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Detrimental health effects from ionizing radiation to living organisms is one of the key

concerns identified and addressed by Radiation Protection institutions, nationally and

internationally on Earth and for human spaceflight. Thus, new methods for mitigating

the adverse effects of ionizing radiation are urgently needed for terrestrial health and

deep space exploration. Caloric restriction and (intermittent-) fasting have been reported

to elicit a variety of immediate and long-term physiological effects. The rapidly growing

body of evidence of research studies investigating the effects of caloric restriction and

dietary fasting points toward a multitude of benefits affecting numerous physiological

systems. Therefore, a systematic review was performed to evaluate the evidence of

caloric restriction and dietary fasting on the physiological response to ionizing radiation

in humans and animals. All experimental studies of humans, animals, and eukaryotic cell

lines available in PubMed, Cochrane library, and specialized databases were searched

comparing irradiation post-caloric restriction or fasting to a non-nutritionally restricted

control group on a broad range of outcomes from molecular to clinical responses. The

initial search yielded 2,653 records. The final analysis included 11 studies. Most studies

investigated survival rate or cancer occurrence in animals. Included studies did not

reveal any benefit from pre exposure caloric restriction, except when performed with

post radiation caloric restriction. However, the effects of pre-exposure fasting suggest

increased resilience to ionizing radiation.

Keywords: fasting, caloric restriction, radio-protection, SIRTUIN, irradation, space flight, deep space, radiology

INTRODUCTION

Ionizing radiation has numerous negative biological effects on almost all living organisms (1).
Humans may be challenged not only by classical background radiation and nuclear events/disasters
but also via exposure to radiotherapy, air travel or even space travel. Over the past few decades, the
field of radiation protection has made significant progress in devising methodologies to protect
humans from ionizing radiation including development of regulations relating to the exposure to
radiation use in medical, civilian, and military contexts (2).
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However, greater knowledge of the mechanisms that
determine the biological damage resulting from ionizing
radiation is required in order to inform the development of more
effective radiotherapy delivery methodologies and protective
countermeasures. Terrestrially, this is of critical importance in
radiotherapy in order to reduce secondary tissue damage, while
maximizing radiation delivery to cancerous tissues. Furthermore,
mitigating the negative effects of ionizing radiation is arguably
the most significant challenge that must be addressed to facilitate
human space exploration, beyond the relative protection
provided by the Earth’s magnetic field in low earth orbit (3).

Ionizing radiation is known to induce significant damage to
cells. For instance, ionizing radiation exposure is reported to
induce pathological states including acute radiation syndrome
(4), (solid and non-solid) cancer (5), and organ dysfunction (e.g.,
radiation pneumonitis, radiation enteritis) (6, 7). The occurrence
of some pathological states are directly dependent on the total
received radiation dose (deterministic effects) (8), while other
pathological states such as cancer appear to have probabilistic
increases with dose (stochastic effects) (9).

The physiological effects of ionizing radiation exposure can
be categorized as either direct or indirect (10). Direct effects
refer to the immediate damage ionizing radiation induces
on DNA within cellular nuclei such as single or double
strand breakages in DNA. Indirect effects characterize the
interaction between ionizing radiation and other molecules,
such as water. In contrast, the so-called “bystander effect” is
defined as the biological response observed in cells without
direct exposure to radiation. For instance, indirect effects
generate free radicals and reactive oxygen species that create
an environment of increased genetic instability leading to
indirect damage to DNA and other cellular components (10). In
normal physiologic states, cellular activity generating oxidative
stress via production of free radicals and ROS is mitigated by
the antioxidant system (11) via the donation of electrons by
antioxidants. Thus, the balance between free radical production
and antioxidant activity determines the cellular oxidative stress.
Thus, stimulation of increased antioxidant activity is likely to
reduce oxidative stress, and resultant DNA damage, thereby
potentially mitigating at least some of the damage induced by
ionizing radiation.

Interestingly, research has shown that fasting (defined as the
complete absence of food for >12 h) can extend rodent lifespans
(12, 13). Furthermore, caloric restriction—defined as reduced
caloric intake for more than 12 h—can also extend rodent
(14, 15) and primates lifespans (16). Whilst several physiological
mechanisms have been proposed over the years, more recently,
there is increasing evidence that fasting and caloric restriction
can directly modulate and reduce cellular oxidative stress, which
may underpin lifespan extension (17, 18). Such mechanisms
may also potentially reduce oxidative stress and thus represent a
biological countermeasure to ionizing radiation. Considering the
above, in addition to reducing ionizing radiation one possibility
to reduce the overall risk of developing dose-dependent or
stochastic radiation-induced medical conditions could be to
reduce the radiation-sensitivity of cells, thus increasing their
radiation resilience.

