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A Note on the Non-Inertial Similarity Solution for Von
Kármán Swirling Flow

Madeleine L Combrinck
Department of Mechanical and Construction Engineering, Northumbria University,

Newcastle-upon-Tyne, United Kingdom

Abstract

This note proposes a non-inertial similarity solution for the classic von Kármán

swirling flow as perceived from the rotational frame. The solution is obtained

by implementing non-inertial similarity parameters in the non-inertial bound-

ary layer equations. This reduces the partial differential equations to a set of

ordinary differential equations that is solved through an integration routine and

shooting method.

Keywords: incompressible, constant rotation, derivation, boundary layer.

1. Introduction

Flow over a rotating disk is a classic example in fluid mechanics. It is

a simplified representation for systems that comprise of rotating components

where incompresible flow and constant, pure rotation can be assumed. An

approximation to the solution was fist proposed by von Kármán [1] with a5

more rigorous calculation provided by Cochran [2]. The solution process was

described by Schlichting [3] using the boundary layer equations in cylindrical
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A non-dimensional parameter, η, is introduced which is a function of the

perpendicular wall distance and the square root of the rotational velocity and

the kinematic viscosity. This is a stretching parameter that represents the non-

dimensional wall distance in the perpendicular direction.

η = z

√
ω

ν
(2)

The family of partial derivatives related to Equation 2 are not generally

reported in literature. These will be used in later derivation by substituting in

Equation set 1.
∂
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Further parameters, that render the velocity components and pressure non-

dimensional, is proposed [3] in a manner where F (η) becomes the non-dimensional

velocity in the radial directions. Similarly, G(η) and H(η) represent the non-

dimensional velocities in the tangential and axial directions respectively.

ur = rωF (η)

uθ = rωG(η)

uz =
√
νωH(η)

p = p0 + ρνωP (η)

ψ =
p

ρ

(4)

The parameters above are selected in a manner that will not only render the

boundary layer equations non-dimensional upon substitution, but also trans-10

form the partial differential equations into ordinary differential equations. The
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stretching parameter η is obtained using the Buckingham π theorem of dimen-

sional analysis [4, 5]. Using dimensional analysis further, the dimensionless

form of the velocity and pressure parameters are obtained by dividing them by

constant reference properties such as the free stream tangential velocity (rω),15

kinematic viscosity (ν), density (ρ), and pressure (p0) [6, 7].

Equations 2, 3 and 4 are substituted into Equation set 1. This leads to a

set of non-dimensional boundary layer equations [3]. (From this point in the

paper the η term is neglected from the notation to facilitate easier reading and

understanding.)

2F +H ′ = 0

F 2 + F ′H −G2 − F ′′ = 0

2FG+HG′ −G′′ = 0

(5)

The equations above represent a two-point boundary value problem that can

be resolved with integration methods (i.e. 2nd order Euler or 4th order Runge

Kutta methods) to determine the values at each distance step. This is coupled

with a shooting method (i.e. bisection or Newton’s methods) to determine the20

values of the higher order derivatives at the wall, F ′(0) and G′(0). The result

from this operation is shown in Figure 1.

2. Rationale

The von Kármán solution is presented in the inertial frame; therefore, the

Centrifugal and Coriolis accelerations are not present in the momentum equa-25

tion. Understanding the nature of an inertial frame versus a non-inertial frame,

and it’s application in fluid dynamics, is notoriously problematic. It is best ex-

plained at the hand of an example using the perspective of an observer. Imagine

that there is an observer standing on a train platform looking at an incoming

train. From the perspective of the observer the train is in motion while the30

surrounding landscape is stationary. In the event where the train accelerates

or decelerates the resulting forces will not act on the observer. In contrast to
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Figure 1: Inertial Solution to the von Karman Rotating Disk (Equation 5), as a function of η

this, now perceive the train from the perspective of a passenger on the train.

From their point of view, the train is stationary and the landscape is passing by

as if it is in motion. During acceleration and deceleration the resulting forces35

will act on the observer in this frame of reference. The forces resulting from

the relative motion of the train is referred to as fictitious forces that can only

be quantified from the non-inertial frame. Considering rotating systems from a

non-inertial perspective allows for further understanding of the physical mech-

anisms that are responsible for flow features. The fictitious forces, such as the40

Centrifugal and Coriolis terms, are explicitly defined and the effect thereof can

be determined directly (Figure 2).

