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ABSTRACT: Versatile, in situ sensing and continuous monitoring capabilities are
critically needed, but challenging, for components made of solid woven carbon fibers in
aerospace, electronics, and medical applications. In this work, we proposed a unique
concept of integrated sensing technology on woven carbon fibers through integration of
thin-film surface acoustic wave (SAW) technology and electromagnetic metamaterials,
with capabilities of noninvasive, in situ, and continuous monitoring of environmental
parameters and biomolecules wirelessly. First, we fabricated composite materials using a
three-layer composite design, in which the woven carbon fiber cloth was first coated with
a polyimide (PI) layer followed by a layer of ZnO film. Integrated SAW and
metamaterials devices were then fabricated on this composite structure. The temperature
of the functional area of the device could be controlled precisely using the SAW devices, which could provide a proper incubation
environment for biosampling processes. As an ultraviolet light sensor, the SAW device could achieve a good sensitivity of 56.86
ppm/(mW/cm2). On the same integrated platform, an electromagnetic resonator based on the metamaterials was demonstrated to
work as a glucose concentration monitor with a sensitivity of 0.34 MHz/(mg/dL).

KEYWORDS: surface acoustic wave, carbon fiber, electromagnetic metamaterials, biosensors, microfabrication

Solid woven carbon fibers are widely used in various fields
such as aerospace,1 electronics,2,3 and medical trans-

ducers,4 where low weight, high stiffness, and high conductivity
are critically required. For these applications, in situ, versatile
sensing and continuous monitoring capabilities are often
required. For example, built-in sensors are often required for
monitoring structural health of composite aircrafts made of
woven carbon fibers5 to detect crack generation and
propagation in these structures.6 However, currently few
studies are focused on new types of applications using carbon
fiber-based composites for various environmental applications
such as temperature and ultraviolet (UV) light sensing or
biological applications such as biomolecular and biochemical
sensing. For these applications, a key challenge is to develop an
integrated approach with the capabilities of efficient biosam-
pling, liquid actuation, high-precision detection, and wireless
operation/monitoring capabilities.
Surface acoustic wave (SAW) devices including those thin-

film ones based on ZnO and AlN have been extensively
explored for a wide range of applications including gas
sensing,7,8 environmental sensing,9,10 biomolecular detec-
tion,11,12 microfluidics,13−15 acoustic tweezers,16,17 and lab-
on-a-chip.18,19 SAW sensors have the capability to be
developed into a wireless operation platform, which can be
realized by integrating antennas to the electrodes for signal
transmission.20,21 Alternatively, a new approach of utilizing the
same SAW structure as an electromagnetic resonator or

metamaterials has been introduced recently.22 This is based on
defining an electromagnetic metamaterial-based resonator on
the SAW device structure, which can be excited using external
antennas.23 It allows a new mode of sensing based on
subwavelength-sized structures defined by the SAW geometries
that are usually made of metals on dielectric substrates, and the
changes of electromagnetic resonant frequencies of this
structure can be applied to monitor parameters of interest
for sensing applications.22 Using this new design, the operation
using metamaterials can be utilized in addition to the
conventional operation of SAWs for sensing or acoustofluidics,
where the interdigitated transducers (IDTs) are powered
directly and remotely.
In this study, we explored a new concept of integrated

sensing technology on woven carbon fibers through the
integration of electromagnetic metamaterials and thin-film
acoustic wave sensors, with capabilities of noninvasive, in situ,
and continuous monitoring of environmental parameters and
biomolecules wirelessly. It is well known that the woven
structure of carbon fibers poses challenges to define efficient
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SAW and electromagnetic resonators due to its highly flexible,
extremely porous, and rough surface, which causes significant
difficulties in coating uniform piezoelectric layers such as ZnO.
In addition to mechanical imperfections, the porosity and
flexibility of the woven structure could lead to significant
damping and reduction of quality factor for both the SAW and
metamaterials devices.24 We addressed this challenge by
fabricating composite materials using a three-layer composite
design. The carbon fiber was first coated with a polyimide (PI)
layer, and then a ZnO film was deposited onto this PI/carbon
fiber structure. We then fabricated SAW and metamaterials
devices on this composite material using a conventional
photolithography method and optimized the electrodes of the
designs for integrated functions including liquid temperature
control, UV sensing, and glucose monitoring as case studies for
different applications.