Human research investigating the effects of fasting and
caloric restriction on radio-protective mechanisms seems to be
scarce. An in vitro pilot study utilizing human serum showed
an increased oxidative stress resistance after caloric restriction
(19). Other studies have tried to describe cellular mechanisms
responsible for the link between food intake and oxidative stress
and have provided potential explanations through the interaction
with energy sensing pathways (20, 21). Proteins such as Sirtuins
(22–27), FOXO (28), TOR (29), AMPK (30), or NRF2 (31) seem
to be key players in the mediation of stress resistance and anti-
oxidant response to fasting and caloric restriction. Based on
these findings, it could be suggested that caloric restriction or
fasting might mitigate biological damage induced by secondary
effects of ionizing radiation, through positive interaction with
the cellular antioxidant system while also decreasing incidence
of diseases like cancer (32). Thus, the aim of this review was
to evaluate the evidence for fasting and/or caloric restriction
as an approach to radioprotection. For terrestrial applications,
there are various implications of exploring the protection that
could be provided to patients undergoing radiation therapy
or medical imaging, to those exposed to higher than baseline
radiation from occupational sources, and to accidental radiation
exposure incidents.

MATERIALS AND METHODS

Terminology
The terms caloric restriction and fasting are sometimes conflated.
Fasting is typically defined in the literature as no, or minimal,
caloric intake for at least 12 h (33). Moreover, fasting and caloric
restriction can be applied in a number of ways (e.g., intermittent
fasting, periodic fasting, continuous fasting, continuous caloric
restriction, or intermittent caloric restriction). This review
defines “fasting” as a complete absence of food for longer than
12 h, while the term “caloric restriction” refers to reduced caloric
intake (compared to normal) for longer than 12 h. Such term do
not include “starvation” which relates to a chronic nutritional
insufficiency and thus is beyond the scope of the present study.

Search Strategy
The guidelines in the Cochrane handbook (www.cochrane.
com; version 5.1) were followed using tools created by
the Aerospace Medicine Systematic Review Group (AMSRG:
http://aerospacemed.rehab/systematic-review-group) for data
extraction, quality assessment of studies, and effect size
calculations. Furthermore, this review followed the guidelines of
the Preferred Reporting Items for Systematic Review and Meta-
Analyses (PRISMA). PubMed, Embase, Cochrane Library and
space agencies’ local databases (NASA, ESA, and DLR) were
searched for eligible studies published before November 30th,
2018. The detailed search strategy using Boolean logic is shown in
Supplementary Table 1. Due to the lack of an advanced research
tool using Boolean logic in NASA’s, ESA’s, and DLR’s internal
archives, the search strategy was adapted to employ simple
keywords (Supplementary Table 2). Accepted languages were
English, German, Russian, Polish, Italian, Dutch, and French. All
non-English articles were translated by the authors except for
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Italian articles which required the assistance of a collaborator
(who is mentioned in the Acknowledgments).

Eligibility Criteria (PICOs)
The following PICOS (Population, Intervention, Control,
Outcomes, and Study design) eligibility criteria were applied:

P—Humans, animals, and eukaryotic cell lines.
I—Fasting (> or equal to 12 h) or caloric restriction (reduction

of at least 30% of normal intake for > or equal to 12 h) prior to a
partial or whole-body exposure to ionizing radiation

C—Same population as in the intervention group, with
the same ionizing radiation exposure but without any
dietary restriction.

O—Molecular, biochemical (short or long term) or clinical
responses (short or long term) to ionizing radiation exposure.

S—Controlled trials
A complete list of all included outcomes is shown in
Supplementary Table 3.

Study Selection
Two reviewers independently assessed the eligibility of the
studies based on the PICOs criteria via screening performed
using the Rayyan web application (34). After duplicates were
removed, the initial screening was performed using titles and
abstracts. Articles were excluded if the title or abstract did not
reveal a direct link to the current eligibility criteria (see PICOs).
All remaining articles were then screened as full text. A third, and
independent experienced reviewer resolved any disagreements.

Data Extraction
Data from the included studies were extracted using an adapted
version of the Cochrane Collaboration’s Data collection form for
RCTs and non-RCTs (RCT: randomized controlled trial, version
3, April 2014, https://dplp.cochrane.org/data-extraction-forms).
The extracted information included characteristics of the study
(authors, design, and publication year), population (age, sex, and
species/breed if available), radiation (type, intensity, duration,
target, circumstances, and control group), fasting and caloric
restriction (duration, intensity, control group, chronology with
the irradiation), statistical methods and outcomes (parameters,
values, time points).

