-time fault-tolerant consensus control
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for multi-agent systems has been studied in the presence of
communication delay. By utilizing mobile detectors, Zhao et
al. [11] investigated discrete-time resilient consensus under
attacks where the number of Byzantine nodes is not limited by
the network connectivity. Recently, Shang [12] considered the
resilient consensus of switched multi-agent systems which is
composed of a discrete-time subsystem and a continuous-time
subsystem activated in turn by a switching rule. It was shown
that resilient consensus problem is solvable under arbitrary
switching. Other resilient consensus problems, e.g., in terms
of memory sampled-data control [13] and robustness against
uncertain disturbances [14] have also been studied.

The existing results of most previous work in this field,
however, are on resilient consensus with a global agreement.
In the real world, agreement is often not unanimous in the
sense that agents in the network are partitioned into mul-
tiple subgroups (i.e. clusters), each of which may reach a
common but usually different state asymptotically [15]. For
instance, in cooperative team-hunting activities, several groups
of predators may surround the prey in different directions for
hunting success [16]. Other examples include social learn-
ing under environment influenced by different culture back-
grounds, robot team coordination, and heterogeneous robotic
sorting [17]. As an extension to global consensus, cluster
consensus has been intensively studied for both continuous-
time systems [15], [18]–[21] and discrete-time systems [22]–
[25] to achieve individual consistent states in each cluster,
where information exchanges between agents not only within
the same cluster but also among different clusters. In [23],
for example, cluster consensus is achieved via adaptive inputs
when the inter-cluster topologies are balanced meaning that
the sum of adjacent weights from each node in one cluster
to all nodes in another cluster is kept identical. However, the
above works are based on the assumption that all nodes in
the network are cooperative, i.e. normal, and hence are not
capable of coping with resilient consensus problems against
attacks. An adversarial node can easily manipulate the network
performance as its influence is not appropriately monitored
with the existing protocols. One of the main aims in this paper
is to, for the first time, propose the cluster censoring strategy
(c.f. Section II.C) so that the malicious behavior of adversarial
nodes is “monitored” and resilient cluster consensus can be
guaranteed. Furthermore, to our knowledge, cluster consensus
problem has not been solved for switched systems due to the
difficulty resulting from coexistence of continuous-time and
discrete-time subsystems. In the current work, we put forward
new consensus protocols to solve not only cluster consensus
but resilient cluster consensus problems in switched multi-
agent systems.

The main contributions of this paper are summarized as
follows.
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First, two distributed cluster consensus protocols are pro-
posed under which resilient cluster consensus for continuous-
time and discrete-time multi-agent systems, respectively, can
be reached against locally bounded Byzantine nodes. In the
current work, no topological condition is imposed on the inter-
connection among clusters, whereas in most previous cluster
consensus protocols (see the aforementioned work [15], [18]–
[25]) fairly restrictive balance conditions are assumed for
the Laplacian matrices describing the inter-cluster topology.
Moreover, in the existing cluster consensus problems, each
node must be aware of the locations of other nodes (i.e., to
which clusters they belong in the network) as the adopted
protocol is often stringently dependent on the location of
every node in the network. In contrast, our framework works
flexibly in the sense that a normal node is not assumed to
have knowledge on i) the locations of nodes outside of its own
cluster, or ii) the identities and number of Byzantine nodes in
the entire network.

Second, based upon the designed continuous-time and
discrete-time protocols, resilient cluster consensus is consid-
ered over switched multi-agent systems featuring, for example,
continuous-time multi-agent systems activated by a computer
in a discrete-time manner [12], [26]. Sufficient criteria are
provided to ensure cluster consensus against locally bounded
Byzantine nodes under arbitrary switching. To the best of our
knowledge, this is the first work dealing with (resilient) cluster
consensus in switched systems.

Third, we add a further dimension by introducing the
resilient scaled cluster consensus problems, where states of
normal nodes in each cluster may achieve any prescribed
ratios asymptotically instead of a common value [27]. These
problems are solved for all continuous-time, discrete-time,
and switched multi-agent systems as generalizations. We note
that scaled cluster consensus has recently been examined for
continuous-time multi-agent systems with first and second
order dynamics in [28], where adversarial nodes were not
considered.

The rest of the paper is organized as follows. Section II is
devoted to preliminaries and formulation of the system models.
Main results are provided in Section III. Numerical simulations
are given in Section IV to illustrate our theoretical results.
Finally, conclusion is drawn in Section V.

II. PRELIMINARIES

Some standard notations will be used throughout the paper.
Let R and N, respectively, be the sets of real numbers and
non-negative integers. For a set X , |X| means the number of
elements in it, while for a real number x, |x| stands for its
absolute value.

A. Graph theory

Consider a directed network containing n agents with as-
sociated weighted digraph denoted by G = (V,E,A), where
V = {1, · · · , n} represents the set of nodes with |V | = n
and E ⊆ V × V is the set of directed edges. The weighted
adjacency matrix A = (aij) ∈ Rn×n is defined by aij > 0
if (j, i) ∈ E meaning that node i can receive information

directly from node j, and aij = 0 otherwise. Let N and B
represent the sets of normal nodes and non-cooperative nodes
in G, respectively, with |N | = nN and |B| = nB . Clearly, we
have V = N∪B and n = nN +nB . Normal nodes collaborate
with their neighbors to reach a consensus value following state
update rules specified in (1)-(3) below. Non-cooperative nodes
are Byzantine nodes (see Definition 4 below), who aim to
manipulate the network performance to thwart consensus. The
existence of non-cooperative nodes is not known to the normal
nodes as usually in the real world situations. Moreover, G is
divided into L clusters G` (` = 1, 2, · · · , L) having node sets
V1 = {1, 2, · · · , n1}, V2 = {n1+1, n1+2, · · · , n1+n2}, · · · ,
VL = {n1 + · · ·+nL−1 +1, · · · , n1 + · · ·+nL}, respectively,
with |V`| = n` (1 ≤ ` ≤ L) and n =

∑L
`=1 n`. The

edges and weights in each cluster are naturally induced by
the overall structure of G. The neighborhood of node i ∈ V
is denoted by Ni = {j ∈ V : (j, i) ∈ E} = ∪L

`=1Ni`, where
Ni` = {j ∈ V` : (j, i) ∈ E} is the set of all neighbors of i in
the cluster G` (1 ≤ ` ≤ L). A directed path from node i to
j is a sequence of edges (i, i1), (i1, i2), · · · , (il, j) in G with
distinct nodes ik, k = 1, 2, · · · , l. We say that G has a directed
spanning tree with root i if for every node j in V \{i}, there
is a directed path from i to j.
Definition 1. (reachability) [6], [7] A set S ⊆ V is called r-
reachable provided there is a node i ∈ S such that |Ni\S| ≥ r,
where r ∈ N.
Definition 2. (robustness) [6], [7] A digraph G is called r-
robust with r ∈ N provided for every pair of nonempty and
disjoint subsets in V , at least one of them is r-reachable.
Lemma 1. [7] Suppose that G is r-robust and G′ is the graph
produced by removing up to s incoming edges of each node
in G, where 0 ≤ s < r. Then G′ is r−s-robust. G is 1-robust
if and only if it contains a directed spanning tree.