■ EXPERIMENTAL SECTION
Experimental Methods. A ZnO thin film (5 μm thick) was

deposited on the PI-coated carbon fiber substrate using a DC
magnetron sputter with the sputtering power of 400 W, Ar/O2 gas
flow rate of 10/15 sccm, and chamber pressure of 4 × 10−4 mbar. A
zinc target with 99.99% purity was used, while the sample holder was
rotated during the deposition to achieve the uniformity of the film
thickness. The IDTs were patterned using the conventional
photolithography and lift-off process, where Cr/Au films with
thicknesses of 10 nm/120 nm were selected as the electrode materials
and deposited using a thermal evaporator (EDWARDS AUTO306).
The crystal orientation and surface roughness of the sputtered ZnO

thin film were characterized using X-ray diffraction (XRD, SIEMENS
D5000) and atomic force microscopy (AFM, Veeco Dimension
3100), respectively. The reflection and transmission spectra of the
integrated platform were acquired continuously during the UV- and
glucose-sensing experiments using a high-frequency network analyzer
(Agilent N5230A) with a LabVIEW data acquisition program. The
SAW devices were acoustically excited using a signal generator and a
power amplifier while the temperature of the droplet placed on top of
the device was recorded using an infrared camera.
Numerical Methods. The finite element analysis (FEA)

simulation of SAWs in this work was performed using the COMSOL
software with solid mechanics and electrostatics modules. A two-
dimensional (2D) model with a simplified SAW structure was used
comprising the carbon fiber layer, PI layer, ZnO thin film, and IDT
fingers from bottom to top, with thicknesses of 600 μm, 150 μm, 5
μm, and 130 nm, respectively. The width of the model was defined by
the wavelengths of the SAW devices, varying from 64 to 160 μm. The
wave modes and reflection spectra S11 of SAWs were obtained from
the simulation results, with periodic boundary conditions.
The electromagnetic behavior of the coupled device with a

wavelength of 64 μm was studied using a commercially available
simulator (CST Studio Suite, Darmstadt, Germany). The computa-
tional environment was created based on the geometry, and the
waveguide ports were defined to obtain scattering parameters. The
mesh sizes were refined considering the convergence of the
simulations. Plane wave excitations were used during the simulations.

■ RESULTS AND DISCUSSION
Design and Characterization of the Integrated

Platform. The design of SAW devices relies on the definition
of the IDTs so that the device supports specified acoustic wave
modes. Rayleigh waves are generated when the IDTs are
excited electrically at their resonant frequencies, which are
determined by the velocity of sound on the composite
structure and the wavelength of the IDT: e.g., f 0 = v/λ,
where v is the acoustic phase velocity and λ is the designed
wavelength. Since the phase velocity of piezoelectric materials

is altered by different factors, the resonant frequency of the
SAW devices can be monitored to track these changes, based
on the following relationship25
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where m is the mass load, σ is the conductivity, T is the
temperature, c is the mechanical constant, ε is the dielectric
constant, P is the pressure, η is the viscosity, and ρ is the
density.
Meanwhile, this structure of a single-metallic layer on a

dielectric substrate is also an ideal platform to realize a
metamaterial-based electromagnetic resonator at microwave
frequencies. The structure supports circulating currents along
the metallic layer when the device is excited appropriately. For
example, when the magnetic field is perpendicular to the
device, a circulating current path is generated due to the
induced current on the metallic layer as shown in Figure 1a.

The induced current can be supported at a specific resonant
frequency determined by the geometry of the structure;
therefore, its resonant frequency depends on the electrical
characteristics imposed by the device geometry. Along the
path, the equivalent circuit components can be simplified using
lumped elements as labeled in Figure 1a. The resonant

Figure 1. (a) Schematic illustration of the integrated platform
combining surface acoustic waves and metamaterials with the
equivalent circuit of the device at resonance. (b) Schematic
illustration of the integrated platform. Schematic illustrations of the
experimental setups for (c) glucose sensing, (d) UV sensing, and (e)
temperature control.
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frequency and the quality factor of the device can be expressed
using eqs 2 and 3.26

π
=

·
f

L C
1

20
eff (2)

=Q
R

L
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eff (3)

where L is the inductance of the structure, R is the equivalent
resistance of the structure, and Ceff is the effective capacitance
of the structure. The effective capacitance is determined by the
combination of the capacitive elements along the current path
including those of the IDTs, gap, and substrate surface.
Therefore, any changes in the effective inductance and the
capacitance of the structure will alter the resonant frequency of
the device. We designed this type of metamaterial device,
which is sensitive to the changes in relative permittivity of its
substrate and of a sample placed within its vicinity. The
changes in the relative permittivity of the device or the sample
result in a change in the effective capacitance, thus altering the
resonant frequency of the device. The resonant frequency of
the device can be simply measured using a pair of monopole
patch antennas as shown in Figure 1b.
In this configuration, the sensing structure is electrically

passive and electromagnetically coupled to the readout
antennas. This eliminates the need for active electronics and
power transfer on the sensing structure; therefore, the sensor
can be realized in a smaller footprint and consumes negligible
power on itself. In comparison, conventional wireless sensing
architectures are based on electrically active sensors that are
powered using inductively coupled coils.27,28