Assessment of Study Quality
The quality of included studies was appraised and described by
the two reviewers using the Cochrane Collaboration’s risk of bias
analysis tool (https://www.ncbi.nlm.nih.gov/books/NBK132494/
bin/appf-fm1.pdf). Uncertainties or discrepancies were discussed
with an independent experienced third reviewer. Risks were
scored as “low,” “high,” or “unclear.”

Data Analysis and Statistics
Effect sizes were calculated for all studies that presented their
results as means and standard deviations/standard error of the
mean. Presented effect sizes were calculated and bias corrected
for potential small sample sizes using the Hedge’s g method (35)
and they refer for any given effect to be either in favor of the
control group, or in favor of the intervention group. For ease
of interpretation all outcomes were presented to show a positive

effect as being “beneficial,” therefore any original outcomes that
have negative “beneficial” effects were inverted by multiplying by
−1 for presentation in the overall results (e.g., a fall in resting
heart rate results in a negative effect size but it is associated with
better general physical fitness and thus is considered a beneficial
outcome). Thresholds for effect sizes were defined as 0.1 (small),
0.3 (moderate), 0.5 (large), 0.7 (very large), and 0.9 (extremely
large) for comparisons between intervention and control groups
(35). Cappelli et al. (36), reported only raw data from which to
determine mean time of survival after exposure and its standard
deviation. Yoshida et al. (37) and Bonilla et al. (38) reported
standard error that was converted to standard deviation via: SD
= SE x

√
N. In addition, when results were only presented as

figures (38–40), a plot reader was used to extract the data (https://
automeris.io/WebPlotDigitizer).

Not all studies provided data that allowed effect size
calculations using the Hedge’s g method. Although these
extracted data are inconsistent with the standard practice of
Cochrane systematic reviews, they are reported as they provide
valuable information in the context of this review. For data
extracted from studies that could not be used in the effect
size analysis, the statistical significance (P < 0.05) of individual
studies was reported. Some of the older studies did not report
any significance values and thus were highlighted by “significance
not reported.” To meet the criteria for Cochrane systematic
reviews this data is not presented in the results section and
has been moved to the beginning of the discussion (see section
“other noteworthy findings not able to be included in the
analysis”). In order to illustrate the potential of the studied
interventions, both types of data were merged and analyzed in
Excel (Professional plus 2016 edition, Microsoft, US) and the
meta data was presented using the SankeyMATIC tool (http://
sankeymatic.com/build/).

RESULTS

Study Selection
The initial search identified 2,441 studies after duplicates were
removed. Abstract and title screening excluded 2,309 studies that
did not meet the eligibility criteria. This left 132 studies for
which attempts to obtain full text versions were made. Since
the present selection contained many old studies unavailable
electronically, Sorbonne University library network and King’s
College London Library’s support were requested for obtaining
physical copies. Additionally, article authors were contacted
through ResearchGate (https://www.researchgate.net) and email
solicitations to request access to full text articles. After two rounds
of full text screening, a further 121 studies were excluded for
various reasons, including 26 studies for which full text could
not be obtained (listed in Figure 1). Following the screening
process, 11 studies, including one RCT and ten controlled trials
(CT) were included for analysis (Table 1). Of the 11 included
studies five were eligible to calculate effect sizes (Figures 2–
4). Studies that did not allow for effect size calculations are
presented in the Supplementary Material together with the
meta data of all included studies. Included studies mostly
reported using animal samples (seven mouse, two rat and
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FIGURE 1 | Flow diagram of search and screening methodology. The flow of search results numbers and author’s eligibility screening assessment is represented here.

one with Guinea Pig). Habermann et al. (41) was the only
human study included. All included studies administered either
a single high dose of γ-rays (three studies) or X rays (eight
studies). There was a high degree of variability on the dosage
of radiation delivered to the study population ranging from
1.23 to 12Gy. Of the 11 studies included, seven enforced
fasting and four caloric restriction as an intervention. The
outcome parameters varied from clinical (survival rate, leukemia
or cancer occurrence) to histological (number of regenerating
crypts, number of crypts, villi height in the intestinal mucosa)
and biochemical (RNA polymerase activity, DNA repair activity,
hematopoietic cell cycle size, and DNA damage markers). A
full meta-analysis was not performed due to high heterogeneity
in both intervention and reported outcomes across included
studies. All the metadata, together with the calculated effect sizes
for is available in Supplementary Table 1 (caloric restriction)
and Supplementary Table 2 (fasting).

Methodological Quality
Several studies failed to provide sufficient details to permit a
complete assessment of their potential risk of bias (e.g., selection,

performance, and bias evaluation). Therefore, these studies were
identified as possessing unclear overall risk of bias. All results
for the assessment of the methodological quality of the included
studies are presented in Supplementary Table 4.