B. System models
In a network with directed topology, we consider three

types of system dynamics, i.e., continuous-time dynamics,
discrete-time dynamics, and switched dynamics containing a
continuous-time subsystem and a discrete-time subsystem. Let
xi(t) ∈ R be the state of node i at time t.
Definition 3. (resilient cluster consensus) The normal nodes
in N is said to achieve resilient cluster consensus against non-
cooperative nodes in B if, for each 1 ≤ ` ≤ L, there exists
c` ∈ R such that limt→∞ xi(t) = c` for all i ∈ V` and all
initial conditions {xi(0)}i∈V`

.
Remark 1. In the above definition, we do not require c`1 6=
c`2 for `1 6= `2, which is in line with many of the existing
research studies in this field (e.g. [20], [22], [25], [29]). From
this perspective, cluster consensus covers global consensus as
a special case. On the other hand, inter-cluster separation has
also been realized in the literature through leader-following
[19], [30] or inter-cluster heterogeneous external input [21],
[23], [31].

It is clear that the ordinary cluster consensus problem is
recovered if B = ∅ in Definition 3. For continuous-time agent
dynamics, each normal node i ∈ N adopts the following
scheme

ẋi(t) = ϕC
i

(
{xi

j(t) : j ∈ Ni ∪ {i}}
)

(1)



IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 3

For discrete-time agent dynamics, each normal node i ∈ N
follows

xi(t + 1) = ϕD
i

(
{xi

j(t) : j ∈ Ni ∪ {i}}
)

(2)

where xi
j(t) ∈ R represents the state value communicate to i

from j at time t. For switched multi-agent systems, we take
(1) and (2), respectively, as the continuous- and discrete-time
subsystems governed by a switching law. In other words, each
normal node i ∈ N follows

ẋi(t) = ϕC
i

(
{xi

j(t) : j ∈ Ni ∪ {i}}
)
,

continuous-time subsystem activated at t;
xi(t) = ϕD

i

(
{xi

j(t − 1) : j ∈ Ni ∪ {i}}
)
,

discrete-time subsystem activated at t.

(3)

Naturally, we define xi
j(t) = xj(t) for j ∈ N as a normal node

will always communicate the true state in its neighborhood.
We also have xi

i(t) = xi(t). The system functions ϕC
i and

ϕD
i will be designed later so that the normal nodes in the

network are able to withstand sabotage of non-cooperative
nodes, whose cardinality and identities are unavailable to
normal nodes. Non-cooperative nodes in B are potentially
capable of exerting arbitrary disruptive behaviors specified as
follows.
Definition 4. (Byzantine node) A node i ∈ B is a Byzantine
node if it applies some different system function ϕ̃C

i for the
continuous-time systems (or ϕ̃D

i for the discrete-time systems,
or either one for the switched systems, respectively), or it sends
disparate values to any of its neighbors at some time t > 0.

Byzantine nodes are considered as one of the worst attackers
as they often possess a perfect knowledge of the entire system
[8], [9], [11]. They are capable of falsifying the information
sending to their neighbors either in a point-to-point way or
through broadcast communication, and can potentially collude
with other Byzantine nodes. It is therefore reasonable to limit
the number of these nodes. Given an integer r, we here inves-
tigate the r-locally bounded model [7], where |Ni ∩ B| ≤ r
for every normal node i ∈ N . In other words, each normal
node has no more than r non-cooperative neighbors.

Fig. 1. Data flow for the continuous-time subsystem: List3 ⊆ List2 ⊆ List1;
Ni := {j1, · · · , j|Ni|}; xi

ja
(if larger than xi) is the (r+1)-th largest value

of Ni` in List1; xi
jb

(if smaller than xi) is the (r + 1)-th smallest value of
Ni` in List1; xi

jc
:= max{Ci(t)∪xi} and xi

jd
:= min{C′

i(t)∪xi}, where
Ci(t) is contained in List2 and has all values in Ni` that are larger than
xi, and similarly C′

i(t) is contained in List2 and has values in Ni` that are
smaller than xi; Ni\Ri(t) := {jc, · · · , jd}.

C. Cluster censoring strategy

In light of the Weighted-Mean-Subsequence-Reduced (W-
MSR) scheme [7], [8], [10], we design the following nearest-
neighbor based two-round censoring procedure for continuous-
time multi-agent system (1) to facilitate resilient cluster con-
sensus (see Fig. 1 for a data flow scheme for the model).

Fix r ∈ N. First, each normal node i ∈ N ∩V` (1 ≤ ` ≤ L)
receives the values {xi

j(t)} of its neighbors at time t, and ranks
the obtained information {xi

j(t)}j∈Ni in a descending order.
Second, the highest values that are higher than xi(t) in the
above sorted list are removed in order (from large to small)
until r values from Ni` are eliminated; if there are fewer than r
such values, all of them are eliminated. The analogous deletion
process is conducted for the lower values. Third, denote by
Ci(t) the set of values in Ni` that are higher than xi(t) in the
resulting list. We further delete those values in the list that
are higher than max{Ci(t)∪ xi(t)}. The analogous process is
applied to the lower values. Let Ri(t) be the set of nodes that
have been eliminated in the above two steps. Fourth, the value
of each i ∈ N ∩ V` evolves following ϕC

i (·) in (1)

ẋi(t) =
∑

j∈(Ni∪{i})\Ri(t)

aijfij(xi
j(t), xi(t)), (4)

where we assume that the function fij : R2 → R is (iC) locally
Lipschitz continuous, (iiC) fij(x, y) = 0 ⇔ x = y, and that
(iiiC) for any nonequal x and y, (x − y)fij(x, y) > 0.

For discrete-time multi-agent system (2), we have a similar
two-round censoring process performed at discrete-time steps.
The first three steps are exactly the same as above. In the final
step, the value of each i ∈ N ∩ V` changes following ϕD

i (·)
in (2)

xi(t + 1) =
∑

j∈(Ni∪{i})\Ri(t)

wij(t)xi
j(t), (5)

where we assume that the weight wij(t) (iD) equals to zero
if j 6∈ Ni ∪ {i}, (iiD) there is a constant w ∈ (0, 1) such that
wij(t) ≥ w > 0 for any j ∈ (Ni ∪{i})\Ri(t), and that (iiiD)
the equality

∑
j∈(Ni∪{i})\Ri(t)

wij(t) = 1 holds.
For switched multi-agent system (3), we can easily con-

catenate these two algorithms by invoking the appropriate one
according to the the signal of switching law in question. See
Fig. 2 for the framework diagram for the nearest-neighbor
based two-round censoring strategy.