To integrate SAW and metamaterials devices on the woven
carbon fiber surfaces, we created a trilayer structure, as shown
in Figure 1a. The commercially available woven carbon fiber
layer with a thickness of ∼1 mm was coated with a layer of 150
μm thick polyimide (PI) to create a relatively smooth surface
for the subsequent processes. Then, a ZnO film layer with a
thickness of ∼5 μm was deposited using a DC magnetron
sputter. The metallic layer was then patterned on top of the
ZnO layer to form the IDTs using a standard lift-off process.
The IDTs were made of 20/120 nm thick Cr/Au layers
evaporated on the surface. We fabricated devices with different
IDT wavelengths of 64, 100, and 160 μm, where the width,
length, and gap of the pattern (see Figure 1b) are w = 9 mm, l1
= 5.6 mm, l2 = 6.2 mm, l3 = 4 mm, and g = 3.2 mm.
Figure 2a shows the XRD pattern of the fabricated tri-layer

composite material. There is a dominant peak at 2θ =34°,
suggesting that the ZnO film is composed of polycrystalline
phases with a strong texture along the c-axis (e.g., with strong
(0002) orientation). The topographic image of the ZnO film
over an area of 10 × 10 μm2 obtained using the AFM reveals
that its surface roughness is ∼38.6 nm (see Figure 2b).
The reflection spectra S11 of SAW devices were measured

using a vector network analyzer connected to their electrodes,
and the results are shown in Figure 2c. The obtained
frequencies of the Rayleigh wave (R0) modes are decreased
from 14.95 to 5.92 MHz with the wavelength increased from
64 to 160 μm. On the other hand, the electromagnetic
resonance of the devices with a wavelength of 64 μm was also
characterized, and the results of transmission spectra S21 are
shown in Figure 2d. The electromagnetic resonant frequency
was measured as 4.98 GHz. In this design, the wavelength of

the IDT does not alter the resonant frequency as the Ceff
parameter of eq 3 is dominated by the surface capacitance of
the structure.

Acoustic Wave Modes and Electromagnetic Fields.
FEA methods were used to investigate the Rayleigh wave
modes and reflection spectra of SAW devices based on ZnO/
PI/carbon fibers. Figure 3a displays the surface vibration
modes of Rayleigh waves with wavelength of 64 and 160 μm.
Since the Young’s modulus of the carbon fiber (97−228
GPa)29 is much larger than that of PI (∼2.5 GPa), the acoustic
wave-induced mechanical energy is largely confined within the
ZnO/PI structure. As the wavelength is increased and becomes
comparable to the thickness of the trilayer structure, more

Figure 2. (a) XRD patterns of the ZnO/PI/carbon fiber tri-layer
structure. (b) AFM image of the ZnO thin film. (c) Reflection spectra
S11 of SAWs with the designed wavelengths of 64, 100, and 160 μm.
(d) Transmission spectrum S21 of the electromagnetic resonator of
the SAW device with a wavelength of 64 μm.

Figure 3. FEA simulation of vibration modes of SAW devices based
on the ZnO/PI/carbon fiber structure: (a) Rayleigh wave modes with
λ = 64 μm and λ = 160 μm and (b) reflection spectra S11 of devices
with λ = 64, 10, and 160 μm. Simulated patterns of (c) S21 spectrum
of the electromagnetic resonator (the corresponding coupled SAW
has a wavelength of 64 μm) and (d) profile of surface current density
at the resonance (the corresponding coupled SAW has a wavelength
of 64 μm).
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energy becomes dissipated into the carbon fiber substrate as
shown in Figure 3a. Simulation results present a similar
changing trend of R0 frequency with increasing wavelength to
those obtained from the experiments (Figure 3b). There is a
minor divergence between experimental and simulation results
(comparing the results shown in Figures 2b and 3b), which
could be explained by the following reasons: (a) the chosen
material parameters were obtained from those reported in the
literature;30−32 (b) periodic boundary conditions were applied
during the simulation, and (c) only one pair of IDT fingers
were chosen during the simulation.
We also simulated the electromagnetic behavior of the