In the inertial frame, the far-field flow is stationary, while the disk is in

motion. The boundary layer is formed in the near-wall region. The tangential
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Figure 2: Flow over a rotating plate interpreted from the non-inertial frame (left) and the

inertial frame (right) [8]

velocity profile therefore has a high velocity just above the disk (nearly the same

velocity as the disk), and approaches stationary conditions in the far-field. This

flow can also be observed from a non-inertial theoretical framework. From this

perspective, the disk is stationary and the far-field flow is in rotation. This

flow rotation in the non-inertial frame has the same rotational velocity as the

rotating disk in the inertial frame. The gradient of the tangential velocity in

the boundary layer is consistent between the two frames. Considering the non-

dimensional velocity profiles, the value of G on the wall will be 1 and approach

0 in the far-field. The value for Ĝ, the superscript ˆ indicating vectors in the

non-inertial frame, will be 0 on the wall and 1 in the far-field. Assuming that

the velocity gradient is the same between the two frames, the following non-

dimensional relation should hold:

G = 1− Ĝ (6)

The radial and axial velocities should be equal between the two frames. In both

cases the radial flow is forced outwards from the centre of rotation as a result of

the disk motion and the flow rotation respectively. This causes the axial flow in

both cases to flow in the direction towards the plate. The resulting equations
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should hold for this analogy to be correct:

F = F̂

H = Ĥ
(7)

This paper is aimed at deriving a non-inertial solution to the von Kármán

swirling flow problem. The solution obtained should adhere to the assumptions

stated in Equations 6 and 7. These conditions will serve as validation for any45

possible solution.

The von Kármán similarity solution has been expanded to problems with

heat transfer [9, 10], non-Newtonian flows [11, 12], magnetohydrodynamic flows

[13, 14] and flow over stretching disks [15, 16, 17]. In these cases the parame-

ter η, along with the other non-dimensional parameters (F (η), G(η),H(η)), is50

uniquely defined to ensure that a non-dimensional, ordinary differential equa-

tion set is obtained. η can be similar to the original definition of von Kármán in

some cases (Equation 2), but not in general. The ideal set of non-dimensional

parameters need to be obtained for a substitution that is relevant to the flow

under investigation. Following the Buckingham π theory to obtain the form of55

η will not lead to a unique definition for η; there will be numerous solutions or

π groups. There are a multitude of options available since the only requirement

is that η remains non-dimensional and is not dependant on density in incom-

pressible flow. The correct π grouping, representing the definition of η, must

be implemented. It was rightly noted in [6] that solutions are based on prior60

knowledge and benefit from previous experience for the form of η. That brings

the question for this current problem: Can the non-dimensional parameters of

the inertial frame of the von Kármán similarity solution be used to derive a

solution in the non-inertial frame?

3. Mathematical Model65

The non-inertial boundary layer equations for a rotating disk in incompress-

ible and pure rotation were derived using an Eulerian method by [8]. Using

theses equations (Equations 8, 10 and 12) and substituting the non-inertial
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forms of Equations 2, 3 and 4 provides a set of non-dimensional equations in

the non-inertial frame (Equations 9, 11 and 13).70

The conservation of mass equation in cylindrical co-ordinates is given as

follows:
∂ûr
∂r̂

+
ûr
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+
1
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+
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∂ẑ

= 0 (8)

Substitution, as shown in the previous section, and simplification lead to the

following expression:

∂

∂r̂
r̂ω̂F̂ +

1

r̂
r̂ω̂F̂ +

1

r̂

∂

∂θ̂
r̂ω̂Ĝ+
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The radial momentum equations,
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+ ûz

∂ûr
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is reduced as a similar manner:
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This procedure is also followed in the reduction of the tangential momentum

equation,
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leading to a non-dimensional relationship.
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r̂ω̂Ĝr̂ω̂F̂

r̂
+
√
ν̂ω̂Ĥ
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The derivation results in a set of non-dimensional partial differential equa-

tions in the non-inertial frame:

2F̂ + Ĥ ′ = 0

F̂ 2 − Ĝ2 + ĤF̂ ′ − F̂ ′′ + 2Ĝ− 1 = 0

2F̂ Ĝ+ ĤĜ′ − Ĝ′′ − 2F̂ = 0

(14)

The fictitious forces were simplified in a manner where the resulting equa-

tions are functions of the non-dimensional velocity parameters Ĝ,F̂ and Ĥ.75

These ordinary differential equations were resolved using a 2nd order Euler in-

tegration method coupled with Newton’s shooting method to resolve the bound-

ary layer profile. This is known as a two-point boundary value problem. The

numerical methods in MATLAB used here are described in [18, 19].