Fig. 2. Framework diagram for the nearest-neighbor based two-round
censoring procedure.
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Remark 2. For both continuous-time and discrete-time
(sub)systems, the above algorithm involves two rounds of
censoring. Generally, in the first round of censoring, any
neighbor in Ni having value no less than the r-th largest value
of Ni` is deleted, and similarly, any neighbor in Ni having
value no more than the r-th smallest value of Ni` is deleted;
in the second round of censoring, any neighbor in Ni having
value larger than the largest value of Ni` in the remaining
list is deleted, and similarly, any neighbor in Ni having value
smaller than the smallest value of Ni` in the remaining list is
deleted. Our strategy can be viewed as a generalization of W-
MSR into multiple clusters. In fact, if L = 1 (namely, there is
only one cluster), then the first round of censoring corresponds
to the filter operation in W-MSR and the second round of
censoring becomes void. In the multiple clusters scenario, it
can be seen that the two-round censorship is necessary to
guarantee cluster consensus essentially (c.f. Examples 1 & 2
in Section III). Here, it is also worth clarifying that nodes are
deleted at each time step based solely on their values instead of
their identities/locations, which are not available for a normal
agent. Therefore, both normal and Byzantine nodes can be
deleted in the two rounds of censoring in general, and we do
not require deleting all Byzantine nodes in our algorithms.
Remark 3. The functions and weights in (4) and (5) have
considerable flexibility. For example, we can choose in the
continuous-time system fij(x, y) = bij(x − y) with bij > 0,
which is canonical in the literature on consensus problems
(see e.g. [4]). In the discrete-time system, we can take
wij(t) = (|Ni|+1−|Ri(t)|)−1 to give each neighbor the same
weight, or wij(t) = aij ·

( ∑
j∈(Ni∪{i})\Ri(t)

aij

)−1
taking

into consideration of the network adjacency matrix.
The strategies proposed above have low complexity and

are purely local and distributed as the W-MSR protocol. The
designed algorithms enable us to simultaneously cope with
the coexistence of normal and Byzantine nodes, the interplay
among different clusters, and the switching between discrete-
and continuous-time agent dynamics. We refer to the above
algorithms as the cluster censoring strategy with parameter r
in the sequel.

III. RESILIENT CLUSTER CONSENSUS ANALYSIS

In this section, the resilient cluster consensus problem
and its generations will be considered under three types of
agent dynamics, namely, continuous-time, discrete-time, and
switched multi-agent systems.

A. Continuous-time system

To start with, define ΘM`(t) := maxi∈N∩V`
xi(t) and

Θm`(t) := mini∈N∩V`
xi(t) for t ≥ 0 to be the highest and

lowest values of normal nodes in the cluster G` (1 ≤ ` ≤ L).
Lemma 2. Consider the continuous-time multi-agent system
(1) under the digraph G = (V,E), in which normal nodes
adopt the cluster censoring strategy with parameter r. Under
the r-locally bounded Byzantine model, for any i ∈ N ∩ V`

(1 ≤ ` ≤ L), we have xi(t) ∈ [Θm`(0),ΘM`(0)] for all t ≥ 0.
Proof. Fix ` and i ∈ N ∩ V`. We will show xi(t) ≤ ΘM`(0)
for t ≥ 0. The proof of the lower bound is akin to this.

Suppose the upper bound does not hold. There exists some
time t∗ > 0 such that there exists a node i0 ∈ N ∩ V`,
xi0(t

∗) = ΘM`(0) for the first time and xi(t) ≤ ΘM`(0)
for all t ≤ t∗ and all i ∈ N ∩V`. Thus, ẋi0(t

∗) > 0. It follows
from (4) that

ẋi0(t
∗) =

∑
j∈(Ni0∪{i0})\Ri0 (t∗)

ai0jfi0j(xi0
j (t∗), xi0(t

∗)).

It is not difficult to see whether j ∈ (Ni0` ∪ {i0})\Ri0(t
∗)

or j ∈ (Ni0`′ ∪ {i0})\Ri0(t
∗) with `′ 6= `, we have

xi0
j (t∗) ≤ xi0(t

∗) since i0 is connected to no more than r
Byzantine neighbors in G. By the assumptions (iiC) and (iiiC),
all components on the right-hand side of the above expression
are less than or equal to zero which leads to ẋi0(t

∗) ≤ 0. We
derive a contradiction and the proof is complete. 2

Remark 4. The interval [Θm`(0),ΘM`(0)] is an invariant set
for all normal nodes in the cluster G`. This is referred to as
validity or safety condition [7] for a safety sensitive process
as the initial interval is often viewed as safe. It is also worth
noting that the parameter r in our cluster censoring strategy is
known a priori to all normal nodes. The parameter r informs
the network robustness condition (Theorem 1 below) and can
be extended to cluster-wise heterogeneous values (c.f. Remark
5). However, a more realistic scenario would be to determine
the individual value ri (i ∈ V ) through a distributed decision
making, for example, using the max consensus process [35].

The two-round censoring strategy plays a key role in the
proof Lemma 2. Furthermore, it is intuitively clear from
the following examples that the two rounds of removal are
necessary to ensure resilient cluster consensus.
Example 1. Suppose G = G1 ∪ G2 and a normal node
i ∈ N ∩ V1 has neighborhoods Ni1 = {i1, i2 · · · , ir} ⊆ B
and Ni2 = {j} ⊆ N . Assume that the values of xil

(t)
(l = 1, 2 · · · , r) and xj(t) are all larger than xi(t), t ≥ 0. If
we only cut off r neighbors in Ni (as in the global consensus
case, c.f. [6]–[8]) in the first round of censoring, the node
i can easily be controlled by one of its Byzantine neighbor
and no consensus will be reached among normal nodes in
G1. Moreover, this cannot be remedied by requiring strong
robustness of G1 since additional (normal) neighbors of i in
V1 may all have lower values than xi. Example 1 shows that
the first round of censoring is essential.
Example 2. Suppose G = G1 ∪ G2, B = ∅, G` (` = 1, 2)
are complete digraphs, and a normal node i ∈ V1 has Ni2 =
{i1, i2, · · · , ir+1}. Assume n` > r+1 (` = 1, 2). If the second
round of censoring is omitted, then all nodes in G must reach
a global consensus by a standard result of consensus problem
(see e.g. [4]), which becomes trivial. On the other hand, if
there is a Byzantine node in Ni2, the states of nodes in G1

will be ruled by the Byzantine node when the second round
of censoring is not in place. Thus, the cluster consensus is not
achieved by Definition 3. Obviously, these issues cannot be
solved by imposing strong robustness of G1 since it is already
complete. Example 2 highlights the necessity of including the
second round of removal.