Effect Sizes of Interventions
Caloric Restriction
Yoshida et al. (37) reported an effect in favor of pre-exposure
caloric restriction of 65 kCal per week for 4 weeks on the
incidence of leukemia with an extremely large effect size of 4.56
and a mean time of death with an extremely large effect size
of 2.17 (Figure 2). The mice in this study were kept under a
restrictive diet before irradiation, as well as given a moderate
caloric restriction after irradiation (reduced caloric intake to
maintain weight of 60–95 kCal per week). Habermann et al.
(41) studied the repair capacity of radiation damaged DNA in
vitro following chronic caloric restriction in humans. The intake
restriction implemented in this study was 1,200–2,000 kCal/day
caloric intake for 1 year before radiation exposure. In this study,
no difference was found between the control and intervention
groups on the various types of DNA damage (Moment arm
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TABLE 1 | Overview of all measured outcomes of the 11 included studies.

Caloric restriction Fasting

DNA repair Habermann et al.

(41)

RNA polymerase

activity

Omata (40)

Cycle cell in

hematopoietic

organs

Yoshida et al. (45) H2AX and CC3

cell expression

Bonilla et al. (38)

Mucous

membrane

histology

Bonilla et al. (38)

Tumor growth Yoshida et al. (46) Survival rate Smith et al. (42)

Maisin et al. (47)

Kozubík and

Pospísil (39)

Li et al. (48)

Bonilla et al. (38)

Leukemia Yoshida et al. (37)

Yoshida et al. (45)

Yoshida et al. (46)

Time of death Yoshida et al. (37)

Yoshida et al. (46)

Time of death Smith et al. (42)

Cappelli et al. (36)

repair, DNA tail repair, and tail moment repair) with effect sizes
of 0.04,−0.01 and−0.01, respectively (Figure 2).

Fasting
To date, literature has focused on short and unique fasting
sequences as an intervention prior to irradiation. Smith et al.
(42) analyzed the mean time of death of guinea pigs exposed
to ionizing radiation after 24 h of fasting, followed by 48 h of
fasting after exposure. Fasting improved the mean survival time
with an extremely large effect size of 0.99 (Figure 3). Longer
fasting sequences were also studied. Cappelli et al. (36) showed
that prolonged intermittent fasting with short fasting periods for
several weeks increased the mean survival time of mice with a
large effect size of 0.69 (Figure 3). Bonilla et al. (38) studied the
effects of short term fasting in mice before abdominal irradiation
upon a range of histological and biological outcomes. At the
intestinal level, all measured histological parameters (number
of regenerating crypts, number of crypts, villi height in the
intestinal mucosa) showed an extremely large effect size (1.47,
3.15, and 3.80, respectively,) in favor of the fasting group; except
for crypts depth analysis which had a large effect size of −0.8
in favor of the control group (Figure 3). The same authors
reported no differences in γ-H2AX levels, but they observed
that the number of CC3 positive cells in fasted animals was
higher 24 h after radiation exposure, with an extreme large effect
size of 1.68 (Figure 3). They also studied the same histological
parameters (regenerating crypts not studied) with an analogous
study protocol that exposed mice to orthotopic pancreatic cancer
cell implantation 2 weeks before the fasting period followed by
the irradiation. Here, the effect sizes of number of crypts and villi
height were extremely large, 4.42 and 4.19, respectively; crypts
depth analysis remained showed an effect size of−0.84.

DISCUSSION

Out of 46 outcomes on fasting and 18 outcomes on caloric
restriction, only 13 and 5, respectively, had sufficient data to

calculate effect sizes. Furthermore, a high degree of heterogeneity
was found in the outcomes, interventions and populations,
preventing result pooling and meta-analysis performance. There
were large to extremely large effects in favor of pre-exposure
fasting in animals for clinical (incidence of leukemia, mean time
of death), histological (crypts density, villi height, regenerating
crypts) and biological parameters [% of CC3 cells 24 h after
irradiation with a 24 h fasting period before irradiation (H24)].
In contrast, effect sizes for crypts depth, % of γ-H2AX at H0
(no fasting)/H24 and % of CC3 cells at H0 were not significant.
Caloric restriction results revealed extremely large positive effect
sizes for incidence of leukemia and mean time of death in mice,
but in association with post exposure weight control. No effect
on DNA damage was found in the only human study included
in this review between a pre exposure caloric restriction and its
control group.