device with a wavelength of 64 μm using a commercially
available simulator. Figure 3c shows the transmission spectrum
S21 of the device within a frequency range of 1−10 GHz, where
the sharp dips at 4.6 and 8.1 GHz indicate two resonance
modes. Here, the electric field is along the electrodes inducing
electric polarization on the opposite bonding pads, which
results in a circulating current pattern at 4.6 GHz as shown in
Figure 3d. The electromagnetic signal is dissipated in the
device at this frequency due to the induced current. A higher
order resonance at 8.1 GHz results in a different pattern of
circulating current as shown in Figure 3d. However, the
resonance at 4.6 GHz is stronger than that at 8.1 GHz as the
dip magnitude of the resonance is larger as observed in Figure
3c. Thus, we used this 4.6 GHz resonance for the metamaterial
sensing work.
Demonstration of Liquid Temperature Control Using

the Integrated Platform. Precise temperature control of
droplets is often desired for biosensors and bioreactors
requiring biomolecular functionalization.33 The SAW devices
can be used to increase and maintain the temperature of the
liquid samples placed in the functional region of the sensor
above the environmental temperature. The temperature rise in
the liquid mainly results from an acousto-thermal heating
phenomenon,34 depending on the input energy density of the
acoustic waves and the energy dissipation into the liquid
(mainly determined by the intrinsic properties of the liquid
and its volume). Compared to the Al foil substrate, which we
previously reported for use in the flexible SAW devices,35 the
woven carbon fiber cloth substrate (which is polymer matrix
based) has a relatively lower thermal conductivity on the order
of 1−10 W/m·K.36 Together with the PI film between the
ZnO layer and the carbon fiber substrate having an even
smaller thermal conductivity of 0.12 W/m·K, most of the
acoustic heat has been confined on the surface of the SAW
device.
We used the setup schematically shown in Figure 1e to

measure the temperature of a droplet while the SAW device
was activated. As a proof-of-concept demonstration, Figure 4
shows the average temperature of a 5 μL distilled water droplet
on top of the SAW device with a wavelength of 160 μm
controlled by the input SAW power. The obtained temperature
readings are changed according to the following relationship
with the applied power: T = 23.34 (°C) + 0.67 P (W), in
which T is the droplet temperature and P is the input power
applied to the IDTs at 12.33 MHz (Sezawa mode wave). The
inset of Figure 4 displays an example of a heating cycle. The
temperature was increased immediately after the power was
applied, taking ∼10 s to reach the set value of 37.5 °C. Then, it
was maintained at the set temperature for 1 min with a minor
fluctuation of 0.1 °C. Clearly, SAW devices can be used to
precisely control the liquid temperature, which can meet the

requirements of biological processes. Besides, the temperature
of the backside of the device (i.e., the carbon fiber surface) has
been simulated using the FEA simulations for checking the
biological safety factors. Assuming the environmental temper-
ature is around 20 °C, the backside temperature has not been
above 26 °C when the liquid above is maintained at 37 °C (see
Figure SI1. a,b).

■ MULTIPLE SENSING FUNCTIONS BASED ON THE
INTEGRATED PLATFORM

UV Sensing Using SAW. The SAW device with a
wavelength of 64 μm was used for demonstration of sensing
functions such as UV sensing. We used the setup schematically
shown in Figure 1d to measure the shift in resonant frequency
of the SAW device under the UV exposure. As shown in Figure
5a, the device was exposed to the UV light with different
controlled intensities (from 0 mW/cm2 to 151.2 mW/cm2) at
durations of 20−40 s and then kept in the dark environment
for another 20 s until the external UV irradiation influence
disappeared, while the resonant frequency shift was continu-
ously recorded for the whole process. As the device was
exposed to the UV light, the frequency shift of the R0 mode
was increased linearly for the first 10−15 s and then saturated
at the corresponding intensity values until UV light was
switched off. Afterward, the frequency shift was decreased to
zero as the device recovered to the equilibrium state. Figure 5b
shows that there is a linear relationship between the frequency
shift and UV intensity, which produces an estimated sensitivity
of 0.85 kHz/(mW/cm2). Considering that the initial frequency
is 14.95 MHz, the sensitivity can also be written as 56.86 ppm/
(mW/cm2).
According to eq 1, the frequency shift caused by the UV

light is mainly composed of two parts: i.e., (a) from the
conductivity change of ZnO thin films; and (b) from the
increase of the temperature. For the frequency shift due to the
changes of conductivity, the following equation is generally
applied37,38

σ
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= Δ = −
+

f
f
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1 ( / )0 0

2

0 s s
2
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where k2 is the coupling coefficient, Cs is the capacitance per
unit length of the surface, and σs the sheet conductivity. By
measuring the current−voltage (I−V) curves of the device
under different intensities of the UV illumination (see Figure
SI2 in the Supporting Information), the obtained sheet
conductance Gs is shown in Figure 5c, and the readings