We will see below in Theorem 1 that our proposed cluster
censoring strategy (together with appropriate robust network
topologies) is sufficient for resilient cluster consensus.
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Assumption 1. Let {τp}p∈N be the sequence of instants when
the set Ri(t) changes for some i ∈ N . Suppose |τp+1− τp| ≥
τ > 0 for some τ .
Theorem 1. Consider the continuous-time multi-agent system
(1) under digraph G = (V,E,A), where each normal node
adopts the cluster censoring strategy with parameter r. Under
the r-locally bounded Byzantine model, resilient cluster con-
sensus is achieved if G` is 2r + 1-robust for 1 ≤ ` ≤ L and
Assumption 1 holds.
Proof. Let Γ`(t) = ΘM`(t)−Θm`(t) for ` = 1, 2, · · · , L, and
t ≥ 0. It suffices to show that each Γ`(t) tends to zero as t
tends to infinity. For this purpose, we fix `. Define the Dini
derivative of a function as D+ϕ(t) = lim suph→0+(ϕ(t +
h) − ϕ(t))/h. In view of the cluster censoring strategy, the
Dini derivatives of ΘM`(t) and Θm`(t) along the trajectory
of (4) can be calculated as

D+ΘM`(t) =ẋI(t)

=
∑

j∈(NI∪{I})\RI(t)

aIjfIj(xI
j (t), xI(t)) (6)

and

D+Θm`(t) =ẋJ(t)

=
∑

j∈(NJ∪{J})\RJ (t)

aJjfJj(xJ
j (t), xJ(t)), (7)

where ẋI(t) = maxi∈I(t) ẋi(t), I(t) = {i ∈ N ∩ V` :
xi(t) = ΘM`(t)} and ẋJ(t) = maxi∈J (t) ẋi(t), J (t) = {i ∈
N ∩ V` : xi(t) = Θm`(t)} invoking Dini derivative’s theorem
[32]. For j ∈ (NI` ∪ {I})\RI(t), we have xI(t) ≥ xI

j (t)
since node j has at most r Byzantine neighbors in G and r
neighbors in NI` will be removed in step 2 of the censoring
algorithm. Due to step 3 of the algorithm, xI(t) ≥ xI

j (t)
still holds for j ∈ (NI`′ ∪ {I})\RI(t) with `′ 6= `. Since
aIj > 0 and fIj(xI

j (t), xI(t)) ≤ 0, we obtain D+ΘM`(t) ≤ 0
by (6). Analogously, D+Θm`(t) ≥ 0 by (7) and hence
D+Γ`(t) = D+ΘM`(t) − D+Θm`(t) ≤ 0.

Suppose that limt→∞ D+Γ`(t) 6= 0. There must exist
constants ε0 > 0, δ0 > 0, and a sequence of instants {sl}l≥1

with liml→∞ sl = ∞ such that D+Γ`(sl) ≤ −2ε0 and
|sl+1 − sl| > δ0 for any l ≥ 1. For any interval I with
I ∩ {τp}p≥1 = ∅, D+Γ`(t) is uniformly continuous in I
since D+Γ`(t) is continuous and ẋi(t) is bounded for all
normal nodes i ∈ N ∩ V` by (iC). We can choose δ1 > 0
such that for any t1 and t2 in I and |t1 − t2| < δ1,
|D+Γ`(t1) − D+Γ`(t2)| < ε0 holds. In addition, it follows
from Assumption 1 that δ1 can be taken small enough such
that for every l ≥ 1, [sl − δ1, sl + δ1] ⊆ I for some I . For any
t ∈ [sl − δ1, sl + δ1], we have

D+Γ`(t) = − |D+Γ`(sl) − (D+Γ`(sl) − D+Γ`(t))|
≤ − 2ε0 + ε0 = −ε0.

Take 0 < δ < δ1 satisfying {[sl − δ, sl + δ]}l≥1 are pairwise
disjoint intervals. Therefore,∫ ∞

0

D+Γ`(t)dt ≤− lim
N→∞

N∑
l=1

∫ sl+δ

sl−δ

ε0dt

= − 2 lim
N→∞

Nε0δ = −∞.

It is a contradiction against the fact Γ`(t) ≥ 0 for all t. This
means the assumption at the outset is not true and we obtain
D+Γ`(t) → 0 as t → ∞.

Now, in view of (6) and (7), there exist two constants
cM` ≥ cm` such that limt→∞ ΘM`(t) = limt→∞ xI(t) = cM`

and limt→∞ Θm`(t) = limt→∞ xJ(t) = cm`. Assume that
cM` > cm`. Drawing upon Lemma 1 and the assumptions
that the clusters G` (1 ≤ ` ≤ L) are 2r + 1-robust, we see
that the communication network G` (under time-varying edge
removal of our cluster censoring strategy) is always 1-robust
and equivalently has a spanning tree. There is an instant T > 0
and ε > 0 such that xI(t) > cM` − ε > cm` + ε > xJ(t)
for t ≥ T . Noting that limt→∞ ẋI(t) = 0, we obtain
limt→∞ xI

j (t) − xI(t) = 0 for all j ∈ (NI ∪ {I})\RI(t) by
(6) and the cluster censoring strategy. Akin to this, we derive
limt→∞ xJ

j (t)−xJ(t) = 0 for all j ∈ (NJ ∪{J})\RJ(t) via
(7). Since there is a finite number of nodes in G`, at some time
T ′ ≥ T , there must be two directed paths—one connecting the
root node q to I and the other connecting q to J such that
xq(T ′) > cM` − ε > cm` + ε > xq(T ′). This is impossible.
Hence, cM` = cm` and the states of nodes in G` converge to
a common limit. This holds for all ` = 1, 2, · · · , L. The proof
is complete. 2

Remark 5. It is noteworthy that, compared to the existing
cluster consensus problems(see e.g. [15], [18], [20], [22], [23],
[25]), neither inter-cluster balance condition nor complicated
eigenvalue conditions are required in Theorem 1 owing to
the cluster censoring strategy and r-robustness of clusters.
Moreover, if for each normal node i ∈ N ∩ V` (1 ≤ ` ≤ L)
we consider r` instead of requiring the same r for all normal
nodes in G in our cluster censoring strategy, we are able to
deal with more general situations where clusters may have
heterogeneous robustness. We refer to the resulting algorithm
(both for continuous- and discrete-time) as the cluster cen-
soring strategy with parameter (r1, r2, · · · , rL). Given the se-
quence (r1, r2, · · · , rL), we define the (r1, r2, · · · , rL)-locally
bounded model, where |Ni ∩ B| ≤ r` holds for every node
i ∈ N ∩ V` (1 ≤ ` ≤ L). Namely, each normal node in
the cluster G` has no more than r` Byzantine neighbors in the
entire network G. The following result can be shown similarly
as Theorem 1.
Theorem 2. Consider the continuous-time multi-agent sys-
tem (1) under digraph G = (V,E,A), where each normal
node adopts the cluster censoring strategy with parameter
(r1, r2, · · · , rL). Under the (r1, r2, · · · , rL)-locally bounded
Byzantine model, resilient cluster consensus is achieved if G`

is 2r` + 1-robust for 1 ≤ ` ≤ L and Assumption 1 holds.
Definition 5. (resilient scaled cluster consensus) Given
0 6= γi ∈ R for each node i ∈ V , normal nodes are said
to achieve resilient scaled cluster consensus with respect to
(γ1, γ2, · · · , γn) if for each 1 ≤ ` ≤ L, there exists c` ∈ R
such that limt→∞ γixi(t) = c` for all i ∈ V` and all initial
conditions {xi(0)}i∈V`