Evidence Based on Effect Size Calculation
Caloric Restriction
Caloric restriction prior to irradiation did not improve the
resistance to radiation induced damage in mice or humans,
unless it was combined with caloric restriction post-exposure to
ionizing radiation. A reduction in the occurrence of leukemia
and survival rates in mice if the caloric restriction intervention
was given after irradiation (43, 44). According to the authors, a
reduction in the oncogenesis pathway rather than the initiation
of cancer may be the potential mechanism of cellular adaptation
observed with a reduced caloric intake. The evidence outlined
above indicates that longitudinal caloric restriction before,
during and after irradiation might be needed to observe any
significant beneficial results. Thus, the timing and continuity of
reduced caloric intake after irradiation seem to be important
factors to consider. The studies included in this systematic
review employed various reduced caloric intake definitions, both
in terms of duration and number of calories provided to the
study population. This variability likely had an influence in the
outcomes that were assessed. For example, Habermann et al.
(41) restricted calories to study participants for 1 year before
radiation while Yoshida et al. (37) employed a short-term caloric
restriction regime for only 4 weeks before radiation. Despite
substantial study design heterogeneity and the data included in
this review, the presented evidence suggests that both pre and
post ionizing radiation exposure caloric intake restriction may
improve median time to death and reduce cancer incidence.
However, further studies are needed evaluating duration, timing,
and extent of reduced caloric intake in ameliorating biological
damage induced by ionizing radiation.

Fasting
The main outcomes reported in the studies that employed
fasting as an intervention were mean time to death and survival
parameters. The studies included in this systematic review
suggest that fasting may improve (rat) survival rates and time
to death when exposed to ionizing radiation (see Figure 3).
These results are consistent with those generally observed
with prolonged intermittent fasting in mice although there is
variability, depending on mouse strain. In addition responses are
likely to be highly dependent upon radiation type e.g., X-Rays and
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FIGURE 2 | Effect sizes for caloric restriction. Outcomes are plotted with the Hedges’ G calculated for each outcome extracted and bias corrected for sample size.

Confidence intervals of 95% are represented by the error bars. Effect size values that are in the positive rightward direction indicate a beneficial effect in favor of the

intervention group compared to the control group. M, Mice; H, Humans.

γ-Rays and dosage. However, there is insufficient data, to evaluate
these differences. Analogous to the included caloric restriction
studies, there was a high degree of experimental (timing,
duration, and type of fasting method) heterogeneity. In general
the main beneficial outcomes were observed with different types
of fasting (continuous, intermittent) as well as timing relative to
the radiation (fasting before, fasting before and after), although
they may influence outcomes and it has been hypothesized that
reduced oxidative stress combined with increased antioxidant
activity could explain the observed beneficial outcomes through
energy sensing pathways involving Sirtuins, FOXO or TOR (22,
28, 29). However, all fasting studies were in animal models. Thus,
further research (including in humans) is required to determine
the exact permutation of the duration, type, and timing of fasting
that is required to maximize the radioprotective effect, and the
underlying mechanisms.

Other Noteworthy Findings Not Able to Be
Included in the Effect Size Analysis
Caloric Restriction
Some of the included studies did not report sufficient data
to calculate effect sizes. Yoshida et al. (45) investigated a
group of mice given only reduced caloric intake pre-irradiation
followed by normal food access after irradiation. In this study no
difference in the incidence of leukemia was reported. However,
when associated with a continued reduced caloric intake after
irradiation (weight maintenance), the incidence of leukemia in
mice was significantly reduced in comparison to the control
group. Thus, in Yoshida et al. (46), only a post-exposure adapted
diet of 60–95 kCal/week to maintain weight vs. normal food
access after irradiation appeared to have the effect of reduced
myeloid leukemia incidence, increased number of tumor free
mice and median time of death if the same pre-irradiation
caloric restriction protocol of 65 kCal/week for 4 weeks was used
(Supplementary Figure 1, Supplementary Table 5). However,
no differences were observed for the other tumors.

Fasting
Maisin et al. (47) studied the effect of fasting in rats that
were irradiated while wearing liver shielding. Fasting
significantly improved the survival rate (from 25 to 50%)
in liver shielded animals compared to non-fasted animals
(Supplementary Figure 2, Supplementary Table 6). No
difference was found without liver protection (0% survival
in both groups). Omata et al. (40) investigated the activity
of Mn2+ (Manganese) and Mg2+ (Magnesium) dependant
RNA polymerase in the liver of mice that were fasted
and the non-fasted control group following irradiation.
They reported a decrease (significance not reported) in the
activity of RNA polymerase in the fasting group compared
to the control group when irradiated. A similar result was
reported in the non-irradiated groups (fasted and non-
fasted), indicating a link between fasting itself and these
enzymes (significance not reported). In all these studies, the
animals were fasted until 24 h after irradiation with 6.5Gy of
X-ray radiation.