4. Results80

The original solution of von Karman (Equation 5) requires boundary condi-

tions to be resolved [3]. The radial velocity (F ) is zero both at the wall and in

the far-field. The tangential velocity is normalised using the wall velocity, which

means that the condition at the wall is equal to one and zero in the far-field:

η = 0 :F = 0, G = 1,

η = ∞ :F = 0, G = 0
(15)
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The following equivalent boundary conditions in the non-inertial field, con-

sidering that in this frame the flow is rotating and plate is stationary, is pro-

posed:

η = 0 :F̂ = 0, Ĝ = 0,

η = ∞ :F̂ = 0, Ĝ = 1
(16)

Additional boundary values are required to obtain a solution. While F (0),

G(0) and H(0) are known, the additional values needed for the beginning value

problem, F ′(0) and G′(0) are unknown. Using the knowledge that F (∞) = 0

and G(∞) = 0, a shooting method can be employed to resolve the boundary

layer flow as shown in Figure 1. The beginning values for F ′(0) and G′(0) are

hence determined:

η = 0 :F ′ = 0.51023, G′ = −0.61592,H = 0

η = ∞ :F ′ = 0, G′ = 0,H = −0.88446
(17)

In the inertial frame, the non-dimensional tangential velocity starts at a value

of one at the wall and decreases monotonically to reach zero in the far-field. The

profile in the non-inertial frame starts at zero and increases monotonically to

reach a value of one in the far-field. The tangent of both profiles will therefore

be equal but of opposite sign, as reflected in the beginning values below. The

remainder of the beginning values for the non-inertial frame are inferred using

the analogies of Equations 6 and 7:

η = 0 :F̂ ′ = 0.51023, Ĝ′ = 0.61592, Ĥ = 0

η = ∞ :F̂ ′ = 0, Ĝ′ = 0, Ĥ = −0.88446
(18)

Solving the equation set 14 as a two-point boundary value problem with an

integration method results in the solution depicted in Figure 3. The significance

of the result is shown in Figure 4 where the solutions between the inertial and

the non-inertial frames are compared at using the analogies of Equations 6 and

7. It is observed that the assumptions of Equations 6 and 7 holds true, therefore85

validating the solution in the non-inertial frame.
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Figure 3: Non-inertial Solution to the von Kármán Rotating Disk (Equation 14)

Figure 4: Comparison between the Inertial and Non-inertial Solutions of the Rotating Disk

10



Exact solutions to the Navier-Stokes equations are used to gain a deeper

understanding flow features in the boundary layer. Along with solutions such

as the Blasius boundary layer problem [20] and Stokes boundary layer problem90

[3], the von Kármán solution falls in this category. It can be studied in the

original form or under various conditions such as heat transfer, non-Newtonian

flow, magnetohydrodynamics flow and flow with partial slip. Exact solutions

also serve as benchmark cases to validate numerical methods implemented in

Computational Fluid Dynamic (CFD) codes. Here the author established an95

exact solution for the swirling flow problem from a non-inertial frame of reference

which have not been seen in this form in open literature to date. Results from

a CFD solver that is written specifically to operate in the non-inertial frame

[21] can be directly compared with the non-inertial solution of the von Kármán

problem. With the inclusion of the fictitious forces, this solution paves the way100

to establish exact solutions for more complex problems in the non-inertial frame.

An example of this is rotating objects in axial flow where six fictitious forces

act on the object in unsteady conditions [22].

5. Conclusions

This work on swirling flow has shown the potential of the non-inertial model:105

• The non-inertial similarity solution to the von Kármán swirling flow prob-

lem proposed here, can be used to directly validate numerical simulation

results for rotational cases.

• The technical note established the framework for obtaining similarity so-

lutions of more complex flow problems in non-inertial frames.110
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Nomenclature

Super Scripts and Sub Scripts

ˆ Rotational frame

r r-direction

θ θ-direction170

z z-direction

Alphabet

p Pressure

t Time

u Velocity175

r Distance in r-direction

z Distance in z-direction

F Non-dimensional parameter

G Non-dimensional parameter

H Non-dimensional parameter180

Greek Letters

η Dimensionless wall distance

ν Kinematic viscosity

ρ Density

ψ Pressure per unit mass185

ω Rotational velocity
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