.
Scaled consensus problems (see e.g. [27], [28]) offers a

further dimension of freedom where prescribed ratios rather
than a fix common value is achieved. Clearly, the special
case of γi ≡ 1 corresponds to the cluster consensus defined
in Definition 3. We consider the following scaled cluster
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censoring strategy with parameter r for the continuous-time
multi-agent system (1).

Fix r ∈ N. First, each normal node i ∈ N ∩V` (1 ≤ ` ≤ L)
receives the values {xi

j(t)} of its neighbors at time t, and ranks
the obtained information {γjx

i
j(t)}j∈Ni in a descending order.

Second, the highest values that are higher than γixi(t) in the
above ranked list are eliminated in order (from high to low)
until r values from Ni` are eliminated; If there are fewer than
r such values, all of them are deleted. The analogous deletion
process is applied to the lower values. Third, denote by Ci(t)
the set of values coming from Ni` that is higher than γixi(t) in
the resulting list. We further delete those values in the list that
are higher than max{Ci(t)∪ γixi(t)}. The analogous process
is applied to the lower values. Let Ri(t) be the set of nodes
that have been eliminated in the above two steps. Fourth, the
value of each i ∈ N ∩ V` evolves following ϕC

i (·) in (1)

ẋi(t) = sgn(γi)
∑

j∈(Ni∪{i})\Ri(t)

aijfij(γjx
i
j(t), γixi(t)),

(8)
where sgn(·) represents the signum function and the function
fij : R2 → R possesses the same three conditions as in
Section II.B.

The following corollary follows from the same line of
argument as in Theorem 1 by re-defining ΘM`(t) :=
maxi∈N∩V`

γixi(t) and Θm`(t) := mini∈N∩V`
γixi(t) for

t ≥ 0.
Corollary 1. Consider the continuous-time multi-agent system
(1) under digraph G = (V,E,A), where each normal node
adopts the scaled cluster censoring strategy with parameter r.
Under the r-locally bounded Byzantine model, resilient scaled
cluster consensus with respect to (γ1, · · · , γn) is achieved if
G` is 2r + 1-robust for 1 ≤ ` ≤ L and Assumption 1 holds.

A heterogeneous version of the resilient scaled cluster
consensus in the spirit of Theorem 2 can also be derived. We
omit here due to the space of limitation.

B. Discrete-time system

For discrete-time system (2), we have a slightly stronger
result in the same spirit of Lemma 2. Recall that ΘM`(t) :=
maxi∈N∩V`

xi(t) and Θm`(t) := mini∈N∩V`
xi(t) for t ≥ 0

are the highest and lowest values of normal nodes, respectively,
in the cluster G` (1 ≤ ` ≤ L).
Lemma 3. Consider the discrete-time multi-agent system (2)
under the digraph G = (V,E), in which normal nodes adopt
the cluster censoring strategy with parameter r. Under the r-
locally bounded Byzantine model, for any i ∈ N ∩ V` (1 ≤
` ≤ L), we have xi(t + 1) ∈ [Θm`(t),ΘM`(t)] for all t ≥ 0.
Proof. Fix ` and i ∈ N∩V`. We will show xi(t+1) ≤ ΘM`(t)
for t ≥ 0. The lower bound can be shown likewise. It follows
from (5) that xi(t + 1) is a convex combination of values
{xi

j(t)}j∈(Ni∪{i})\Ri(t). For j ∈ (Ni` ∪ {i})\Ri(t), xi
j(t) ≤

ΘM`(t) since r nodes in Ni` are deleted in step 2 of the cluster
censoring strategy and the network is r-locally bounded. For
j ∈ (Ni`′∪{i})\Ri(t) with `′ 6= `, xi

j(t) ≤ ΘM`(t) still holds
for that the removal in step 3 ensures either xi

j(t) ≤ xi(t) or
xi

j(t) ≤ xk(t) for some k ∈ N ∩ Ni`. Hence, xi(t + 1) ≤
ΘM`(t). 2

As shown in the examples in Section III.A, the two-
round censoring strategy is essential for reaching resilient
cluster consensus in discrete-time system. The sufficiency is
summarized in the following result.
Theorem 3. Consider the discrete-time multi-agent system (2)
under digraph G = (V,E,A), where each normal node adopts
the cluster censoring strategy with parameter r. Under the r-
locally bounded Byzantine model, resilient cluster consensus
is achieved if G` is 2r + 1-robust for 1 ≤ ` ≤ L.
Proof. Fix ` ∈ {1, 2, · · · , L}. Thanks to Lemma 2, we set
cM` := limt→∞ ΘM`(t) ≥ cm` := limt→∞ Θm`(t) since both
limits exist. Similarly as the continuous-time scenario, we aim
to show cM` = cm` by the method of contradiction.

Suppose on the contrary that cM` > cm`. Select ε0 > 0
satisfying cM` − ε0 > cm` + ε0. Given εs > 0, we introduce
HM`(t, εs) = {i ∈ N ∩ V` : xi(t) > cM` − εs} and
Hm`(t, εs) = {i ∈ N ∩ V` : xi(t) < cm` + εs} for t > 0
similarly as in [7]. Clearly, HM`(t, ε0) ∩ Hm`(t, ε0) = ∅.
Choose ε < wn` ε0

(1−wn` ) and 0 < ε < ε0, where 0 < w < 1
is given in (iiD). Take tε > 0 be the time step satisfying for
t ≥ tε, ΘM`(t) < cM` + ε and Θm`(t) > cm` − ε.