Kozubík and Pospísil (39) investigated the survival rate
of several strains of mice exposed to different protocols of
intermittent fasting. Fasting improved the survival rate in each
group of mice, but the effects varied depending on fasting
duration. Survival benefit was seen when the intermittent fasting
intervention was longer than 1 week. Additionally, short periods
of food access between fasting periods appeared to reinforce
the survival effect although no dose effect relationship was
highlighted (significance not reported). A more recent study
by Li and co-workers (48) investigated short fasting periods
in mice (12, 48, and 72 h with eight mice per group) before
radiation, which showed a survival rate of 0, 12.5, and 50%,
respectively, in comparison to 0% survival in the control
group following 7.5Gy of γ-rays significance not reported.
Additionally, Bonilla et al. (38) reported a survival rate of
100% at day 30 in the fasted intervention group and a 0%
survival rate in the non-fasted control group (significance
not reported).
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FIGURE 3 | Effect sizes for fasting. Outcomes are plotted with the Hedges’ G calculated for each outcome extracted and bias corrected for sample size. Confidence

intervals of 95% are represented by the error bars. Effect size values that are in the positive rightward direction indicate a beneficial effect in favor of the intervention

group compared to the control group. GP, Guinea pigs; M, mice. *per circumference. ** effect size multiplied by −1.

Can Caloric Restriction and Fasting Help
to Mitigate Radiation Damage?
The present systematic literature review was hampered by the
somewhat limited information on the biological effect of ionizing
radiation under caloric restrictions and fasting conditions.
An attempt was also made to also analyze tendencies in
biological responses to ionizing radiation (Figure 4). In doing
so, we have tried to identify potential links between the time
and duration of the (caloric restriction/fasting-) interventions,

and their effectiveness to mitigate radiation damage. We
have merged all extracted data including available meta-data
(Supplementary Tables 1, 2), and we assigned a “tendency”
to each outcome, based on calculated effect sizes or by
reported significance levels of the included studies. The collected
data of all included studies did not allow to perform a
comprehensive meta-analysis, but the analyzed data suggest
tendencies toward beneficial effects of caloric restriction and
fasting in response to ionizing radiation. For caloric restriction

Frontiers in Nutrition | www.frontiersin.org 7 September 2020 | Volume 7 | Article 584543

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Valayer et al. Dietary Restrictions and Radio-Protection

FIGURE 4 | Radio-protective potential of dietary restrictions. (A) Caloric Restriction (CR) explained by the time and Tendency of the intervention. Flows represent the

total number of outcomes with a certain potential for effectiveness. (B) Fasting explained by the regime (Intermittent, Continuous), Intervals and radio-protective

effectiveness of the intervention. The middle column represents the duration of one interval in days. Flows represent the total number of outcomes given intervals and

tendency, respectively. Tendencies indicate whether the CR or Fasting have radio-protective potential (Beneficial), potentially increase radio-sensitivity (Negative) or

have no effect (Non-beneficial). “Unk.” represents an unknown tendency.

(Supplementary Table 1), the reported tendencies were equally
distributed between “beneficial” and “non-beneficial.” Two
“negative” tendencies were reported relating to the loss of the
circulating and spleen hematopoietic stem cell fractions (45).
Such effects may result from differences in control mice at
baseline followed by slower rates of proliferation after irradiation.
However, these levels did not appear to influence the overall
beneficial effect of reduced rates of leukemia in restricted
mice. For studies using caloric restriction as an intervention,
all reported beneficial tendencies referred to clinical outcomes
(Supplementary Table 1).

The included fasting studies reporting biological responses
to ionizing radiation revealed in total 47 reported outcomes,
with 19 defined as “beneficial,” and 24 being non-beneficial.
The included fasting studies employed either intermittent
(28 studies) or continuous fasting (19 studies; Figure 3,
Supplementary Table 6). Interestingly, our analysis revealed that
the majority of outcomes demonstrated a radio-protective effect
during the first 3 days of fasting, and then gradually decreasing
with each additional fasting day. The data suggests the radio-
protective potential of fasting is less dependent on the type, but
rather the duration of fasting although the quality of evidence
is insufficient to draw conclusions and thus further research is
needed to identify the optimal fasting regimes.

Quality of Evidence
The overall risk of bias was difficult to estimate due the lack of
information. This might have exposed this review to selection
bias since the majority of these articles was selected by title only

since abstracts were not available. An overview of the Cochrane
risk of bias evaluation of all included studies is presented in
Supplementary Table 4. Use of a systematic approachminimized
the risk of missing studies. However, since it was not possible to
use Boolean logic in screening the literature in Space Agency’s
local databases, searches in these databases had to be limited
to single keyword searches, exposing a risk of missing relevant
studies. Moreover, the search yielded a significant number of
non-English papers that was addressed through translation (with
the help of native speakers) of articles in several languages
(French, German, Russian, and Italian). Lastly, despite the
authors’ endeavor to recover full text articles, 26 articles, mostly
old, could not be obtained.