Figure 4. Measured average temperatures of a 5 μL distilled water
droplet on top of the SAW device with increasing input power. The
inset shows that the average temperature is controlled by the input
power (23 W) over time.
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increase with the UV intensity. As σs is proportional to Gs, the
sheet conductivity is also increased with the UV intensity, thus
contributing to the increase of the total frequency shift.
However, thermal heating effect can also be generated in the

device during the UV illumination due to the actuation of
SAW and the low thermal conductivity of the PI-coated carbon
fiber composites. This will surely change the shift of the
frequency. We have also measured the temperature of the
device as a function of UV exposure duration. The surface
temperature rise was 0.3−2.3 K during the 20 s exposure at
different UV intensities (Figure 5d). To evaluate the
temperature-induced frequency shift, the temperature coef-
ficient of frequency (TCF) of the same SAW device was
measured and calculated, and the obtained reading was 465
ppm/K (with the initial frequency f 0 = 14.95 MHz). The
frequency shift Δf T can be calculated using the following
equation

Δ = ·Δ ·f f T TCFT 0 (5)

where ΔT is the change of temperature. Therefore, the
temperature-induced frequency shift was estimated to be −2 to
−16 kHz, which contributes to less than 25% of the total
frequency shift as shown in Figure 5d. Besides, this fraction
was decreased as the UV intensity was increased and saturated
at 12%. In addition to temperature, humidity as another key
environmental parameter can also affect the UV-sensing
performance of SAW sensors. We have previously explored
this effect for Al-foil-based flexible SAW sensors and explained
how the measurements can be decoupled.37,38

Our experimental results showed that the SAW resonant
frequency can be used for UV sensing and indicated the
conductivity change of the ZnO thin film is dominant in the
physical mechanism.
Glucose Concentration Monitoring Using the Electro-

magnetic Resonator. The same SAW device (with the

wavelength of 64 μm) was further used as the metamaterial
device to measure glucose concentrations in a droplet of
deionized water with a volume of 0.5 μL placed directly on top
of the IDTs (see Figure 1c for the schematics of the
experimental setup). We kept the droplet at the exactly same
location on the device with a position error of less than 0.2 mm
using the IDT itself as the marker under the video camera. We
then varied the concentrations of glucose within a range of
10−500 mg/dL and also washed the surface with deionized
water between each measurement to clean the residues. Figure
6a shows an exemplary set of recorded S21 spectra at different
glucose concentrations. We repeated each measurement at a
particular glucose concentration for 10 times and repeated the
measurement protocol on three different days. Figure 6b shows
the variation of the resonant frequency with the concentration
of glucose, where the error bars represent the standard error of
the mean values. The resonant frequency of the metamaterial
device increases with the concentration of glucose. This is
expected since the permittivity of a droplet of glucose solution
decreases with increased concentration of glucose.22 We
observed a linear decrease in resonant frequency within the
measurement range with a sensitivity of 0.34 MHz/(mg/dL).
This level allows measurement of glucose with a resolution of 3
μg/dL with a frequency resolution of 1 kHz at the
measurement band.

■ CONCLUSIONS

A flexible and integrated platform of acoustic waves and
electromagnetic metamaterials based on polyimide-coated
woven carbon fibers was proposed in this work for potential
application in bioassays and multifunction sensing. The
designed platform was based on a SAW device, where the
acoustic wave was agitated to control the temperature of a
liquid droplet placed in the functional area and was also used
as a UV sensor with the sensitivity of 56.86 ppm/(mW/cm2).

Figure 5. (a) Real-time frequency shift of the SAW UV sensor with a wavelength of 64 μm under UV light. (b) Total frequency shift varying with
the UV intensity. (c) Sheet conductance varying with the UV intensity. (d) Temperature-change-induced frequency shift Δf T and the ratio
between Δf T and the total shift varying with the UV intensity. The inset shows the temperature increase with the UV intensity.

ACS Sensors pubs.acs.org/acssensors Article

https://dx.doi.org/10.1021/acssensors.0c00948
ACS Sens. 2020, 5, 2563−2569

2567

https://pubs.acs.org/doi/10.1021/acssensors.0c00948?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00948?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00948?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.0c00948?fig=fig5&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://dx.doi.org/10.1021/acssensors.0c00948?ref=pdf


Meanwhile, the same device presented excellent performance
in glucose concentration monitoring when it worked as an
electromagnetic metamaterial device, giving a sensitivity of
0.34 MHz/(mg/dL). Our integrated platform has shown its
capability for versatile sensing functions in a liquid environ-
ment as well as the capability to simulate the biological
incubating conditions.
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