Signify by GN
` = (N∩V`, E

N
` ) the subgraph of G` induced

by the normal nodes in N , where EN
` is composed of directed

edges between any normal nodes in V`. We know that GN
` is

r+1-robust in r-locally bounded model as G` is 2r+1-robust
by assumption. Considering HM`(t, ε0) and Hm`(t, ε0), we
know that there must exist a node in HM`(tε, ε0) or in
Hm`(tε, ε0) that has more than or equal to r + 1 normal
neighbors not in its own set (but still within G`). Firstly,
assume i ∈ HM`(tε, ε0) has more than or equal to r + 1
normal neighbors in G`\HM`(tε, ε0). By definition, the states
of these neighbors can no exceed cM`−ε0. Since one of these
states will be adopted by i according to the cluster censoring
strategy, we derive

xi(tε + 1) ≤ (1 − w)ΘM`(tε) + w(cM` − ε0)
≤ cM` − wε0 + (1 − w)ε, (9)

noticing that ΘM`(tε) ≤ cM` + ε, normal node’s values are
expressed in terms of convex combinations with coefficients
bounded by w, and that maximum value adopted by i at tε is
less than or equal to ΘM`(tε) by applying our cluster censor-
ing strategy with parameter r. Noting that any normal node in
G`\HM`(tε, ε0) adopts its own value which cannot exceeding
cM` − ε0, we see that the above estimate also holds for such
nodes. In an analogous manner, i ∈ Hm`(tε, ε0) has more
than or equal to r + 1 normal neighbors in G`\Hm`(tε, ε0),
we have xi(tε +1) ≥ cm` +wε0− (1−w)ε, which also holds
for normal nodes in G`\Hm`(tε, ε0).

We take ε1 = wε0 − (1 − w)ε ∈ (ε, ε0). Recall that
HM`(tε + 1, ε1) ∩ Hm`(tε + 1, ε1) = ∅ and we have either
|HM`(tε + 1, ε1)| < |HM`(tε, ε0)| or |Hm`(tε + 1, ε1)| <
|Hm`(tε, ε0)| is true. For s ≥ 1, recursively defining εs =
wεs−1 − (1 − w)ε, we obtain εs < εs−1. The above dis-
cussion still holds valid at every time step tε + s provided
HM`(tε + s, εs) and Hm`(tε + s, εs) are non-empty. As GN

`

has at most n` normal nodes, there is some T ≤ n` such that
either HM`(tε + T, εT ) or Hm`(tε + T, εT ) becomes empty.
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According to the definition of ε, we have εT = wεT−1 −
(1 − w)ε = wT ε0 − (1 − wT )ε ≥ wn`ε0 − (1 − wn`)ε > 0.
Consequently, normal nodes in G` at tε + T possess values
no more than cM` − εT < cM` or possess values no less
than cm` + εT > cm`. However, recalling that cM` :=
limt→∞ ΘM`(t) and cm` := limt→∞ Θm`(t) by definition,
we derive a contradiction. The proof is then complete. 2

Akin to Theorem 2, we likewise have the following exten-
sion regarding heterogenous robustness of clusters.
Theorem 4. Consider the discrete-time multi-agent system (2)
under digraph G = (V,E,A), where each normal node adopts
the cluster censoring strategy with parameter (r1, r2, · · · , rL).
Under the (r1, r2, · · · , rL)-locally bounded Byzantine model,
resilient cluster consensus is achieved if G` is 2r` + 1-robust
for 1 ≤ ` ≤ L.

Next, in terms of resilient scaled cluster consensus (i.e., Def.
5), we propose a two-round censoring process with parameter
r for discrete-time multi-agent system (2) as follows. The first
three steps are exactly the same as described in Section III.A
for continuous-time system (1). In the final step, each i ∈
N ∩ V` updates its value applying the following ϕD

i (·) in (2)

xi(t + 1) = sgn(γi)
∑

j∈(Ni∪{i})\Ri(t)

wij(t)γjx
i
j(t), (10)

where the weights wij(t) satisfies the same conditions
(iD) and (iiD) in Section II.B, and retrofitted (iiiD’)∑

j∈(Ni∪{i})\Ri(t)
|γi|wij(t) = 1.

By re-defining ΘM`(t) := maxi∈N∩V`
γixi(t) and

Θm`(t) := mini∈N∩V`
γixi(t) for t ≥ 0, we can similarly

prove the following corollary.
Corollary 2. Consider the discrete-time multi-agent system
(2) under digraph G = (V,E,A), where each normal node
adopts the scaled cluster censoring strategy with parameter r.
Under the r-locally bounded Byzantine model, resilient scaled
cluster consensus with respect to (γ1, · · · , γn) is achieved if
G` is 2r + 1-robust for 1 ≤ ` ≤ L.

A heterogeneous version of the resilient scaled cluster
consensus akin to Theorem 4 can also be derived.

C. Switched system

For switched multi-agent system (3), we will see that
the validity conditions for continuous-time and discrete-time
systems delineated respectively in Lemma 2 and Lemma 3
remain valid essentially.
Lemma 4. Consider the switched multi-agent system (3) under
the digraph G = (V,E), in which normal nodes adopt
the cluster censoring strategy with parameter r. Under the
r-locally bounded Byzantine model, for any i ∈ N ∩ V`

(1 ≤ ` ≤ L), we have xi(t) ∈ [Θm`(0),ΘM`(0)] when (1)
is activated at t, and xi(t + 1) ∈ [Θm`(t),ΘM`(t)] when (2)
is activated on [t, t + 1].
Proof. The same line of reasoning as in Lemma 2 and
Lemma 3 can be applied in general. When the continuous-
time subsystem is at work at time t, we obtain xi(t) ∈
[Θm`(0),ΘM`(0)] by noting that Θm`(0) is increasing and
ΘM`(0) is decreasing whenever (2) is in place during [0, t).
When the discrete-time subsystem is at work during [t, t + 1],

we obtain xi(t + 1) ∈ [Θm`(t),ΘM`(t)] exactly as in Lemma
3. 2

Cluster consensus problems for switched multi-agent sys-
tems are known to be notoriously difficult due to the compli-
cated and disparate algebraic conditions raised for continuous-
time cluster consensus problems (e.g. [15], [18]) and discrete-
time cluster consensus problems (e.g. [22], [23]). Interestingly,
in the framework of resilient cluster consensus, we are able to
mix both subsystems to derive succinct sufficient conditions
that guarantee the cluster consensus under arbitrary switching.
This is achieved by dividing the state evolution process into
two classes, each of which is dominated by either continuous-
or discrete-time dynamics.
Theorem 5. Consider the switched multi-agent system (3)
under digraph G = (V,E,A), where each normal node adopts
the cluster censoring strategy with parameter r. Under the r-
locally bounded Byzantine model, resilient cluster consensus
is achieved under arbitrary switching if G` is 2r + 1-robust
for 1 ≤ ` ≤ L and Assumption 1 holds.
Proof. To mimic a general switching rule, consider a time
sequence 0 ≤ t1 ≤ t̄1 ≤ t2 ≤ t̄2 ≤ · · · ≤ tk ≤ t̄k ≤ · · · ,
where the continuous-time subsystem (1) is at work during
(tk, t̄k] and the discrete-time subsystem (2) is at work during
(t̄k−1, tk]. We will consider the following two cases: (I) there
exists k1 ∈ N and ∆ > 0 such that t̄k−tk ≥ ∆ for all k ≥ k1;
and (II) limk→∞ t̄k − tk = 0.