Transferability of Results
Although scientific communities have been paying more
attention to studying radiation effects on living organisms, there
are serious limitations in transferring findings from in-vitro,
animal and human occupational and clinical radiotherapy studies
to healthy populations, like the population of astronauts (3).
Those imperfect analogs differ in radiation qualities, energies,
doses and dose rates from the conditions that astronauts will
experience during spaceflight. In case of human studies, which
mainly comprise of radiotherapy patients, drawing conclusions
from populations with greater health risks and subjected to
additional treatments may introduce additional bias. Thus,
relying on those surrogates restricts the ability to translate
radiation knowledge to spaceflight scenarios (3).
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This review has several limitations that should be considered
when interpreting its findings to humans from the animal
(rodent) models used in all but one of the included studies. In
animal studies, generally single, whole-body and short radiation
exposure is the norm in contrast to short, partial-body and
repeated irradiation of fractionated radiotherapy in humans. A
plethora of studies has been published on nutrition in patients
receiving radiotherapy, however, including radiotherapy patients
would include clinical patient populations that would introduce
unacceptable levels of confounding factors such as clinical
physiological changes, co-morbidities, and pharmacological
effects and these confounding factors would substantially
decrease or potentially prevent any transferability to the
population that we address in the present study. Therefore,
most radiotherapy studies did not meet the inclusion criteria for
the present study. No data were also available on continuous
exposure to whole body ionizing radiation in humans in this
systematic review. Nonetheless radiation qualities (x rays and
γ-rays) and doses reported in this review are consistent with
partial radiotherapy, with cancer occurrence and survival rate
being two of the most commonly observed outcomes. However,
the present study included a significant number of older studies
that lacked complete reporting of methodological details leading
to the inability to define risk of bias. Moreover, incomplete
or inappropriate (by modern standards) data reporting
was a recurrent issue preventing data extraction and effect
size analysis.

Terrestrial Implications
The findings in this review could assist with the goal of preserving
healthy tissues while also reducing secondary cancers in clinical
radiotherapy. The potentially synergistic positive mechanisms of
cellular protection that appear to be provided by fasting and
reduced caloric intake may assist with the goal of preserving
healthy tissues while also reducing secondary cancers in clinical
radiotherapy (49). There is growing evidence that suggests the
benefit of fasting in cancer care. Studies have investigated the
capacity of fasting to enhance the radiation sensitivity of cancer
cells like glioma or breast cancer in mice (50, 51). Thus, a
positive effect of fasting on cancer treatment was observed
in animals, limiting the damage of surrounding healthy cells
and increasing the cancer sensitivity to radiotherapy. If those
effects are verified in humans, this could lead to practical
considerations to support cancer therapy. Furthermore, similar
results with chemotherapy were found in mouse models; short-
term fasting has shown to improve chemotherapy efficiency
with etoposide (52), mitoxantrone, oxaliplatin (53), doxorubicin,
cyclophosphamide and cisplatin (54) in various cancers and
protected mice from etoposide-induced lethal DNA Damage
(55). Since chemotherapy can cause similar damage to ionizing
radiation on cellular level (56), the cross-talk between fasting
and stress response needs to be further investigated. Even
though no links between fasting and DNA damage were found
in the present study, synergies between responses to ionizing
radiation and chemotherapy and influence of fasting call for
further research. One of the hypotheses to explain the protective

effect of fasting would involve better autophagy activity of
the immune system (57). Chemo-tolerance seems also to be
enhanced in pre-fasted mice with neuroblastoma exposed to
etoposide (52). Furthermore, they could potentially be applied in
other clinical contexts given the apparent reduction of oxidative
stress and upregulation of antioxidant activity that play a part
in numerous pathological states (58) such as cardiovascular (59)
and neurodegenerative diseases (60).