Fix ` ∈ {1, 2, · · · , L}. In the case (I), fixing t ≥ tk1 and
following the proof of Theorem 1, we obtain D+Γ`(t) =
D+ΘM`(t) − D+Θm`(t) ≤ 0 when t ∈ (tk, t̄k] for k ∈ N.
On the other hand, when t ∈ (t̄k−1, tk] for k ∈ N, we have
D+Γ`(t) = D+ΘM`(t) − D+Θm`(t) ≤ 0 in view of Lemma
4. Suppose that limt→∞ D+Γ`(t) 6= 0. As in Theorem 1,
there exist constants ε0 > 0, δ0 > 0, and a sequence of
instants {sl}l≥1 where the continuous-time subsystem (1) is
at work satisfying liml→∞ sl = ∞, D+Γ`(sl) ≤ −2ε0 and
|sl+1 − sl| > δ0 for any l ≥ 1. For any interval I ⊆ (tk, t̄k]
for k ≥ k1 with I ∩ {τp}p≥1 = ∅, we can produce the same
contradiction as in Theorem 1. Thus, D+Γ`(t) → 0 as t → ∞.
Following the same proof of Theorem 1, we see that the states
of nodes in G` converge to a common limit. This concludes
the case (I).

Next, we consider the case (II), where the discrete-time
system (2) would govern the system evolution. Assume cM` >
cm`. Recall that xi(t) is continuous for i ∈ N ∩V` when (1) is
at work. Following the argument of Theorem 3, we can choose
ε < 3wn` ε0

4(1−wn` ) and 0 < ε < ε0, where 0 < w < 1 is given in
(iiD). By our assumption and continuity, there exists k0 ∈ N
satisfying xi(t + 1) ∈ [Θm`(t) − ε/3,ΘM`(t) + ε/3] for all
t ≥ t̄k0 and i ∈ N ∩V`, irrespective of the subsystems at work
during [t, t + 1]. Take tε > t̄k0 be the time step satisfying for
t ≥ tε, ΘM`(t) < cM` + ε and Θm`(t) > cm` − ε.

Arguing analogously as in Theorem 3, we now replace the
upper bound (9) by

xi(tε + 1) ≤ (1 − w)[ΘM`(tε) + ε/3] + w(cM` − ε0)
≤ cM` − wε0 + 4(1 − w)ε/3.

On the other hand, the lower bound becomes xi(tε + 1) ≥
cm` +wε0 − 4(1−w)ε/3, which also holds for normal nodes
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in G`\Hm`(tε, ε0). For s ≥ 1, by recursively defining εs =
wεs−1 − 4(1 − w)ε/3, we are able to follow the proof of
Theorem 3 and lead to a contradiction against the definitions
of cM` and cm`. This proves cM` = cm` and concludes the
theorem in the case of (II). 2

The heterogenous version of resilient cluster consensus over
switched multi-agent systems reads as follows.
Theorem 6. Consider the switched multi-agent system (3)
under digraph G = (V,E,A), where each normal node adopts
the cluster censoring strategy with parameter (r1, r2, · · · , rL).
Under the (r1, r2, · · · , rL)-locally bounded Byzantine model,
resilient cluster consensus is achieved under arbitrary switch-
ing if G` is 2r` + 1-robust for 1 ≤ ` ≤ L and Assumption 1
holds.

By adopting the continuous-time and discrete-time scaled
cluster censoring strategies for continuous-time and discrete-
time subsystems in (3), respectively, we readily obtain the
switched scaled cluster censoring strategy. The following
corollary can be proved similarly following Theorem 5.

Fig. 3. A digraph G with two clusters G1 over V1 = {1, 2, · · · , 6} and G2

over V2 = {7, 8, · · · , 12} for Example 1. Both G1 and G2 are 3-robust.

Corollary 3. Consider the switched multi-agent system (3)
under digraph G = (V,E,A), where each normal node
adopts the switched scaled cluster censoring strategy with
parameter r. Under the r-locally bounded Byzantine model,
resilient scaled cluster consensus with respect to (γ1, · · · , γn)
is achieved if G` is 2r + 1-robust for 1 ≤ ` ≤ L and
Assumption 1 holds.

A heterogeneous version of the resilient switched scaled
cluster consensus similar to Theorem 6 can also be derived.
Remark 6. In all three classes of systems considered above,
nodes potentially have their own dynamics are viewed as
Byzantine and hence are potentially to be overcome by the
proposed censoring strategies. However, it is worth mention-
ing that in some practical industrial applications, formation
tracking control is of importance; see e.g. [19], [33], [34].
To accommodate leaders in the network, further mechanism
to retain them should be adopted in addition to W-MSR. A
possible solution can be the introduction of trusted nodes,
which do not go through the filtering.
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Fig. 4. Resilient cluster consensus over digraph G of Example 1 in the
presence of Byzantine nodes 1 ∈ G1 and 7 ∈ G2 for (a) continuous-
time multi-agent system (1); (b) discrete-time multi-agent system (2); and
(c) switched multi-agent system (3).

IV. NUMERICAL SIMULATIONS

Example 1. Consider a digraph G = (V,E,A) with V =
{1, 2, · · · , 12} and the adjacency matrix A being a binary
matrix; see Fig. 3. G1 and G2 are two interconnected clus-
ters, which are both 3-robust. Let the Byzantine node set
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Fig. 5. The switching rule for the switched multi-agent system (3).

B = {1, 7} and normal node set N = V \B. The initial state
configuration is taken as x1(0) = −1, x2(0) = 1, x3(0) = 3,
x4(0) = −3, x5(0) = 5, x6(0) = −5, x7(0) = −2, x8(0) = 2,
x9(0) = 4, x10(0) = −4, x11(0) = 6, x12(0) = −6.

For continuous-time multi-agent system (1), we take
fij(x, y) = (x−y)/10. The Byzantine nodes 1 and 7 have their
own dynamics ẋ1(t) = x1(t)/50 and ẋ7(t) = sin(t/100).
Here, node 1 follows a linear time-invariant system while node
7 a non-linear non-autonomous system. By taking r = 1,
Theorem 1 indicates that resilient cluster consensus can be
achieved by using the proposed cluster censoring strategy with
parameter 1. The result shown in Fig. 4(a) agrees well with
our theoretical prediction.

For discrete-time multi-agent system (2), the weights are
taken as wij(t) = aij ·

( ∑
j∈(Ni∪{i})\Ri(t)

aij

)−1
. The Byzan-

tine nodes 1 and 7 follows their own dynamics x1(t + 1) =
−t/5 + (x2(t) + x4(t))/2 and x7(t + 1) = t2/200 + (x8(t) +
x9(t) + x10(t))/3. By invoking the cluster censoring strategy
with parameter 1, cluster consensus is observed in Fig. 4(b).
This is in line with the observation in Theorem 3.

For switched-time multi-agent system (3) with the switching
rule shown in Fig. 5, we observe from Fig. 4(c) that the
resilient cluster consensus has been reached in the presence
of Byzantine nodes 1 and 7 obeying the dynamics (both
continuous- and discrete-time, respectively) described above.
This again agrees with the theoretical result of Theorem 5.

It is worth noting that both Byzantine nodes 1 and 7 in
digraph G are able to influence nodes outside their own
cluster, and normal node 4 is affected by both Byzantine
nodes. This implies a highly intricate network topology, where
resilient global consensus cannot be guaranteed for any one of
the three multi-agent systems by using previous fault-tolerant
algorithms (e.g. [12]).
Example 2. In this example, we consider a digraph G =
(V,E,A) with V = {1, 2, · · · , 18} and the adjacency matrix
A being a binary matrix; see Fig. 6. Note that G only contains
directed edges. It is direct to check that G1 and G2 are two
3-robust clusters. Let the Byzantine node set B = {1, 18} and
normal node set N = V \B. The initial state configuration is

Fig. 6. A digraph G with two clusters G1 over V1 = {1, 2, · · · , 9} and G2

over V2 = {10, 11, · · · , 18} for Example 2. Both G1 and G2 are 3-robust.
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Fig. 7. Resilient cluster consensus over digraph G of Example 2 in the
presence of Byzantine nodes 1 ∈ G1 and 18 ∈ G2 for switched multi-agent
system (3).

taken as x1(0) = −1, x2(0) = −3, x3(0) = 4.5, x4(0) = 1,
x5(0) = −5, x6(0) = 5, x7(0) = 3.5, x8(0) = 6, x9(0) = −6,
x10(0) = −2, x11(0) = 3, x12(0) = 2, x13(0) = −7,
x14(0) = 7, x15(0) = −4, x16(0) = −6.5, x17(0) = 0,
x18(0) = −2.5.

We choose fij(x, y) = (x − y)/10 in the continuous-
time subsystem (1) and choose weights wij(t) = aij ·( ∑

j∈(Ni∪{i})\Ri(t)
aij

)−1
in the discrete-time subsystem (2).

The same switching law as described in Fig. 5 is adopted
here. The Byzantine node 1 in G1 has its own dynamics
given by ẋ1(t) = (x6(t) + x7(t))/50 and x1(t + 1) =
−
√

t + (x7(t) + x8(t))/2 for continuous-time and discrete-
time subsystems, respectively. The Byzantine node 18 in G2

follows ẋ18(t) = sin(t/100) and x18(t + 1) = t2/200 +
(x2(t) + x16(t) + x17(t))/3 for continuous-time and discrete-
time subsystems, respectively. We observe the resilient cluster
consensus in Fig. 7 by using our cluster censoring strategy
with parameter r = 1 tolerating the manipulation of nodes 1
and 18 as one would expect.
Example 3. In this example, we consider a researcher collab-
oration network in the interdisciplinary institute in Santa Fe
[36], [37]. Fig. 8 shows a subnetwork consisting 9 collabora-
tors working in two different fields: those work in agent-based
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Fig. 8. Scientist collaboration network G with two clusters G1 over V1 =
{1, · · · , 4} and G2 over V2 = {5, · · · , 9} for Example 3. G1 is 1-robust,
G2 is 3-robust, and G\{6} is 2-robust.
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Fig. 9. (a) Resilient cluster consensus over digraph G of Example 3 in the
presence of Byzantine node 6 ∈ G2 for discrete-time multi-agent system (2).
(b) Resilient global consensus over the entire G applying W-MSR in [38].

models form V1 = {1, · · · , 4} and those work in mathematical
ecology form V2 = {5, · · · , 9}. It is direct to check that G1

is 1-robust and G2 is 3-robust. If we set the node 6 as the
Byzantine node, the network formed by the normal nodes
is (2, 2)-robust according to [7]. The initial states are set as
x1(0) = 2.5, x2(0) = −2, x3(0) = 0, x4(0) = 1.5, x5(0) = 3,
x6(0) = −3.5, x7(0) = −1, x8(0) = 0.5, and x9(0) = 1.

We choose weights wij(t) = aij ·

( ∑
j∈(Ni∪{i})\Ri(t)

aij

)−1
in the discrete-time subsystem

(2). The Byzantine node 6 in G2 is assumed to have its own
dynamics given by x6(t + 1) = − ln(t) + (x4(t) + x5(t))/2.
In Fig. 9(a), we displayed the state evolution for all agents.
As predicted in Theorem 3, resilient cluster consensus is
reached fairly quickly at t < 10. As a comparison, in Fig.
9(b) we adopted the resilient consensus protocol in [38]
and the global consensus is observed around t = 40. This
demonstrates the usefulness of our resilient cluster consensus
strategies allowing effectively for different consistent values
among clusters, which are not available previously.

V. CONCLUSION

In this paper, we have considered resilient cluster consensus
of three archetypal classes of multi-agent systems over di-
graphs, including discrete-time, continuous-time and switched
multi-agent systems. Resilient cluster censoring strategies are
designed to guarantee cluster consensus in a purely distributed
manner against locally bounded Byzantine nodes. Explicit
robustness conditions on the network topology are proposed
to ensure cluster consensus, where no complicated eigenvalue
conditions or inter-cluster balance conditions are involved.
Furthermore, the results are generalized to accommodate het-
erogeneous cluster robustness as well as resilient scaled cluster
consensus problems. In the future, it would be interesting to
adjust the algorithms to accommodate practical applications
with more demanding requirements such as the cooperative
control of gantry crane systems [39] and micro aerial vehicle
control problems [40].
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[35] F. Molinari, S. Stańczak, and J. Raisch, “Exploiting the superposition
property of of wireless communication for max-consensus problems in
multi-agent systems,” IFAC-PapersOnLine, vol. 51, pp. 176–181, 2018.

[36] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proc. Natl. Acad. Sci. U.S.A., vol. 99, pp. 7821–
7826, 2002.

[37] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
pp. 75–174, 2010.

[38] A. Mitra, J. A. Richards, S. Bagchi, and S. Sundaram, “Resilient
distributed state estimation with mobile agents: overcoming Byzantine
adversaries, communication losses, and intermittent measurements,”
Auton. Robots, vol. 43, pp. 743–768, 2019.

[39] W. He and S. S. Ge, “Cooperative control of a nonuniform gantry crane
with constrained tension,” Automatica, vol. 66, pp. 146–154, 2016.

[40] W. He, T. Meng, X. He, and C. Sun, “Iterative learning control for a
flapping wing micro aerial vehicle under distributed disturbances,” IEEE
Trans. Cybern., vol. 49, pp. 1524–1535, 2019.