However, caution should also be taken when applying the
findings to potentially vulnerable or frail populations such
as oncology patients receiving various modalities of cancer
therapies. There are conflicting studies showing detrimental
effects of fasting or caloric restriction in frail populations as
the risk of cachexia and nutrient deficient states can have
negative impacts on wound healing, therapeutic responses, and
downstream complications (61–63). Thus, such caloric restrictive
or fasting strategies to high risk patients due to possible
adverse effects should be applied with caution. Nonetheless,
this is an area that requires much more studies before it is
implemented to current patients and safety should be the first
priority in considering novel adjunctive methods to improve
patient outcomes. However, maintaining a long-term caloric
restriction can be a difficult task due to issues of compliance. The
adherence rates appear greater for intermittent fasting than other
traditional nutritional methods like chronic caloric restriction
(64). Prolonged intermittent fasting has also been performed over
time by various religious cohorts with a relatively high safety
profile if exemptions like pregnancy or diabetes are respected
(65). Recent studies have also shown that prolonged fasting is
safe if done under medical supervision and guidance in selected
patients (66). If proven to be effective, diet modification as a
concurrent therapy in cancer patients must be implemented
with patient safety as a priority in patients who may already
be frail. Several studies have already indicated a good profile
of tolerance of short-term fasting during chemotherapy in
humans (67, 68). Whereas, a short term fasting seems possible
to implement, chronic restriction could raise other concerns.
Since cancer patients are often exposed to great weight loss,
cachexia and sarcopenia due to the cancer itself or as a side
effect of treatment (69), a chronic restrictive diet can worsen
those parameters and thus clinicians should consider the entire
patient’s clinical profile, quality of life, and desired outcomes in
future trials to assess its efficacy and safety. The current aims
of cancer patients’ nutrition recommend the optimization of
caloric intake quality and quantity (70). Increasing the caloric
intake during the allotted eating periods of intermittent fasting
schedules to achieve overall recommended daily caloric intake
ranges remains a possibility. However, further research is needed
to determine the best possible combination of fasting modalities,
timing, and duration to achieve maximal beneficial effect while
maintaining patient safety. For now, this systematic review
points toward a possible link between fasting or reduced caloric
intake with improved clinical outcomes. It is hoped that further
investigations into themechanisms and extent of the benefit, such
diet modifications, would improve clinical care to achieve better
patient outcomes.
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Implications for Human Spaceflight
A number of space agencies have committed to “returning”
to the Moon and venturing into deep space. The European
Space Agency (representing the ESA member states) together
with NASA (the United States), Roscosmos (Russia), CSA
(Canada), and JAXA (Japan), have recently announced plans
to build the lunar gateway—an orbiting space station around
the Moon, that will be a base to support both robots and
astronauts exploring the lunar surface (https://www.esa.
int/Science_Exploration/Human_and_Robotic_Exploration/
Gateway_to_the_Moon). Today astronauts on missions to
the International Space Station (ISS) are partially isolated
from space radiation environment by the protective shield
of the Earth’s magnetosphere and atmosphere (71). Leaving
these “natural” shields on the way to the Moon would expose
astronauts to significantly higher ionizing radiation that differs
in regard to its “quality” (composition and energies) as well as
its “quantity” (dose) which pose serious threats to human health
(3). The risks could be reduced by effective shielding capabilities
combined with limited time spent in space, however current
shielding materials seem to be insufficient and additionally, they
can be sources of ionizing radiation due to spallation events
(3, 72). Therefore, there is a need for additional protective
radio-protective means such as pharmaceutical and biological
countermeasures, as beyond low Earth orbit, astronauts will
be exposed to significant doses of primary (solar radiation and
galactic cosmic radiation) and secondary ionizing radiation (73).
Based on the evidence in this review, prolonged intermittent
fasting with short breaks may be a potential biological candidate
as a countermeasure mitigating the effects of ionizing radiation.
Implementing dietary fasting would be relatively feasible
since it is possible to maintain the overall caloric intake of
current recommendations by adapting the period of eating
(74). Mission planning could also consider the possibility of
short term fasting during periods of high solar activity at solar
maximums. However, one must also consider the impact of
such a strategy on other countermeasures such as physical
exercise to prevent musculoskeletal and aerobic astronaut
deconditioning (75). However, Winnard et al. (76) recently
showed that breaks in exercise of up to 7 days are unlikely to
have a major impact on musculoskeletal deconditioning. Thus,
with greater understanding of the biological responses to the
complex space radiation environment and how to protect against
it, dietary restrictions could potentially play an important role
in mission planning as a biological countermeasure to radiation
damage to ensure the best protection possible for astronauts.

CONCLUSION

Whilst the data is incomplete there is some evidence to suggest
that fasting and caloric restriction might play a protective
role with respect to ionizing radiation in rodents. The radio-
protective effect (i.e., lower cancer incidence and greater
survival) with caloric restriction was only seen if implemented

before and after irradiation whereas the benefits of fasting
were seen regardless of timing. The potential application and
mechanisms of radioprotection provided by dietary changes
could have various applications in both terrestrial and space
medicine. However, the transferability of knowledge from animal
(rodent) models to humans is questionable and given the
paucity of research in the field, these observations are only
hypothesis generating. Future research should focus on the
role of fasting and reduced caloric intake in humans, in
particular examining clinical outcomes in patients undergoing
radiotherapy. Furthermore, included studies employed a range
of radiation types, doses, and locations which require evaluation
and further optimized standardization in future research for the
potential benefit in radiotherapy patients and astronauts.
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